Sample records for synergetic coupling effects

  1. Acoustic metamaterials with synergetic coupling

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Huang, Meng; Wu, Jiu Hui

    2017-12-01

    In this paper, we propose a general design concept for acoustic metamaterials that introduces a ubiquitous synergetic behavior into the design procedure, in which the structure of the design is driven by its functional requirements. Since the physical properties of the widely used, resonant-type metamaterials are mainly determined by the eigenmodes of the structure, we first introduce the design concept through the modal displacement distributions on two typical plate-type structures. Next, by employing broadband sound attenuations that involve both the insulation and absorption as the typical targets, two synergetic coupling behaviors are systematically revealed among the dense resonant modes and multi-cell. Furthermore, through plate-type multiple-cell structures assembled from nine oscillators, the design is shown to realize strong broadband attenuations with either the average sound transmission loss (STL) below 2000 Hz higher than 40 dB or the absorption approximately 0.99 in the range of 400-700 Hz wherein the average absorption below 800 Hz remains higher than 0.8. Finally, two multi-cell plate-type samples are fabricated and then used experimentally to measure the STLs in support of the proposed synergetic coupling design method. Both the computational and experimental results demonstrate that the proposed synergetic design concept could effectively initiate a design for metamaterials that offer a new degree of freedom for broadband sound attenuations.

  2. Ultrathin reflective acoustic metasurface based on the synergetic coupling of resonant cavity and labyrinthine beams

    NASA Astrophysics Data System (ADS)

    Han, S. K.; Zhang, W.; Ma, G. J.; Wu, C. W.; Chen, Z.

    2018-05-01

    We propose a reflective acoustic metasurface by taking advantage of the synergetic coupling of two kinds of widely used elements, the resonant cavity and the labyrinthine beam. A full 2π phase shift range can be obtained by varying the neck width. The structure manipulates the reflective waves on a very deep subwavelength scale with the thickness being only 1/50 of the wavelength, which eliminates the enormous obstacle in low frequency applications. The synergetic coupling of the resonant cavity and the inner labyrinthine beams provide a useful guide for the design of acoustic metasurfaces.

  3. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  4. Bilayer synergetic coupling double negative acoustic metasurface and cloak.

    PubMed

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-04-12

    In this paper, we propose a bilayer plate-type lightweight double negative metasurface based on a new synergetic coupling design concept, by which the perfect absorption, double negative bands, free manipulation of phase shifts with a 2π span and acoustic cloak can be successively realized. Firstly, the synergetic behavior between resonant and anti-resonant plates is presented to construct a bilayer unit in which each component respectively provides a pre-defined function in realizing the perfect absorption. Based on this bilayer structure, a double negative band with simultaneously negative effective mass density and bulk modulus is obtained, which, as a metasurface, can obtain continuous phase shifts almost completely covering a 2π range, thus facilitating the design of a three-dimensional (3D) acoustic cloak. In addition, based on this strong sound absorption concept, a two-dimensional (2D) omnidirectional broadband acoustical dark skin, covering between 800 to 6000 Hz, is also demonstrated through the proposed bilayer plate-type structure form. The proposed design concepts and metasurfaces have widespread potential application values in strong sound attenuation, filtering, superlens, imaging, cloak, and extraordinary wave steering, in which the attributes of strong absorption, double negative parameters or continuous phase shifts with full 2π span are required to realize the expected extraordinary physical features.

  5. Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones.

    PubMed

    Peng, Jin-Bao; Wu, Fu-Peng; Li, Da; Qi, Xinxin; Ying, Jun; Wu, Xiao-Feng

    2018-06-01

    A nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.

  6. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    PubMed

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10 -8  m 2  s -3 , 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10 -5  m 2  s -3 , 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10 -4  m 2  s -3 , 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  7. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    PubMed

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An electrochemical aptasensor for thrombin using synergetic catalysis of enzyme and porous Au@Pd core-shell nanostructures for signal amplification.

    PubMed

    Xu, Wenju; Yi, Huayu; Yuan, Yali; Jing, Pei; Chai, Yaqin; Yuan, Ruo; Wilson, George S

    2015-02-15

    In this work, a sensitive electrochemical aptasensor for thrombin (TB) based on synergetic catalysis of enzyme and porous Au@Pd core-shell nanostructure has been constructed. With the advantages of large surface area and outstanding catalytic performance, porous Au@Pd core-shell nanostructures were firstly employed as the nanocarrier for the immobilization of electroactive toluidine blue (Tb), hemin/G-quadruplex formed by intercalating hemin into the TB aptamer (TBA) and glucose oxidase (GOx). As a certain amount of glucose was added into the detection cell, GOx rapidly catalyzed the oxidation of glucose, coupling with the local generation of H2O2 in the presence of dissolved O2. Then, porous Au@Pd nanoparticles and hemin/G-quadruplex as the peroxidase mimics efficiently catalyzed the reduction of H2O2, amplifying the electrochemical signal and improving the sensitivity. Finally, a detection limit of 0.037pM for TB was achieved. The excellent performance of the aptasensor indicated its promising prospect as a valuable tool in simple and cost-effective TB detection in clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synergetic Effect of SLN-Curcumin and LDH-5-Fu on SMMC-7721 Liver Cancer Cell Line

    PubMed Central

    Zhu, Rongrong; Wu, Xianzheng; Xiao, Yu; Gao, Bo; Xie, Qian

    2013-01-01

    Abstract Curcumin and 5-Fluorouracil (5-Fu) have been reported to have anticancer potentials and show certain synergetic effect on some cancer cell lines. However, the poor bioavailability and rapid metabolism limited their medical application. In this study, we encapsulated curcumin with solid lipid nanoparticles (SLN), 5-Fu with Layered double hydroxides (LDHs) separately and tested its properties and anticancer potentials. SLN-curcumin and LDH-5-Fu were determined to be 100 and 60 nm by Transmission Electron Microscopy detection, and the loading efficiency were 28%±2.5% and 16.7%±1.8%, individually. Furthermore, SLN-curcumin and LDH-5-Fu showed a significantly synergetic effect on SMMC-7721 cell stronger than plain drugs together, of which the Idrug loaded nano-carriers was only 0.315. FACS analysis revealed that the combination of SLN-curcumin and LDH-5-Fu induced 80.1% apoptosis in SMMC-7721 cells, which were 1.7-folds of the sum of the two plain drug loaded carriers. The results demonstrated the significant synergetic anticancer potentials of nano-encapsulated curcumin and 5-Fu, which could be further explored for the treatment of other carcinoma. PMID:23808828

  10. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Gu, Zhenyu; Teng, Fuhua; Lu, Jianhai; Dong, Shibi; Miao, Xiaoping; Wu, Zhongbiao

    2018-06-01

    The degradation of xylene in the dielectric barrier discharge plasma and photocatalyst process was studied, focusing on the synergetic effect of UV rays from plasma process and external UV lamps on the decomposition of xylene. The results showed that xylene could be decomposed by the discharge process in plasma system, whereas the UV rays from plasma process was very weak. After adding TiO2, the removal efficiency of xylene and energy yield in plasma process were enhanced since energetic particles activated the catalysis of TiO2. The removal efficiency of xylene and energy field in plasma and photocatalyst process combined with external UV lamps were further enhanced attributed to the degradation effect of plasma, the catalysis of TiO2 activated by plasma, the photolysis of UV rays and the photocatalysis of photocatalyst. The synergetic effect of UV rays from external UV lamps was obvious.

  11. The Impacts of Aerosols on Hurricane Katrina under the Effect of Air-Sea Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.

    2017-12-01

    Aerosols can affect the development of tropical cyclones, which often involve intense interactions with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean sea level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of air-sea interactions during the developing stage, which demonstrates intricate nonlinear interactions between aerosols, the hurricane and the ocean.

  12. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    PubMed

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production. Copyright © 2015. Published by Elsevier Ltd.

  13. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    PubMed

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    PubMed

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  16. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  17. Three branches of phospholipase C signaling pathway promote hepatocyte growth in rat liver regeneration.

    PubMed

    Xu, G G; Geng, Z; Zhou, X C; He, Y G; He, T T; Mei, J X; Yang, Y J; Liu, Y Q; Xu, C S

    2015-05-29

    In general, the phospholipase C (PLC) signaling pathway is involved in many physiological activities, including cell growth. However, little is known regarding how the PLC signaling pathway participates in regulating hepatocyte (HC) growth during liver regeneration (LR). To further explore the influence of the PLC signaling pathway on HCs at the cellular level, HCs of high purity and vitality were isolated using Percoll density-gradient centrifugation after partial hepatectomy. The genes of the PLC signaling pathway and target genes of transcription factors in the pathway were obtained by searching the pathways and transcription factor databases, and changes in gene expression of isolated HCs were examined using the Rat Genome 230 2.0 Microarray. The results suggested that various genes involved in the pathway (including 151 known genes and 39 homologous genes) and cell growth (including 262 known genes and 37 homologous genes) were associated with LR. Subsequently, the synergetic effect of these genes in LR was analyzed using a mathematical model (Et) according to their expression profiles. The results showed that the Et values of G protein-coupled receptor/PLC, integrin/PLC, and growth factor receptor/PLC branches of the PLC pathway were all significantly strengthened during the progression and termination phases of LR. The synergetic effect of target genes, in parallel with target gene-related cell growth, was also enhanced during whole rat LR, suggesting the potential positive effect of PLC on HC growth. The present data indicate that the PLC signaling pathway may promote HC growth through 3 mechanisms during rat LR after partial hepatectomy.

  18. A facile strategy to decorate Cu₉S₅ nanocrystals on polyaniline nanowires and their synergetic catalytic properties.

    PubMed

    Lu, Xiao-feng; Bian, Xiu-jie; Li, Zhi-cheng; Chao, Dan-ming; Wang, Ce

    2013-10-16

    Here, we demonstrated a novel method to decorate Cu₉S₅ nanocrystals on polyaniline (PANI) nanowires using the dopant of mercaptoacetic acid (MAA) in the PANI matrix as the sulfur source under a hydrothermal reaction. TEM images showed that Cu₉S₅ nanocrystals with a size in the range of 5-20 nm were uniformly formed on the surface of PANI nanowires. Significantly, the as-prepared PANI/Cu₉S₅ composite nanowires have been proven to be novel peroxidase mimics toward the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂. Due to the synergetic effects between polyaniline nanowires and Cu₉S₅ nanocrystals, the obtained PANI/Cu₉S₅ composite nanowires exhibit superior catalytic activity over the independent components. This work not only presents a simple and versatile method to decorate semiconductor nanocrystals on the surface of conducting polymer nanostructures, but also provides fundamental guidelines for further investigations into the synergetic effect between conducting polymers and other materials.

  19. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Multisource Synergistic Electrocatalytic Oxidation Effect of Strongly Coupled PdM (M = Sn, Pb)/N-doped Graphene Nanocomposite on Small Organic Molecules

    PubMed Central

    Wu, Peng; Huang, Yiyin; Kang, Longtian; Wu, Maoxiang; Wang, Yaobing

    2015-01-01

    A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm−2) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm−2) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved. PMID:26434949

  1. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  2. Robust synergetic control design under inputs and states constraints

    NASA Astrophysics Data System (ADS)

    Rastegar, Saeid; Araújo, Rui; Sadati, Jalil

    2018-03-01

    In this paper, a novel robust-constrained control methodology for discrete-time linear parameter-varying (DT-LPV) systems is proposed based on a synergetic control theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty, and for any unmeasured bounded additive disturbance, the proposed controller accomplishes the goal of stabilising the system by asymptotically driving the error of the controlled variable to a bounded set containing the origin and then maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and constrained additive disturbances, and constraints in states, input commands and reference signals (set points), then invariant set theory is used to find an appropriate polyhedral robust invariant region in which the proposed control framework is guaranteed to robustly stabilise the closed-loop system. Furthermore, this is achieved even for the case of varying non-zero control set points in such uncertain DT-LPV systems. The controller is characterised to have a simple structure leading to an easy implementation, and a non-complex design process. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance are demonstrated through application examples on the temperature control on a continuous-stirred tank reactor plant, on the control of a real-coupled DC motor plant, and on an open-loop unstable system example.

  3. Preparation of Activated Carbon/N-doped Titania Composite for Synergistic Adsorption-photocatalytic Oxidation of Batik Dye

    NASA Astrophysics Data System (ADS)

    Aziz, A. A.; Ibrahim, S.

    2018-05-01

    A synergetic improved composite TiO2 photocatalysts was successfully synthesized by using nitrogen (N) as a dopant and activated carbon (AC) as synergetic compound. Two different types of AC prepared from Garcinia mangostana shell and commercial AC obtained from palm shell were chosen as synergetic compound. Thus synthesized composites was further characterized by Brunauer-Emmett-Teller (BET) surface analyzer and UV-visible light spectroscope. The doping of N resulted in a better solar light utilization potential. Furthermore, synergizing with AC contributed for the improved BET surface area and pore size distribution. The synergetic adsorption-photocatalytic activity was investigated by removing a commercial batik dye namely Remazol Brilliant Blue (RBB) under direct solar irradiation. The synergetic experiments showed that commercial AC synergized with N-TiO2 resulted with a maximum removal efficiency of ∼80% in 6 h.

  4. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars.

    PubMed

    Wu, Yifei; Wang, Jian; Shen, Xiaolin; Wang, Jia; Chen, Zhenya; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2018-03-01

    Trehalose, a multi-functional and value-added disaccharide, can be efficiently biosynthesized from glucose by using a synergetic carbon utilization mechanism (SynCar) which coupled phosphoenolpyruvate (PEP) generation from the second carbon source with PEP-dependent phosphotransferase system (PTS) to promote non-catabolic use of glucose. Considering glucose and xylose present in large amounts in lignocellulosic sugars, we explored new strategies for conversion of both sugars into trehalose. Herein, we first attempted trehalose production from xylose directly, based on which, synergetic utilization of glucose, and xylose prompted by SynCar was implemented in engineered Escherichia coli. As the results, the final titer of trehalose reached 5.55 g/L in shake flask experiments. The conversion ratio or utilization efficiency of glucose or xylose to trehalose was around fourfold higher than that of the original strain (YW-3). This work not only demonstrated the possibility of directly converting xylose (C5 sugar) into trehalose (C12 disaccharide), but also suggested a promising strategy for trehalose production from lignocellulosic sugars for the first time. © 2017 Wiley Periodicals, Inc.

  5. A facile strategy to decorate Cu9S5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Feng; Bian, Xiu-Jie; Li, Zhi-Cheng; Chao, Dan-Ming; Wang, Ce

    2013-10-01

    Here, we demonstrated a novel method to decorate Cu9S5 nanocrystals on polyaniline (PANI) nanowires using the dopant of mercaptoacetic acid (MAA) in the PANI matrix as the sulfur source under a hydrothermal reaction. TEM images showed that Cu9S5 nanocrystals with a size in the range of 5-20 nm were uniformly formed on the surface of PANI nanowires. Significantly, the as-prepared PANI/Cu9S5 composite nanowires have been proven to be novel peroxidase mimics toward the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergetic effects between polyaniline nanowires and Cu9S5 nanocrystals, the obtained PANI/Cu9S5 composite nanowires exhibit superior catalytic activity over the independent components. This work not only presents a simple and versatile method to decorate semiconductor nanocrystals on the surface of conducting polymer nanostructures, but also provides fundamental guidelines for further investigations into the synergetic effect between conducting polymers and other materials.

  6. A facile strategy to decorate Cu9S5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties

    PubMed Central

    Lu, Xiao-feng; Bian, Xiu-jie; Li, Zhi-cheng; Chao, Dan-ming; Wang, Ce

    2013-01-01

    Here, we demonstrated a novel method to decorate Cu9S5 nanocrystals on polyaniline (PANI) nanowires using the dopant of mercaptoacetic acid (MAA) in the PANI matrix as the sulfur source under a hydrothermal reaction. TEM images showed that Cu9S5 nanocrystals with a size in the range of 5–20 nm were uniformly formed on the surface of PANI nanowires. Significantly, the as-prepared PANI/Cu9S5 composite nanowires have been proven to be novel peroxidase mimics toward the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergetic effects between polyaniline nanowires and Cu9S5 nanocrystals, the obtained PANI/Cu9S5 composite nanowires exhibit superior catalytic activity over the independent components. This work not only presents a simple and versatile method to decorate semiconductor nanocrystals on the surface of conducting polymer nanostructures, but also provides fundamental guidelines for further investigations into the synergetic effect between conducting polymers and other materials. PMID:24129741

  7. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  8. A network pharmacology approach to determine the synergetic mechanisms of herb couple for treating rheumatic arthritis.

    PubMed

    Xu, Xi-Xi; Bi, Jian-Ping; Ping, Li; Li, Ping; Li, Fei

    2018-01-01

    The purpose of this study was to investigate the therapeutic mechanism(s) of Clematis chinensis Osbeck/ Notopterygium incisum K.C. Ting ex H.T (CN). A network pharmacology approach integrating prediction of ingredients, target exploration, network construction, module partition and pathway analysis was used. This approach successfully helped to identify 12 active ingredients of CN, interacting with 13 key targets (Akt1, STAT3, TNFsf13, TP53, EPHB2, IL-10, IL-6, TNF, MAPK8, IL-8, RELA, ROS1 and STAT4). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that CN-regulated pathways were mainly classified into signal transduction and immune system. The present work may help to illustrate the mechanism(s) of action of CN, and it may provide a better understanding of antirheumatic effects.

  9. Synergetics of hardening construction systems

    NASA Astrophysics Data System (ADS)

    Tolstoy, A. D.; Lesovik, V. S.; Glagolev, E. S.; Krymova, A. I.

    2018-03-01

    The study of hardening high-strength systems indicates the relation between the potential of synergetics and issues related to structure formation of aggregates produced on the basis of rationally selected construction mixes. The paper considers challenges of the general principles of synergetics and sustainable development of open dissipative systems and their use in industry, as well as their understanding as complete self-regulating nonequilibrium systems. The main objective of the study was to demonstrate that the principles of self-regulating systems development can be applied in construction technology.

  10. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H₂O₂) on the degradation of neonicotinoid class of insecticide.

    PubMed

    Raut-Jadhav, Sunita; Saharan, Virendra Kumar; Pinjari, Dipak; Sonawane, Shirish; Saini, Daulat; Pandit, Aniruddha

    2013-10-15

    In the present work, degradation of imidacloprid (neonicotinoid class of insecticide) in aqueous solution has been systematically investigated using hydrodynamic cavitation and combination of hydrodynamic cavitation (HC) and H2O2. Initially, effect of different operating parameters such as inlet pressure to the cavitating device (5-20 bar) and operating pH (2-7.5) has been investigated. Optimization of process parameters was followed by the study of effect of combination of HC and H2O2 process on the rate of degradation of imidacloprid. Significant enhancement in the rate of degradation of imidacloprid has been observed using HC+H2O2 process which lead to a complete degradation of imidacloprid in 45 min of operation using optimal molar ratio of imidacloprid:H2O2 as 1:40. Substantial synergetic effect has been observed using HC+H2O2 process which confer the synergetic coefficient of 22.79. An attempt has been made to investigate and compare the energy efficiency and extent of mineralization of individual and combined processes applied in the present work. Identification of the byproducts formed during degradation of imidacloprid has also been done using LC-MS analysis. The present work has established a fact that hydrodynamic cavitation in combination with H2O2 can be effectively used for degradation of imidacloprid. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Iaparov, B. I.; Ryvkin, A. M.; Solovyova, O. E.; Markhasin, V. S.

    2015-07-01

    Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open) of cardiac sarcoplasmic reticulum (SR) Ca2+-release channels (ryanodine-sensitive RyR channels) rising the SR Ca2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian-Markovian noise) and internal friction via the temperature stimulation/suppression of the open-close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed

  12. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    PubMed Central

    Zhang, You; Cui, Xiuguo; Zu, Lei; Cai, Xiaomin; Liu, Yang; Wang, Xiaodong; Lian, Huiqin

    2016-01-01

    Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ) redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode. PMID:28773855

  13. Biogas and methane yield in response to co- and separate digestion of biomass wastes.

    PubMed

    Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana

    2015-01-01

    The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.

  14. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy.

    PubMed

    Ferreira, Daniele C; Monteiro, Camila S; Chaves, Claudilene R; Sáfar, Gustavo A M; Moreira, Roberto L; Pinheiro, Maurício V B; Martins, Dayse C S; Ladeira, Luiz Orlando; Krambrock, Klaus

    2017-02-01

    Gold nanostructures of two different shapes (spheres and rods) were synthesized to form a colloidal hybrid system with 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tosylate salt (H 2 TM4PyP(OTs) 4 ) (POR) for applications in photodynamic therapy (PDT) using light in the visible spectral range. Electron paramagnetic resonance (EPR) experiments in combination with spin trapping were used for the detection of reactive oxygen species (ROS) and evaluation of the efficiency of these novel hybrid systems as photosensitizers. It is shown that the hybrid system consisting of gold nanorods (AuNR) and porphyrin (POR) is by far more efficient than its isolated components. This enhanced efficiency is explained by a synergetic effect between the AuNR and the porphyrin, wherein a rapid energy transfer from the former to the latter produces a large amount of singlet oxygen followed by its conversion into hydroxyl radicals. The mechanism was investigated using different spin traps and different ROS inhibitors. On the other hand, spherical gold nanoparticles (AuNP) do not show this synergetic effect. The synergetic effect for gold nanorods/POR hybrid is attributed to a larger field enhancement close to the gold nanorod surface in addition to the electrostatic attraction between the components of the hybrid system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of synergetic implementation of inquiry activities across three subjects in comparison to more traditional approach to teaching

    NASA Astrophysics Data System (ADS)

    Balogová, Brigita; Ješková, Zuzana; Hančová, Martina; Kireš, Marián

    2017-01-01

    Science education standards for grammar schools (ISCED 3) urge more emphasis on students' investigations in order to develop understanding but also scientific process skills (inquiry skills). It is true for not only science, but also mathematics and informatics. This approach is promoted to increase scientific literacy and inquiry skills development, however, there has not been many studies carried out in Slovakia to show the effect on students' achievements. In cooperation with Institutes of mathematics and informatics there was a research designed in order to study the effect of synergetic implementation of inquiry activities across the three subjects of physics, mathematics and informatics. The effect was identified with the help of inquiry skills' test and results were compared to those achieved by students subjected to more traditional teaching. In the contribution there are results of the study analyzed and discussed in details.

  16. An integrated evidence-based targeting strategy for determining combinatorial bioactive ingredients of a compound herbal medicine Qishen Yiqi dripping pills.

    PubMed

    Zhang, Yiqian; Yu, Jiahui; Zhang, Wen; Wang, Yuewei; He, Yi; Zhou, Shuiping; Fan, Guanwei; Yang, Hua; Zhu, Yan; Li, Ping

    2018-06-12

    Qishen Yiqi is a widely used Chinese herbal medicine formula with "qi invigorating and blood activating" property. Its dripping pill preparation (QSYQ) is a commercial herbal medicine approved by the China Food and Drug Administration (CFDA) in 2003 and is extensively used clinically to treat cardiovascular diseases, such as ischemic heart failure and angina pectoris, as well as for the secondary prevention of myocardial infarction. However, the bioactive ingredients of QSYQ remain unclear. As QSYQ is a compound herbal formula, it is of great importance to elucidate its pharmacologically active ingredients and underlying synergetic effects. This experimental study was conducted to comprehensively determine the combinatorial bioactive ingredients (CBIs) in QSYQ and to elucidate their potential synergetic effects. The established strategy may shed new light on how to rapidly determine CBIs in complex herbal formulas with holistic properties. An integrated evidence-based targeting strategy was introduced and validated to determine CBIs in QSYQ. The strategy included the following steps: (1) Chemical ingredients in QSYQ were analyzed via UPLC-Q-TOF/MS in the negative and positive modes and were identified by comparison with standard compounds and previously reported data. Their potential therapeutic activities were predicted based on the ChEMBL database to preliminarily search for candidate bioactive ingredients, and their combination was defined as the CBIs. (2) The CBIs were directly trapped and prepared from QSYQ with a two-dimensional chromatographic separation system, and the remaining part was defined as the rest ingredients (RIs). (3) As animal and cell models, left anterior descending coronary artery ligation (LAD)-induced heart failure in rats and hypoxia-induced cardiac myocyte injury in H9c2 cells were applied to compare the potency of QSYQ, CBIs and RIs. (4) The synergetic effects on cardiac myocyte protection of multiple ingredients in CBIs were examined in this cell model. (1) Forty-three ingredients in QSYQ were identified via UPLC-Q-TOF/MS. Based on evidence-based screening using the ChEMBL database, 24 ingredients were predicted to be bioactive ingredients, and their combination was considered the CBIs. (2) The CBIs and RIs were successfully prepared according to a two-dimensional chromatographic system. The CBIs were directly trapped and knocked out from QSYQ by hydrophilic interaction liquid chromatography coupled with reverse-phase liquid chromatography. The remaining part was used as RIs. (3) The results from pharmacological evaluation revealed that CBIs and QSYQ, but not RIs, significantly prevented myocardium injury; improved the ejection fraction (EF) and fractional shortening (FS); decreased the release of cardiac enzymes, including CK, CK-MB, and LDH; alleviated mitochondrial dysfunction; and protected the cell nucleus number and mitochondrial mass. Furthermore, QSYQ and CBIs possessed similar potency. (4) In hypoxia-stimulated H9c2 cells, CBIs showed far greater potency regarding the protection of cardiac myocyte injury than the individual ingredients in QSYQ, exhibiting obvious synergetic effects. An integrated evidence-based targeting strategy was successfully established and validated to determine CBIs from QSYQ with excellent efficiency. Importantly, the holistic property of QSYQ was retained in the CBIs. Hence, this study may shed new light on how to rapidly reveal combinatorial bioactive ingredients from complex prescriptions and will be greatly helpful in the establishment of an appropriate approach to quality control for herbal medicines. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.

    PubMed

    Raut-Jadhav, Sunita; Saini, Daulat; Sonawane, Shirish; Pandit, Aniruddha

    2016-01-01

    Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC+Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals.

    PubMed

    Qiu, Shan; Ma, Fang; Huang, Xu; Xu, Shanwen

    2014-01-01

    In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La(3+) > Cu(2+) > Mg(2+) > Na(+).

  19. Synergetic Use of Sentinel-1 and 2 to Improve Agro-Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Ferrant, Sylvain; Kerr, Yann; Al-Bitar, Ahmad; Le Page, Michel; Selles, Adrien; Mermoz, Stephane; Bouvet, Alexandre; Marechal, Jean-Christophe; Tomer, Sat; Sekhar, Muddu; Dedieu, Gerard; Le Toan, Thuy; Bustillo, Vincent

    2016-08-01

    In the context of global changes and population growth, agricultural activities are a growing factor influencing water resources availability in term of quantity and quality. Water management strategies have to be analyzed at a regional catchment scales. Yet, agricultural practices, crop water and nutrient consumption that drive the main water and nutrient fluxes at the catchment scale have to be monitored at a high spatial (crop extension) and temporal resolution (crop growth period). This proceeding describes some advances in the framework of a co-funded ESA Living Planet Fellowship project, called ―agro-hydrology from space‖, which aims at demonstrating the improvement brought by synergetic observations of Sentinel-1 (S1) and Sentinel-2 (S2) satellite mission in agro- hydrological studies. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to re-set soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model in two contrasted water management issues: stream water nitrate pollution in Gascogne region in south-west of France and groundwater depletion and shortages for irrigation in Deccan Plateau, in south-India.

  20. Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism.

    PubMed

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Meng, Xiaoguang; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2017-02-01

    In this study, a novel nanoscale zero-valent iron (nZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2 # clay" (HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange (MO) in aqueous solution by nZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported nZVI (HJ/nZVI) mass ratio (HJ-nZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe 0 dosage, the HJ-nZVI1 and HJ-nZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and nZVIs, or the sum of HJ clay and nZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the nZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-nZVI dosage, higher temperature and under N 2 atmosphere, while the MO initial concentration and pH were negatively correlated to the efficiency. HJ clay not only works as a carrier for nZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-nZVI for decontamination gives it great potential for use in a variety of remediation applications. Copyright © 2016. Published by Elsevier B.V.

  1. Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters.

    PubMed

    Kou, Shuming; Han, Bing; Wang, Yue; Huang, Tao; He, Kai; Han, Yulong; Zhou, Xia; Ye, Xiaoli; Li, Xuegang

    2016-04-15

    Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synergetic effects of K + and Mg 2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti 3 C 2 MXene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qiang; Come, Jeremy; Naguib, Michael

    2017-01-01

    Two-dimensional materials, such as MXenes, are attractive candidates for energy storage and electrochemical actuators due to their high volume changes upon ion intercalation. Of special interest for boosting energy storage is the intercalation of multivalent ions such as Mg 2+, which suffers from sluggish intercalation and transport kinetics due to its ion size. By combining traditional electrochemical characterization techniques with electrochemical dilatometry and contact resonance atomic force microscopy, the synergetic effects of the pre-intercalation of K +ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti 3Cmore » 2MXene. Our results have important implications for quantitatively understanding the charge storage processes in intercalation compounds and provide a new path for studying the mechanical evolution of energy storage materials.« less

  3. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-03-01

    Clinically applied chemotherapy and radiotherapy is sometimes not effective due to the limited dose acting on DNA chains resident in the nuclei of cancerous cells. Herein, we develop a new theranostic technique of "intranuclear radiosensitization" aimed at directly damaging the DNA within the nucleus by a remarkable synergetic chemo-/radiotherapeutic effect based on intranuclear chemodrug-sensitized radiation enhancement. To achieve this goal, a sub-50 nm nuclear-targeting rattle-structured upconversion core/mesoporous silica nanotheranostic system was firstly constructed to directly transport the radiosensitizing drug Mitomycin C (MMC) into the nucleus for substantially enhanced synergetic chemo-/radiotherapy and simultaneous magnetic/upconversion luminescent (MR/UCL) bimodal imaging, which can lead to efficient cancer treatment as well as multi-drug resistance circumvention in vitro and in vivo . We hope the technique of intranuclear radiosensitization along with the design of nuclear-targeting nanotheranostics will contribute greatly to the development of cancer theranostics as well as to the improvement of the overall therapeutic effectiveness.

  4. Click ionic liquids: a family of promising tunable solvents and application in Suzuki-Miyaura cross-coupling.

    PubMed

    Li, Liuyi; Wang, Jinyun; Wu, Tao; Wang, Ruihu

    2012-06-18

    A series of click ionic salts 4 a-4 n was prepared through click reaction of organic azides with alkyne-functionalized imidazolium or 2-methylimidazolium salts, followed by metathesis with lithium bis(trifluoromethanesulfonyl)amide or potassium hexafluorophosphate. All salts were characterized by IR, NMR, TGA, and DSC, and most of them can be classified as ionic liquids. Their steric and electronic properties can be easily tuned and modified through variation of the aromatic or aliphatic substituents at the imidazolium and/or triazolyl rings. The effect of anions and substituents at the two rings on the physicochemical properties was investigated. The charge and orbital distributions based on the optimized structures of cations in the salts were calculated. Reaction of 4 a with PdCl(2) produced mononuclear click complex 4 a-Pd, the structure of which was confirmed by single-crystal X-ray diffraction analysis. Suzuki-Miyaura cross-coupling shows good catalytic stability and high recyclability in the presence of PdCl(2) in 4 a. TEM and XPS analyses show formation of palladium nanoparticles after the reaction. The palladium NPs in 4 a are immobilized by the synergetic effect of coordination and electrostatic interactions with 1,2,3-triazolyl and imidazolium, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL.

    PubMed

    Guo, Yong; Li, Yi; Xiang, Bing; Huang, Xiao-Ou; Ma, Hong-Bing; Wang, Fang-Fang; Gong, Yu-Ping

    2017-12-06

    Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL kinase. Recent efforts focused on the development of more potent tyrosine kinase inhibitors (TKIs) that also inhibit mutant tyrosine kinases such as nilotinib and dasatinib. Although major advances in the treatment of this aggressive disease with potent inhibitors of the BCR/ABL kinases, patients in remission frequently relapse due to drug resistance possibly mediated, at least in part, by compensatory activation of growth-signaling pathways and protective feedback signaling of leukemia cells in response to TKI treatment. Continuous activation of AKT/mTOR signaling and inactivation of p53 pathway were two mechanisms of TKI resistance. Here, we reported that nutlin-3 plus tanshinone IIA significantly potentiated the cytotoxic and apoptotic induction effects of imatinib by down-regulation of the AKT/mTOR pathway and reactivating the p53 pathway deeply in Ph+ ALL cell line. In primary samples from Ph+ ALL patients, nutlin-3 plus tanshinone IIA also exhibited synergetic cytotoxic effects with imatinib. Of note, three samples from Ph+ ALL patients harboring T315I mutation also showed sensitivity to the combined treatment of imatinib, nutlin-3 plus tanshinone IIA. In Ph+ ALL mouse models, imatinib combined with nutlin-3 plus tanshinone IIA also exhibited synergetic effects on reduction in leukemia burden. These results demonstrated that nutlin-3 plus tanshinone IIA combined TKI might be a promising treatment strategy for Ph+ ALL patients. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  7. Tung oil-based unsaturated co-ester macromonomer for thermosetting polymers: Synergetic synthesis and copolymerization with styrene

    USDA-ARS?s Scientific Manuscript database

    A novel unsaturated co-ester (co-UE) macromonomer containing both maleates and acrylates was synthesized from tung oil (TO) and its chemical structure was characterized by FT-IR, 1H-NMR, 13C-NMR, and gel permeation chromatography (GPC). The monomer was synthesized via a new synergetic modification o...

  8. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  9. The force-dependent mechanism of DnaK-mediated mechanical folding

    PubMed Central

    Perales-Calvo, Judit; Giganti, David; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2018-01-01

    It is well established that chaperones modulate the protein folding free-energy landscape. However, the molecular determinants underlying chaperone-mediated mechanical folding remain largely elusive, primarily because the force-extended unfolded conformation fundamentally differs from that characterized in biochemistry experiments. We use single-molecule force-clamp spectroscopy, combined with molecular dynamics simulations, to study the effect that the Hsp70 system has on the mechanical folding of three mechanically stiff model proteins. Our results demonstrate that, when working independently, DnaJ (Hsp40) and DnaK (Hsp70) work as holdases, blocking refolding by binding to distinct substrate conformations. Whereas DnaK binds to molten globule–like forms, DnaJ recognizes a cryptic sequence in the extended state in an unanticipated force-dependent manner. By contrast, the synergetic coupling of the Hsp70 system exhibits a marked foldase behavior. Our results offer unprecedented molecular and kinetic insights into the mechanisms by which mechanical force finely regulates chaperone binding, directly affecting protein elasticity. PMID:29487911

  10. Manifestation of the synergetic mechanism in the implementation of automatic processing of scientific documents

    NASA Astrophysics Data System (ADS)

    Chizhacovsky, Valentin; Popescu, Anatol N.; Russu, Vladimir

    2005-02-01

    This article is dedicated to the problem of the presence in the natural language and in the cognitive-verbal human activity of an interior mechanisms of reproduction and self regulation which will help us solve problem by the automatic documents. We have attributed to these mechanisms the property of being synergetic. The above expressed thought has been confirmed at the implementation of the automatic processing of scientific articles, published in the German specialized magazine "Wasserwirtschaft-Wassertechnik-WWT", which we have addressed to the sub subject field "Abwasser" (waste water). By dividing the implementation of our task in many consequent stages and sub stages we have obtained the possibilities to create the conditions which favored the manifestation of the needed linguistic synergetic activities.

  11. Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum virgatum L.)

    PubMed Central

    Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao

    2014-01-01

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834

  12. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation.

    PubMed

    Al-Ghamdi, Abdullah A; Elansary, Hosam O

    2018-06-09

    Salinity is one of the major agricultural problems that may threat food security and limit the agricultural lands expansion worldwide. Exploring novel tools controlling saline conditions and increase valuable secondary metabolites in the horticultural crops might have outstanding results that serve humanity in the current century. The current study explores the effects of weekly seaweed extracts (7 mL   L -1 ) and/or 5-aminolevulinic acid (3, 5 and 10 ppm) sprays on Asparagus aethiopicus plants subjected to saline stress conditions (2000 and 4000 ppm) for 6 weeks in two consecutive seasons of 2016 and 2017. Under saline conditions, there were stimulatory synergetic effects of seaweed extracts (SWE) and 5-aminolevulinic acid (ALA) on branch length and number of treated plants. Similar increases were also found in fresh and the dry weight of treated plants compared to control. These morphological improvements associated with increased accumulation of specific phenols (robinin, rutin, apigein, chlorogenic acid and caffeic acid) as revealed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). There were increases in the antioxidant activities of leaf extracts, chlorophyll content and sugars and proline accumulation. The transpiration and photosynthetic rates as well as the stomatal conductance were enhanced. The morphological and physiological improvements associated with increased expression of several genes responsible for water management (ANN1, ANN2 and PIP1), secondary metabolite production (P5CS1 and CHS) and antioxidants accumulation (APX1 and GPX3) in plants. Our findings indicate that SWE + ALA had stimulatory synergetic effects on the growth and secondary metabolites of A. aethiopicus subjected to saline conditions. Several mechanisms are involved in such effects including gas exchange control, sugar buildup, increasing non-enzymatic and enzymatic antioxidants control of reactive oxygen species accumulation as well as transcriptional and metabolic regulation of environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Aspirin disrupts the mTOR-Raptor complex and potentiates the anti-cancer activities of sorafenib via mTORC1 inhibition.

    PubMed

    Sun, Danni; Liu, Hongchun; Dai, Xiaoyang; Zheng, Xingling; Yan, Juan; Wei, Rongrui; Fu, Xuhong; Huang, Min; Shen, Aijun; Huang, Xun; Ding, Jian; Geng, Meiyu

    2017-10-10

    Aspirin is associated with a reduced risk of cancer and delayed progression of malignant disease. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mTOR signaling is believed to partially contribute to these anticancer effects, although the mechanism is unclear. In this study, we revealed the mechanism underlying the effects of aspirin on AMPK-mTOR signaling, and described a mechanism-based rationale for the use of aspirin in cancer therapy. We found that aspirin inhibited mTORC1 signaling through AMPK-dependent and -independent manners. Aspirin inhibited the AMPK-TSC pathway, thus resulting in the suppression of mTORC1 activity. In parallel, it directly disrupted the mTOR-raptor interaction. Additionally, the combination of aspirin and sorafenib showed synergetic effects via inhibiting mTORC1 signaling and the PI3K/AKT, MAPK/ERK pathways. Aspirin and sorafenib showed synergetic anticancer efficacy in the SMMC-7721 model. Our study provides mechanistic insights and a mechanism-based rationale for the roles of aspirin in cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  15. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    PubMed Central

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  16. Corrosion protection of galvanized steels by silane-based treatments

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that affect the performance of a silane coupling agent in the application of corrosion control include chemical reactivity, hydrophobic character, siloxane crosslinker network, and film thickness. Good protections afforded by the silane treatments are a synergetic effect of all these factors.

  17. Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine.

    PubMed

    Garza-Campos, Benjamín R; Guzmán-Mar, Jorge Luis; Reyes, Laura Hinojosa; Brillas, Enric; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2014-02-01

    Here, the synergetic effect of coupling solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) on the mineralization of 200mL of a 20mg L(-1) atrazine solution, prepared from the commercial herbicide Gesaprim, at pH 3.0 was studied. Uniform, homogeneous and adherent anatase-TiO2 films onto glass spheres of 5mm diameter were prepared by the sol-gel dip-coating method and used as catalyst for SPC. However, this procedure yielded a poor removal of the substrate because of the low oxidation ability of positive holes and OH formed at the catalyst surface to destroy it. Atrazine decay was improved using anodic oxidation (AO), electro-Fenton (EF), SPEF and coupled SPEF-SPC at 100mA. The electrolytic cell contained a boron-doped diamond (BDD) anode and H2O2 was generated at a BDD cathode fed with an air flow. The removal and mineralization of atrazine increased when more oxidizing agents were generated in the sequence AO

  18. RIO+10 = Concept of synergetic cosmoecology

    NASA Astrophysics Data System (ADS)

    Alekseev, A. S.; Vedernikov, Y. A.; Dulov, V. G.

    The dynamic concept of synergetic ecology of the near space as the Earth's civilization living space is discussed. It is proposed to formulate the scientific problem of protection of the Earth, orbital stations, and flyers from meteoroids and plasmoids of natural and artificial origin. Natural meteoroids intersect the Earth's orbit once in five years, whereas flyers often hit on natural plasmoids, sometimes even once a year. In contrast to nuclear, kinetic, and gravitational actions on threatening meteoroids, free electron lasers are used for protection against plasmoids. Some complementarity between cosmophysics and biology is revealed, and mathematical models of biosphere are constructed. Mathematical-synergetic modeling in the "man-environment" system is performed. Certain ways for improving noosphere on the basis of synergetics are determined. The principles of work of the social Institutes of Cosmic Anthropoecology and the University of Man and Planet Ecology are presented. References 1. A. S. Alekseev, Yu. .A. Vedernikov, I.I. Velichko, and V.A. Volkov, The rocket conception of cumulative impact defense of the Earth against dangerous space objects, Impact Engineering, 1997, V. 20, No. 1-5, 1-12. 2. A.S. Alekseev, Yu.A. Vedernikov et al., Computer Detection and Rocket Interception of Asteroids at an Atmospheric Boundary, 5th Cranfield Conference on Dynamics and Control of Systems and Structures in Space 2002, King's College, Cambridge, 185-193 pp.

  19. Music holographic physiotherapy by laser

    NASA Astrophysics Data System (ADS)

    Liao, Changhuan

    1996-09-01

    Based on the relationship between music and nature, the paper compares laser and light with music sound on the principles of synergetics, describes music physically and objectively, and proposes a music holographic therapy by laser. Maybe it will have certain effects on mechanism study and clinical practice of the music therapy.

  20. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Li, Hongliang; Wang, Liangbing; Dai, Yizhou; Pu, Zhengtian; Lao, Zhuohan; Chen, Yawei; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Si, Rui; Ma, Chao; Zeng, Jie

    2018-05-01

    Exploring the interaction between two neighbouring monomers has great potential to significantly raise the performance and deepen the mechanistic understanding of heterogeneous catalysis. Herein, we demonstrate that the synergetic interaction between neighbouring Pt monomers on MoS2 greatly enhanced the CO2 hydrogenation catalytic activity and reduced the activation energy relative to isolated monomers. Neighbouring Pt monomers were achieved by increasing the Pt mass loading up to 7.5% while maintaining the atomic dispersion of Pt. Mechanistic studies reveal that neighbouring Pt monomers not only worked in synergy to vary the reaction barrier, but also underwent distinct reaction paths compared with isolated monomers. Isolated Pt monomers favour the conversion of CO2 into methanol without the formation of formic acid, whereas CO2 is hydrogenated stepwise into formic acid and methanol for neighbouring Pt monomers. The discovery of the synergetic interaction between neighbouring monomers may create a new path for manipulating catalytic properties.

  1. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2015-11-11

    Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.

  2. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    PubMed

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.

  3. Multifunctional Co₀.₈₅Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate.

    PubMed

    Zhang, Lin-fei; Zhang, Chun-yang

    2014-01-01

    Ultrathin nanosheets possess novel electronic structures and physical properties as compared with their corresponding bulk samples. However, the controlled synthesis of ultrathin monolayer nanosheets still remains a great challenge due to the lack of an intrinsic driving force for anisotropic growth of two-dimensional (2D) structures. Here we demonstrate, for the first time to our knowledge, the in situ synthesis of large-scale ultrathin single-crystalline Co₀.₈₅Se nanosheets on graphene oxide (GO) sheets, with a thickness of 3 nm. Owing to the synergetic chemical coupling effects between GO and Co₀.₈₅Se, the Co₀.₈₅Se/graphene hybrid nanosheets exhibit the highest catalytic performance among the available cobalt chalcogenide-based catalysts for the oxygen reduction reaction (ORR). Moreover, Co₀.₈₅Se/graphene hybrid nanosheets can catalyze the decomposition of hydrazine hydrate rapidly, with 97% of hydrazine hydrate being degraded in 12 min and the degradation rate remaining constant over 10 consecutive cycles, thus having great potential as long-term catalysts in wastewater treatment.

  4. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    PubMed

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oceanography at coastal scales: Introduction to the special issue on results from the EU FP7 FIELD_AC project

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Wolf, Judith; Monbaliu, Jaak

    2014-09-01

    The high-resolution and coupled forecasting of wind, waves and currents, in restricted coastal domains, offer a number of important challenges; these limit the quality of predictions, in the present state-of-the-art. This paper presents the main results obtained for such coastal domains, with reference to a variety of modelling suites and observing networks for: a) Liverpool Bay; b) German Bight; c) Gulf of Venice; and d) the Catalan coast. All of these areas are restricted domains, where boundary effects play a significant role in the resulting inner dynamics. This contribution addresses also the themes of the other papers in this Special Issue, ranging from observations to simulations. Emphasis is placed upon the physics controlling such restricted areas. The text deals also with the transfer to end-users and other interested parties, since the requirements on resolution, accuracy and robustness must be linked to their applications. Finally, some remarks are included on the way forward for coastal oceanography and the synergetic combination of in-situ and remote measurements, with high-resolution 3D simulations.

  6. Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Yang, Ho-Sung; Jung, Heechul; Jeon, Seung-Yeol; Jung, Changhoon; Kim, Sang-Won; Bae, Jihyun; Choong, Chwee-Lin; Im, Jungkyun; Chung, U.-In; Park, Jong-Jin; Yu, Woong-Ryeol

    2014-05-01

    Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy. The compartmentalized Si in between the C-core and C-shell led to excellent specific capacity at a high current rate (>820 mA h g-1 at 12000 mA g-1) and the realization of the theoretical specific capacity of the Li15Si4 phase of Si nanoparticles (3627 mA h g-1). The electrochemical characterization and inductively coupled plasma-atomic emission spectrometry provided direct evidence of full participation of Si in the electrochemical reactions.Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy. The compartmentalized Si in between the C-core and C-shell led to excellent specific capacity at a high current rate (>820 mA h g-1 at 12000 mA g-1) and the realization of the theoretical specific capacity of the Li15Si4 phase of Si nanoparticles (3627 mA h g-1). The electrochemical characterization and inductively coupled plasma-atomic emission spectrometry provided direct evidence of full participation of Si in the electrochemical reactions. Electronic supplementary information (ESI) available: Simulation details, quantitative measurement of Si content in the nanofibers and ex situ Raman characterization sample preparation procedures are demonstrated. See DOI: 10.1039/c4nr00318g

  7. Cooperation: The Synergetic Influence of Communication, Trust, and Equality on a Triad.

    ERIC Educational Resources Information Center

    Reeve, Johnmarshall; Cole, Steven G.

    In this study, 120 introductory psychology students participated in an experimental game designed to be manipulated by the use of cooperative cues. These are variables introduced into a social situation that function to guide the group toward collaboration. Prior research has focused on the effect of single cues and has produced mixed results,…

  8. Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells.

    PubMed

    Mir, Nooshin; Lee, Kiyoung; Paramasivam, Indhumati; Schmuki, Patrik

    2012-09-17

    Recombination dynamics: For TiO(2) nanotube-based dye-sensitized solar cells, the efficiency can be drastically enhanced by a synergetic effect that occurs when using nanowire-ended nanotubes in combination with an adequate nanoparticle decoration (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Associations among dietary non-fiber carbohydrate, ruminal microbiota and epithelium G-protein-coupled receptor, and histone deacetylase regulations in goats.

    PubMed

    Shen, Hong; Lu, Zhongyan; Xu, Zhihui; Chen, Zhan; Shen, Zanming

    2017-09-19

    Diet-derived short-chain fatty acids (SCFAs) in the rumen have broad effects on the health and growth of ruminants. The microbe-G-protein-coupled receptor (GPR) and microbe-histone deacetylase (HDAC) axes might be the major pathway mediating these effects. Here, an integrated approach of transcriptome sequencing and 16S rRNA gene sequencing was applied to investigate the synergetic responses of rumen epithelium and rumen microbiota to the increased intake of dietary non-fiber carbohydrate (NFC) from 15 to 30% in the goat model. In addition to the analysis of the microbial composition and identification of the genes and signaling pathways related to the differentially expressed GPRs and HDACs, the combined data including the expression of HDACs and GPRs, the relative abundance of the bacteria, and the molar proportions of the individual SCFAs were used to identify the significant co-variation of the SCFAs, clades, and transcripts. The major bacterial clades promoted by the 30% NFC diet were related to lactate metabolism and cellulose degradation in the rumen. The predominant functions of the GPR and HDAC regulation network, under the 30% NFC diet, were related to the maintenance of epithelium integrity and the promotion of animal growth. In addition, the molar proportion of butyrate was inversely correlated with the expression of HDAC1, and the relative abundance of the bacteria belonging to Clostridum_IV was positively correlated with the expression of GPR1. This study revealed that the effects of rumen microbiota-derived SCFA on epithelium growth and metabolism were mediated by the GPR and HDAC regulation network. An understanding of these mechanisms and their relationships to dietary components provides better insights into the modulation of ruminal fermentation and metabolism in the promotion of livestock production.

  10. Cognitive synergy in groups and group-to-individual transfer of decision-making competencies

    PubMed Central

    Curşeu, Petru L.; Meslec, Nicoleta; Pluut, Helen; Lucas, Gerardus J. M.

    2015-01-01

    In a field study (148 participants organized in 38 groups) we tested the effect of group synergy and one's position in relation to the collaborative zone of proximal development (CZPD) on the change of individual decision-making competencies. We used two parallel sets of decision tasks reported in previous research to test rationality and we evaluated individual decision-making competencies in the pre-group and post-group conditions as well as group rationality (as an emergent group level phenomenon). We used multilevel modeling to analyze the data and the results showed that members of synergetic groups had a higher cognitive gain as compared to members of non-synergetic groups, while highly rational members (members above the CZPD) had lower cognitive gains compared to less rational group members (members situated below the CZPD). These insights extend the literature on group-to-individual transfer of learning and have important practical implications as they show that group dynamics influence the development of individual decision-making competencies. PMID:26441750

  11. Cognitive synergy in groups and group-to-individual transfer of decision-making competencies.

    PubMed

    Curşeu, Petru L; Meslec, Nicoleta; Pluut, Helen; Lucas, Gerardus J M

    2015-01-01

    In a field study (148 participants organized in 38 groups) we tested the effect of group synergy and one's position in relation to the collaborative zone of proximal development (CZPD) on the change of individual decision-making competencies. We used two parallel sets of decision tasks reported in previous research to test rationality and we evaluated individual decision-making competencies in the pre-group and post-group conditions as well as group rationality (as an emergent group level phenomenon). We used multilevel modeling to analyze the data and the results showed that members of synergetic groups had a higher cognitive gain as compared to members of non-synergetic groups, while highly rational members (members above the CZPD) had lower cognitive gains compared to less rational group members (members situated below the CZPD). These insights extend the literature on group-to-individual transfer of learning and have important practical implications as they show that group dynamics influence the development of individual decision-making competencies.

  12. The Synergetic Effect of Learning Styles on the Interaction between Virtual Environments and the Enhancement of Spatial Thinking

    ERIC Educational Resources Information Center

    Hauptman, Hanoch; Cohen, Arie

    2011-01-01

    Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…

  13. Creating Intelligent Computer Workstation of a Freight Officer in a Single Information Space of Railway Transport: Synergetic Approach

    ERIC Educational Resources Information Center

    Malybaev, Saken K.; Malaybaev, Nurlan S.; Isina, Botakoz M.; Kenzhekeeva, Akbope R.; Khuangan, Nurbol

    2016-01-01

    The article presents the results of researches aimed at the creation of automated workplaces for railway transport specialists with the help of intelligent information systems. The analysis of tendencies of information technologies development in the transport network was conducted. It was determined that the most effective approach is to create…

  14. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen

    DTIC Science & Technology

    2011-01-01

    difficulties.[20–22] In most of the previous studies, ternary compounds (e.g., ferrocene , melamine, boron oxide) were used as precursors for nanotube...the onset/peak potential and current density, though the VA- NCNT (4.1% N) prepared by pyrolysis of ferrocene under ammonia (see Supporting

  15. Self-organization in psychotherapy: testing the synergetic model of change processes

    PubMed Central

    Schiepek, Günter K.; Tominschek, Igor; Heinzel, Stephan

    2014-01-01

    In recent years, models have been developed that conceive psychotherapy as a self-organizing process of bio-psycho-social systems. These models originate from the theory of self-organization (Synergetics), from the theory of deterministic chaos, or from the approach of self-organized criticality. This process-outcome study examines several hypotheses mainly derived from Synergetics, including the assumption of discontinuous changes in psychotherapy (instead of linear incremental gains), the occurrence of critical instabilities in temporal proximity of pattern transitions, the hypothesis of necessary stable boundary conditions during destabilization processes, and of motivation to change playing the role of a control parameter for psychotherapeutic self-organization. Our study was realized at a day treatment center; 23 patients with obsessive compulsive disorder (OCD) were included. Client self-assessment was performed by an Internet-based process monitoring (referred to as the Synergetic Navigation System), whereby daily ratings were recorded through administering the Therapy Process Questionnaire (TPQ). The process measures of the study were extracted from the subscale dynamics (including the dynamic complexity of their time series) of the TPQ. The outcome criterion was measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) which was completed pre-post and on a bi-weekly schedule by all patients. A second outcome criterion was based on the symptom severity subscale of the TPQ. Results supported the hypothesis of discontinuous changes (pattern transitions), the occurrence of critical instabilities preparing pattern transitions, and of stable boundary conditions as prerequisites for such transitions, but not the assumption of motivation to change as a control parameter. PMID:25324801

  16. Self-organization in psychotherapy: testing the synergetic model of change processes.

    PubMed

    Schiepek, Günter K; Tominschek, Igor; Heinzel, Stephan

    2014-01-01

    In recent years, models have been developed that conceive psychotherapy as a self-organizing process of bio-psycho-social systems. These models originate from the theory of self-organization (Synergetics), from the theory of deterministic chaos, or from the approach of self-organized criticality. This process-outcome study examines several hypotheses mainly derived from Synergetics, including the assumption of discontinuous changes in psychotherapy (instead of linear incremental gains), the occurrence of critical instabilities in temporal proximity of pattern transitions, the hypothesis of necessary stable boundary conditions during destabilization processes, and of motivation to change playing the role of a control parameter for psychotherapeutic self-organization. Our study was realized at a day treatment center; 23 patients with obsessive compulsive disorder (OCD) were included. Client self-assessment was performed by an Internet-based process monitoring (referred to as the Synergetic Navigation System), whereby daily ratings were recorded through administering the Therapy Process Questionnaire (TPQ). The process measures of the study were extracted from the subscale dynamics (including the dynamic complexity of their time series) of the TPQ. The outcome criterion was measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) which was completed pre-post and on a bi-weekly schedule by all patients. A second outcome criterion was based on the symptom severity subscale of the TPQ. Results supported the hypothesis of discontinuous changes (pattern transitions), the occurrence of critical instabilities preparing pattern transitions, and of stable boundary conditions as prerequisites for such transitions, but not the assumption of motivation to change as a control parameter.

  17. Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization.

    PubMed

    Rambla-Alegre, Maria; Tienpont, Bart; Mitsui, Kazuhisa; Masugi, Eri; Yoshimura, Yuta; Nagata, Hisanori; David, Frank; Sandra, Pat

    2014-10-24

    Aroma characterization of whole cigarette smoke samples using sensory panels or electronic nose (E-nose) devices is difficult due to the masking effect of major constituents and solvent used for the extraction step. On the other hand, GC in combination with olfactometry detection does not allow to study the delicate balance and synergetic effect of aroma solutes. To overcome these limitations a new instrumental set-up consisting of heart-cutting gas chromatography using a capillary flow technology based Deans switch and low thermal mass GC in combination with an electronic nose device is presented as an alternative to GC-olfactometry. This new hyphenated GC-E-nose configuration is used for the characterization of cigarette smoke aroma. The system allows the transfer, combination or omission of selected GC fractions before injection in the E-nose. Principal component analysis (PCA) and discriminant factor analysis (DFA) allowed clear visualizing of the differences among cigarette brands and classifying them independently of their nicotine content. Omission and perceptual interaction tests could also be carried out using this configuration. The results are promising and suggest that the GC-E-nose hyphenation is a good approach to measure the contribution level of individual compounds to the whole cigarette smoke. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries.

    PubMed

    Xu, Yang; Zheng, Lei; Xie, Yi

    2010-11-28

    Synthetic montroseite VOOH has been successfully prepared via a simple template-free hydrothermal route on a large scale for the first time-after sixty years of delay. The as-obtained sample shows a hierarchical morphology of urchin-like nanoarchitecture with hollow interiors consisting of well-crystalline nanorods standing vertically on the shell surface. Time-dependent experiments illustrated that these hierarchical hollow nanourchins were formed through the hydrolysis-driven Kirkendall effect coupled with a new-phased vanadium oxyhydroxide V(10)O(14)(OH)(2) precursor templated approach. Meanwhile, the as-obtained VOOH hollow nanourchins could convert topochemically to paramontroseite VO(2) without altering the size and original appearance during the annealing process due to the extreme structural similarity revealed by crystal structure analysis. Furthermore, the improved electrochemical performance of both montroseite VOOH and paramontroseite VO(2) hierarchical hollow structures toward Li uptake and release verifies their potential applications as anode materials in aqueous lithium ion batteries. These improved electrochemical properties could be ascribed to the synergetic effect of the microscopic tunneled crystal structure and macroscopic hollow morphological features, which provide the easy infiltration of electrolyte, short diffusion lengths for lithium ions and electron transport as well as sufficient void space to buffer the volume change.

  19. Performance analysis of non-coplanar synergetic maneuvers

    NASA Astrophysics Data System (ADS)

    Spriesterbach, Thomas P.

    1991-12-01

    Maneuvers employing atmospheric forces to assist in orbital changes hold potential for significant fuel savings over purely exoatmospheric propulsive methods. The term synergetic was coined to describe the combination of propulsive and atmospheric forces used by a maneuvering flight vehicle. This thesis concentrates on non-coplanar synergetic maneuvers using two different control methods for various lifting bodies over a range of heating rates and orbital speeds. The objective of this thesis is to study the aerocruise and aerobang maneuvers. The aerocruise maneuver was first studied more than twenty years ago and is commonly thought to be the fuel-optimal solution to a maneuver flown at a constant heating rate. A new maneuver, the aerobang, has recently raised doubts as to the optimality of the aerocrusie maneuver. The aerobang maneuver demonstrates the ability to yield a higher inclination change for a given amount of fuel as compared to the aerocruise maneuver. Within this thesis a computer code is developed to model both the aerobang and aerocruise maneuvers. It is shown that there exist flight regimes where the aerobang method is superior to the aerocruise method.

  20. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A

    NASA Astrophysics Data System (ADS)

    Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing

    2016-05-01

    Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.

  1. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults

    PubMed Central

    Desjardins-Crépeau, Laurence; Berryman, Nicolas; Fraser, Sarah A; Vu, Thien Tuong Minh; Kergoat, Marie-Jeanne; Li, Karen ZH; Bosquet, Laurent; Bherer, Louis

    2016-01-01

    Purpose Physical exercise and cognitive training have been shown to enhance cognition among older adults. However, few studies have looked at the potential synergetic effects of combining physical and cognitive training in a single study. Prior trials on combined training have led to interesting yet equivocal results. The aim of this study was to examine the effects of combined physical and cognitive interventions on physical fitness and neuropsychological performance in healthy older adults. Methods Seventy-six participants were randomly assigned to one of four training combinations using a 2×2 factorial design. The physical intervention was a mixed aerobic and resistance training program, and the cognitive intervention was a dual-task (DT) training program. Stretching and toning exercises and computer lessons were used as active control conditions. Physical and cognitive measures were collected pre- and postintervention. Results All groups showed equivalent improvements in measures of functional mobility. The aerobic–strength condition led to larger effect size in lower body strength, independently of cognitive training. All groups showed improved speed of processing and inhibition abilities, but only participants who took part in the DT training, independently of physical training, showed increased task-switching abilities. The level of functional mobility after intervention was significantly associated with task-switching abilities. Conclusion Combined training did not yield synergetic effects. However, DT training did lead to transfer effects on executive performance in neuropsychological tests. Both aerobic-resistance training and stretching-toning exercises can improve functional mobility in older adults. PMID:27698558

  2. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water.

    PubMed

    Toor, Ramn; Mohseni, Madjid

    2007-02-01

    The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0-3500 mJ cm(-2)) and hydrogen peroxide concentration (0-23 mg l(-1)) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm(-2) and initial H2O2 concentrations of about or greater than 23 mg l(-1). However, the combined AOP-BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.

  3. Development and Experimental Study of Education Through the Synergetic Training for the Engineering Enhanced Medicine “ESTEEM” in Tohoku University

    NASA Astrophysics Data System (ADS)

    Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami

    We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.

  4. Electrochemical disinfection using boron-doped diamond electrode--the synergetic effects of in situ ozone and free chlorine generation.

    PubMed

    Rajab, Mohamad; Heim, Carolin; Letzel, Thomas; Drewes, Jörg E; Helmreich, Brigitte

    2015-02-01

    This work investigated the capability of using a boron-doped diamond (BDD) electrode for bacterial disinfection in different water matrices containing varying amounts of chloride. The feed water containing Pseudomonas aeruginosa was electrochemically treated while applying different electrode conditions. Depending on the applied current density and the exposure time, inactivation between 4- and 8-log of the targeted microorganisms could be achieved. The disinfection efficiency was driven by the generation of free chlorine as a function of chloride concentration in the water. A synergetic effect of generating both free chlorine and ozone in situ during the disinfection process resulted in an effective bactericidal impact. The formation of the undesired by-products chlorate and perchlorate depended on the water matrix, the applied current density and the desired target disinfection level. In case of synthetic water with a low chloride concentration (20 mg L(-1)) and an applied current density of 167 mA cm(-2), a 6-log inactivation of Pseudomonas aeruginosa could be achieved after 5 min of exposure. The overall energy consumption ranged between 0.3 and 0.6 kW h m(-3) depending on the applied current density and water chemistry. Electrochemical water disinfection represents a suitable and efficient process for producing pathogen-free water without the use of any chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy.

    PubMed

    Li, Jiao; Ding, Tian; Liao, Xinyu; Chen, Shiguo; Ye, Xingqian; Liu, Donghong

    2017-09-01

    This study evaluated the synergetic effects of ultrasound and slightly acidic electrolyzed water (SAEW) on the inactivation of Staphylococcus aureus using flow cytometry and electron microscopy. The individual ultrasound treatment for 10min only resulted in 0.36logCFU/mL reductions of S. aureus, while the SAEW treatment alone for 10min resulted in 3.06logCFU/mL reductions. The log reductions caused by combined treatment were enhanced to 3.68logCFU/mL, which were greater than the sum of individual treatments. This phenomenon was referred to as synergistic effects. FCM analysis distinguished live and dead cells as well as revealed dynamic changes in the physiological states of S. aureus after different treatments. The combined treatment greatly reduced the number of viable but nonculturable (VBNC) bacteria to 0.07%; in contrast, a single ultrasound treatment for 10min induced the formation of VBNC cells to 45.75%. Scanning and transmission electron microscopy analysis revealed that greater damage to the appearance and ultrastructure of S. aureus were achieved after combined ultrasound-SAEW treatment compared to either treatment alone. These results indicated that combining ultrasound with SAEW is a promising sterilization technology with potential uses for environmental remediation and food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kuaibing, E-mail: wangkb@njau.edu.cn; State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093; Lv, Bo

    Hollow CuO/Co{sub 3}O{sub 4} hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co{sub 3}O{sub 4} hybrids had higher capacitance and lower charge transfer resistance than bare Co{sub 3}O{sub 4} nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitancemore » of the CuO/Co{sub 3}O{sub 4} hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g{sup −1} and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s{sup −1}. - Graphical abstract: Hollow CuO/Co{sub 3}O{sub 4} hybrids are synthesized and display a peculiar synergetic effect on the resulting performances, which can further be evaluated and confirmed by series of electrochemical measurements. - Highlights: • Hollow CuO/Co{sub 3}O{sub 4} hybrids are synthesized from bimetallic-Schiff base polymer precursors. • The capacitance of the CuO/Co{sub 3}O{sub 4} hybrids keeps a growth tendency after 2000 cycles. • A synergetic effect is found for the hybrids in electrochemical energy storage process.« less

  8. Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Park, Gu -Gon; ...

    2017-01-03

    Here, we present a new Janus structured catalyst consisting of Pt nanoparticles on Fe–N–C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.

  9. Investigation of Non-Linear Dynamics of the Rock Massive,Using Seismological Catalogue data and Induction Electromagnetic Monitoring Data in a Rock Burst Mine.

    NASA Astrophysics Data System (ADS)

    Hachay, O. A.; Khachay, O. Y.; Klimko, V. K.; Shipeev, O. V.

    2012-04-01

    Geological medium is an open dynamical system, which is influenced on different scales by natural and man-made impacts, which change the medium state and lead as a result to a complicated many ranked hierarchic evolution. That is the subject of geo synergetics. Paradigm of physical mesomechanics, which was advanced by academician Panin V.E. and his scientific school, which includes the synergetic approach is a constructive method for research and changing the state of heterogenic materials [1]. That result had been obtained on specimens of different materials. In our results of research of no stationary geological medium in a frame of natural experiments in real rock massifs, which are under high man-made influence it was shown, that the state dynamics can be revealed with use synergetics in hierarchic medium. Active and passive geophysical monitoring plays a very important role for research of the state of dynamical geological systems. It can be achieved by use electromagnetic and seismic fields. Our experience of that research showed the changing of the system state reveals on the space scales and times in the parameters, which are linked with the peculiarities of the medium of the second or higher ranks [2-5]. Results of seismological and electromagnetic information showed the mutual additional information on different space-time levels of rock massive state, which are energetic influenced by explosions, used in mining technology. It is revealed a change of nonlinearity degree in time of the massive state by active influence on it. The description of massive movement in a frame of linear dynamical system does not satisfy the practical situation. The received results are of great significance because for the first time we could find the coincidences with the mathematical theory of open systems and experimental natural results with very complicated structure. On that base we developed a new processing method for the seismological information which can be used in real time for estimation of the disaster degree changing in mine massive. The work was supported by the grant RFBR 10-05-00013. 1. Panin,V.E. et all. 1995. Physical mesomechanics and computer construction of materials . Novosibirsk.: Nauka, SIFR. V.1 pp. 350. 2. Hachay, O.A. 2006. "The problem of the research of redistribution of stress and phase states of massive between high man-made influences," Mining information and analytic bulletin, 5:109-115. 3. Hachay, O.A. and Khachay, O.Yu. 2008. "Theoretical approaches for system of geophysical state control validation of geological medium by man-made influence," Mining information and analytic bulletin 1:161-169. 4. Hachay, O.A., and Khachay, O.Yu. 2009. "Results of electromagnetic and seismic monitoring of the state of rock massive by use the approach of the open dynamical systems,"presented at the EGU2009 - EGU General Assembly 2009, session: Thermo- hydro- mechanical coupling in stressed rock, 19 April 19 - 24 April 2009. 5. Hachay, O.A. "Synergetic events in geological medium and nonlinear features of wave propagation," presented at the EGU2009 - EGU General Assembly 2009, session: Solid Earth geocomplexity: surface processes, morphology and natural resources over wide ranges of scale, 19 April 19 - 24 April 2009.

  10. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  11. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    PubMed

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Synergetic Effect of Dy2O3 and Ca Co-Dopants towards Enhanced Coercivity of Rare Earth Abundant RE-Fe-B Magnets.

    PubMed

    Li, Yingfei; Tian, Na; Fan, Xiaodong; You, Caiyin; Pei, Wenli; Cheng, Zhenxiang

    2017-12-13

    Low coercivity is the main disadvantage of RE-Fe-B permanent magnets containing highly abundant rare earths (RE: La, Ce) from the application point of view, even though they exhibit many cost and resource advantages. In this work, an industrial mixed rare earth alloy (RE 100  = La 30.6 Ce 50.2 Pr 6.4 Nd 12.8 ) with a high amount of the more abundant elements was adopted to fabricate RE-Fe-B permanent magnets by means of mechanical alloying accompanied by post-annealing. A synergetic effect towards enhancing the coercivity was observed after co-doping with Dy 2 O 3 and Ca, with the coercivity increasing from 2.44 kOe to 11.43 kOe for co-dopant percentages of 7 wt.% Dy 2 O 3  + 2.3 wt.% Ca. Through analysis of the phase constituents and microstructure, it was determined that part of the Dy atoms entered the matrix of RE 2 Fe 14 B phase to enhance the magnetocrystalline anisotropy; due to the reductive effect of Ca on Dy 2 O 3 , nanocrystals of Dy-rich RE 2 Fe 14 B were present throughout the matrix, which could increase the resistance to domain wall movement. These are the dominant factors behind the improvement of the coercivity of the RE-Fe-B magnets with highly abundant RE elements.

  13. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO 2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD.

    PubMed

    Yang, Chuanxi; Dong, Wenping; Cui, Guanwei; Zhao, Yingqiang; Shi, Xifeng; Xia, Xinyuan; Tang, Bo; Wang, Weiliang

    2017-06-21

    Poly-o-phenylenediamine modified TiO 2 nanocomposites were successfully synthesized via an 'in situ' oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS. The photocatalytic degradation of methylene blue was chosen as a model reaction to evaluate the photocatalytic activities of TiO 2 and PoPD/TiO 2 . The results indicated that PoPD/TiO 2 nanocomposites exhibited good photocatalytic activity and stability. The photocatalytic activity of PoPD/TiO 2 increased as the initial pH increased because of electrostatic adsorption between the photocatalyst and MB as well as the generation of ·OH, whereas it exhibited an earlier increasing and later decreasing trend as the concentration of the photocatalyst increased owing to the absorption of visible light. The photocatalytic stability of the PoPD/TiO 2 nanocomposite was dependent on the stability of its structure. Based on radical trapping experiments and ESR measurements, the origin of oxidizing ability of PoPD/TiO 2 nanocomposites on photocatalytic degradation of MB was proposed, which taking into account of ·OH and ·O 2 - were the first and second important ROS, respectively. The possible photocatalytic mechanism and photocatalytic activity enhanced mechanism has been proposed, taking into account the photosensitization effect and synergetic effect of TiO 2 with PoPD.

  14. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    PubMed

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  15. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lv, Hua; Liu, Yumin; Tang, Haibo; Zhang, Peng; Wang, Jianji

    2017-12-01

    The photodegradation of organic pollutants is an attractive green chemistry technology for water pollution control. Here we prepared a new composite material consisting of BiPO4 nanocrystals grown on layered graphene and MoS2 as a high-performance photocatalyst for the photodegradation of organic pollutants. This composite material was synthesized by a facile one-pot microwave-assisted hydrothermal technique in the presence of layered graphene and MoS2. Through optimizing the loading content of each component, the BiPO4-MoS2/graphene nanocomposite exhibited the highest photocatalytic activity for the degradation of Rhodamine (RhB) when the content of MoS2 and graphene was 2 wt% and 7 wt%, respectively. The enhanced photocatalytic activity of the new composite photocatalyst was attributed to the positive synergetic effect of the layered graphene and MoS2 as cocatalyst, which acted as electron collector and transporter for the interfacial electron transfer from BiPO4 to electron acceptor in the aqueous solution and thus suppressed the charge recombination and made the photogenerated holes more available to participated in the oxidation process. Moreover, the presence of layered MoS2/graphene hybrid could offer more reactive sites and activated the O2 molecular in water to form superoxide radical, thereby resulting in the enhanced photocatalytic activity.

  16. Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles

    PubMed Central

    Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua

    2016-01-01

    Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704

  17. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synergetic Effects of Runaway and Disruption Induced by VDE on the First Wall Damage in HL-2A

    NASA Astrophysics Data System (ADS)

    Song, Xianying; Yang, Jinwei; Li, Xu; Yuan, Guoliang; Zhang, Yipo

    2012-03-01

    The plasma facing component in HL-2A has been damaged seriously after disruption, and for this reason its operation is suspended for maintenance. The experimental phenomena and plasma configurations, calculated by the current filament code (CF-code) using the plasma parameters measured by diagnostics and the signals of the magnetic probes, confirm that the first wall is damaged by the synergetic effects of runaway electrons and disruption induced by a vertical displacement event (VDE). When the plasma column is displaced upward/downward, the strong runaway electrons normally hit the baffle plate of the MP3 or MP1 coil in the upper and lower divertor during the disruption, causing the baffle plates to be holed and wrinkled by the energetic runaway current, and water (for cooling or heating the baffle plates) to leak into the vacuum vessel. Another disastrous consequence is that bellows underlying the baffle plate and outside the coil of MP3 for connecting two segments of the jacket casing pipe are punctured by arcing. The arc may be part of the halo current that forms a complete circuit. The experimental phenomena are indirect but compelling evidence for the existence of a halo current during the disruption and VDE, though the halo current has not been measured by the diagnostics in the HL-2A tokamak.

  19. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction

    PubMed Central

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-01-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. PMID:25823960

  20. A New Synergetic Nanocomposite for Dye Degradation in Dark and Light

    PubMed Central

    V., Lakshmi Prasanna; Rajagopalan, Vijayaraghavan

    2016-01-01

    Environmental hazard caused due to the release of dyes in effluents is a concern in many countries. Among the various methods to combat this problem, Advanced Oxidation Process, in which semiconductor photocatalysts are used, is considered the most effective one. These materials release Reactive Oxygen Species (ROS) such as hydroxyl radical and superoxide in suspension that degrade the dyes into non-toxic minerals. However, this process requires visible or UV light for activation. Hence, there is a need to develop materials that release ROS, both in the absence and in the presence of light, so that the efficiency of dye removal is enhanced. Towards this objective, we have designed and synthesized a new nanocomposite ZnO2/polypyrrole which releases ROS even in the dark. The ROS released in the dark and in light were estimated by standard methods. It is to be noted that ZnO2 degrades the dye only under UV light but not in dark or in the presence of visible light. We propose the mechanism of dye degradation in dark and light. The synergically coupled nanocomposite of ZnO2/ppy is the first example that degrades dyes in the dark, through advanced oxidation process without employing additional reagents. PMID:27929084

  1. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  2. Beef extract supplementation increases leg muscle mass and modifies skeletal muscle fiber types in rats.

    PubMed

    Yoshihara, Hiroyuki; Wakamatsu, Jun-Ichiro; Kawabata, Fuminori; Mori, Sunao; Haruno, Atsushi; Hayashi, Toshiya; Sekiguchi, Takeshi; Mizunoya, Wataru; Tatsumi, Ryuichi; Ito, Tatsumi; Ikeuchi, Yoshihide

    2006-06-01

    The objective of this research was to investigate the effects of beef extract on fat metabolism, muscle mass and muscle fiber types in rats. We also investigated the synergetic effect of endurance exercise. Twenty-four male rats weighing about 270 g were assigned to two diets containing 0 or 6% beef extract (BE). Half the rats fed each diet were subjected to compulsory exercise (CE) for 30 min every other day. After 4 weeks feeding, the blood was collected and various organs were dissected. The muscle fiber type of the soleus and extensor digitorum longus (EDL) muscles were evaluated by histochemical and electrophoretical analyses. Rats supplemented with BE showed a decrease in fat content in liver and abdomen and an increase in the activity of carnitine palmitoyl transferase II in liver. BE as well as exercise increased the relative weights of both soleus and EDL. BE alone and BE plus CE did not affect the distribution of muscle fiber types in soleus. BE without exercise decreased in type IIb of EDL from 54% to 44% with compensatory increase in type IIa from 41% to 49% and type I from 5% to 7% compared with the nonsupplemented, nonexercised control group. No synergetic effect on a fast to slow fiber conversion due to the combination of BE and CE was detected. Thus, BE supplement increased muscle mass and slow type fiber in EDL. The effects of BE supplement on muscle characteristics were similar to those of exercise. beef extract, fat metabolism, muscle fiber type, muscle mass, L-carnitine

  3. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Situated Cognition, Ecological Perception, and Synergetics: a Novel Perspective for Cognitive Psychology?

    NASA Astrophysics Data System (ADS)

    Tschacher, Wolfgang; Dauwalder, Jean-Pierre

    Cognitive psychology encounters various problems, such as the problem of intentionality, the symbol grounding and representation problems, and the problem of cognitive stability. These problems originate from the mind-body dichotomy; thus, foundational philosophical topics have quite concrete consequences for cognitive psychology and autonomous agents design. We argue that cognitive theory and modeling must account for stability, autonomy or completeness (i.e., should not rely on homunculi), and optimality. A synergetic model is proposed that has the desired properties: Cognition rests upon perception-action cycles. Cognition is viewed as ecological, i.e. it is situated by environmental affordances (valences) which signal energy resources. These cycles have an built-in optimality function because they maximize entropy production by dissipating affordances.

  5. Synergetic Organization in Speech Rhythm

    NASA Astrophysics Data System (ADS)

    Cummins, Fred

    The Speech Cycling Task is a novel experimental paradigm developed together with Robert Port and Keiichi Tajima at Indiana University. In a task of this sort, subjects repeat a phrase containing multiple prominent, or stressed, syllables in time with an auditory metronome, which can be simple or complex. A phase-based collective variable is defined in the acoustic speech signal. This paper reports on two experiments using speech cycling which together reveal many of the hallmarks of hierarchically coupled oscillatory processes. The first experiment requires subjects to place the final stressed syllable of a small phrase at specified phases within the overall Phrase Repetition Cycle (PRC). It is clearly demonstrated that only three patterns, characterized by phases around 1/3, 1/2 or 2/3 are reliably produced, and these points are attractors for other target phases. The system is thus multistable, and the attractors correspond to stable couplings between the metrical foot and the PRC. A second experiment examines the behavior of these attractors at increased rates. Faster rates lead to mode jumps between attractors. Previous experiments have also illustrated hysteresis as the system moves from one mode to the next. The dynamical organization is particularly interesting from a modeling point of view, as there is no single part of the speech production system which cycles at the level of either the metrical foot or the phrase repetition cycle. That is, there is no continuous kinematic observable in the system. Nonetheless, there is strong evidence that the oscopic behavior of the entire production system is correctly described as hierarchically coupled oscillators. There are many parallels between this organization and the forms of inter-limb coupling observed in locomotion and rhythmic manual tasks.

  6. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  7. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: Synergetic effect of ligands and barium enolates

    DOE PAGES

    Chen, Wenyong; Chen, Ming; Hartwig, John F.

    2014-10-22

    Here, we report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from ( R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  8. Progress Towards Highly Efficient Windows for Zero—Energy Buildings

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    2008-09-01

    Energy efficient windows could save 4 quads/year, with an additional 1 quad/year gain from daylighting in commercial buildings. This corresponds to 13% of energy used by US buildings and 5% of all energy used by the US. The technical potential is thus very large and the economic potential is slowly becoming a reality. This paper describes the progress in energy efficient windows that employ low-emissivity glazing, electrochromic switchable coatings and other novel materials. Dynamic systems are being developed that use sensors and controls to modulate daylighting and shading contributions in response to occupancy, comfort and energy needs. Improving the energy performance of windows involves physics in a variety of application: optics, heat transfer, materials science and applied engineering. Technical solutions must also be compatible with national policy, codes and standards, economics, business practice and investment, real and perceived risks, comfort, health, safety, productivity, amenities, and occupant preference and values. The challenge is to optimize energy performance by understanding and reinforcing the synergetic coupling between these many issues.

  9. In vitro effects of ambroxol on Cryptococcus adherence, planktonic cells, and biofilms.

    PubMed

    Kong, Qingtao; Du, Xue; Huang, Suyang; Yang, Rui; Zhang, Chengzhen; Shen, Yongnian; Liu, Weida; Sang, Hong

    2017-07-01

    The antifungal effects of ambroxol (Amb; the metabolite VIII of bromhexine) against Cryptococcus planktonic cells and mature biofilms were investigated in this study. Amb showed antifungal activity against planktonic cells and mature biofilms. Disk diffusion test similarly showed antifungal profile for planktonic cells. Furthermore, Amb was found to be synergetic with fluconazole against planktonic cells and reduced the adherence of cells to polystyrene. Our results suggest that Amb can inhibit cryptococcal cells and biofilms, indicating its potential role in the prevention and treatment of cryptococcosis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  10. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00211g

  11. A Radar-like Iron based Nanohybrid as an Efficient and Stable Electrocatalyst for Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, X. Y.; Liu, Lin; Wang, Xinde

    2014-05-21

    The present study shows a design concept for fabricating Fe-PyNG hybrid via strong coupling between FePc and pyridine-N. The prominent features of the Fe-PyNG hybrid include high electrocatalytic activity, superior durability, and better performance than Pt/C toward ORR in alkaline media. These features potentially make Fe-PyNG an outstanding nonprecious metal cathode catalyst for fuel cells. The incorporation of Fe ion and pyridine-N afforded effective bonding and synergetic coupling effects, which lead to significant electrocatalytic performance. DFT calculations indicate that N-modified Fe is a superior site for OOH adsorption and ORR reaction. Meanwhile, the strong chemical bonding between FePc and pyridynemore » in PyNG leads to its superior stability. We believe that our present synthetic strategy can be further extended to develop other metal complexes/N-doped carbon materials for broad applications in the field of catalysts, batteries, and supercapacitors. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001 and 21101137), Zhejiang Provincial Natural Science Foundation of China (ZJNSF-R4110345) and the New Century Excellent Talents in University Program (NCET-10-0979). We thank Prof. Youqun Zhu for Instruments support. D. Mei is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  12. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  13. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  14. Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties.

    PubMed

    Hashemi, Maryam; Razavi, Seyed Hadi; Shojaosadati, Seyed Abbas; Mousavi, Seyyed Mohammad; Khajeh, Khosro; Safari, Mohammad

    2010-09-01

    Ca-independency with potential activity and stability at low pH are among the most interesting characteristics of alpha-amylase in starch industry. In this attempt the synergetic effect of low pH on activity of crude Ca-independent alpha-amylase isolated from a native Bacillus sp. KR-8104 in solid-state fermentation (SSF) was studied using wheat bran (WB) as a substrate. The effects of different parameters including moisturizing agents, solid substrate to moisture ratio, particle size, incubation temperature and period, inoculum (v/w) and supplementation with 1% (w/w) different carbon and nitrogen sources on enzyme production were investigated. Maximum enzyme production of 140U/g dry fermented substrate was obtained from wheat bran moistened with tap water at a ratio of 1:1.5 and supplemented with 1% (w/w) NH(4)NO(3) and 1% (w/w) lactose after 48h incubation at 37 degrees C. Even though the production of alpha-amylase was lower at 40 and 45 degrees C, the viable cell count was higher. In addition response surface methodology (RSM) was applied to find optimum conditions of temperature and pH on crude amylase activity. Using central composite design (CCD) a quadratic mathematical model equation was derived for the prediction of enzyme activity. The results showed that the model was in good agreement with experimental results, with R(2)=0.90 (p<0.0001) and the low pH has a synergetic effect on enzyme activity at higher temperature. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Searching for synergistic calcium antagonists and novel therapeutic regimens for coronary heart disease therapy from a Traditional Chinese Medicine, Suxiao Jiuxin Pill.

    PubMed

    Lei, Wei; Ni, Jianan; Xia, Xueting; Jiang, Min; Bai, Gang

    2018-06-08

    Coronary heart disease is a vital cause of morbidity and mortality worldwide, and calcium channel blockers (CCBs) are important drugs that can be used to treat cardiovascular diseases. Suxiao Jiuxin Pill (SX), a traditional Chinese medicine, is widely used as an emergency drug for coronary heart disease therapy. However, understanding its potential mechanism in intracellular calcium concentration ([Ca 2+ ] i ) modulation remains a challenge. To identify the active pharmacological ingredients (APIs) and reveal a novel combination therapy for ameliorating cardiovascular diseases, the ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) combined with a dual-luciferase reporter [Ca 2+ ] i assay system was applied. Ligustrazine, ferulic acid, senkyunolide I, senkyunolide A and ligustilide were identified as potential calcium antagonists in SX, and the combination of ligustrazine and senkyunolide A showed synergetic calcium antagonistic activity. Additionally, the synergetic mechanism was further investigated by live-imaging analysis with the Ca 2+ indicator fluo-4/AM by monitoring fluorescence changes. Our results indicated that ligustrazine can block voltage-operated Ca 2+ channels (VDCCs) effectively and senkyunolide A can exert an inhibition effect mostly on ryanodine receptors (RYRs) and partly on VDCCs. Finally, an arterial ring assay showed that the combination of ligustrazine and senkyunolide A exerted a better vasodilatation function than using any components alone. In this study, we first revealed that a pair of natural APIs in combination acting on VDCCs and RYRs was more effective on vasodilatation by regulating [Ca 2+ ] i . Copyright © 2018. Published by Elsevier B.V.

  16. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer.

    PubMed

    Han, Shunping; Zheng, Hongyue; Lu, Yanping; Sun, Yue; Huang, Anhao; Fei, Weidong; Shi, Xiaowei; Xu, Xiuling; Li, Jingjing; Li, Fanzhu

    2018-01-01

    Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.

  17. Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor.

    PubMed

    Maza-Márquez, P; González-Martínez, A; Martínez-Toledo, M V; Fenice, M; Lasserrot, A; González-López, J

    2017-01-01

    This study presents an effective technology for the olive processing industry to remediate olive washing water. A 14.5-L enclosed tubular photobioreactor was inoculated with a stable microalgal-bacterial consortium obtained by screening strains well adapted to olive washing water. The capacity of an enclosed tubular photobioreactor to remove toxic compounds was evaluated under photosynthesis conditions and without any external supply of oxygen. The results showed that the dominant green microalgae Scenedesmus obliquus, Chlorella vulgaris and the cyanobacteria Anabaena sp. and bacteria present in olive washing water (i.e. Pantoea agglomerans and Raoultella terrigena) formed a synergistic association that was resistant to toxic pollutants present in the effluent and during the initial biodegradation process, which resulted in the breakdown of the pollutant. Total phenolic compounds, COD, BOD 5 , turbidity and colour removals of 90.3 ± 11.4, 80.7 ± 9.7, 97.8 ± 12.7, 82.9 ± 8.4 and 83.3 ± 10.4 %, respectively, were recorded in the photobioreactor at 3 days of hydraulic retention time. Graphical abstract Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor.

  18. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.

    PubMed

    Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart

    2016-05-01

    Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.

    PubMed

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong

    2016-11-05

    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials.

    PubMed

    Zhu, Kai; Qiu, Hailong; Zhang, Yongquan; Zhang, Dong; Chen, Gang; Wei, Yingjin

    2015-03-01

    A series of V2O5-based cathode materials that include V2O5 and Al0.14 V2O5 nanoparticles, V2O5/reduced graphene oxide (RGO), and Al0.16 V2O5/RGO nanocomposites are prepared by a simple soft chemical method. XRD and Raman scattering show that the Al ions reside in the interlayer space of the materials. These doping ions strengthen the V−O bonds of the [VO5] unit and enhance the linkage of the [VO5] layers, which thus increases the structural stability of V2O5. SEM and TEM images show that the V2O5 nanoparticles construct a hybrid structure with RGO that enables fast electron transport in the electrode matrix. The electrochemical properties of the materials are studied by charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Of all the materials tested, the one that contained both Al ions and RGO (Al0.16 V2O5/RGO) exhibited the highest discharge capacity, the best rate capability, and excellent capacity retention. The superior electrochemical performance is attributed to the synergetic effects of Al(3+) doping and RGO modification, which not only increase the structural stability of the V2O5 lattice but also improve the electrochemical kinetics of the material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    PubMed

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  2. Synergetic effect of pH and biochemical components on bacterial diversity during mesophilic anaerobic fermentation of biomass-origin waste.

    PubMed

    Lü, F; Shao, L M; Bru, V; Godon, J J; He, P J

    2009-02-01

    To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro-organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.

  3. ’SPECIALISTS VS. GENERALISTS’ - A MISS-QUESTION

    DTIC Science & Technology

    The document contains a discussion of ’how to develop new types of public administration professionals and how to achieve a synergetic mix between a large variety of differently qualified persons.’

  4. Phase transitions between lower and higher level management learning in times of crisis: an experimental study based on synergetics.

    PubMed

    Liening, Andreas; Strunk, Guido; Mittelstadt, Ewald

    2013-10-01

    Much has been written about the differences between single- and double-loop learning, or more general between lower level and higher level learning. Especially in times of a fundamental crisis, a transition between lower and higher level learning would be an appropriate reaction to a challenge coming entirely out of the dark. However, so far there is no quantitative method to monitor such a transition. Therefore we introduce theory and methods of synergetics and present results from an experimental study based on the simulation of a crisis within a business simulation game. Hypothesized critical fluctuations - as a marker for so-called phase transitions - have been assessed with permutation entropy. Results show evidence for a phase transition during the crisis, which can be interpreted as a transition between lower and higher level learning.

  5. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  6. The SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  7. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    PubMed

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  8. On the hunt for the gene of perspective taking: pitfalls in methodology.

    PubMed

    Miklósi, Adám; Topál, József

    2011-12-01

    In this commentary, we evaluate the methodology of Udell, Dorey, and Wynne's (Learning & Behavior, in press) experiment in controlling for environmental factors and argue that their conclusion is not supported. In particular, we emphasise that comparative studies on dogs and wolves need to ensure that both species enjoyed the same rearing history, are comparable in age, and have the same experience with the testing conditions. We also argue that the utilisation of shelter dogs does not control for genetic effects on social behaviour. Finally, we propose a synergetic model to account for both genetic and environmental effects on interspecific social behaviour in dogs and wolves.

  9. Plasmon mediated cathodic photocurrent generation in sol-gel synthesized doped SrTiO{sub 3} nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugavaneshwar, Ramu Pasupathi, E-mail: r.p.sugavaneshwar@nims.go.jp, E-mail: NAGAO.Tadaaki@nims.go.jp; Chen, Kai; Lakshminarayana, Gandham

    2015-11-01

    Thin films of SrTiO{sub 3} (STO) and Rh-doped SrTiO{sub 3} (Rh-STO) were synthesized by sol-gel method and loaded with Ag nanoparticles. Pristine STO films exhibited anodic photocurrent while Rh-STO exhibited cathodic photocurrent. An enhancement in the overall cathodic photocurrent is observed with Ag nanoparticle loading and an additional enhancement in the visible light range is seen from the incident photon-to-current efficiency spectrum due to synergetic effect of Rh doping and Ag loading in STO.

  10. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  11. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    PubMed

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. BOOK REVIEW: Synergetics

    NASA Astrophysics Data System (ADS)

    Eckhardt, B.

    2005-01-01

    The reductionist approach asks us to split the world into its constituents and to develop a detailed understanding of the properties of each fragment. This programme has met with considerable success in many instances, but it fails to account for properties that emerge from the interrelation between constituents and can be seen in the system as a whole only. The reductionist approach explains the spectra and intensities of the light emitted by a single atom, but it does not account for the appearance of coherent lasing action of atoms coupled by their light field. It describes the motion of individual molecules in a liquid but cannot explain how they arrange to form the majestic roll of waves on a beach. Similarly, a brain consists of millions of neurons whose biochemistry is reasonably well understood, but how they interact to give rise to memory and association and the myriad of other tasks a brain is capable off, remains unclear. These and many other examples in the anorganic and living world around us have in common that they typically operate far from thermodynamic equilibrium, that they involve the interaction of many ingredients, and that nonlinear interactions and feedback loops tend to be important. Over the past few decades many aspects of the dynamics of such systems have been explored, and fields like nonlinear dynamics, bifurcation theory, and pattern formation have prospered enourmously. Yet, the connection between the different areas and their contribution to the larger goal of explaining and exploring much of the order out of chaos around us has been in danger of being lost. Hermann Hakens book overcomes this reductionist separation of approaches and disciplines and provides a coherent collection of concepts, methods and tools with which all the previous examples and many more can be addressed. It lays the foundation for a quantitative analysis and should been seen as an invitation to the reader to apply its ideas to his or her favourite phenomenon. Building on his pioneering work on the laser and his experience with non-equilibrium systems in the early sixties, Haken has devoted much of his time since to developing the field of synergetics, the study of the many ways in which coherent features emerge from the interaction between a huge number of constituents. The book summarizes his ideas, the mathematical tools and formalism, and provides a number of examples. Actually, it is not just one book, but a combined reprint of his two fundamental works, the third edition of 'Synergetics', first published in 1976, and 'Advanced Synergetics', first published in 1983. The material covered is to a large extend standard and natural: the first part deals with probability theory, stochastic processes, adiabatic elimination of variables, bifurcation theory, chaos, etc. The second part contains more advanced material on solutions to ordinary differential equations with periodic and quasiperiodic driving, stochastic differential equations, KAM theory and many other aspects. But even in the treatment of such well known subjects Hakens presentation is cleary motivated and follows an appealing pedagogical thread. The derivations contain enough detail to make them accessible to self study. What distinguishes his book is that it collects all this material in one context and one notation, together with a wide variety of applications. One particular strength is the fact that the effects of noise are always considered and not relegated to more specialized treatments. The key idea pursued and emphasized in the book is the slaving principle, according to which some modes are singled out to dominate and dictate the further evolution of the remaining ones: they are the master modes that dominate the slave modes. The principle combines the order parameter concept of equilibrium phase transitions, adiabatic elimination of fast variables, center manifold techniques for bifurcations and other ideas aimed at separating relevant from non-relevant variables. The approach to emergent order in systems with many constituents advocated by Haken thus is: identify the master modes, derive collective equations for them and analyze the effects of the slaved modes as perturbations to the dynamics of the master modes. Many examples in his book attest to the usefulness and power of this approach. Most significantly, he shows that the slaving principle works not only in situations where mathematical expressions for temporal and spatial evolution are known, as in physics or chemistry, but also in other fields: the introduction contains an impressive list of applications to morphogenesis, evolution, rhythms, visual perception, psychology, sociology, and even management. The extension to the 'soft sciences' is particularly intriguing and suggests new avenues for transdisciplinary and synergistic descriptions of the world around us. While not all phenomena may be amenable to quantitative analysis, many are, and Hakens book tells you how to go about analyzing them.

  13. Synergetic effect and structure-activity relationship of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors from Crataegus pinnatifida Bge.

    PubMed

    Ye, Xiao-Li; Huang, Wen-Wen; Chen, Zhu; Li, Xue-Gang; Li, Ping; Lan, Ping; Wang, Liang; Gao, Ying; Zhao, Zhong-Qi; Chen, Xin

    2010-03-10

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors from hawthorn fruit ( Crataegus pinnatifida Bge.) were isolated and evaluated for their antihyperlipidemic effect induced by high-fat diet in mice. After being further purified with silica and polyamide column chromatography from the fractions (fractions A, F, H, and G) with a high inhibitory rate (IR) to HMGR, 24 chromatographic fractions were obtained, including 8 active fractions with a high IR to HMGR. However, the total inhibitory activity of 24 fractions was decreased by about 70%. From eight active fractions, four compounds were obtained by recrystallization and identified as quercetin (a), hyperoside (b), rutin (c), and chlorogenic acid (d), the contents of which in hawthorn EtOH extract were 0.16, 0.32, 1.45, and 0.95%, respectively. The IR values of compounds a-d to HMGR were 6.28, 9.64, 23.53, and 10.56% at the corresponding concentrations of 0.16, 0.32, 1.45, and 0.95 mg/mL, respectively. It was discovered that the IR of a mixture (2.85 mg/mL) matching the original percentage of compounds a-d in hawthorn EtOH extract was up to 79.5%, much higher than that of the single compound and the total IR of these four compounds (50.01%). The in vivo results also revealed that the mixture had a more significant lipid-lowering efficacy than the monomers. Structure-activity relationship revealed the inhibitory activity and lowering-lipid ability of compounds a-c decreased with increasing glycoside numbers. It was concluded that there were synergetic effects on inhibiting HMGR and lowering lipid among compounds a-d, and the weak hydrophilic ability benefits the inhibition to HMGR and lowering-lipid efficacy.

  14. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.

    PubMed

    Li, Haiyin; Chang, Jiafu; Hou, Ting; Ge, Lei; Li, Feng

    2016-11-01

    Reliable, selective and sensitive approaches for trinitrophenol (TNP) detection are highly desirable with respect to national security and environmental protection. Herein, a simple and novel fluorescent strategy for highly sensitive and specific TNP assay has been successfully developed, which is based on the quenching of the fluorescent poly(thymine)-templated copper nanoclusters (DNA-CuNCs), through the synergetic effects of acid induction and electron transfer. Upon the addition of TNP, donor-acceptor complexes between the electron-deficient nitro-groups in TNP and the electron-donating DNA templates are formed, resulting in the close proximity between TNP and CuNCs. Moreover, the acidity of TNP contributes to the pH decrease of the system. These factors combine to dramatically quench the fluorescence of DNA-CuNCs, providing a "signal-off" strategy for TNP sensing. The as-proposed strategy demonstrates high sensitivity for TNP assay, and a detection limit of 0.03μM is obtained, which is lower than those reported by using organic fluorescent materials. More significantly, this approach shows outstanding selectivity over a number of TNP analogues, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitrophenol (DNP), 3-nitrophenol (NP), nitrobenzene (NB), phenol (BP), and toluene (BT). Compared with previous studies, this method does not need complex DNA sequence design, fluorescent dye labeling, or sophisticated organic reactions, rendering the strategy with additional advantages of simplicity and cost-effectiveness. In addition, the as-proposed strategy has been adopted for the detection of TNP in natural water samples, indicating its great potential to be applied in the fields of public safety and environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  16. Synergetic effect of MoS{sub 2} and g-C{sub 3}N{sub 4} as cocatalysts for enhanced photocatalytic H{sub 2} production activity of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xixian; Huang, Hongyu, E-mail: huanghy@ms.giec.ac.cn; Kubota, Mitsuhiro

    Highlights: • A hydrogen evolution reaction of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst was synthesized. • g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} presents highly efficient H{sub 2} evolution without noble metals. • The effect of g-C{sub 3}N{sub 4} and MoS{sub 2} co-catalyst content in the composites was studied. • The mechanism of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst under UV–vis light was discussed. - Abstract: In this paper, we report a new g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite material as a high-performance photocatalyst for H{sub 2} evolution. Without a noble-metal cocatalyst, the g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite reaches a highmore » H{sub 2} production rate of 125 μmol h{sup −1} when the content of the g-C{sub 3}N{sub 4}/MoS{sub 2} cocatalyst is 1.0 wt.% and the content of g-C{sub 3}N{sub 4} in this cocatalyst is 10 wt.%. This unusual photocatalytic activity is attributed to the positive synergetic effect between the MoS{sub 2} and g-C{sub 3}N{sub 4} components in this cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively.« less

  17. Ambient Intelligence 2.0: Towards Synergetic Prosperity

    NASA Astrophysics Data System (ADS)

    Aarts, Emile; Grotenhuis, Frits

    Ten years of research in Ambient Intelligence have revealed that the original ideas and assertions about the way the concept should develop no longer hold and should be substantially revised. Early scenario's in Ambient Intelligence envisioned a world in which individuals could maximally exploit personalized, context aware, wireless devices thus enabling them to become maximally productive, while living at an unprecedented pace. Environments would become smart and proactive, enriching and enhancing the experience of participants thus supporting maximum leisure possibly even at the risk of alienation. New insights have revealed that these brave new world scenarios are no longer desirable and that people are more in for a balanced approach in which technology should serve people instead of driving them to the max. We call this novel approach Synergetic Prosperity, referring to meaningful digital solutions that balance mind and body, and society and earth thus contributing to a prosperous and sustainable development of mankind.

  18. Improved Li storage performance in SnO 2 nanocrystals by a synergetic doping

    DOE PAGES

    Wan, Ning; Lu, Xia; Wang, Yuesheng; ...

    2016-01-06

    Tin dioxide (SnO 2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO 2 (Co/SnO 2) and a cobalt and nitrogen co-doped SnO 2 (Co-N/SnO 2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO 2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO 2 electrode delivers a specific capacity as high as 716 mAh gmore » –1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li 3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO 2 electrodes. Furthermore, we find that the method of synergetic doping into SnO 2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  19. Fuel cells, electrolyzers, and microalgae photobioreactors: technologies for long-duration missions in human spaceflight

    NASA Astrophysics Data System (ADS)

    Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie

    Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.

  20. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium.

    PubMed

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F

    2017-01-05

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS 2 ) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS 2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS 2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene-SeS 2 full cell is 81% after 1,500 cycles at 268 mA g SeS2 -1 . The achieved cathode capacity is 403 mAh g SeS2 -1 (1,209 mAh cm SeS2 -3 ).

  1. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods

    NASA Astrophysics Data System (ADS)

    Sankar, Sasidharan; Nair, Balagopal N.; Suzuki, Takehiro; Anilkumar, Gopinathan M.; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S.; Warrier, Krishna G.

    2016-03-01

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  2. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    PubMed

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  3. Improvement of bio-oil yield and quality in co-pyrolysis of corncobs and high density polyethylene in a fixed bed reactor at low heating rate

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Lusiani, S.

    2016-11-01

    Over the past few decades, interest in developing biomass-derived fuel has been increasing rapidly due to the decrease in fossil fuel reserves. Bio-oil produced by biomass pyrolysis however contains high oxygen compounds resulting in low calorific-value fuel and therefore requiring upgrading. In co-pyrolysis of the feed blend of plastics of High Density Polyethylene (HDPE) and biomass of com cob particles, at some compositions free radicals from plastic decomposition containing more hydrogen radicals are able to bond oxygen radicals originating from biomass to reduce oxygenate compounds in the bio-oil thus increasing bio-oil quality. This phenomenon is usually called synergetic effect. In addition to that, the pattern of heating of the feed blend in the pyrolysis reactor is predicted to affect biooil quality and yield. In a batch reactor, co-pyrolysis of corncobs and HDPE requires low heating rate to reach a peak temperature at temperature rise period followed by heating for some time at peak temperature called holding time at constant temperature period. No research has been carried out to investigate how long holding time is set in co-pyrolysis of plastic and biomass to obtain high yield of bio-oil. Holding time may affect either crosslinking of free radicals in gas phase, which increases char product, or secondary pyrolysis in the gas phase, which increases non-condensable gas in the gas phase of pyrolysis reactor, both of which reduce bio-oil yield. Therefore, holding time of co-pyrolysis affects the mass rate of bio-oil formation as the pyrolysis proceeds and quality of the bio-oil. In the present work, effects of holding time on the yield and quality of bio-oil have been investigated using horizontal fixed bed of the feed blends at heating rate of 5°C, peak temperature of 500°C and N2 flow rate of 700 ml/minute. Holding time was varied from 0 to 70 minutes with 10 minutes interval. To investigate the effects of holding time, the composition of HDPE in the feed blend was varied 0, 50 and 100%, while the synergetic effect was investigated by varying the composition of HDPE in the feed blend 0, 25, 50, 75, and 100%. The results show that synergetic effect for non-oxygenate compound production started to work at 63% HDPE in the feed blend and beyond. It was observed that extension of holding time exceeding 0 minutes allowed increase ofbio-oil production rate followed reduction of the rate. Pyrolysis ofboth the corncob feed and the feed blend containing 50% HDPE equally reached maximum bio-oil production rate at holding time of 50 minutes, while that of HDPE feed at 30 minutes. The result pertaining to holding time indicates that biomass in the feed blend governs crosslinking - secondary pyrolysis in the co-pyrolysis.

  4. Study on the Synergetic Fire-Retardant Effect of Nano-Sb₂O₃ in PBT Matrix.

    PubMed

    Niu, Lei; Xu, Jianlin; Yang, Wenlong; Ma, Jiqiang; Zhao, Jinqiang; Kang, Chenghu; Su, Jiaqiang

    2018-06-22

    Nano-Sb₂O₃ has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb₂O₃⁻brominated epoxy resin (BEO)⁻poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb₂O₃ particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb₂O₃ and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb₂O₃ content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO₂P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM⁻energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb₂O₃ could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation.

  5. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds

    PubMed Central

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering. PMID:27144173

  6. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wenhui

    Antidepressants, having been applied for the treatment of major depressive disorder and other conditions for decades, are among the most commonly detected human pharmaceuticals in the aquatic environment. This study evaluated the immunotoxicity of acute exposure to environmentally relevant concentrations of amitriptyline, fluoxetine and mianserin using an in vitro primary macrophage model isolated from red common carp (Cyprinus carpio), and also explored their potential mechanisms of action. A potential suppressive immunoregulatory effect of antidepressant exposure was suggested based on the observed suppressive effects on oxidative stress parameters, bactericidal activity, NO production, and NO synthase activity, as well as pro-inflammatory cytokinemore » gene expression, and a significant stimulatory effect on anti-inflammatory interleukin-10 and interferon cytokine gene expression and ATPase activities in macrophages after 6 h-exposure to three individual antidepressants and a combination thereof. Notably, we also found these effects were significantly associated with a corresponding decrease in nuclear factor-κB (NF-κB) activity after antidepressants exposure, and the NF-κB antagonist significantly restrained the effects of antidepressants on gene expression of cytokines, indicating that antidepressants could alter the response of various immune-associated components via the inhibition of NF-κB. Moreover, time-dependent lethal concentrations of three antidepressants on primary macrophages were firstly determined at mg/L levels, and the synergetic effects of antidepressant mixtures were suggested and in particular, for some parameters including total antioxidant capacity and cytokine genes expression, they could be significantly affected by antidepressants exposure at concentrations as low as 10 ng/L, which together thereby revealed the potential risk of antidepressants to aquatic life. - Highlights: • Three different antidepressants all have immunoregulatory effects on macrophages. • Pro-inflammatory cytokine gene expression was inhibited by drug exposure. • Anti-inflammatory cytokine gene expression was induced by drug exposure. • NF-κB pathway was involved in the effects of antidepressants. • Synergetic effects occurred at environmentally relevant concentration of 10 ng/L.« less

  7. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Mun, Hyeona; Lee, Kyu Hyoung; Kim, Suk Jun; Kim, Jong-Young; Lee, Jeong Hoon; Lim, Jae-Hong; Park, Hee Jung; Roh, Jong Wook; Kim, Sung Wng

    2015-03-05

    The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi₂Te₃-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p -type Bi 0.48 Sb 1.52 Te₃. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb) and dopants (Fe). An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi 0.48 Sb 1.52 Te₃ by these synergetic effects.

  8. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    PubMed Central

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-01-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890

  9. Fe/Al synergy in Fe(2)O(3) nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions.

    PubMed

    Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio

    2010-11-07

    A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.

  10. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation.

    PubMed

    Kovács, I; Julesz, B

    1993-08-15

    Detection of fragmented closed contours against a cluttered background occurs much beyond the local coherence distance (maximal separation between segments) of nonclosed contours. This implies that the extent of interaction between locally connected detectors is boosted according to the global stimulus structure. We further show that detection of a target probe is facilitated when the probe is positioned inside a closed circle. To explain the striking contour segregation ability found here, and performance enhancement inside closed boundaries, we propose the existence of a synergetic process in early vision.

  11. What is New in Understanding how the Whole Works

    NASA Astrophysics Data System (ADS)

    San Miguel, Maxi

    Cybernetics, systems science, synergetics, global systems, complexity - what is new in understanding how the whole works? There are two new opportunities that pose at least two challenges: the availability of massive data and the direct social relevance of the field of research...

  12. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  13. Synergetic Effect of Ti3+ and Oxygen Doping on Enhancing Photoelectrochemical and Photocatalytic Properties of TiO2/g-C3N4 Heterojunctions.

    PubMed

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; Huang, Baibiao; Gao, Shanmin; Lu, Jun

    2017-04-05

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2 /oxygen-doped graphitic carbon nitride (Ti 3+ -TiO 2 /O-g-C 3 N 4 ) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3 N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2 O 2 . In this way, exfoliated O-g-C 3 N 4 and Ti 3+ -TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+ -TiO 2 nanoparticles and exfoliated O-g-C 3 N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test, and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+ -TiO 2 to O-g-C 3 N 4 . The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1 , which is 3.87 and 4.56 times higher than those of pristine Ti 3+ -TiO 2 and pure g-C 3 N 4 , respectively. The remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+ -TiO 2 and O-g-C 3 N 4 .

  14. Layered Na‐Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P‐ and O‐Type Phases

    PubMed Central

    Keller, Marlou

    2015-01-01

    Herein, the synthesis of new quaternary layered Na‐based oxides of the type NaxMnyNizFe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2‐ and O3‐type as well as mixed P‐/O‐type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P‐ and O‐type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium‐ion cathode. The mixed P3/P2/O3‐type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2‐ and O3‐type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g−1 (18 mA g−1) in the potential range of 2.0–4.3 V. In the narrower potential range of 2.5–4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P‐/O‐type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na‐ion batteries. PMID:27134617

  15. Tribological Performance of Ni3Al Matrix Self-Lubricating Composites Containing Multilayer Graphene and Ti3SiC2 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Shi, Xiaoliang; Huang, Yuchun; Deng, Xiaobin; Yang, Kang; Liu, Xiyao

    2017-09-01

    The application of Ni3Al-based alloy (NA) in the field of aerospace was limited by its poor tribological properties. For improving the tribological performance of NA, multilayer graphene (MLG) and Ti3SiC2 were added in Ni3Al matrix composites. Tribological behavior of Ni3Al matrix composites containing 1.5 wt.% MLG and 10 wt.% Ti3SiC2 (NMT) against Si3N4 ball at 12 N-0.2 m/s from 25 to 750 °C was investigated. The results showed that NMT exhibited the excellent tribological behavior [lower friction coefficients (0.26-0.57) and less wear resistance (3.1-6.5 × 10-6 mm3 N-1 m-1)] due to synergetic effect of MLG and Ti3SiC2 over a wide temperature range from 25 to 750 °C. At 25-350 °C, part of MLG enriched on worn surface could play a role in reducing friction and improving wear resistance. At 350-550 °C, although MLG gradually lost the lubricating properties, the partial decomposition of Ti3SiC2 could continually improve the tribological properties of NMT. At 550-750 °C, Ti3SiC2 on worn surface was oxidized to form lubricating film, while Ti3SiC2 in the subsurface played an important role in supporting the film, resulting in the excellent high-temperature tribological performance. The research had good guiding significance for the preparation of wide temperature range self-lubricating material and the study of synergetic effect of complex solid lubricants.

  16. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE PAGES

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; ...

    2017-03-07

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  17. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.

    PubMed

    Myung, Suwan; Zhang, Y-H Percival

    2013-01-01

    Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified) enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM) from Thermus thermophiles, fructose bisphosphate aldolase (ALD) from Thermotoga maritima, fructose bisphosphatase (FBP) from T. maritima, and phosphoglucose isomerase (PGI) from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9) mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.

  18. Physicochemical and biological technologies for future exploration missions

    NASA Astrophysics Data System (ADS)

    Belz, S.; Buchert, M.; Bretschneider, J.; Nathanson, E.; Fasoulas, S.

    2014-08-01

    Life Support Systems (LSS) are essential for human spaceflight. They are the key element for humans to survive, to live and to work in space. Ambitious goals of human space exploration in the next 40 years like a permanently crewed surface habitat on Moon or a manned mission to Mars require technologies which allow for a reduction of system and resupply mass. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. In order to design the most efficient LSS architecture for a given mission scenario, it is important to follow a dedicated design process: definition of requirements, selection of candidate technologies, development of possible LSS architectures and characterisation of LSS architectures by system drivers and evaluation of the LSS architectures. This paper focuses on the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC) and microalgae cultivated in photobioreactors (PBR). LSS architectures and their benefits for selected mission scenarios are demonstrated. Experiments on critical processes and interfaces were conducted and result in engineering models for a PEFC and PBR system which fulfil the requirements of a synergetic integrative environment. The PEFC system (about 1 kW) can be operated with cabin air enriched by stored or biologically generated oxygen instead of pure oxygen. This offers further advantages with regard to thermal control as high oxygen concentrations effect a dense heat production. The PBR system consists of an illuminated cultivation chamber (about 5 l), a nutrients supply and harvesting and analytics units. Especially the chamber enables a microgravity adapted cultivation of microalgae. However, the peripheral units still have to be adapted in order to allow for a continuous and automated cultivation and harvesting. These automation processes will be tested and evaluated by means of a parabolic flight experiment. Both engineering models are being specified in dimensions, components, mass and energy flows. They will serve as a platform for getting operational experience, reliability data and identifying technical problems before the next step is to be realized: in-orbit verification in a spaceflight experiment.

  19. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    PubMed Central

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-01-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743

  20. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  1. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    PubMed

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  2. The Synergetic Effect of Cash Transfers for Families, Child Sensitive Social Protection Programs, and Capacity Building for Effective Social Protection on Children's Nutritional Status in Nepal.

    PubMed

    Renzaho, Andre M N; Chitekwe, Stanley; Chen, Wen; Rijal, Sanjay; Dhakal, Thakur; Dahal, Pradiumna

    2017-12-04

    The aim of this study was to evaluate the effectiveness of the synergetic effect of child sensitive social protection programs, augmented by a capacity building for social protection and embedded within existing government's targeted resource transfers for families on child nutritional status. A repeat cross-sectional quasi-experimental design with measures taken pre- (October-December 2009) and post- (December 2014-February 2015) intervention in the intervention and comparison district. The comparison district received standard social welfare services in the form of targeted resource transfers (TRTs) for eligible families. The intervention district received the TRTs plus a child cash payment, augmented by a capacity building for effective social protection outcomes. Propensity scores were used in difference-in-differences models to compare the changes over time between the intervention and control groups. Propensity score matched/weighted models produced better results than the unmatched analyses, and hence we report findings from the radius matching. The intervention resulted in a 5.16 (95% CI: 9.55, 0.77), 7.35 (95% CI: 11.62, 3.08) and 2.84 (95% CI: 5.58, 0.10) percentage point reduction in the prevalence of stunting, underweight, and wasting among children under the age, respectively. The intervention impact was greater in boys than girls for stunting and wasting; and greater in girls than boys for underweight. The intervention also resulted in a 6.66 (95% CI: 2.13, 3.18), 11.40 (95% CI: 16.66, 6.13), and 4.0 (95% CI: 6.43, 1.78) percentage point reduction in the prevalence of stunting, underweight, and wasting among older children (≥24 months). No impact was observed among younger children (<24 months). Targeted resource transfers for families, augmented with a child sensitive social protection program and capacity building for social protection can address effectively child malnutrition. To increase the intervention effectiveness on younger children, the child cash payment amount needs to be revisited and closely embedded into infant and young child feeding initiatives, but also adjusted to equate to 20% of household expenditure or more to maximize the diversity of food available to young children.

  3. Stabilization effects of naringenin and caffeic acid on γ-irradiatedEPDM

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Mantsch, A.; Henderson, D.

    2013-03-01

    The stabilization of ethylene-propylene diene rubber (EPDM) with naringenin and caffeic acid is studied. The selected concentrations were 0.25, 0.50 and 1 phr. The degradation was performed by γ-irradiation. The protective effect of these antioxidants was investigated by isothermal chemiluminescence at 170 °C and FTIR spectroscopy. The synergetic action of these compounds and metallic selenium was also revealed. The exceptional contribution provided by these phenolic stabilizers is characterized by three kinetic parameters: initial CL intensity, oxidation induction time and maximum period of degradation. The radiation stability of stabilized EPDM is efficiently depicted by induction periods which are the minimum 6times longer for unirradiated samples and 2-50 times longer for 50 kGy-irradiated specimens than pristineEPDM.

  4. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    PubMed Central

    Mun, Hyeona; Lee, Kyu Hyoung; Kim, Suk Jun; Kim, Jong-Young; Lee, Jeong Hoon; Lim, Jae-Hong; Park, Hee Jung; Roh, Jong Wook; Kim, Sung Wng

    2015-01-01

    The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb) and dopants (Fe). An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects. PMID:28787981

  5. Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman

    2018-02-01

    In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.

  6. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  7. H2O-Polyaluminium chloride-TBAB as synergistic catalysts for the synthesis of cyclic carbonate

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Yan, P.; Han, Y.

    2018-01-01

    An efficient catalytic system consisting of H2O, Polyaluminium chloride (PAC) and Tetrabutylammonium bromide (TBAB) was applied to the cycloaddition of carbon dioxide (CO2) to epoxides under mild conditions. Their catalytic cycloaddition activities were found to be well correlated with H2O and polyaluminium chloride, which had a synergetic effect with the halide anion of TBAB. The presence of H2O and PAC could remarkably improve the yield of propylene carbonate (PC) by which the reaction yield is about 4-5 times higher than TBAB. alone.The catalytic system also exhibited excellent cycloaddition activities for various epoxide substrates.

  8. Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles.

    PubMed

    Bekenstein, Yehonadav; Vinokurov, Kathy; Banin, Uri; Millo, Oded

    2012-12-21

    Hybrid inorganic nanoparticles, comprising a semiconducting Cu(2)S quantum-dot (QD) core encapsulated by a metallic Ru cage-like shell, and each of their individual components, are studied via scanning tunneling spectroscopy. Bare Cu(2)S QDs show nearly identical semiconducting-like I-V characteristics while the empty Ru cages exhibit single electron tunneling effects-the Coulomb blockade and staircase. Surprisingly, in some cases negative differential conductance features, with periodicity that correlates to the Coulomb staircase, were observed. The tunneling spectra measured on the hybrid QDs varies greatly along a single particle, manifesting synergetic electrical properties that originate from this unique semiconducting-metallic interface.

  9. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like" Flame-Retardant Functionalized Graphene.

    PubMed

    Feng, Yuezhan; Li, Xiongwei; Zhao, Xiaoyu; Ye, Yunsheng; Zhou, Xingping; Liu, Hu; Liu, Chuntai; Xie, Xiaolin

    2018-06-27

    The significant fire hazards on the polymer-based thermal interface materials (TIM) used in electronic devices are but often neglected. Also, high filler loading with the incident deterioration of mechanical, thermal, and processing properties limits the further application of the traditional polymer-based TIMs. In this work, a ternary TIMs with epoxy resin (EP) matrix, silver nanowires (AgNWs), and a small amount of flame-retardant functionalized graphene (GP-DOPO) were proposed to address the above questions. Briefly, a facile "branch-like" strategy with a polymer as the backbone and flame-retardant molecule as the branch was first used to functionalize reduced graphene oxide (RGO) toward increasing the flame-retardant grafting ratio and RGO's compatibility in matrix, and the resulted GP-DOPO was then in situ introduced into the EP/AgNW composites. As expected, the incorporation of GP-DOPO (2 wt %) can increase the thermal conductivity to 1.413 W/(m K) at a very low AgNW loading (4 vol %), which is 545 and 56% increments compared to pure EP and EP/AgNW, respectively. The prominent improvement in thermal conductivity was put down to the synergetic effect of AgNW and GP-DOPO, i.e., the improving dispersion and bridging effect for AgNWs by adding GP-DOPO. Moreover, the high flame-retardant grafting amount and the excellent compatibility of GP-DOPO resulted in a strong catalytic charring effect on EP matrix, which further formed a robust protective char layer by combining the AgNW and graphene network. Therefore, the flame retardancy of EP/AgNW was significantly improved by introducing GP-DOPO, i.e., the peak heat release rate, total heat release and total smoke production reduced by 27.0, 32.4, and 30.9% reduction compared to EP/AgNW, respectively.

  10. Pedagogical Technology of Improving the Students' Viability Levels in the Process of Mastering Foreign Language

    ERIC Educational Resources Information Center

    Dmitrienko, Nadezhda; Ershova, Svetlana; Konovalenko, Tatiana; Kutsova, Elvira; Yurina, Elena

    2015-01-01

    The article points out that the process of mastering foreign language stimulates students' personal, professional and cultural growth, improving linguistic, communicative competences and viability levels. A proposed pedagogical technology of modeling different communicative situations has a serious synergetic potential for students' self organized…

  11. Synergetics in Science and Education

    ERIC Educational Resources Information Center

    Steklova, I.

    2004-01-01

    The natural crisis in contemporary culture, conditioned by the emergence of a new cultural paradigm, makes it essential to look for methodological and theoretical foundations of a possible new scientific paradigm, one closely linked to issues in education. In this article, the author presents basic conditions for the self-organization and…

  12. 1001624

    NASA Image and Video Library

    2010-09-15

    SAMUEL SMITH (WELD TECHNICIAN, JACOBS ESTS GROUP/ALL POINTS) DISPLAYS A HEXAGON THAT WAS FABRICATED FROM FRICTION STIR WELDED PLATES OF 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY

  13. 1001623

    NASA Image and Video Library

    2010-09-15

    ANDRÉ PASEUR (WELD TECHNICIAN, JACOBS ESTS GROUP/ERC) DISPLAYS A HEXAGON THAT WAS FABRICATED FROM FRICTION STIR WELDED PLATES OF 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY

  14. Multicultural Counseling in Schools: A Synergetic Approach.

    ERIC Educational Resources Information Center

    Herring, Roger D.

    As the percentage of ethnic minority students in schools continues to increase, school counselors and counselors-in-training must broaden their cultural knowledge base and develop new strategies that are responsive to the complex challenges these students face. This text provides direction for working within the ethnic minority student's worldview…

  15. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography

    DOE PAGES

    Meher, Subhashish; Rojhirunsakool, Tanaporn; Nandwana, Peeyush; ...

    2015-04-28

    In this study, the analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L1 2-ordered g precipitates to form Ni 3(Al,Cr) precipitates in a Ni-14Al-7Cr(at.%) alloy. Interestingly,more » the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within g precipitates to form (Ni,Al) 3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.« less

  16. The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.

    PubMed

    Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin

    2016-07-01

    Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.

  17. A Free Energy Principle for Biological Systems

    PubMed Central

    Karl, Friston

    2012-01-01

    This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic) dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random) attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics) and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology. PMID:23204829

  18. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods

    PubMed Central

    Sankar, Sasidharan; Nair, Balagopal N.; Suzuki, Takehiro; Anilkumar, Gopinathan M.; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S.; Warrier, Krishna G.

    2016-01-01

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications. PMID:26955962

  19. A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium

    PubMed Central

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543

  20. Effect of zeolite nano-materials and artichoke (Cynara scolymus L.) leaf extract on increase in urinary clearance of systematically absorbed nicotine.

    PubMed

    Malekshah, R E; Mahjub, R; Rastgarpanah, M; Ghorbani, M; Partoazar, A R; Mehr, S E; Dehpour, A R; Dorkoosh, F A

    2012-12-01

    Nicotine, the main pharmacologically active component in tobacco and cigarette, has some toxic effects and also high potential for addiction. In this study, the effect of artichoke (Cynara scolymus L.) and zeolite nano-materials on urinary excretion of nicotine and consequently elimination of systematically absorbed nicotine was investigated. A simple, valid and highly sensitive high performance liquid chromatography method has been developed for determination of nicotine in rat urine according to guidelines for bioanalysis.It was found that nano-zeolites can cause increase in urinary concentration of nicotine due to its high surface adsorption. Artichoke leaf extract can cause increase in urinary excretion of nicotine in longer post administration times. It was observed that co-administration of nanozeolites and the leaf extract has the synergetic effect on increasing the urinary excretion of nicotine. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba *

    PubMed Central

    Qian, Xiao-Wei; Luo, Wei-Hua; Zheng, Ou-Xiang

    2006-01-01

    The mutagenic effects of microwave and chromium trioxide (CrO3) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO3. The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO3, in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO3 concentration. We concluded that microwave and CrO3 had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells. PMID:16502510

  2. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba.

    PubMed

    Qian, Xiao-wei; Luo, Wei-hua; Zheng, Ou-xiang

    2006-03-01

    The mutagenic effects of microwave and chromium trioxide (CrO(3)) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO(3). The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO(3), in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO(3) concentration. We concluded that microwave and CrO(3) had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells.

  3. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    PubMed

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  4. Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance.

    PubMed

    Sun, Yong; Jin, Shuaixing; Yang, Guowei; Wang, Jing; Wang, Chengxin

    2015-04-28

    Despite the high theoretical capacity, pure Ge has various difficulties such as significant volume expansion and electron and Li(+) transfer problems, when applied as anode materials in lithium ion battery (LIB), for which the solution would finally rely on rational design like advanced structures and available hybrid. Here in this work, we report a one-step synthesis of Ge nanowires-in-graphite tubes (GNIGTs) with the liquid Ge/C synergetic confined growth method. The structure exhibits impressing LIB behavior in terms of both cyclic stability and rate performance. We found the semiclosed graphite shell with thickness of ∼50 layers experience an interesting splitting process that was driven by electrolyte diffusion, which occurs before the Ge-Li alloying plateau begins. Two types of different splitting mechanism addressed as "inside-out"/zipper effect and "outside-in" dominate this process, which are resulted from the SEI layer growing longitudinally along the Ge-graphite interface and the lateral diffusion of Li(+) across the shell, respectively. The former mechanism is the predominant way driving the initial shell to split, which behaves like a zipper with SEI layer as invisible puller. After repeated Li(+) insertion/exaction, the GNIGTs configuration is finally reconstructed by forming Ge nanowires-thin graphite strip hybrid, both of which are in close contact, resulting in enormous enchantment to the electrons/Li(+) transport. These features make the structures perform well as anode material in LIB. We believe both the progress in 1D assembly and the structure evolution of this Ge-C composite would contribute to the design of advanced LIB anode materials.

  5. Outcomes of Synergetic Peer Assessment: First-Year Experience

    ERIC Educational Resources Information Center

    Hodgson, Paula; Chan, Kitty; Liu, Justina

    2014-01-01

    Active participation in learning activities and reviewing assessment activity can facilitate learners engaged in these processes. This case study reports student experiences of the process of peer assessment with teacher guidance in a group project for a first-year nursing course with 153 students. Twenty groups of students were assigned roles in…

  6. Pedagogical Synergetics as the Activity Approach Basis in Professional and Pedagogical Training at the University

    ERIC Educational Resources Information Center

    Serezhnikova, Raisa Kuzminichna; Fishman, Boris Entilyevich; Abramenko, Natalya Yurevna; Zhoglo, Lyubov Yakovlevna; Fishbein, Miron Honevich

    2015-01-01

    The article considers an idea of activity approach realization in professional training assuming not only change of the contents, forms and methods of students' educational activities, but also not less radical transformation of teacher's activities oriented at the students' development of creative self-realization experience. The authors…

  7. Synergetic Paradigm of Geographical Science

    ERIC Educational Resources Information Center

    Gorbanyov, Vladimir A.

    2016-01-01

    It is shown that in the last decades, geography has expanded so much, that it has lost its object of study. It was not clear, what the geographical science does, and, as a consequence, households have an extremely low level of geographical cultures and geographical education. Each geography is extremely isolated, has its own object of study.…

  8. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose.

    PubMed

    Wu, Yifei; Sun, Xinxiao; Lin, Yuheng; Shen, Xiaolin; Yang, Yaping; Jain, Rachit; Yuan, Qipeng; Yan, Yajun

    2017-01-01

    In nature glucose is a common carbon and energy source for catabolic use and also a building unit of polysaccharides and glycosylated compounds. The presence of strong glucose catabolic pathways in microorganism rapidly decomposes glucose into smaller metabolites and challenges non-catabolic utilization of glucose as C6 building unit or precursor. To address this dilemma, we design a synergetic carbon utilization mechanism (SynCar), in which glucose catabolism is inactivated and a second carbon source (e.g. glycerol) is employed to maintain cell growth and rationally strengthen PEP driving force for glucose uptake and non-catabolic utilization. Remarkably, a trehalose biosynthesis model developed for proof-of-concept indicates that SynCar leads to 131% and 200% improvement in trehalose titer and yield, respectively. The conversion rate of glucose to trehalose reaches 91% of the theoretical maximum. This work demonstrates the broad applicability of SynCar in the biosynthesis of molecules derived from non-catabolic glucose. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. A Synergetic Approach to Describe the Stability and Variability of Motor Behavior

    NASA Astrophysics Data System (ADS)

    Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter

    At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.

  10. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of redundant and synergetic circuits in triplets of electrophysiological data

    NASA Astrophysics Data System (ADS)

    Erramuzpe, Asier; Ortega, Guillermo J.; Pastor, Jesus; de Sola, Rafael G.; Marinazzo, Daniele; Stramaglia, Sebastiano; Cortes, Jesus M.

    2015-12-01

    Objective. Neural systems are comprised of interacting units, and relevant information regarding their function or malfunction can be inferred by analyzing the statistical dependencies between the activity of each unit. While correlations and mutual information are commonly used to characterize these dependencies, our objective here is to extend interactions to triplets of variables to better detect and characterize dynamic information transfer. Approach. Our approach relies on the measure of interaction information (II). The sign of II provides information as to the extent to which the interaction of variables in triplets is redundant (R) or synergetic (S). Three variables are said to be redundant when a third variable, say Z, added to a pair of variables (X, Y), diminishes the information shared between X and Y. Similarly, the interaction in the triplet is said to be synergetic when conditioning on Z enhances the information shared between X and Y with respect to the unconditioned state. Here, based on this approach, we calculated the R and S status for triplets of electrophysiological data recorded from drug-resistant patients with mesial temporal lobe epilepsy in order to study the spatial organization and dynamics of R and S close to the epileptogenic zone (the area responsible for seizure propagation). Main results. In terms of spatial organization, our results show that R matched the epileptogenic zone while S was distributed more in the surrounding area. In relation to dynamics, R made the largest contribution to high frequency bands (14-100 Hz), while S was expressed more strongly at lower frequencies (1-7 Hz). Thus, applying II to such clinical data reveals new aspects of epileptogenic structure in terms of the nature (redundancy versus synergy) and dynamics (fast versus slow rhythms) of the interactions. Significance. We expect this methodology, robust and simple, can reveal new aspects beyond pair-interactions in networks of interacting units in other setups with multi-recording data sets (and thus, not necessarily in epilepsy, the pathology we have approached here).

  12. The importance of weightlessness and tides in teaching gravitation

    NASA Astrophysics Data System (ADS)

    Galili, I.; Lehavi, Y.

    2003-11-01

    We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.

  13. Analytical W-He and H-He interatomic potentials for a W-H-He system

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Shu, Xiaolin; Liu, Yi-Nan; Yu, Yi; Gao, F.; Lu, Guang-Hong

    2012-07-01

    We have constructed W-He and H-He analytical bond-order potentials for a W-H-He system. In combination with the previously self-developed W-H potential [X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, G.-H. Lu, J. Nucl. Mater. 408 (2011) 12] and the Hartree-Fock-dispersion pair potential (Aziz-potential) for He-He interactions, we demonstrate that such potentials behave well for reproducing various properties of the W-H-He system such as defect formation energies, structural properties, and diffusion barriers. Such potentials can be employed to model both the He behaviours and the H-He synergetic effects in the W-H-He system.

  14. CIE, Vitamin D and DNA Damage: A Synergetic Study in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria Elissavet; Bais, Alkiviadis; Arola, Antii; van Geffen, Jos; van Weele, Michiel; van der A, Ronald; Kouremeti, Natalia; Kazadzis, Stelios; Meleti, Chariklia; Balis, Dimitrios

    2016-08-01

    The present study aims to validate different approaches for the estimation of three photobiological effective doses: the erythemal UV, the vitamin D and that for DNA damage, using high temporal resolution surface- based measurements of solar UV from 2005-2015. Data from a UV spectrophotometer, a multi-filter radiometer, and a UV radiation pyranometer that are located in Thessaloniki, Greece are used together with empirical relations, algorithms and models in order to calculate the desired quantities. In addition to the surface-based dose retrievals, OMI/Aura and the combined SCIAMACHY/Envisat and GOME/MetopA satellite products are also used in order to assess the accuracy of each method for deriving the photobiological doses.

  15. Synergetic effect of double-step blocking layer for the perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo

    2017-10-01

    In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.

  16. Molecular Designs for Enhancement of Polarity in Ferroelectric Soft Materials

    NASA Astrophysics Data System (ADS)

    Ohtani, Ryo; Nakaya, Manabu; Ohmagari, Hitomi; Nakamura, Masaaki; Ohta, Kazuchika; Lindoy, Leonard F.; Hayami, Shinya

    2015-11-01

    The racemic oxovanadium(IV) salmmen complexes, [VO((rac)-(4-X-salmmen))] (X = C12C10C5 (1), C16 (2), and C18 (3); salmmen = N,N‧-monomethylenebis-salicylideneimine) with “banana shaped” molecular structures were synthesized, and their ferroelectric properties were investigated. These complexes exhibit well-defined hysteresis loops in their viscous phases, moreover, 1 also displays liquid crystal behaviour. We observed a synergetic effect influenced by three structural aspects; the methyl substituents on the ethylene backbone, the banana shaped structure and the square pyramidal metal cores all play an important role in generating the observed ferroelectricity, pointing the way to a useful strategy for the creation of advanced ferroelectric soft materials.

  17. The influence of the free space environment on the superlight-weight thermal protection system: conception, methods, and risk analysis

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy; Falchenko, Iurii; Fedorchuk, Viktor; Petrushynets, Lidiia

    2016-07-01

    This report focuses on the results of the EU project "Superlight-weight thermal protection system for space application (LIGHT-TPS)". The bottom line is an analysis of influence of the free space environment on the superlight-weight thermal protection system (TPS). This report focuses on new methods that based on the following models: synergetic, physical, and computational. This report concentrates on four approaches. The first concerns the synergetic approach. The synergetic approach to the solution of problems of self-controlled synthesis of structures and creation of self-organizing technologies is considered in connection with the super-problem of creation of materials with new functional properties. Synergetics methods and mathematical design are considered according to actual problems of material science. The second approach describes how the optimization methods can be used to determine material microstructures with optimized or targeted properties. This technique enables one to find unexpected microstructures with exotic behavior (e.g., negative thermal expansion coefficients). The third approach concerns the dynamic probabilistic risk analysis of TPS l elements with complex characterizations for damages using a physical model of TPS system and a predictable level of ionizing radiation and space weather. Focusing is given mainly on the TPS model, mathematical models for dynamic probabilistic risk assessment and software for the modeling and prediction of the influence of the free space environment. The probabilistic risk assessment method for TPS is presented considering some deterministic and stochastic factors. The last approach concerns results of experimental research of the temperature distribution on the surface of the honeycomb sandwich panel size 150 x 150 x 20 mm at the diffusion welding in vacuum are considered. An equipment, which provides alignment of temperature fields in a product for the formation of equal strength of welded joints is considered. Many tasks in computational materials science can be posed as optimization problems. This technique enables one to find unexpected microstructures with exotic behavior (e.g., negative thermal expansion coefficients). The last approach is concerned with the generation of realizations of materials with specified but limited microstructural information: an intriguing inverse problem of both fundamental and practical importance. Computational models based upon the theories of molecular dynamics or quantum mechanics would enable the prediction and modification of fundamental materials properties. This problem is solved using deterministic and stochastic optimization techniques. The main optimization approaches in the frame of the EU project "Superlight-weight thermal protection system for space application" are discussed. Optimization approach to the alloys for obtaining materials with required properties using modeling techniques and experimental data will be also considered. This report is supported by the EU project "Superlight-weight thermal protection system for space application (LIGHT-TPS)"

  18. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes. Electronic supplementary information (ESI) available: Additional experimental and crystallographic data, additional confocal microscopy and HR-TEM images and illustrations, EELS, TGA, DLS and Z-potential results. Movie M1. See DOI: 10.1039/c4nr04533e

  19. The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light

    NASA Astrophysics Data System (ADS)

    Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan

    2014-06-01

    The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h

  20. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles

    PubMed Central

    Yu, Mengxiao; Zheng, Jie

    2016-01-01

    A basic understanding of how imaging nanoparticles are removed from the normal organs/tissues but retained in the tumors is important for their future clinical applications in early cancer diagnosis and therapy. In this review, we discuss current understandings of clearance pathways and tumor targeting of small-molecule- and inorganic-nanoparticle-based imaging probes with an emphasis on molecular nanoprobes, a class of inorganic nanoprobes that can escape reticuloendothelial system (RES) uptake and be rapidly eliminated from the normal tissues/organs via kidneys but can still passively target the tumor with high efficiency through the enhanced permeability permeability and retention (EPR) effect. The impact of nanoparticle design (size, shape, and surface chemistry) on their excretion, pharmacokinetics, and passive tumor targeting were quantitatively discussed. Synergetic integration of effective renal clearance and EPR effect offers a promising pathway to design low-toxicity and high-contrast-enhancement imaging nanoparticles that could meet with the clinical translational requirements of regulatory agencies. PMID:26149184

  1. Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Kaczmarek, K.; Hornowski, T.; Kubovčíková, M.; Rozynek, Z.; Timko, M.; Skumiel, A.

    2016-06-01

    Ultrasonic hyperthermia is a method of cancer treatment in which tumors are exposed to an elevated cytotoxic temperature using ultrasound (US). In conventional ultrasonic hyperthermia, the ultrasound-induced heating in the tumor is achieved through the absorption of wave energy. However, to obtain appropriate temperature in reasonable time, high US intensities, which can have a negative impact on healthy tissues, are required. The effectiveness of US for medical purposes can be significantly improved by using the so-called sonosensitizers, which can enhance the thermal effect of US on the tissue by increasing US absorption. One possible candidate for such sonosensitizers is magnetic nanoparticles with mean sizes of 10-300 nm, which can be efficiently heated because of additional attenuation and scattering of US. Additionally, magnetic nanoparticles are able to produce heat in the alternating magnetic field (magnetic hyperthermia). The synergetic application of ultrasonic and magnetic hyperthermia can lead to a promising treatment modality.

  2. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  3. Simultaneous control of microorganisms and disinfection by-products by sequential chlorination.

    PubMed

    Chen, Chao; Zhang, Xiao-Jian; He, Wen-Jie; Han, Hong-Da

    2007-04-01

    To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Pilot tests of this sequential chlorination were carried out in a drinking water plant. The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  4. The Synergetic Effect of Cash Transfers for Families, Child Sensitive Social Protection Programs, and Capacity Building for Effective Social Protection on Children’s Nutritional Status in Nepal

    PubMed Central

    Renzaho, Andre M. N.; Chitekwe, Stanley; Chen, Wen; Rijal, Sanjay; Dhakal, Thakur; Dahal, Pradiumna

    2017-01-01

    Objective: The aim of this study was to evaluate the effectiveness of the synergetic effect of child sensitive social protection programs, augmented by a capacity building for social protection and embedded within existing government’s targeted resource transfers for families on child nutritional status. Design: A repeat cross-sectional quasi-experimental design with measures taken pre- (October–December 2009) and post- (December 2014–February 2015) intervention in the intervention and comparison district. The comparison district received standard social welfare services in the form of targeted resource transfers (TRTs) for eligible families. The intervention district received the TRTs plus a child cash payment, augmented by a capacity building for effective social protection outcomes. Propensity scores were used in difference-in-differences models to compare the changes over time between the intervention and control groups. Results: Propensity score matched/weighted models produced better results than the unmatched analyses, and hence we report findings from the radius matching. The intervention resulted in a 5.16 (95% CI: 9.55, 0.77), 7.35 (95% CI: 11.62, 3.08) and 2.84 (95% CI: 5.58, 0.10) percentage point reduction in the prevalence of stunting, underweight, and wasting among children under the age, respectively. The intervention impact was greater in boys than girls for stunting and wasting; and greater in girls than boys for underweight. The intervention also resulted in a 6.66 (95% CI: 2.13, 3.18), 11.40 (95% CI: 16.66, 6.13), and 4.0 (95% CI: 6.43, 1.78) percentage point reduction in the prevalence of stunting, underweight, and wasting among older children (≥24 months). No impact was observed among younger children (<24 months). Conclusions: Targeted resource transfers for families, augmented with a child sensitive social protection program and capacity building for social protection can address effectively child malnutrition. To increase the intervention effectiveness on younger children, the child cash payment amount needs to be revisited and closely embedded into infant and young child feeding initiatives, but also adjusted to equate to 20% of household expenditure or more to maximize the diversity of food available to young children. PMID:29207554

  5. Relationship between Self-Actualisation and Employment for At-Risk Young Unemployed Women

    ERIC Educational Resources Information Center

    Huss, Ephrat; Magos, Michal

    2014-01-01

    This study used drawing and semi-structured interviews to access the visions of self-actualisation of a group of at-risk young women in an employment support group in Israel. The findings point to the synergetic relationship between the self-defined goals of the young women such as inner peace, self-regulation, assertiveness, good relationships…

  6. Study on Innovation of Teacher Training Model in Basic Education from the Perspective of "Blended Learning"

    ERIC Educational Resources Information Center

    Bu, Huabai; Bu, Shizhen

    2012-01-01

    Gradual integration of synergetic technology, P2P technology and online learning community furnishes a new research field for innovation of teacher training model in a knowledge economy era. This article proposes the innovative model of "whole of three lines" in teacher training in basic education from the perspective of "blended…

  7. Attraction of pollinators to atemoya (Magnoliales: Annonaceae) in Puerto Rico: A synergetic approach using multiple nitidulid lures

    USDA-ARS?s Scientific Manuscript database

    Atemoya, a cross between Annona squamosa and A. cherimola (Annonaceae), has the potential to be a major fruit crop in tropical and subtropical areas. A major setback to production throughout the world is low fruit-set due to inadequate visits by pollinators, typically beetles in the family Nitidulid...

  8. Vertically aligned BCN nanotubes with high capacitance.

    PubMed

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  9. Surface Protonics Promotes Catalysis

    PubMed Central

    Manabe, R.; Okada, S.; Inagaki, R.; Oshima, K.; Ogo, S.; Sekine, Y.

    2016-01-01

    Catalytic steam reforming of methane for hydrogen production proceeds even at 473 K over 1 wt% Pd/CeO2 catalyst in an electric field, thanks to the surface protonics. Kinetic analyses demonstrated the synergetic effect between catalytic reaction and electric field, revealing strengthened water pressure dependence of the reaction rate when applying an electric field, with one-third the apparent activation energy at the lower reaction temperature range. Operando–IR measurements revealed that proton conduction via adsorbed water on the catalyst surface occurred during electric field application. Methane was activated by proton collision at the Pd–CeO2 interface, based on the inverse kinetic isotope effect. Proton conduction on the catalyst surface plays an important role in methane activation at low temperature. This report is the first describing promotion of the catalytic reaction by surface protonics. PMID:27905505

  10. Crystal structure and infrared spectra of dicesium trans-tetraaquadichlorochromium(III) chloride

    NASA Astrophysics Data System (ADS)

    Neumann, E.; Stefov, V.; Šoptrajanov, B.; Engelen, B.; Lutz, H. D.

    2004-12-01

    The crystal structure of dicesium trans-tetraaquadichlorochromium(III) chloride Cs 2Cr IIICl 5·4H 2O with trans-[M IIIX 2(H 2O) 4] + complex ions (space group C2/c, Z=4, a=1915.3(4) pm, b=614.1(1) pm, c=1392.0(3) pm, and β=118.24(3)°, final R1=0.0246 for 2100 unique reflections) was redetermined by single-crystal X-ray diffraction studies. It was found to crystallize in a 2c super structure of the structure reported previously (Inorg. Chem. 20 (1981) 1566; Inorg. Chem. 36 (1997) 2248). The obtained structure data now agree with the results of infrared spectroscopic studies, which has been confirmed in this work, namely that there are two different hydrate H 2O molecules in the structure. Phase transitions, static or dynamic disorder of the hydrate H 2O molecules, and space group C2/m proposed in the literature were ruled out. The coordinates of the four hydrogen positions derived from the X-ray data have been improved via the O-H distances derived from the wave numbers of the OD stretching modes of matrix isolated HDO molecules (2426, 2323, and 2306 cm -1, 263 K) by using the νOD versus rO-H correlation curve reported in the literature (J. Mol. Struct. 404 (1997) 63). The νOD versus rH⋯Cl correlation curve reported by Mikenda (J. Mol. Struct. 147 (1986) 1) should be improved, especially for strong hydrogen bonds. The two hydrate H 2O molecules of the title compound are strongly distorted with a weak and a relatively strong O-H⋯Cl hydrogen bond each thus intramolecular coupling of the two OH stretching vibrations to coupled ones is largely reduced and, hence, the wavenumbers of the OH and OD stretching modes of the HDO molecules mainly resemble those of the H 2O and D 2O molecules. The strength of the hydrogen bonds is in accordance with the predictions of the competitive and synergetic effects. Chloro ligands are weaker hydrogen bond acceptor groups than chloride ions.

  11. Inflammation-induced synergetic enhancement of nanoparticle treatments with DOXIL® and 90Y-Lactosome for orthotopic mammary tumor

    NASA Astrophysics Data System (ADS)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Hara, Eri; Sano, Kohei; Makino, Akira; Ozeki, Eiichi; Yamamoto, Fumihiko; Saji, Hideo; Togashi, Kaori; Kimura, Shunsaku

    2016-05-01

    Polymeric micelles (Lactosome) in the size of 20-30 nm were labeled with radionuclides of 111In (111In-DOTA-Lactosome) for SPECT imaging and 90Y (90Y-DOTA-Lactosome) for β-ray irradiation for mammary tumor in mice. The tumor site at the femoral right leg grafted with 4T1 cells was clearly imaged at 24 h after the intravenous injection. Biodistribution revealed that the half-life time of 111In-DOTA-Lactosome was 11 h, which enabled the nanoparticle selectively accumulated in tumor site due to the enhanced permeability and retention (EPR) effect. The anti-tumor therapeutic effect of 90Y-DOTA-Lactosome was observed depending on the dose frequency and amount. Under the condition of the percutaneous ethanol injection treatment, the therapeutic effect of 90Y-DOTA-Lactosome was enhanced due to the super EPR effect. Owing to the super EPR effect, co-administration of 90Y-DOTA-Lactosome and DOXIL® inhibited the tumor growth during 15 days with their administrations.

  12. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration.

    PubMed

    Kim, Dong-Hoon; Jeong, Emma; Oh, Sae-Eun; Shin, Hang-Sik

    2010-05-01

    The individual effects of alkaline (pH 8-13) and ultrasonic (3750-45,000kJ/kg TS) pretreatments on the disintegration of sewage sludge were separately tested, and then the effect of combining these two methods at different intensity levels was investigated using response surface methodology (RSM). In the combined pretreatment, ultrasonic treatment was applied to the alkali-pretreated sludge. While the solubilization (SCOD/TCOD) increase was limited to 50% in individual pretreatments, it reached 70% in combined pretreatment, and the results clearly showed that preconditioning of sludge at high pH levels played a crucial role in enhancing the disintegration efficiency of the subsequent ultrasonic pretreatment. By applying regression analysis, the disintegration degree (DD) was fitted based on the actual value to a second order polynomial equation: Y=-172.44+29.82X(1)+5.30x10(-3)X(2)-7.53x10(-5)X(1)X(2)-1.10X(1)(2)-1.043x10(-7)X(2)(2), where X(1), X(2), and Y are pH, specific energy input (kJ/kg TS), and DD, respectively. In a 2D contour plot describing the tendency of DD with respect to pH and specific energy input, it was clear that DD increased as pH increased, but it seemed that DD decreased when the specific energy input exceeded about 20,000kJ/kg TS. This phenomenon tells us that there exists a certain point where additional energy input is ineffective in achieving further disintegration. A synergetic disintegration effect was also found in the combined pretreatment, with lower specific energy input in ultrasonic pretreatment yielding higher synergetic effect. Finally, in order to see the combined pretreatment effect in continuous operation, the sludge pretreated with low intensity alkaline (pH 9)/ultrasonic (7500kJ/kg TS) treatment was fed to a 3 L of anaerobic sequencing batch reactor after 70 days of control operation. CH(4) production yield significantly increased from 81.9+/-4.5mL CH(4)/g COD(added) to 127.3+/-5.0mL CH(4)/g COD(added) by pretreatment, and this enhanced performance was closely related to the solubilization increase of the sludge by pretreatment. However, enhanced anaerobic digestion resulted in 20% higher soluble N concentration in the reactor, which would be an additional burden in the subsequent nitrogen removal system.

  13. A synergetic use of hydrogen and fuel cells in human spaceflight power systems

    NASA Astrophysics Data System (ADS)

    Belz, S.

    2016-04-01

    Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.

  14. Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.

    PubMed

    Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping

    2018-08-24

    Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.

  15. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  16. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.

    PubMed

    Busser, G Wilma; Mei, Bastian; Muhler, Martin

    2012-11-01

    The deposition of hydrogen evolution sites on photocatalysts is a crucial step in the multistep process of synthesizing a catalyst that is active for overall photocatalytic water splitting. An alternative approach to conventional photodeposition was developed, applying the photocatalytic reforming of aqueous methanol solutions to deposit metal particles on semiconductor materials such as Ga₂O₃ and (Ga₀.₆ Zn₀.₄)(N₀.₆O₀.₄). The method allows optimizing the loading of the co-catalysts based on the stepwise addition of their precursors and the continuous online monitoring of the evolved hydrogen. Moreover, a synergetic effect between different co-catalysts can be directly established. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3

    NASA Astrophysics Data System (ADS)

    Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua

    2018-01-01

    Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.

  18. Spatially-controlled NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-01

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 Cores and MnO2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo2O4 and MnO2 compositions.

  19. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  20. Improved turbopump dynamics

    NASA Technical Reports Server (NTRS)

    Kiefling, L.

    1985-01-01

    A study was initiated to investigate the practicality of increasing rotor critical speeds by changes in manufacturing method. The technique would be to build a pump with an all laser welded shaft and case; such unit to be opened by laser cutting and rebuilt by rewelding the same surface. Use of a split casing, common in industry, would permit assembly of the rotor outside the case. A team was formed to perform the study; however, the work of the team was severely restricted by conflict with higher priority tasks. No manpower was available to evaluate alternate configurations. Thus, much of the synergetic effects of cohesive design modification was lost. Although very limited results were achieved, nothing was found to indicate that the method is not worth further investigation.

  1. Spatially-controlled NiCo2O4@MnO2 core-shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction.

    PubMed

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-13

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.

  2. Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw.

    PubMed

    Sun, Shaolong; Chen, Weijing; Tang, Jianing; Wang, Bing; Cao, Xuefei; Sun, Shaoni; Sun, Run-Cang

    2016-01-01

    The biorefinery based on an effective and economical process is to fractionate the three primary constituents (cellulose, hemicelluloses, and lignin) from lignocellulosic biomass, in which the constituents can be respectively converted into high-value-added products. In this study, a successive treatment with dilute acid (0.25-1.0 % aqueous H 2 SO 4 , 100-150 °C, 0.5-3.0 h) and alkali (1.5 % aqueous NaOH, 80 °C, 3 h) was performed to produce xylooligosaccharides (XOS), high-purity lignin, and cellulose-rich substrates to produce glucose for ethanol production from rice straw (RS). During the dilute acid pretreatment, the maximum production of XOS (12.8 g XOS/100 g RS) with a relatively low level of byproducts was achieved at a relatively low temperature (130 °C) and a low H 2 SO 4 concentration (0.5 %) for a reaction time of 2.0 h. During the alkali post-treatment, 14.2 g lignin with a higher purity of 99.2 % and 30.3 g glucose with a higher conversion rate by enzymatic hydrolysis were obtained from the successively treated substrates with 100 g RS as starting material. As the pretreatment temperature, H 2 SO 4 concentration, or time increased, more β - O -4 linkages in lignins were cleaved, which resulted in an increase of phenolic OH groups in lignin macromolecules. The signal intensities of G 2 and G 6 in HSQC spectra gradually reduced and vanished, indicating that a condensation reaction probably occurred at C-2 and C-6 of guaiacyl with the side chains of other lignin. The present study demonstrated that the successive treatments with dilute acid and alkali had a synergetic effect on the fractionation of the three main constituents in RS. It is believed that the results obtained will enhance the availability of the combined techniques in the lignocellulosic biorefinery for the application of the main components, cellulose, hemicelluloses, and lignin as biochemical and biofuels.

  3. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    PubMed

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  4. Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures.

    PubMed

    Aškrabić, S; Araújo, V D; Passacantando, M; Bernardi, M I B; Tomić, N; Dojčinović, B; Manojlović, D; Čalija, B; Miletić, M; Dohčević-Mitrović, Z D

    2017-12-06

    Pr(OH) 3 one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr 1-x Eu x (OH) 3 (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu 3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH) 3 , subsequently changing the Pr(OH) 3 nanorod morphology. The presence of KNO 3 phase was registered in the Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH) 3 nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH) 3 nanostructures was caused by the synergetic effect of oxygen vacancies and Eu 3+ (NO 3 - ) ions present on the Pr(OH) 3 surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr 1-x Eu x (OH) 3 nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.

  5. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fan, Zhenghua; Meng, Fanming; Zhang, Miao; Wu, Zhenyu; Sun, Zhaoqi; Li, Aixia

    2016-01-01

    This paper presents controllable growth and photocatalytic activity of TiO2 hierarchical nanostructures by solvothermal method at different temperatures. It is revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the morphology of TiO2 can be effectively controlled as rose-like, chrysanthemum-like and sea-urchin-like only changing solvothermal temperature. BET surface area analysis confirms the presence of a mesoporous network in all the nanostructures, and shows high surface area at relatively high temperature. The photocatalytic activities of the photocatalysts are evaluated by the photodegradation of RhB under UV light irradiation. The TiO2 samples exhibit high activity on the photodegradation of RhB, which is higher than that of the commercial P25. The enhancement in photocatalytic performance can be attributed to the synergetic effect of the surface area, crystallinity, band gap and crystalline size.

  6. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment

    PubMed Central

    Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2017-01-01

    High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment. PMID:28059072

  7. Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Congshan; Gao, Xuefeng

    2011-10-01

    We in-detail investigated the profile evolution processes of highly ordered alumina under the cyclic treatment of mild anodizing of aluminum foils in oxalic acid followed by etching in phosphoric acid. With the cyclic times increasing, the profiles of nanopores were gradually evolved into the parabola-like, trumpet-like and conical shape. Although the inserted etching itself nearly had no impact on the growth rate of the nanopores due to the rapid recovering of thinned barrier layer at the initial stage of next anodizing, overmuch etching could bring apparent side effects such as wall-breaking, thinning and taper-removing from the top down. The anodizing and etching kinetics and their synergetic effects in modulating different aspect ratios and open sizes of conical pores were studied systematically. These findings are helpful to tailor high-quality anodic alumina taper-pores with tunable profiles.

  8. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S.

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3)more » nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.« less

  9. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  10. Combination Therapy with Glucan and Coenzyme Q10 in Murine Experimental Autoimmune Disease and Cancer.

    PubMed

    Vetvicka, Vaclav; Vetvickova, Jana

    2018-06-01

    Coenzyme Q 10 is a well-accepted anti-oxidant agent known to play a protective role in various physiological and disease processes. Recently, Coenzyme Q 10 is gaining attention as a substance with significant anti-inflammatory properties. β-Glucan is the most studied immunomodulator with significant synergetic effects with numerous bioactive molecules. We aimed to evaluate the possible synergistic effects of simultaneous use of coenzyme Q 10 with the well-established immune modulator, β-glucan, on immune reactions and cancer development. Coenzyme Q 10 and β-glucan were used, both in vivo and in vitro, and their effects were evaluated using phagocytosis and cytokine secretion. Our study confirmed the strong anti-inflammatory effects of coenzyme Q 10 and showed that these effects were further potentiated with the addition of β-glucan. The anticancer effects of coenzyme Q 10 were less pronounced, but stronger, with the addition of β-glucan. There is significant synergy between coenzyme Q 10 and β-glucan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2013-11-01

    Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180-3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60-1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hooked differential mobility spectrometry apparatus and method therefore

    DOEpatents

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.

  13. Gene Expression Profiling in Fish Toxicology: A Review.

    PubMed

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  14. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    PubMed Central

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  15. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  16. Attitudinal Effects of a Student-Centered Active Learning Environment

    NASA Astrophysics Data System (ADS)

    Oliver-Hoyo, Maria T.; Allen, Deedee

    2005-06-01

    The importance of attitudes toward science has risen from widely accepted assumptions that achievement and attitude are positively interdependent and that affective variables are as important as cognitive variables in molding student learning. This report examines the effect on student attitudes toward learning chemistry in an active learning environment that has incorporated elements believed to positively influence student attitudes toward science including cooperative learning, hands-on activities, real-world applications, and engaging technology. These elements were considered for synergetic effects and not as individual contributors to the overall results. Two different sections of the same general chemistry course participated. The lecture setting was used as the control. Residualized gain scores were used to compare net changes in student attitudes. Data were analyzed for possible differences in gain for different academic majors. Anxiety in chemistry was monitored for the two class settings in three areas, learning in chemistry, chemistry evaluation, and chemical handling. Qualitative student feedback was also collected and is summarized in this report on the attitudinal aspects of instruction.

  17. Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J. A.; Rubio-González, C.; Jiménez-Mora, M.; Ramos-Galicia, L.; Velasco-Santos, C.

    2017-10-01

    An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.

  18. Nanobiotechnology for enzymatic remediation and soil carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Amonette, James E.; Russell, Colleen K.

    2005-03-13

    We studied the ability of tyrosinase to catalyze the oxidation of various phenolic compounds. As a revolutionary approach to enzyme stabilization, we developed specially-designed nanoporous silica for enzyme immobilization. Our tests show that the active lifetime of the enzymes stabilized in this material can extend to periods as long as several months, which is about a 100-fold increase in stability. The implications of this new approach to enzyme-based bioremedation will be discussed. In soils, the humification process involves phenol oxidation, mediated by tyrosinase, followed by nonenzymatic polymerization of the resulting quinones with amino acids to form humic polymers. We testedmore » the effects of fly ash amendments on a model humification reaction involving tyrosinase and a suite of organic monomers. The combination of fly ashes with tyrosinase increased the amount of polymer formed by several fold. The strong synergetic effect of these ashes when enzyme is present apparently arises from the combined effects of alkaline pH and physical stabilization of the enzyme in porous silica cenospheres.« less

  19. Soft-template-synthesis of hollow CuO/Co3O4 composites for pseudo-capacitive electrode: A synergetic effect on electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Kuaibing; Lv, Bo; Wu, Hua; Luo, Xuefei; Xu, Jiangyan; Geng, Zhirong

    2016-12-01

    Hollow CuO/Co3O4 hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co3O4 hybrids had higher capacitance and lower charge transfer resistance than bare Co3O4 nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitance of the CuO/Co3O4 hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g-1 and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s-1.

  20. Combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells via PI3K/Akt and ERK pathways.

    PubMed

    Zhang, Junjia; Yu, Jichun; Xie, Rong; Chen, Wanzhi; Lv, Yunxia

    2016-08-01

    The objective of this study was to examine the in vitro combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells FTC133 using a MTT cytotoxicity assay, and to test whether the mechanism involves induction of apoptosis. The present results demonstrated that curcumin at 15-25 μM dose-dependently suppressed the proliferation of FTC133. Combined treatment (curcumin (25 μM) and sorafenib (2 μM)) resulted in a reduction in cell colony formation and significantly decreased the invasion and migration of FTC133 cells compared with that treated with individual drugs. Western blot showed that the levels of p-ERK and p-Akt proteins were significantly reduced (p < 0.01) in the medicine-treated FTC133 cells. The curcumin was found to dose-dependently inhibit the apoptosis of FTC133 cells possibly via PI3K/Akt and ERK pathways. There is a synergetic antitumour effect between curcumin and sorafenib.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Liang; Dong, Dongdong; Qiao, Keke

    Wearable and sensitive photodetectors (PDs) have been demonstrated based on a blend film of PbS quantum dots (QDs) and QDs modified multiwalled carbon nanotubes (MWCNTs). Owing to the synergetic effect from high light sensitivity of PbS QDs and excellent conductive and mechanical properties of MWCNTs, the blend PDs show high sensitivity and flexibility performance: device responsivity and detectivity reach 583 mA/W and 3.25 × 10{sup 12 }Jones, respectively, and could stand large number (at least 10 000 cycles) and wide angle (up to 80°) bending. Furthermore, the wearable and sensitive PDs have been applied to measure the heart rate in both red and near infraredmore » (NIR) ranges. The presented PDs are expected to work as sensor candidates in integrated electronic skin.« less

  2. Free-standing ternary NiWP film for efficient water oxidation reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng; Zhou, Kuo; Ma, Lili; Liang, Yanqin; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Li, Zhaoyang

    2018-03-01

    High-efficient catalysts for oxygen evolution reaction (OER) is of great concern in improving energy efficiency for water splitting. Here we report a high-performance OER electrocatalyst of nickel-tungsten-phosphorus (NiWP) film prepared by template method. This free-standing ternary electrocatalyst exhibits a remarkable electrocatalytic activity of OER in alkaline medium due to the synergetic effect among these elements and the good electrical conductivity. The reported NiWP composite catalyst has an overpotential of as low as 0.4 V (vs. RHE) at 30 mA cm-2, better than that of the commercial RuO2 catalyst. Moreover, a small charge transfer resistance of 4.06 Ω and a Tafel slope of 68 mV dec-1 demonstrate the outstanding catalytic activity.

  3. Stakeholder demands and corporate environmental coping strategies in China.

    PubMed

    Liu, Ning; Tang, Shui-Yan; Lo, Carlos Wing-Hung; Zhan, Xueyong

    2016-01-01

    This paper examines how stakeholder demand and compliance capacity jointly shape corporate environmental coping strategies and subsequently environmental protection practices. A four-dimensional classification of coping strategies-formalism, accommodation, referencing, and self-determination-is conceptualized. Drawing on survey and interview data collected from manufacturing enterprises in China between 2010 and 2012, the paper shows that compared with formalism and accommodation, coping strategies of referencing and self-determination are associated with stronger environmental protection practices. Enterprises adjust their coping strategies by taking into account the constraints defined by both their internal and external environments. The results also demonstrate the potential synergetic effects of state and non-state stakeholders working together in promoting better corporate environmental coping strategies and environmental practices in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  5. Analysis of glow discharges for understanding the process of film formation

    NASA Technical Reports Server (NTRS)

    Venugopalan, M.; Avni, R.

    1984-01-01

    The physical and chemical processes which occur during the formation of different types of films in a variety of glow discharge plasmas are discussed. Emphasis is placed on plasma diagnostic experiments using spectroscopic methods, probe analysis, mass spectrometric sampling and magnetic resonance techniques which are well suited to investigate the neutral and ionized gas phase species as well as some aspects of plasma surface interactions. The results on metallic, semi-conducting and insulating films are reviewed in conjunction with proposed models and the problem encountered under film deposition conditions. It is concluded that the understanding of film deposition process requires additional experimental information on plasma surface interactions of free radicals and the synergetic effects where photon, electron and ion bombardment change the reactivity of the incident radical with the surface.

  6. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less

  7. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    PubMed

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  8. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  9. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite

    NASA Astrophysics Data System (ADS)

    Shu, Zhan; Zhang, Yi; Ouyang, Jing; Yang, Huaming

    2017-10-01

    A novel antibacterial nanocomposite, CeO2-ZnO/HNTs was prepared by a homogeneous co-precipitation method in ethanol solution. ZnO and CeO2 nanoparticles with sizes of approximately 8 and 4 nm, respectively, were dispersively precipitated onto the surface of halloysite nanotubes (HNTs). HNTs served as a template for reducing the agglomeration of ZnO nanoparticles and improving the interface reactions between the nanocomposite and bacteria cells. CeO2 nanoparticles were introduced to suppress the recombination of electron-hole pairs, and narrow the energy gap of ZnO nanoparticles. The synergistic effects of ZnO, CeO2 nanoparticles and HNTs led to the superior antibacterial activity of the CeO2-ZnO/HNTs nanocomposite against gram-negative Escherichia coli.

  10. Rhetoric and Public Address: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through December 1980 (Vol. 41 Nos. 1 through 6).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 16 titles deal with the following topics: (1) a psycholinguistic analysis of the rhetoric of Abba S. Eban; (2) synergetic tetrahedral communication models; (3) a form critical approach to the oral traditions of the black church…

  11. Cybernetic prosthesis

    NASA Technical Reports Server (NTRS)

    Mann, R. W.

    1974-01-01

    Design and development of a prosthetic device fitted to an above elbow amputee is reported that derives control information from the human to modulate power to an actuator to drive the substitute limb. In turn, the artificial limb generates sensory information feedback to the human nervous system and brain. This synergetic unity feeds efferent or motor control information from the human to the machine, and the machine responds, delivering afferent or sensory information back to the man.

  12. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.

    PubMed

    Bian, Yan-Wei; Lv, Dong-Wen; Cheng, Zhi-Wei; Gu, Ai-Qin; Cao, Hui; Yan, Yue-Ming

    2015-10-14

    The plant oxidative stress response is vital for defense against various abiotic and biotic stresses. In this study, ultrastructural changes and the proteomic response to H2O2 stress in roots and leaves of the model plant Brachypodium distachyon were studied. Transmission electron microscopy (TEM) showed that the ultrastructural damage in roots was more serious than in leaves. Particularly, the ultrastructures of organelles and the nucleus in root tip cells were damaged, leading to the inhibition of normal biological activities of roots, which then spread throughout the plant. Based on two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF-MS, 84 and 53 differentially accumulated protein (DAP) spots representing 75 and 45 unique proteins responsive to H2O2 stress in roots and leaves, respectively, were identified. These protein species were mainly involved in signal transduction, energy metabolism, redox homeostasis/stress defense, protein folding/degradation, and cell wall/cell structure. Interestingly, two 14-3-3 proteins (GF14-B and GF14-D) were identified as DAPs in both roots and leaves. Protein-protein interaction (PPI) analysis revealed a synergetic H2O2-responsive network. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Melem-based derivatives as metal-free photocatalysts for simultaneous reduction of Cr(VI) and degradation of 5-Sulfosalicylic acid.

    PubMed

    Lan, Huachun; Li, Lili; Liu, Huijuan; An, Xiaoqiang; Liu, Fei; Chen, Cuibai; Qu, Jiuhui

    2017-12-01

    Carbon nitride has been considered as promising metal-free polymers for low-cost photocatalysis. Most prevailing concern about this fantastic material focuses on g-C 3 N 4 , while the potential of other derivatives have been overlooked. Herein, in order to determine the desired derivatives for environmental pollutant treatment, the impact of degree of thermal polymerization on the microstructure of carbon nitride was investigated. Interestingly, melem-based derivatives exhibit 4- and 6-fold enhanced activities than g-C 3 N 4 , when used as synergetic photocatalysts for the simultaneous treatment of heavy metal ions and organic contaminants. According to the fundamental study of reactive species formation, a microstructure-dependent photocatalytic mechanism was established. Hydrogen bond-facilitated trapping of photogenerated holes and superior ability for oxygen molecular activation contributed to the high-performance of melem-based derivatives. In contrast, g-C 3 N 4 shows inferior performance during superoxide radical-dominated photodegradation reactions, as its microstructure is favorable for the generation of . Our research not only sheds new insights into the microstructure design of metal-free carbon nitride photocatalysts, but also has immense scientific and technological values for high-efficiency and synergetic environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Eco-Efficient Process Improvement at the Early Development Stage: Identifying Environmental and Economic Process Hotspots for Synergetic Improvement Potential.

    PubMed

    Piccinno, Fabiano; Hischier, Roland; Seeger, Stefan; Som, Claudia

    2018-05-15

    We present here a new eco-efficiency process-improvement method to highlight combined environmental and costs hotspots of the production process of new material at a very early development stage. Production-specific and scaled-up results for life cycle assessment (LCA) and production costs are combined in a new analysis to identify synergetic improvement potentials and trade-offs, setting goals for the eco-design of new processes. The identified hotspots and bottlenecks will help users to focus on the relevant steps for improvements from an eco-efficiency perspective and potentially reduce their associated environmental impacts and production costs. Our method is illustrated with a case study of nanocellulose. The results indicate that the production route should start with carrot pomace, use heat and solvent recovery, and deactivate the enzymes with bleach instead of heat. To further improve the process, the results show that focus should be laid on the carrier polymer, sodium alginate, and the production of the GripX coating. Overall, the method shows that the underlying LCA scale-up framework is valuable for purposes beyond conventional LCA studies and is applicable at a very early stage to provide researchers with a better understanding of their production process.

  15. Study of flame combustion of off-design binary coal blends in steam boilers

    NASA Astrophysics Data System (ADS)

    Kapustyanskii, A. A.

    2017-07-01

    Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which proves the existence of the synergetic effect in the processes of cocombustion of coals of various grades.

  16. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02713f

  17. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.

    2016-05-01

    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  18. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Meng, Dong; Cai, Yunhao

    2016-04-23

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  19. Numerical Optimization of Synergetic Maneuvers

    DTIC Science & Technology

    1994-06-01

    7 A. EQ U A TION S O F M O TION ..................................................................... 7 B. CO N TRO L LA ...0O V2 AR =g-- r which yields the control programs D T=- cosa L + Tsina a = free variable 3. Aerobang The first step in modeling the aerobang control...coefficients as follows: sina cosa 7CL 37 where a is the angle of attack, CA is the axial direction aerodynamic coefficient, and CN is the normal direction

  20. 1001619

    NASA Image and Video Library

    2010-09-15

    SAMUEL SMITH (WELD TECHNICIAN, JACOBS ESTS GROUP/ALL POINTS) AND ANDRÉ PASEUR (WELD TECHNICIAN, JACOBS ESTS GROUP/ERC) DISPLAY TWO PROCESS DEMONSTRATION ARTICLES – A 9-FOOT BUTT WELD (FOREGROUND) AND A HEXAGON FABRICATED FROM FRICTION STIR WELDED PLATES (BACKGROUND) – THAT WERE FABRICATED FROM 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY

  1. Evaluation of Four Calcium Channel Blockers as Fluconazole Resistance Inhibitors in Candida glabrata.

    PubMed

    Alnajjar, Lina M; Bulatova, Nailya R; Darwish, Rula M

    2018-04-14

    In this study we aimed to evaluate the ability of four calcium channel blockers, verapamil, diltiazem, nicardipine and nifedipine to enhance sensitivity of Candida glabrata strains to fluconazole. The synergistic antifungal effect was examined by checkerboard method; fractional inhibitory concentration index (FIC) was determined. Time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. nicardipine showed additive effect with fluconazole against fluconazole-resistant and fluconazole-susceptible-dose-dependent strains (DSY565 and CBS138) known to express efflux pumps but not against fluconazole-sensitive strains. Nifedipine exhibited additive effect with fluconazole in both checkerboard (0.5< FIC <1) and time-kill curve methods (<2 log10 colony-forming units (CFU)/ml decrease in viable count). Additionally, nifedipine had own antifungal effect consistently against most of the strains used in this study with minimum inhibitory concentration of 8μg/ml. nicardipine showed additive effect with fluconazole in fluconazole-resistant strains of Candida glabrata-most probably via efflux pump inhibition as demonstrated selectively in fluconazole-resistant strains with known efflux pumps. Nifedipine displayed promising antifungal effect alone and additive effects with fluconazole. Copyright © 2018. Published by Elsevier Ltd.

  2. Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater

    PubMed Central

    Zhou, Yan; Xu, Yan-Bin; Xu, Jia-Xin; Zhang, Xiao-Hua; Xu, Shi-Hui; Du, Qing-Ping

    2015-01-01

    A Pseudomonas fluorescens strain ZY2, isolated from swine wastewater, was used to investigate the synergistic effects of five heavy metals (Pb, Cu, Zn, Cr(VI) and Hg) on bacterial resistance to antibiotics. Results indicate that the combined effects of antibiotic type, heavy metal type and concentration were significant (p < 0.01). Cross-resistance to Hg and antibiotics was the most noticeable. Moreover, the resistance to Hg and cefradine or amoxicillin, and Cr and amoxicillin were synergistic for low heavy metal concentrations, and turned antagonistic with increasing concentrations, while the resistances to Cr or Cu and cefradine, Pb or Cu and amoxicillin, Cu and norfloxacin showed reverse effects. In addition, resistance to Zn and amoxicillin were always synergetic, while resistance to Pb and cefradine or norfloxacin, Cr or Hg and norfloxacin as well as all the heavy metals and tetracycline were antagonistic. These results indicate that bacterial resistance to antibiotics can be affected by the type and concentration of co-exposed heavy metals and may further threaten people’s health and ecological security severely via horizontal gene transfer. PMID:25633105

  3. Understanding electrical conduction in lithium ion batteries through multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Pan, Jie

    Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.

  4. Systemic Case Formulation, Individualized Process Monitoring, and State Dynamics in a Case of Dissociative Identity Disorder.

    PubMed

    Schiepek, Günter K; Stöger-Schmidinger, Barbara; Aichhorn, Wolfgang; Schöller, Helmut; Aas, Benjamin

    2016-01-01

    Objective: The aim of this case report is to demonstrate the feasibility of a systemic procedure (synergetic process management) including modeling of the idiographic psychological system and continuous high-frequency monitoring of change dynamics in a case of dissociative identity disorder. The psychotherapy was realized in a day treatment center with a female client diagnosed with borderline personality disorder (BPD) and dissociative identity disorder. Methods: A three hour long co-creative session at the beginning of the treatment period allowed for modeling the systemic network of the client's dynamics of cognitions, emotions, and behavior. The components (variables) of this idiographic system model (ISM) were used to create items for an individualized process questionnaire for the client. The questionnaire was administered daily through an internet-based monitoring tool (Synergetic Navigation System, SNS), to capture the client's individual change process continuously throughout the therapy and after-care period. The resulting time series were reflected by therapist and client in therapeutic feedback sessions. Results: For the client it was important to see how the personality states dominating her daily life were represented by her idiographic system model and how the transitions between each state could be explained and understood by the activating and inhibiting relations between the cognitive-emotional components of that system. Continuous monitoring of her cognitions, emotions, and behavior via SNS allowed for identification of important triggers, dynamic patterns, and psychological mechanisms behind seemingly erratic state fluctuations. These insights enabled a change in management of the dynamics and an intensified trauma-focused therapy. Conclusion: By making use of the systemic case formulation technique and subsequent daily online monitoring, client and therapist continuously refer to detailed visualizations of the mental and behavioral network and its dynamics (e.g., order transitions). Effects on self-related information processing, on identity development, and toward a more pronounced autonomy in life (instead of feeling helpless against the chaoticity of state dynamics) were evident in the presented case and documented by the monitoring system.

  5. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    PubMed

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  6. Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Dong Jun; Yoon, Jung Woon; Lee, Chang Soo; Bae, Youn-Sang; Kim, Jong Hak

    2018-05-01

    We report a high-performance electrochemical capacitor based on covalent organic framework (COF)-derived microporous carbon (MPC) nanoparticles and electrochemically polymerized polypyrrole (Ppy) as a pseudocapacitive material. The COF, Schiff-based network-1 (SNW-1) nanoparticles are prepared via a condensation reaction between melamine and terephthalaldehyde, and the resultant MPC film is prepared via a screen-printing method. The MPC film exhibits a bimodal porous structure with micropores and macropores, resulting in both a large surface area and good electrolyte infiltration. Ppy is synthesized potentio-statically (0.8 V vs. Ag/AgCl) by varying the reaction time, and successful synthesis of Ppy is confirmed via Raman spectroscopy. The specific capacitance with the Ppy coating is enhanced by up to 2.55 F cm-2 due to the synergetic effect of pseudocapacitance and reduced resistance.

  7. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    DOE PAGES

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...

    2017-01-19

    Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less

  8. Economic communication model set

    NASA Astrophysics Data System (ADS)

    Zvereva, Olga M.; Berg, Dmitry B.

    2017-06-01

    This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.

  9. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  10. Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction.

    PubMed

    Le Guenic, Sarah; Gergela, David; Ceballos, Claire; Delbecq, Frederic; Len, Christophe

    2016-08-22

    Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered.

  11. New Combinational Method for Noninvasive Treatments of Superficial Tissues for Body Aesthetics Applications

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.

    The paper introduces an innovative combinational treatment method based on ultrasonic standing waves (USW) technology for noninvasive surgical, therapeutic, lypolitic or cosmetic treatment of tissues including subcutaneous adipose tissue, cellulite or skin on arbitrary body part of patient. The method is based on simultaneous or successive applying of constructively interfering physically and biologically sensed influences: USW, ultrasonic shear waves, radio-frequency (RF) heating, and vacuum massage. The paper provides basic physical principles of USW as well as critical comparison of USW and HIFU methods. The results of finite-elements and finite- difference modeling of USW transducer design and nodal pattern structure in tissue are presented. Biological effects of USW-tissue interaction and synergetic aspects of USW and RF combination are explored. Combinational treatment transducer designs and original in-vitro experiments on tissues are described.

  12. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  13. Preparation of microcapsules containing double-component lubricant and self-lubricating performance of polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Shi, Nanqi; Ji, Jing; Wang, Huaiyuan

    2018-05-01

    Double-component microcapsules containing lubricant oil and SiO2 nanoparticles were prepared by solvent evaporation method. The synthesized microcapsules have the regular spherical structure with the mean diameter of 105 μm and wall thickness of 15 μm. The synthesized microcapsules have excellent thermal stability, and the lubricant oil content was 71.4 wt%. Self-lubricating polymer composites were fabricated by incorporating double-component microcapsules into epoxy matrix. When the SiO2 nanoparticles content was 3 wt% relative to the lubricant oil, 10 wt% microcapsules brought 60.8% and 93.3% decrease for epoxy composites in the friction coefficient and specific wear rate, respectively. The synergetic effect between lubricant oil and SiO2 nanoparticles play a positive role in improving the triboligical properties of polymer composites.

  14. Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their electromagnetic absorption properties

    NASA Astrophysics Data System (ADS)

    Xie, Aming; Sun, Mengxiao; Zhang, Kun; Xia, Yilu; Wu, Fan

    2018-05-01

    Conducting polymers (CPs) at nano scales endow materials with special optical, electrical, and magnetic properties. The crucial factor to construct and regulate the micro-structures of CPs is the inducing reagent, particular in its chemical structure, such active sites, self-assembling properties. In this paper, we design and synthesize an amphiphile bearing tetrazole moiety on its skeleton, and use this amphiphile as an inducing reagent to prepare and regulate the micro-structures of a series of CPs including polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) and poly(p-phenylenediamine). Because of the unique electric properties of CPs and size effect, we next explored the electromagnetic absorption performances of these CPs nanostructures. A synergetic combination of electric loss and magnetic loss is used to explain the absorption mechanism of these CPs nano-structures.

  15. Interactions between macromolecule-bound antioxidants and Trolox during liposome autoxidation: A multivariate approach.

    PubMed

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens L; Gökmen, Vural

    2017-12-15

    The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively and Trolox were used for this purpose. Experimental studies were carried out in autoxidizing liposome medium by monitoring the development of fluorescent products formed by lipid oxidation. Chemometric methods were used both at experimental design and multivariate data analysis stages. Comparison of the simple addition effects of Trolox and bound antioxidants with measured values on lipid oxidation revealed synergetic interactions for DF and refined olive oil-bound antioxidants, and antagonistic interactions for protein and extra virgin olive oil-bound antioxidants with Trolox. A generalized version of logistic function was successfully used for modelling the oxidation curve of liposomes. Principal component analysis revealed two separate phases of liposome autoxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reactivity of Heteropolytungstate and Heteropolymolybdate Metal Transition Salts in the Synthesis of Dimethyl Carbonate from Methanol and CO2

    PubMed Central

    Aouissi, Ahmed; Al-Deyab, Salem S.; Al-Owais, Ahmad; Al-Amro, Amro

    2010-01-01

    A series of Keggin-type heteropoly compounds (HPC) having different countercations (Co, Fe) and different addenda atoms (W, Mo) were synthesized and characterized by means of Fourier-Transform Infrared Spectrometer (FT-IR) and X-ray powder diffraction (XRD). The catalytic properties of the prepared catalysts for the dimethyl carbonate (DMC) synthesis from CO2 and CH3OH were investigated. The experimental results showed that the catalytic activity is significantly influenced by the type of the countercation and addenda atoms transition metal. Among the catalysts examined, Co1.5PW12O40 is the most active for the DMC synthesis, owing to the synergetic effect between Co and W. Investigating the effect of the support showed that the least acidic one (Al2O3) enhanced the conversion but decreased the DMC selectivity in favor of that of methyl formate (MF), while that of dimethoxy methane remained stable. PMID:20717536

  17. Optimization of antioxidant efficacy of a deflavored and decolorized rosemary extract: effect of carnosol content on the oxidative stability of paprika colored beef patties.

    PubMed

    Rajeev, P S; Johannah, N M; Gopakumar, G; Maliakel, Balu; Krishnakumar, I M

    2017-05-01

    Considering the significance of natural antioxidants to preserve meat, the present study was undertaken to evaluate the efficacy of a deflavored and decolorised extract of rosemary (StabilRose™) for the production and preservation of naturally colored fresh meat. Oxidative rancidity of meat and color degradation of paprika oleoresin were exploited as model systems and compared with butylated hydroxyanisole (BHA). The results showed similar efficacy for 3% carnosic acid extract and BHA, with further enhancement in efficacy with respect to the carnosic acid content. A synergetic antioxidant effect of carnosol on carnosic acid content was also noticed to an extent of 1:1 (w/w) ratio, and further increase in carnosol content showed no improvement in the antioxidant efficacy. Finally, stabilized paprika and optimized rosemary extract containing carnosic acid and carnosol in 1:1 (w/w) ratio was successfully applied to produce naturally colored meat suitable for storage at 4 ± 1 °C.

  18. Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks.

    PubMed

    Yang, Linxi; He, Quan Sophia; Havard, Peter; Corscadden, Kenneth; Xu, Chunbao Charles; Wang, Xuan

    2017-08-01

    Co-liquefaction of spent coffee grounds (SCG) with paper filter (PF), corn stalk (CS) and white pine bark (WPB) respectively, was examined in subcritical water for bio-crude oil production. The optimum reaction temperature was 250°C, and the mixing biomass ratio was 1:1. SCG and CS was identified to be the best feedstock combination with a significant positive synergetic effect in the co-liquefaction process with 5% NaOH as a catalyst. The yield of bio-crude oil was increased by 20.9% compared to the mass averaged yield from two feedstocks, and the oil quality was also improved in terms of viscosity and relative molecular mass. A negative effect presented in the co-liquefaction of SCG/WPB. The resulting bio-crude oils were characterized by elemental analyzer, GC-MS, GPC and viscometer, indicating that mixing feedstock in the co-liquefaction process also influenced the higher heating value (HHV), viscosity, molecular mass and chemical composition of bio-crude oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sensitive determination of chlorogenic acid in pharmaceutical products based on the decoration of 3D macroporous carbon with Au nanoparticles via polyoxometalates.

    PubMed

    Zhang, Tongrui; Liu, Mengjun; Zhang, Qianqian; Wang, Yeyu; Kong, Xiangyi; Wang, Lei; Wang, Huan; Zhang, Yufan

    2017-07-10

    A simple and sensitive electrochemical sensor is constructed for the detection of chlorogenic acid (CGA) based on Au nanoparticles (NPs)/polyoxometalates/3D macroporous carbon (Au-POMs-MPC). Serving as both a reducing and stabilizing agent, the Keggin-type POM, H 3 PW 12 O 40 , is used for the synthesis of stable colloidal Au NPs and then used to link them to MPC at a mild temperature. Because of the unique structural properties and synergetic catalytic effect, Au-POMs-MPC can be developed as an effective sensing platform for the detection of CGA, which showed high activity and excellent analytical performance towards CGA, such as a wide linear range of 2.28 nM-3.24 μM, a high sensitivity of 30 554.71 μA mM -1 , and a low limit of detection of 2.15 nM. Importantly, the successfully fabricated Au-POMs-MPC device accurately measured the amount of CGA in pharmaceutical samples.

  20. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes

    NASA Astrophysics Data System (ADS)

    Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.

  1. A simple method for decomposition of peracetic acid in a microalgal cultivation system.

    PubMed

    Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.

  2. Spatial and temporal laser pulse design for material processing on ultrafast scales

    NASA Astrophysics Data System (ADS)

    Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.

    2014-01-01

    The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.

  3. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  4. Recycling of Aluminum Alloy with Dimox and Rheocasting Functionalize High Performance Structural Foam Composite

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.

  5. Hybrid process of BAC and sMBR for treating polluted raw water.

    PubMed

    Tian, Jia-yu; Chen, Zhong-lin; Yang, Yan-ling; Liang, Heng; Nan, Jun; Wang, Zhao-zhi; Li, Gui-bai

    2009-12-01

    The hybrid process of biological activated carbon (BAC) and submerged membrane bioreactor (sMBR) was evaluated for the drinking water treatment from polluted raw water, with the respective hydraulic retention time of 0.5 h. The results confirmed the synergetic effects between the BAC and the subsequent sMBR. A moderate amount of ammonium (54.5%) was decreased in the BAC; while the total removal efficiency was increased to 89.8% after the further treatment by the sMBR. In the hybrid process, adsorption of granular activated carbon (in BAC), two stages of biodegradation (in BAC and sMBR), and separation by the membrane (in sMBR) jointly contributed to the removal of organic matter. As a result, the hybrid process managed to eliminate influent DOC, UV(254), COD(Mn), TOC, BDOC and AOC by 26.3%, 29.9%, 22.8%, 27.8%, 57.2% and 49.3%, respectively. Due to the pre-treatment effect of BAC, the membrane fouling in the downstream sMBR was substantially mitigated.

  6. Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.

    PubMed

    Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami

    2009-06-01

    Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.

  7. Solar photocatalytic treatment of synthetic municipal wastewater.

    PubMed

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.

  8. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  9. Enhanced photoactivity of BiPO4/(001) facet-dominated square BiOBr flakes by combining heterojunctions with facet engineering effects

    NASA Astrophysics Data System (ADS)

    Shi, Jingzhi; Meng, Xiangying; Hao, Mengjian; Cao, Zhenzhu; He, Weiyan; Gao, Yanfang; Liu, Jinrong

    2018-02-01

    In this study, BiPO4/highly (001) facet exposed square BiOBr flake heterojunction photocatalysts with different molar ratios were fabricated via a two-step method. The synergetic effect of the heterojunction and facet engineering was systematically investigated. The physicochemical properties of the BiPO4/square BiOBr flake composites were characterized based on X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectra, photoluminescence, electrochemical impedance spectroscopy, and the photocurrent response. The BiPO4/square BiOBr flake heterojunction photocatalyst exhibited much higher photocatalytic performance compared with the individual BiPO4 and BiOBr. In particular, the BiPO4/BiOBr composite where P/Br = 1/3 exhibited the highest photocatalytic activity. The intensified separation of photoinduced charges at the p-n heterojunction between the BiPO4 nanoparticle and (001) facet of BiOBr was mainly responsible for the enhanced photoactivity.

  10. Synergetic Effect of Graphene and MWCNTs on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaosong; Song, Tingfeng; Shao, Zhenyi; Liu, Wanxia; Zhu, Degui; Zhu, Minhao

    2017-11-01

    Multi-walled carbon nanotubes (MWCNTs) and graphenes have been taken for novel reinforcements due to their unique structure and performance. However, MWCNTs or graphenes reinforced copper matrix composites could not catch up with ideal value due to reinforcement dispersion in metal matrix, wettability to metal matrix, and composite material interface. Taking advantage of the superior properties of one-dimensional MWCNTs and two-dimensional graphenes, complementary performance and structure are constructed to create a high contact area between MWCNTs and graphenes to the Cu matrix. Mechanical alloying, hot pressing, and hot isostatic pressing techniques are used to fabricate Cu matrix self-lubricating nanocomposites. Effects of MWCNTs and graphenes on mechanical properties and microstructures of Cu/Ti3SiC2/C nanocomposites are studied. The fracture and strengthening mechanisms of Cu/Ti3SiC2/C nanocomposites are explored on the basis of structure and composition of Cu/Ti3SiC2/C nanocomposites with formation and function of interface.

  11. Army Corps of Engineers, Southwestern Division, Reservoir Control Center Annual Report 1988

    DTIC Science & Technology

    1989-01-01

    water control data system. This system includes the equipment and software used for the acquisition, transmission and processing of real-time hydrologic... transmission . The SWD system was installed at the Federal Center in Fort Worth, Texas, in September 1983. This is a Synergetics Model 10C direct Readout Ground...reservoir projects under control of the Department of the Army in the area comprising all of Arkansas and Louisiana and portions of Missouri, Kansas

  12. [Mobbing as the syndrome of destructive professiogenesis].

    PubMed

    Sidorov, P I

    2013-01-01

    Mobbing has entered reference books as the syndrome including harassment and insult of employees in the workplaces for the purpose of constraint for dismissal. In the framework of the synergetic methodology, fractal dynamics of mobbing sociogenesis, psychogenesis and somatogenesis have been separated. Approaches to early diagnostics and prevention in the framework of the strategies of adaptive professiogenesis formation have been explained. A system approach to development of preventive-correctional and treatment-rehabilitation medicopsychosocial programs has been proposed.

  13. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    PubMed

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  14. Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI.

    PubMed

    Stramaglia, Sebastiano; Angelini, Leonardo; Wu, Guorong; Cortes, Jesus M; Faes, Luca; Marinazzo, Daniele

    2016-12-01

    We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.

  15. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    PubMed Central

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-01-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329

  16. Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution.

    PubMed

    Sato, Tatsuhiko; Masunaga, Shin-Ichiro; Kumada, Hiroaki; Hamada, Nobuyuki

    2018-01-17

    We here propose a new model for estimating the biological effectiveness for boron neutron capture therapy (BNCT) considering intra- and intercellular heterogeneity in 10 B distribution. The new model was developed from our previously established stochastic microdosimetric kinetic model that determines the surviving fraction of cells irradiated with any radiations. In the model, the probability density of the absorbed doses in microscopic scales is the fundamental physical index for characterizing the radiation fields. A new computational method was established to determine the probability density for application to BNCT using the Particle and Heavy Ion Transport code System PHITS. The parameters used in the model were determined from the measured surviving fraction of tumor cells administrated with two kinds of 10 B compounds. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. The model can predict the biological effectiveness of newly developed 10 B compounds based on their intra- and intercellular distributions, and thus, it can play important roles not only in treatment planning but also in drug discovery research for future BNCT.

  17. Synergetic analgesic effect of the combination of arnica and hydroxyethyl salicylate in ethanolic solution following cutaneous application by transcutaneous electrostimulation.

    PubMed

    Kucera, Miroslav; Horácek, Ondrej; Kálal, Jan; Kolár, Pavel; Korbelar, Peter; Polesná, Zora

    2003-01-01

    A combination of the active agents arnica and hydroxyethyl salicylate (HES) in ethanolic solution (Sportino Acute Spray) is cutaneously applied for the treatment of sports injuries and diseases of the locomotor apparatus. The aim was to examine the efficacy and synergism of the single substances and the combination with regard to the analgesic effect after cutaneous application as well as to validate the method of transcutaneous electronic stimulation as a method of measuring the analgesic effect. In the present article, the method of transcutaneous electrostimulation was used in a randomized, controlled, single-blind trial on healthy volunteers to provide objective evidence that the combination of active agents displays a significantly greater analgesic effect than the individual active agents. Thus there is synergy between the active agents arnica and hydroxyethyl salicylate in the combination preparation. In addition, the effect of the vehicle ethanol and the reference substance water could be determined within the framework of these comparative experiments and the difference between the combination preparation and the individual substances arnica and HES could be shown. The method of transcutaneous electrostimulation used for the objective measurement of the analgesic effect was validated.

  18. Dexpanthenol: An Overview of its Contribution to Symptom Relief in Acute Rhinitis Treated with Decongestant Nasal Sprays.

    PubMed

    Mösges, Ralph; Shah-Hosseini, Kija; Hucke, Hans-Peter; Joisten, Marie-Josefine

    2017-08-01

    Nasal blockage is the most bothersome symptom of acute rhinitis. Nasal decongestant sprays containing alpha-sympathomimetics, such as oxymetazoline and xylometazoline, have a rapid onset of action. However, this effect decreases with repeated application and, furthermore, the ciliary function of the nasal mucosa is practically paralyzed. Dexpanthenol promotes cell proliferation and protects the epithelium. Combining these two agents has demonstrated beneficial synergetic effects on the symptoms of acute rhinitis. In a post hoc analysis of a large-scale double-blind, active-controlled study including 152 patients, we could demonstrate that the benefit of added dexpanthenol appears as early as on the third day of the combined application of xylometazoline and dexpanthenol in terms of complete or near-to-complete freedom from symptoms. After 5 days, 47% of the patients were cured under the combined treatment compared with only 1% under xylometazoline monotherapy. These data show that the addition of dexpanthenol to an alpha-sympathomimetic nasal spray not only improves its tolerability but also further increases its effectiveness and leads to expedited cure. Klosterfrau Healthcare Group.

  19. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres

    PubMed Central

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842

  20. Focused tandem shock waves in water and their potential application in cancer treatment

    NASA Astrophysics Data System (ADS)

    Lukes, P.; Sunka, P.; Hoffer, P.; Stelmashuk, V.; Pouckova, P.; Zadinova, M.; Zeman, J.; Dibdiak, L.; Kolarova, H.; Tomankova, K.; Binder, S.; Benes, J.

    2014-01-01

    The generator of two focused successive (tandem) shock waves (FTSW) in water produced by underwater multichannel electrical discharges at two composite electrodes, with a time delay between the first and second shock waves of 10 s, was developed. It produces, at the focus, a strong shock wave with a peak positive pressure of up to 80 MPa, followed by a tensile wave with a peak negative pressure of up to MPa, thus generating at the focus a large amount of cavitation. Biological effects of FTSW were demonstrated in vitro on hemolysis of erythrocytes and cell viability of human acute lymphoblastic leukemia cells as well as on tumor growth delay ex vivo and in vivo experiments performed with B16 melanoma, T-lymphoma, and R5-28 sarcoma cell lines. It was demonstrated in vivo that FTSW can enhance antitumor effects of chemotherapeutic drugs, such as cisplatin, most likely due to increased permeability of the membrane of cancer cells induced by FTSW. Synergetic cytotoxicity of FTSW with sonosensitive porphyrin-based drug Photosan on tumor growth was observed, possibly due to the cavitation-induced sonodynamic effect of FTSW.

  1. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Ni, Dalong; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-11-01

    Biophotonic technology that uses light and ionizing radiation for positioned cancer therapy is a holy grail in the field of biomedicine because it can overcome the systemic toxicity and adverse side effects of conventional chemotherapy. However, the existing biophotonic techniques fail to achieve the satisfactory treatment efficacy, which remains a big challenge for clinical implementation. Herein, we develop a novel theranostic technique of "intranuclear biophotonics" by the smart design of a nuclear-targeting biophotonic system based on photo-/radio-sensitizers covalently co-loaded upconversion nanoparticles. These nuclear-targeting biophotonic agents can not only generate a great deal of multiple cytotoxic reactive oxygen species in the nucleus by making full use of NIR/X-ray irradiation, but also produce greatly enhanced intranuclear synergetic radio-/photodynamic therapeutic effects under the magnetic/luminescent bimodal imaging guidance, which may achieve the optimal efficacy in treating radio-resistant tumors. We anticipate that the highly effective intranuclear biophotonics will contribute significantly to the development of biophotonic techniques and open new perspectives for a variety of cancer theranostic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers.

    PubMed

    Alias, Nur Hashimah; Jaafar, Juhana; Samitsu, Sadaki; Yusof, Norhaniza; Othman, Mohd Hafiz Dzarfan; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Aziz, Farhana; Salleh, Wan Norharyati Wan; Othman, Nur Hidayati

    2018-08-01

    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components.

    PubMed

    Le Grandois, Julie; Guffond, Delphine; Hamon, Erwann; Marchioni, Eric; Werner, Dalal

    2017-05-15

    The antioxidant capacity of 9 pure lipophilic compounds was examined by microplate-ABTS and HPLC-ABTS, using similar experimental conditions. Results obtained showed that HPLC-ABTS method can be used for a rapid determination of individual antioxidant capacity of compounds in standard solutions or complex mixtures. The application of both methods to real lipophilic extracts from tomato (Solanum lycopersicum L.), green and red peppers (Capsicum annuum) reveals possible interactions between antioxidants. Thus, synthetic mixtures of two compounds identified in tomato and peppers were measured using microplate-ABTS and HPLC-ABTS. Synergistic effects were observed between (β-carotene-capsanthin) (1:9) and (1:1), (α-tocopherol-capsanthin) (1:9), (lutein-lycopene) (9:1) and (capsanthin-δ-tocopherol) (9:1). On the contrary, antagonistic effects were observed for (lutein-δ-tocopherol) and (α-tocopherol-δ-tocopherol). The interactions observed with two-compound mixtures are not systematically observed in the natural lipophilic extracts from tomato, green and red peppers, probably since extracts are more complex and are susceptible to cause interferences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  5. Convergence of separate orbits for enhanced thermoelectric performance of layered ZrS2

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Chen, Jinfeng; Yao, Kailun; Gao, Guoying

    2017-07-01

    Minimizing the band splitting energy to approach orbital degeneracy has been shown as a route to improved thermoelectric performance. This represents an open opportunity in some promising layered materials where there is a separation of p orbitals at the valence band edge due to the crystal field splitting. In this work, using ab initio calculations and semiclassical Boltzmann transport theory, we try to figure out how orbital degeneracy influences the thermoelectric properties of layered transition-metal dichalcogenide ZrS2. We tune the splitting energy by applying compressive biaxial strain, and find out that near-degeneration at the {{Γ }} point can be achieved for around 3% strain. As expected, the enhanced density-of-states effective mass results in an increased power factor. Interestingly, we also find a marked decline in the lattice thermal conductivity due to the effect of strain on phonon velocities and scattering. The two effects synergetically enhance the figure of merit. Our results highlight the convenience of exploring this optimization route in layered thermoelectric materials with band structures similar to that of ZrS2.

  6. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    PubMed

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.

  7. Identification of informative subgraphs in brain networks

    NASA Astrophysics Data System (ADS)

    Marinazzo, D.; Wu, G.; Pellicoro, M.; Stramaglia, S.

    2013-01-01

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. Here we present a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be inferred from the sign of the contribution.

  8. Investigation of electrically conducting yarns for use in textile actuators

    NASA Astrophysics Data System (ADS)

    Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.

    2018-07-01

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  9. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    PubMed

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U.; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-12-01

    This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors.

  11. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  12. Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property

    PubMed Central

    Zhao, Yanyan; Kuai, Long; Liu, Yanguo; Wang, Pengpeng; Arandiyan, Hamidreza; Cao, Sufeng; Zhang, Jie; Li, Fengyun; Wang, Qing; Geng, Baoyou; Sun, Hongyu

    2015-01-01

    A facile one-step solution reaction route for growth of novel MoS2 nanorose cross-linked by 3D rGO network, in which the MoS2 nanorose is constructed by single-layered or few-layered MoS2 nanosheets, is presented. Due to the 3D assembled hierarchical architecture of the ultrathin MoS2 nanosheets and the interconnection of 3D rGO network, as well as the synergetic effects of MoS2 and rGO, the as-prepared MoS2-NR/rGO nanohybrids delivered high specific capacity, excellent cycling and good rate performance when evaluated as an anode material for lithium-ion batteries. Moreover, the nanohybrids also show excellent hydrogen-evolution catalytic activity and durability in an acidic medium, which is superior to MoS2 nanorose and their nanoparticles counterparts. PMID:25735416

  13. Imaging spectrometers for atmosphere monitoring

    NASA Astrophysics Data System (ADS)

    Reinert, Thido; Bovensmann, Heinrich; Münzenmayer, Ralf; Weiss, Stefan; Posselt, Winfried

    2017-11-01

    Atmospheric monitoring missions aim at products like O3, H2O, NO2, SO2, BrO, CH4, CO, CO2 as well as aerosols and cloud information. Depending on the application area (Ozone Monitoring, Green House Gas Monitoring, Tropospheric Composition and Air Quality, Chemistry Climate Interaction etc.) total or tropospheric columns as well as profile information is required. The user community of these data as well as their central requirements w.r.t. the payload aspects will be described. A large range of relevant passive instrument types is available, in particular imaging spectrometer, sounder and polarisation measuring systems in the UV-VIS, SWIR and TIR spectral range. Differences between instruments for dedicated missions are highlighted and evolution of requirements is explained, also in comparison with relevant existing instrumentation partly in orbit today. Aspects of technology roadmaps for instrument implementation as well as synergetic effects of instrument combinations and according mission scopes are discussed.

  14. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  15. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review

    PubMed Central

    Xia, Yi; Li, Ran; Chen, Ruosong; Wang, Jing; Xiang, Lan

    2018-01-01

    Graphene/metal oxide-based materials have been demonstrated as promising candidates for gas sensing applications due to the enhanced sensing performance and synergetic effects of the two components. Plenty of metal oxides such as SnO2, ZnO, WO3, etc. have been hybridized with graphene to improve the gas sensing properties. However, graphene/metal oxide nanohybrid- based gas sensors still have several limitations in practical application such as the insufficient sensitivity and response rate, and long recovery time in some cases. To achieve higher sensing performances of graphene/metal oxides nanocomposites, many recent efforts have been devoted to the controllable synthesis of 3D graphene/metal oxides architectures owing to their large surface area and well-organized structure for the enhanced gas adsorption/diffusion on sensing films. This review summarizes recent advances in the synthesis, assembly, and applications of 3D architectured graphene/metal oxide hybrids for gas sensing. PMID:29735951

  16. Joint forensics and watermarking approach for video authentication

    NASA Astrophysics Data System (ADS)

    Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla

    2007-02-01

    In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.

  17. Radiation-induced synthesis of Fe-doped TiO 2: Characterization and catalytic properties

    NASA Astrophysics Data System (ADS)

    Bzdon, Sylwia; Góralski, Jacek; Maniukiewicz, Waldemar; Perkowski, Jan; Rogowski, Jacek; Szadkowska-Nicze, Magdalena

    2012-03-01

    Fe-doped TiO 2 catalyst was prepared by wet impregnation, using TiO 2 P25 Degussa as a precursor and Fe(NO 3) 3 as a dopant, followed by irradiation with an electron beam or γ-rays. Surface properties of Fe/TiO 2 samples were examined by BET, XRD, ToF-SIMS, and TPR methods. The photocatalytic activity towards destruction of the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), in aqueous solutions was higher for the irradiated Fe/TiO 2 catalysts than for bare TiO 2 P25 or that calcined at 500 °C. The results show that irradiated catalysts exhibit a more uniform texture with high dispersion of iron species. An enhancement of the activity of irradiated Fe/TiO 2 systems can be attributed to the synergetic effects of small crystallite size and homogenous distribution of iron species including FeTiO 3 phase.

  18. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    PubMed

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  19. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  1. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  2. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu

    2017-10-01

    The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.

  3. Angiogenesis in Glaucoma Filtration Surgery and Neovascular Glaucoma-A Review

    PubMed Central

    Kim, Megan; Lee, Chelsea; Payne, Rachael; Yue, Beatrice Y.J.T.; Chang, Jin-Hong; Ying, Hongyu

    2015-01-01

    Angiogenesis may pose a clinical challenge in glaucoma, for example during the wound healing phase after glaucoma filtration surgery and in a severe form of secondary glaucoma called neovascular glaucoma (NVG). Up regulation of vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, occurs in eyes that have undergone glaucoma filtration surgery, as well as those with NVG. This has led to studies investigating the ability of anti-VEGF therapy to improve outcomes, and we examine their findings with respect to the safety and efficacy of anti-VEGF agents, mainly bevacizumab and ranibizumab, in eyes that have undergone glaucoma filtration surgery or have NVG. Combining conventional therapies—such as anti-metabolites after filtration surgery and panretinal photocoagulation in NVG—and anti-VEGF drugs may achieve a synergetic effect, although further studies are required to evaluate the long-term efficacy of combination treatments. PMID:25980779

  4. [Protective effect of polysaccharides extracts from corn silk against cyclophosphamide induced host damages in mice bearing H22 tumors].

    PubMed

    Wu, Xian-chuang; Du, Gang-jun; Song, Xiao-yong; Zhang, Yong-zhou; Liu, Yu-xin

    2014-10-01

    To study the protective effect of polysaccharides from corn silk (PCS) against cyclophosphamide (CTX) induced host damages in mice bearing H22 tumors. The ascitic and solid tumor bearing mice model were established to investigate the anti-tumor effects of different dose of PCS (100, 200 and 300 mg/kg). The effects of PCS alone and with combination of CTX on tumor weight, survival time, thymus and spleen index, white blood cell, nucleated cell of marrow, serum ALT and AST level were tested. The high-dose PCS (300 mg/kg) had significant inhibitory effects on tumor. After combination with CTX, the tumor inhibitory ratio was enhanced to 68.71%, the survival time of tumor-burdened ascites tumor mice was significantly prolonged to 72.07% compared with CTX group. The Q value of combination group was 0.997. Thymus and spleen index, white blood cell, nucleated cell of marrow decreased by CTX were ameliorated significantly. The level of ALT and AST increased by CTX were reduced by combination with PCS. PCS has a potent inhibitory effect on the growth of implanted H22 tumors in mice and has a synergetic effect and an attenuated toxic effect in combination with CTX.

  5. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation.

    PubMed

    Hashemzadeh, Fatemeh; Gaffarinejad, Ali; Rahimi, Rahmatollah

    2015-04-09

    Porous NiO/Nb2O5 nanocomposites with Ni/Nb molar ratio of 0.4, 0.8 and 1.2 have been obtained via the EISA route using P123 copolymer as organic template, and are assigned as NiNb0.4, NiNb0.8 and NiNb1.2, respectively. For comparison, pure Nb2O5 sample assigned as NiNb0.0 was also synthesized by the same method. Structural and textural features of the as prepared samples were investigated by XRD, FTIR, FE-SEM, EDX, UV-vis DRS and BET techniques. The results indicated that the porous p-NiO/n-Nb2O5 junction nanocomposites were formed and coupling of NiO with Nb2O5 resulted a remarkable red shift in the optical response of the nanocomposite samples. The photocatalytic properties of the nanocomposite samples, and also synthesized pure Nb2O5 (NiNb0.0) and commercial Nb2O5 as reference catalysts were evaluated for the first time by simultaneous Cr(VI) reduction and MO decolorization in aqueous suspension under visible light irradiation at pH 2. NiNb0.4 was found to be the most active photocatalyst, which might be attributed to the extended absorption in the visible light region and the effective photogenerated electron-hole separation by the photosynergistic effects of the p-NiO/n-Nb2O5 composite powder. The photocatalytic efficiency of the most active photocatalyst, NiNb0.4, was found to be rather low for either single Cr(VI) solution or single MO solution. However, the photocatalytic reduction of Cr(VI) and photocatalytic decolorization of MO proceed more rapidly for the coexistence system of Cr(VI) and MO than for the single process, showing synergetic effect between the reduction and decolorization reactions. The effects of initial concentration of Cr(VI), MO and the initial pH value on the rate of simultaneous photoreactions over NiNb0.4 sample, were also investigated. The Cr(VI) and MO removal rates were further enhanced by increasing MO and Cr (VI) concentration to an optimal value, respectively, and/or decreasing solution pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Affective medicine. A review of affective computing efforts in medical informatics.

    PubMed

    Luneski, A; Konstantinidis, E; Bamidis, P D

    2010-01-01

    Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as "computing that relates to, arises from, or deliberately influences emotions". AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field.

  7. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin

    2018-02-01

    Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.

  8. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran.

    PubMed

    Liu, Wenjun; Brennan, Margaret Anne; Serventi, Luca; Brennan, Charles Stephen

    2017-11-01

    The present study investigates the effects of α-amylase (6 and 10ppm), xylanase (70 and 120ppm) and cellulase (35 and 60ppm) on the rheological properties of bread dough. The mixing property of dough was measured by using a DoughLAB. The extension and stickiness of dough were analysed using the Texture Analyzer. The results illustrate that the addition of single enzyme and enzyme combinations can increase the extensibility, softening, mixing tolerance index (MTI) and stickiness, whereas decrease the resistance to extension. For water absorption, the addition of single enzyme had no significant effect, while the combination enzyme significantly (p<0.05) decreased the values from 63.9 to 59.6% (wheat flour dough) and 71.4-67.1% (dough incorporated with 15% wheat bran). Compared to the single enzyme with the value of 34.1mm, enzyme combination (6, 120 and 60ppm) increased the extensibility of wheat flour dough by up to 42%. Additionally, combination of α-amylase, xylanase and cellulase had a synergetic effect on the dough rheology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Xie, Xulan; Liu, Yuanjun; Li, Xiaoyun; Xu, Keqiang; Shen, Xiaoping; Yao, Yinjie; Shah, Sayyar Ali

    2018-06-01

    The sluggish oxygen evolution kinetics involved in water splitting and various metal-air batteries makes the effective and inexpensive electrocatalysts be highly desirable for oxygen evolution reaction (OER). Herein, an effective and facile two-step route is developed to construct Fe3O4@NiSx composite loaded on reduced graphene oxide (rGO). The morphology and microstructure of the composites were characterized by different characterization techniques. The obtained composites show amounts of heterointerfaces. The shift of binding energy in X-ray photoelectron spectrum demonstrates the existence of interfacial charge transfer effect between Fe3O4 and NiSx. The optimized Fe3O4@NiSx/rGO sample exhibits excellent electrocatalytic performance toward OER in alkaline media, showing 10 mA·cm-2 at η = 330 mV, lower Tafel slope (35.5 mV·dec-1), and good durability, demonstrating a great perspective. The excellent OER performance can be ascribed to the synergetic effect between Fe and Ni species. It is believed that the heterointerfaces between Fe3O4 and NiSx perform as active centers for OER.

  10. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    PubMed

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  11. Synergetic Effect of Ultrasound, the Heterogeneous Fenton Reaction and Photocatalysis by TiO2 Loaded on Nickel Foam on the Degradation of Pollutants

    PubMed Central

    Qiu, Shan; Xu, Shanwen; Li, Guangming; Yang, Jixian

    2016-01-01

    The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF)-supporting TiO2 system and rhodamine B (RhB) as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US), nickel foam (NF), US/NF and NF/US/H2O2). The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively. PMID:28773580

  12. SALSA: A Novel Dataset for Multimodal Group Behavior Analysis.

    PubMed

    Alameda-Pineda, Xavier; Staiano, Jacopo; Subramanian, Ramanathan; Batrinca, Ligia; Ricci, Elisa; Lepri, Bruno; Lanz, Oswald; Sebe, Nicu

    2016-08-01

    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.

  13. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion.

    PubMed

    Kachadourian, Remy; Leitner, Heather M; Day, Brian J

    2007-07-01

    Adjuvant therapies that enhance the anti-tumor effects of cis-diammineplatinum(II) dichloride (cisplatin, CDDP) are actively being pursued. Growing evidence supports the involvement of mitochondrial dysfunction in the anti-cancer effect of cisplatin. We examined the potential of using selective flavonoids that are effective in depleting tumor cells of glutathione (GSH) to potentiate cisplatin-mediated cytotoxicity in human lung adenocarcinoma (A549) cells. We found that cisplatin (40 microM, 48-h treatment) disrupts the steady-state levels of mitochondrial respiratory complex I, which correlates with elevated mitochondrial reactive oxygen species (ROS) production and cytochrome c release. The flavonoids, 2',5'-dihydroxychalcone (2',5'-DHC, 20 microM) and chrysin (20 microM) potentiated the cytotoxicity of cisplatin (20 microM), which could be blocked by supplementation of the media with exogenous GSH (500 microM). Both 2',5'-DHC and chrysin were more effective than the specific inhibitor of GSH synthesis, L-buthionine sulfoximine (BSO, 20 microM), in inducing GSH depletion and potentiating the cytotoxic effect of cisplatin. These data suggest that the flavonoid-induced potentiation of cisplatin's toxicity is due, in part, to synergetic pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and the flavonoids by depleting cellular GSH, an important antioxidant defense.

  14. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  15. Towards adaptation in e-learning 2.0

    NASA Astrophysics Data System (ADS)

    Cristea, Alexandra I.; Ghali, Fawaz

    2011-04-01

    This paper presents several essential steps from an overall study on shaping new ways of learning and teaching, by using the synergetic merger of three different fields: Web 2.0, e-learning and adaptation (in particular, personalisation to the learner). These novel teaching and learning ways-the latter focus of this paper-are reflected in and finally adding to various versions of the My Online Teacher 2.0 adaptive system. In particular, this paper focuses on a study of how to more effectively use and combine the recommendation of peers and content adaptation to enhance the learning outcome in e-learning systems based on Web 2.0. In order to better isolate and examine the effects of peer recommendation and adaptive content presentation, we designed experiments inspecting collaboration between individuals based on recommendation of peers who have greater knowledge, and compare this to adaptive content recommendation, as well as to "simple" learning in a system with a minimum of Web 2.0 support. Overall, the results of adding peer recommendation and adaptive content presentation were encouraging, and are further discussed in detail in this paper.

  16. Synergistic Effect of Sodium Chlorite and Edible Coating on Quality Maintenance of Minimally Processed Citrus grandis under Passive and Active MAP.

    PubMed

    Ban, Zhaojun; Feng, Jianhua; Wei, Wenwen; Yang, Xiangzheng; Li, Jilan; Guan, Junfeng; Li, Jiang

    2015-08-01

    Edible coating has been an innovation within the bioactive packaging concept. The comparative analysis upon the effect of edible coating, sodium chlorite (SC) and their combined application on quality maintenance of minimally processed pomelo (Citrus grandis) fruits during storage at 4 °C was conducted. Results showed that the combination of edible coating and SC dipping delayed the microbial development whereas the sole coating or dipping treatment was less efficient. The synergetic application of edible coating and SC treatment under modified atmosphere packaging (MAP, 10% O2 , 10% CO2 ) was able to maintain the total soluble solids level and ascorbic acid content, while reduce the weight loss as well as development of mesophiles and psychrotrophs. Nonetheless, the N, O-carboxymethyl chitosan solely coated samples showed significantly higher level of weight loss during storage with comparison to the untreated sample. Furthermore, the combined application of edible coating and SC dipping under active MAP best maintained the sensory quality of minimally processed pomelo fruit during storage. © 2015 Institute of Food Technologists®

  17. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2

    PubMed Central

    Mi, Yang; Weng, Yuxiang

    2015-01-01

    TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699

  18. Synergism between macrolide antibiotics and the azole fungicide ketoconazole in growth inhibition testing of the green alga Pseudokirchneriella subcapitata.

    PubMed

    Yamagishi, Takahiro; Horie, Yoshifumi; Tatarazako, Norihisa

    2017-05-01

    Macrolide antibiotics and azole fungicides are detected widely in the aquatic environment as a result of their increased use in humans and animal livestock disease and their incomplete removal by wastewater treatment plants. In most cases, ecotoxicological tests are performed by using individual chemical substances, but because of the coexistence of a number of chemicals in the environment, organisms are exposed to many chemicals simultaneously. Therefore, it is important to evaluate effects of chemical interactions, adding to potential hazards of individual chemical. Here, we investigated the synergetic effects of combined chemicals (the azole fungicide ketoconazole and either of two macrolide antibiotics, erythromycin and clarithromycin) in growth inhibition testing using Pseudokirchneriella subcapitata according to OECD Test guideline 201. Combination index plots, isobolograms, and curve-shift analyses revealed that the combination of macrolide antibiotic and ketoconazole at various ratios resulted in strong synergism that enhanced growth inhibition of P. subcapitata, suggesting the necessity of investigating potential hazard of combined chemicals for regulatory purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal-organic framework: effects of Ce(iii) doping.

    PubMed

    Yang, Ji-Min; Ying, Rong-Jian; Han, Chun-Xiang; Hu, Qi-Tu; Xu, Hui-Min; Li, Jian-Hui; Wang, Qiang; Zhang, Wei

    2018-03-12

    Herein, we report the synthesis and characterization of Ce(iii)-doped UiO-66 nanocrystals, revealing their potential to efficiently remove organic dyes such as methylene blue (MB), methyl orange (MO), Congo red (CR), and acid chrome blue K (AC) from aqueous solutions. Specifically, the room-temperature adsorption capacities of Ce(iii)-doped UiO-66 equaled 145.3 (MB), 639.6 (MO), and 826.7 (CR) mg g -1 , exceeding those reported for pristine UiO-66 by 490, 270, and 70%, respectively. The above behavior was rationalized based on zeta potential and adsorption isotherm investigations, which revealed that Ce(iii) doping increases the number of adsorption sites and promotes π-π interactions between the adsorbent and the adsorbate, thus improving the adsorption capacity for cationic and anionic dyes and overriding the effect of electrostatic interactions. The obtained results shed light on the mechanism of organic dye adsorption on metal-organic frameworks, additionally revealing that the synergetic interplay of electrostatic, π-π, and hydrophobic interactions results in the operation of two distinct adsorption regimes depending on adsorbate concentration.

  20. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    PubMed

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    PubMed

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination.

    PubMed

    Bassolé, Imaël Henri Nestor; Lamien-Meda, Aline; Bayala, Balé; Tirogo, Souleymane; Franz, Chlodwig; Novak, Johannes; Nebié, Roger Charles; Dicko, Mamoudou Hama

    2010-11-03

    Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, b-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.

  3. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    PubMed

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  4. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose.

    PubMed

    Wu, Zhiqiang; Wang, Shuzhong; Luo, Zhengyuan; Chen, Lin; Meng, Haiyu; Zhao, Jun

    2017-07-01

    In this paper, the influence of cellulose on the physicochemical properties and the gasification reactivity of co-pyrolysis char was investigated. A specific surface area analyzer and an X-ray diffraction system were used to characterize the pore structure and the micro-crystalline structure of char. Fractal theory and deconvolution method were applied to quantitatively investigate the influence of cellulose on the structure of co-pyrolysis char. The results indicate that the improvements in the pore structure due to the presence of cellulose are more pronounced in the case of anthracite char with respect to bituminous char. Cellulose promotes the ordering of micro-scale structure and the uniformity of both anthracite and bituminous char, while the negative synergetic effect was observed during gasification of co-pyrolysis char. The exponential relationships between fractal dimension and specific surface area were determined, along with the relations between the gasification reactivity index and the microcrystalline structure parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nanotheranostics ˗ Application and Further Development of Nanomedicine Strategies for Advanced Theranostics

    PubMed Central

    Muthu, Madaswamy S.; Leong, David Tai; Mei, Lin; Feng, Si-Shen

    2014-01-01

    Nanotheranostics is to apply and further develop nanomedicine strategies for advanced theranostics. This review summarizes the various nanocarriers developed so far in the literature for nanotheranostics, which include polymer conjugations, dendrimers, micelles, liposomes, metal and inorganic nanoparticles, carbon nanotubes, and nanoparticles of biodegradable polymers for sustained, controlled and targeted co-delivery of diagnostic and therapeutic agents for better theranostic effects with fewer side effects. The theranostic nanomedicine can achieve systemic circulation, evade host defenses and deliver the drug and diagnostic agents at the targeted site to diagnose and treat the disease at cellular and molecular level. The therapeutic and diagnostic agents are formulated in nanomedicine as a single theranostic platform, which can then be further conjugated to biological ligand for targeting. Nanotheranostics can also promote stimuli-responsive release, synergetic and combinatory therapy, siRNA co-delivery, multimodality therapies, oral delivery, delivery across the blood-brain barrier as well as escape from intracellular autophagy. The fruition of nanotheranostics will be able to provide personalized therapy with bright prognosis, which makes even the fatal diseases curable or at least treatable at the earliest stage. PMID:24723986

  6. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state

    NASA Astrophysics Data System (ADS)

    Li, Kangwei; Chen, Linghong; Han, Ke; Lv, Biao; Bao, Kaiji; Wu, Xuecheng; Gao, Xiang; Cen, Kefa

    2017-02-01

    Atmospheric soot aging process is always accompanied by secondary particle formation, which is a comprehensive environmental issue that deserves great attention. On one hand, aging of primary soot could change its own physicochemical properties; on the other hand, complex air pollution caused by pollutant emission from various sources (e.g., vehicle exhausts, coal-fired flue gases and biogenic VOCs emission) may contribute to secondary particle formation onto primary particle surface. In this study, aging of combustion soot in isoprene/SO2/NOx system was investigated under controlled laboratory conditions in several smog chamber experiments. During the evolution of soot, several physical properties such as mass, size, effective density, morphology and mixing state were determined simultaneously by an integrated aerosol analytical system of Scanning Mobility Particle Sizer (SMPS), Differential Mobility Analyzer-Aerosol Particle Mass Analyzer-Condensation Particle Counter (DMA-APM-CPC) and Transmission Electron Microscopy coupled with Energy-dispersive X-ray Spectrometry (TEM/EDX) techniques. Here, based on the experimental results of soot aging under different gas-phase composition and relative humidity (RH), we firstly proposed possible aging pathways of soot in isoprene/SO2/NOx system. A synergetic effect was speculated to exist between SO2 and isoprene on soot aging process, which led to more secondary particle formation. At the same time, TEM/EDX analysis showed that a competitive mechanism between H2SO4(g) and isoprene oxidation vapor may exist: H2SO4(g) firstly condensed onto fresh soot, then an acceleration of isoprene oxidation products formed onto H2SO4 pre-coated soot. In isoprene/SO2/NOx system, high RH conditions could contribute to soot aging and new particle formation. The changes of effective density and dynamic shape factor of soot also indicated that high RH conditions could accelerate soot aging process, and led chain-like soot into more spherical morphology, which was further confirmed from the STEM image. Moreover, it was found that volume equivalent coating thickness (Δrve) could also be applied to normalized characterize soot aging parameters like diameter growth factor (Gfd) and mass growth factor (Gfm) in a complex reaction system like isoprene/SO2/NOx. Our results revealed the dual mechanism (competitive effect&cooperative effect) of isoprene and SO2 on photochemical aging of soot, which is of significance for improving understanding of complex air pollution in China.

  7. Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size

    PubMed Central

    Tsai, Dah-Shyang; Yang, Tzu-Sen; Huang, Yu-Sheng; Peng, Pei-Wen; Ou, Keng-Liang

    2016-01-01

    Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8–9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level. PMID:27330294

  8. Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2.

    PubMed

    Zang, Lei; Sun, Weiyi; Liu, Song; Huang, Yike; Yuan, Huatang; Tao, Zhanliang; Wang, Yijing

    2018-05-30

    LiBH 4 is of particular interest as one of the most promising materials for solid-state hydrogen storage. Herein, LiBH 4 is confined into a novel two-dimensional layered Ti 3 C 2 MXene through a facile impregnation method for the first time to improve its hydrogen storage performance. The initial desorption temperature of LiBH 4 is significantly reduced, and the de-/rehydrogenation kinetics are remarkably enhanced. It is found that the initial desorption temperature of LiBH 4 @2Ti 3 C 2 hybrid decreases to 172.6 °C and releases 9.6 wt % hydrogen at 380 °C within 1 h, whereas pristine LiBH 4 only releases 3.2 wt % hydrogen under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C and under 95 bar H 2 . The nanoconfined effect caused by unique layered structure of Ti 3 C 2 can hinder the particles growth and agglomeration of LiBH 4 . Meanwhile, Ti 3 C 2 could possess superior effect to destabilize LiBH 4 . The synergetic effect of destabilization and nanoconfinement contributes to the remarkably lowered desorption temperature and improved de-/rehydrogenation kinetics.

  9. Photo-pharmaceutical therapy: features and prospects

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Potapenko, Alexander Y.; Minenkov, Alexander A.

    2001-07-01

    This article is an attempt to analyze the concept, distinguishing features and possible application of photo- pharmaceutical therapy (PPT). Besides photopheresis, PUVA, and photodynamic therapy, PPT also embraces a broad spectrum of various combinations of light and drugs. PPT techniques can be classified according to the role of light in drug therapy into several groups: 1) Light activation of drugs before, during or after their administration, 2) light activation of cells of biotissue to potentiate the pharmaceutical effect of drugs, 3) light assisted drug delivery, 4) optical sensing of drug action at cellular and subcellular levels, and 5) selective photochemistry of drugs during their manufacturing. PPT seeks to describe the mechanisms of light-drug interaction, to time and sequence light-drug action, and to verify their synergetic effect. This article yields the results of developing new PPT modifications created in collaboration with some Russian scientific institutes and medical centers. The developed modifications are as follows: 1) drug pre-administration photoactivation, 2) antibody-photoconformation photoimmunotherapy, 3) photophonophoresis with a blend of photosensitizers and antibiotics, 4) photoelectrophoresis, 5) drug effect enhancement due to laser-induced blood circulation activation, 6) photoimmunization with alpha- fetoprotein, 7) photo-pharmaceutical dosimetry, and 8) a rapid drug toxicity photoassay.

  10. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zong, Lanlan; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun

    2018-02-01

    An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times higher hydrogen evolution rate than the Eosin Y-sensitized g-C3N4/Pt/GO-0.5% and g-C3N4/Ni/GO-0.5% samples, respectively. Mechanism of enhanced performance for the g-C3N4/PtNi/GO composite was also investigated by different characterization, such as photoluminescence, transient photocurrent response, and TEM. These results indicated that enhanced charge separation efficiency and more reactive sites are responsible for the improved hydrogen evolution performance due to the positive synergetic effect between Pt and Ni. This study suggests that PtNi alloy can be used as an economic and effective cocatalyst for hydrogen evolution reaction. [Figure not available: see fulltext.

  12. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to 4.2 GHz that covering a frequency range of 8.2-12.4 GHz. Results showed that absorber having %15 (w/w) polypyrrole/epoxy resin in Epoxy-PPy/Fe3O4-ZnO nanocomposite with iron oxide to zinc oxide ratio of 2:1 displays the best reflection loss properties. The loss curves illustrated the values of dielectric loss tangent and magnetic loss tangent of prepared nanocomposites which are in the range of 0.25-0.7 and -0.08 to 0.09 respectively. Therefore, microwave absorption mechanism is probably attributed to dielectric loss.

  13. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    PubMed Central

    Arabski, Michał; Węgierek-Ciuk, Aneta; Czerwonka, Grzegorz; Lankoff, Anna; Kaca, Wiesław

    2012-01-01

    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed. PMID:22500084

  14. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  15. Challenges and promises in the development of neurotrophic factor-based therapies for Parkinson's disease.

    PubMed

    Rodrigues, Tiago Martins; Jerónimo-Santos, André; Outeiro, Tiago Fleming; Sebastião, Ana Maria; Diógenes, Maria José

    2014-04-01

    Parkinson's disease (PD) is a chronic movement disorder typically coupled to progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The treatments currently available are satisfactory for symptomatic management, but the efficacy tends to decrease as neuronal loss progresses. Neurotrophic factors (NTFs) are endogenous proteins known to promote neuronal survival, even in degenerating states. Therefore, the use of these factors is regarded as a possible therapeutic approach, which would aim to prevent PD or to even restore homeostasis in neurodegenerative disorders. Intriguingly, although favorable results in in vitro and in vivo models of the disease were attained, clinical trials using these molecules have failed to demonstrate a clear therapeutic benefit. Therefore, the development of animal models that more closely reproduce the mechanisms known to underlie PD-related neurodegeneration would be a major step towards improving the capacity to predict the clinical usefulness of a given NTF-based approach in the experimental setting. Moreover, some adjustments to the design of clinical trials ought to be considered, which include recruiting patients in the initial stages of the disease, improving the efficacy of the delivery methods, and combining synergetic NTFs or adding NTF-boosting drugs to the already available pharmacological approaches. Despite the drawbacks on the road to the use of NTFs as pharmacological tools for PD, very relevant achievements have been reached. In this article, we review the current status of the potential relevance of NTFs for treating PD, taking into consideration experimental evidence, human observational studies, and data from clinical trials.

  16. Oligomerization of esculin improves its antibacterial activity and modulates antibiotic resistance.

    PubMed

    Mokdad-Bzeouich, Imen; Mustapha, Nadia; Chaabane, Fadwa; Ghedira, Zied; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Chekir-Ghedira, Leila

    2015-03-01

    In this particular study, the antibacterial activity of esculin and oligomer fractions was assessed. MIC values of esculin and its oligomer fractions as well as of some antibiotics against Gram-positive and Gram-negative strains and against Escherichia coli multiresistant variants were determined by the standard broth microdilution method. Both esculin and oligoesculin fractions exhibited antibacterial effect against reference strains; Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis and Salmonella typhimurium. It appears that E3 oligomer fraction had the greatest antibacterial activity against these reference strains. Besides, as E2 and E3 revealed the best antibacterial effect against multiresistant variants of E. coli, we decided to test the effect of each, combined to the antibiotic against which the variants were resistant. In the interaction study, E2 and E3 oligoesculin fractions were found to be effective in reducing the resistance of E. coli 6574 to ofloxacin and the resistance of E. coli 6228 to amoxicillin. Only E3 oligoesculin fraction showed a synergetic interaction with amoxicillin and tetracyclin against E. coli 6708, but no interaction was found either with E2 or E3 fractions against E. coli 6234. Our study allowed us to conclude that oligomerization of esculin increases its antibacterial potential, according to the degree of polymerization.

  17. Few-layer 1T‧ MoTe2 as gapless semimetal with thickness dependent carrier transport

    NASA Astrophysics Data System (ADS)

    Song, Peng; Hsu, Chuanghan; Zhao, Meng; Zhao, Xiaoxu; Chang, Tay-Rong; Teng, Jinghua; Lin, Hsin; Loh, Kian Ping

    2018-07-01

    Semimetal MoTe2 can be a type II Weyl semimetal in the bulk, but monolayer of this material is predicted to be quantum spin hall insulators. This dramatic change in electronic properties with number of layers is an excellent example of the dimensional effects of quantum transport. However, a detailed experimental study of the carrier transport and band structure of ultrathin semimetal MoTe2 is lacking so far. We performed magneto-transport measurements to study the conduction behavior and quantum phase coherence of 1T‧ MoTe2 as a function of its thickness. We show that due to a unique two-band transport mechanism (synergetic contribution from electron conduction and hole conduction), the conduction behavior of 1T‧ MoTe2 changes from metallic to p-type unipolar, and finally to ambipolar as the thickness decreases, suggesting that this effect can be used in devices by effectively controlling the thickness. Our transport studies, optical measurements and first-principles electronic structure calculations reveal that 1T‧ MoTe2 remains gapless down to a few (~2–3) layers. Despite being gapless, 1T‧ MoTe2 exhibits metal-insulator transition at 3-layer thickness, due to enhanced carrier localization effect.

  18. Investigation of the synergistic effects of haloperidol combined with Calculus Bovis Sativus in treating MK-801-induced schizophrenia in rats

    PubMed Central

    Lei, Kai; He, Guo-Fang; Zhang, Cheng-Liang; Liu, Ya-Nan; Li, Juan; He, Guang-Zhao; Li, Xi-Ping; Ren, Xiu-Hua; Liu, Dong

    2017-01-01

    Clinical studies that focused on treating schizophrenia showed that Calculus Bovis Sativus (CBS), a substitute of Calculus Bovis, when used in combination with haloperidol could significantly lower the dosage of haloperidol compared with treatment with haloperidol alone, whereas efficacy was maintained. The aim of this study was to investigate the synergetic anti-schizophrenia effects in rats using CBS in combination with haloperidol. An open field test was conducted to verify the pharmacodynamic effects of a combination treatment of CBS and haloperidol on MK-801-induced schizophrenic rats. Rat plasma concentrations of intragastric haloperidol and intravenous haloperidol were determined after oral administration of a single dose or 1-week of pretreatment with CBS (50 mg/kg). The pharmacodynamic data showed a significant decrease in locomotor activity and an increase in the percentage of the central distance when haloperidol was concomitantly administered with CBS compared with haloperidol administration alone. The AUC0-∞ and Cmax of haloperidol in the orally coadministered groups were significantly higher compared with the oral treatment with haloperidol alone. In conclusion, oral coadministration of CBS with haloperidol resulted in a synergistic effect in rats. The enhanced oral bioavailability of haloperidol when combined with CBS might be attributed to the interaction between them. PMID:29225304

  19. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  20. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures.

    PubMed

    Lo, Shun S; Mirkovic, Tihana; Chuang, Chi-Hung; Burda, Clemens; Scholes, Gregory D

    2011-01-11

    The development of elegant synthetic methodologies for the preparation of monocomponent nanocrystalline particles has opened many possibilities for the preparation of heterostructured semiconductor nanostructures. Each of the integrated nanodomains is characterized by its individual physical properties, surface chemistry, and morphology, yet, these multicomponent hybrid particles present ideal systems for the investigation of the synergetic properties that arise from the material combination in a non-additive fashion. Of particular interest are type-II heterostructures, where the relative band alignment of their constituent semiconductor materials promotes a spatial separation of the electron and hole following photoexcitation, a highly desirable property for photovoltaic applications. This article highlights recent progress in both synthetic strategies, which allow for material and architectural modulation of novel nanoheterostructures, as well as the experimental work that provides insight into the photophysical properties of type-II heterostructures. The effects of external factors, such as electric fields, temperature, and solvent are explored in conjunction with exciton and multiexciton dynamics and charge transfer processes typical for type-II semiconductor heterostructures.

  1. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    NASA Astrophysics Data System (ADS)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  2. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    PubMed Central

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-01-01

    Abstract This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 ~ 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors. PMID:28740560

  3. Synergetic effects of double laser pulses for the formation of mild plasma in water: Toward non-gated underwater laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakka, Tetsuo; Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011; Tamura, Ayaka

    2012-05-07

    We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine themore » role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.« less

  4. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  5. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations.

    PubMed

    Nizam-Uddin, N; Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors.

  6. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    PubMed Central

    Wei, Mingjie; Wang, Yong

    2015-01-01

    Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407

  7. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  8. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  9. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation.

    PubMed

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-02

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  10. Brand strengthening decision making delved from brand-contacts in health services organizations.

    PubMed

    Takayanagi, Kazue; Hagihara, Yukiko

    2007-01-01

    Under the Japanese Government's strong enforcement of Japanese national medical cost reduction, only hospitals which emphasize patient values, and creation of brands according to them can survive. This study extracted patients' expectations as brand from Campbell's Brand-Contact lists. The authors also proposed to add Brand-strengthening strategies both for short-term strategies (large improvement is not required) and for long-term strategies (restructuring hardware and systems). This method would enable hospitals to collect customers' underlying expectations, and would create high-value brands. Trustful medical service would provide mutual and synergetic medical care effects. It is already considered out of date to conduct qualitative patient satisfaction interviews on current medical services to current customers. It is the only way to survive that hospitals themselves produce their original brands to increase patient loyalty and customer satisfaction. In the process, customer value should be reconsidered from both aspects of the quality of clinical care and of other medically related services. Then hospitals would be able to satisfy both customers' output and process expectations.

  11. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    PubMed

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation.

    PubMed

    Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao

    2018-05-08

    The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.

  13. Antibiotic-loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibition

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhang, Wentao; Liu, Lizhi; Yang, Mei; Huang, Lunjie; Chen, Kai; Wang, Rong; Yang, Baowei; Zhang, Daohong; Wang, Jianlong

    2017-06-01

    The emergence of antibiotic resistance has resulted in increasing difficulty in treating clinical infections associated with biofilm formation, one of the key processes in turn contributing to enhanced antibiotic resistance. With the rapid development of nanotechnology, a new way to overcome antibiotic resistance has opened up. Based on the many and diverse properties of MoS2 nanosheets that have attracted wide attention, in particular their antibacterial potential, herein, a novel antimicrobial agent to combat resistant gram-positive Staphylococcus aureus and gram-negative Salmonella was prepared using chitosan functionalized MoS2 nanosheets loading tetracycline hydrochloride drugs (abbreviated to CM-TH). The antibacterial and anti-biofilm activities of the CM-TH nanocomposites showed the synergetic effect that the combination of nanomaterials and antibiotics was more efficient than either working alone. In particularly, the minimum inhibitory concentration values generally decreased by a factor of dozens, suggesting that CM-TH may become a possible alternative to traditional antibiotics in disrupting biofilms and overcoming antibiotic resistance in treating medical diseases.

  14. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  15. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-09-20

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  16. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  17. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations

    PubMed Central

    Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors. PMID:28840125

  18. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2015-03-01

    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide.

    PubMed

    Phan, Duy The; Tan, Chung-Sung

    2014-09-01

    An innovative method for pretreatment of sugarcane bagasse using sequential combination of supercritical CO2 (scCO2) and alkaline hydrogen peroxide (H2O2) at mild conditions is proposed. This method was found to be superior to the individual pretreatment with scCO2, ultrasound, or H2O2 and the sequential combination of scCO2 and ultrasound regarding the yield of cellulose and hemicellulose, almost twice the yield was observed. Pretreatment with scCO2 could obtain higher amount of cellulose and hemicellulose but also acid-insoluble lignin. Pretreatment with ultrasound or H2O2 could partly depolymerize lignin, however, could not separate cellulose from lignin. The analysis of liquid products via enzymatic hydrolysis by HPLC and the characterization of the solid residues by SEM revealed strong synergetic effects in the sequential combination of scCO2 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-11-01

    Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  2. Biomimetic microstructures for photonic and fluidic synergies

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.

    2017-08-01

    Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.

  3. Modeling Lidar Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi

    2016-06-01

    A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.

  4. Apollo experience report: Communications system flight evaluation and verification

    NASA Technical Reports Server (NTRS)

    Travis, D.; Royston, C. L., Jr.

    1972-01-01

    Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.

  5. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  6. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: A role for glutathione depletion

    PubMed Central

    KACHADOURIAN, REMY; LEITNER, VHEATHER M.; DAY, BRIAN J.

    2014-01-01

    Adjuvant therapies that enhance the anti-tumor effects of cisplatin are actively being pursued. Growing evidence supports the involvement of mitochondrial dysfunction in the anti-cancer effect of cis-diammineplatinum(II) dichloride (cisplatin, CDDP). We examined the potential of using selective flavonoids that are effective in depleting tumor cells of glu-tathione (GSH) to potentiate cisplatin-mediated cytotoxicity in human lung adenocarcinoma (A549) cells. We found that cisplatin (40 μM, 48-h treatment) disrupts the steady-state levels of mitochondrial respiratory complex I, which correlates with elevated mitochondrial reactive oxygen species (ROS) production and cytochrome c release. The flavonoids, 2′,5′-dihydroxychalcone (2′,5′-DHC, 20 μM) and chrysin (20 μM) potentiated the cytotoxicity of cisplatin (20 μM), which could be blocked by supplementation of the media with exogenous GSH (500 μM). Both 2′,5′-DHC and chrysin were more effective than the specific inhibitor of GSH synthesis, L-buthionine sulfoximine (BSO, 20 μM), in inducing GSH depletion and potentiating the cytotoxic effect of cisplatin. These data suggest that the flavonoid-induced potentiation of cisplatin’s toxicity is due, in part, to synergetic pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and the flavonoids by depleting cellular GSH, an important antioxidant defense. PMID:17549417

  7. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1.

    PubMed

    Yu, Rongjie; Zheng, Lijun; Cui, Yue; Zhang, Huahua; Ye, Heng

    2016-04-01

    Doxycycline has significant neuroprotective effect with anti-inflammatory and anti-apoptotic activity. We found for the first time that doxycycline specially promoted the proliferation of Chinese hamster ovary (CHO) cells with high expression of neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) preferring G protein-coupled receptor (GPCR), PACAP receptor 1(PAC1) and induced the internalization of PAC1 tagged with yellow fluorescent protein (YFP) indicating doxycycline interacted with PAC1. The homology modeling of PAC1 and molecular docking of doxycycline with PAC1 showed the theoretical binding of doxycycline to PAC1 at the site where PACAP(30-37) recognized. The competition binding assay and PAC1 site-specific mutation of Asp116, which formed two hydrogen bonds with Dox, confirmed the binding of doxycycline to PAC1 imitating PACAP(30-37). Doxycycline (100 ng/mL) significantly promoted the proliferative activities of vasoactive intestinal polypeptide (VIP) and oligopeptide HSDGIF responsible for the activation of PAC1 in PAC1-CHO cells, indicating that doxycycline facilitated the binding and the activation of PAC1 imitating PACAP(28-38). In Neuro2a cells with endogenous expression of PAC1 and its ligands, doxycycline not only promoted the proliferation of Neuro2a cells but also protected the cells from scopolamine induced apoptosis, which was inhibited by cAMP-PKA signal pathway inhibitor H-89, PAC1 shRNA or PACAP antagonist PACAP(6-38). The in vivo study showed long-term treatment with doxycycline (100ug/kg) had significant effect against scopolamine induced amnesia, and the synergetic anti-apoptotic, anti-oxidative and neuroprotective effect of doxycycline with VIP was more efficient than doxycycline alone or VIP alone, indicating doxycycline enhanced the activation of PAC1 in vivo effectively. Furthermore, doxycycline analogue minocycline also had similar theoretically binding site on PAC1 to doxycycline and displayed corresponding similar activity on PAC1 to doxycycline. All these results confirmed for the first time that doxycycline specially targeted PAC1 imitating PACAP(30-37) and acted as an enhancer by facilitating the subsequent ligand binding and the activation of PAC1. The confirmation of PAC1 as a novel molecular target of doxycycline and the novel mechanism by which doxycycline enhances the activity of PAC1 will help further clinical development of doxycycline as novel therapy for nervous system diseases such as neurodegenerative diseases targeting PAC1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Co-liquefaction of Elbistan Lignite with Manure Biomass; Part 2 - Effect of Biomass Type, Waste to Lignite Ratio and Solid to Liquid Ratio

    NASA Astrophysics Data System (ADS)

    Karaca, Hüseyin; Koyunoglu, Cemil

    2017-12-01

    Most coal hydrogenation processes require a large quantity of hydrogen. In general, a coal derived liquid such as anthracene oil was used as a hydrogen donor solvent. Tetralin, partially hydrogenated pyrene, phenantrene and coal-derived solvents, which contain hydroaromatic compounds, are efficient solvents to donate hydrogen. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. This must be hydrogenated during or before the process and recycled. To reduce the cost of hydrogen donor vehicles instead of liquids recycled from the liquefaction process or several biomass types, industrial by products, liquid fractions derived from oil sands bitumen were successfully used to solubilize a coal from the past. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. However, when hydrogen is supplied from the hydroaromatic structures present in the solvent, the activity of coal minerals is too low to rehydrogenate the solvent in-situ. Nevertheless, a decrease of using oxygen, in addition to enhanced usage of the hydrogen supply by using various waste materials might lead to a decrease of the cost of the liquefaction procedure. So instead of using tetralin another feeding material such as biomass is becoming another solution improving hydrogen donor substances. Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions, early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Alternatively, to understand the hydrogen transfer from biomass to coal, in this study, Elbistan Lignite (EL) with manure, tea pulp and waste plastic liquefied and to understand hydrogen quantity change after liquefaction, (H/C)atomic ratio of products obtained. Due to the highest oil conversion of manure biomass and highest (H/C)atomic ratio results show manure is the favourable biomass for EL amongst the other biomass used. And liquid/solid ratio optimized. About high total conversion of oil products the optimum ratio obtained as 3/1. And also EL with manure liquefied with the w/EL ratio between 0:1 to 1:1. As a result, by thinking about the yield values obtained, the optimum waste to lignite ratio found to be 1:1.

  9. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.

  10. RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy.

    PubMed

    Yang, Ying; Wang, Yunlong; Zhu, Manzhou; Chen, Yan; Xiao, Yazhong; Shen, Yuhua; Xie, Anjian

    2017-05-02

    A reduced graphene oxide (RGO)/gold nanorod (AuNR)/hydroxyapatite (HA) nanocomposite was designed and successfully synthesized for the first time. An anticancer drug, 5-fluorouracil (5FU), was chosen as a model drug to be loaded in RGO/AuNR/HA. The fabricated RGO/AuNR/HA-5FU showed robust, selective targeting and penetrating efficiency against HeLa cells due to the good compatibility and nontoxicity of HA, and showed excellent synergetic antitumor effects through combined chemotherapy (CT) by 5FU and photothermal therapy (PTT) by both RGO and AuNRs under near-infrared (NIR) laser irradiation. More importantly, this synergistic dual therapy based on RGO/AuNR/HA can also minimize side effects in normal cells and exhibits greater antitumor activity because of a multi-stage drug release ability triggered by the pH sensitivity of HA in the first stage and the combined photothermal conversion capabilities of RGO and AuNRs by means of the NIR laser irradiation in the second stage. This study suggests that the novel RGO/AuNR/HA multi-stage drug delivery system may represent a promising potential application of multifunctional composite materials in the biomedical field.

  11. Pretreatment of cyanided tailings by catalytic ozonation with Mn2+/O3.

    PubMed

    Li, Yulong; Li, Dengxin; Li, Jiebing; wang, Jin; Hussain, Asif; Ji, Hao; Zhai, Yijie

    2015-02-01

    The increasing amount of cyanided tailings produced as a by-product has gained significant attention in recent years because of the rapid development of the gold industry and extensive exploitation of gold mineral resources. The effective use of these secondary resources is becoming an important and urgent problem for all environmental protection staff. Manganese-catalyzed ozonation for the pre-oxidation of cyanided tailings was studied and the effects of Mn2+ dosage, initial sulfuric acid concentration, ozone volume flow, temperature and agitation speed on pretreatment were examined. The optimum reaction conditions were observed to be: ore pulp density 2.5%, agitation speed 700 r/min, temperature 60°C, Mn2+ dosage 40 g/L, ozone volume flow 80 L/hr, initial sulfuric acid concentration 1 mol/L, and reaction time 6 hr. Under these conditions, the leaching rate of Fe and weight loss could reach 94.85% and 48.89% respectively. The leaching process of cyanided tailings by Mn2+/O3 was analyzed, and it was found that the leaching of pyrite depends on synergetic oxidation by high-valent manganese and O3, in which the former played an important part. Copyright © 2014. Published by Elsevier B.V.

  12. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Chava, Rama Krishna; Do, Jeong Yeon; Kang, Misook

    2018-03-01

    The visible photocatalytic H2 production from water splitting considered as a clean and renewable energy source could solve the problem of greenhouse gas emission from fossil fuels. Despite tremendous efforts, the development of cost effective, highly efficient and more stable visible photocatalysts for splitting of water remains a great challenge. Here, we report the heteronanostructures consisting of hierarchical MoS2 nanospheres grown on 1D CdS nanorods referred to as CdS-MoS2 HNSs as a high performance visible photocatalyst for H2 evolution. The as-synthesized CdS-MoS2 HNSs exhibited ∼11 fold increment of H2 evolution rate when compared to pure CdS nanorods. This remarkable enhanced hydrogen evolution performance can be assigned to the positive synergetic effect from heteronanostructures formed between the CdS and MoS2 components which assist as an electron sink and source for abundant active edge sites and in turn increases the charge separation. This study presents a low-cost visible photocatalyst for solar energy conversion to achieve efficient H2.

  13. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    NASA Astrophysics Data System (ADS)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  14. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity

    PubMed Central

    Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei

    2016-01-01

    Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260

  15. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  16. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  17. Removal of 4-Nitrophenol from Water Using Ag–N–P-Tridoped TiO2 by Photocatalytic Oxidation Technique

    PubMed Central

    Achamo, Temesgen; Yadav, O. P.

    2016-01-01

    Photocatalytic oxidation using semiconductor nanoparticles is an efficient, eco-friendly, and cost-effective process for the removal of organic pollutants, such as dyes, pesticides, phenols, and their derivatives in water. In the present study, nanosize Ag–N–P-tridoped titanium(IV) oxide (TiO2) was prepared by using sol–gel-synthesized Ag-doped TiO2 and soybean (Glycine max) or chickpea (Cicer arietinum) seeds as nonmetallic bioprecursors. As-synthesized photocatalysts were characterized using X-ray diffraction, Fourier transform infrared, and ultra violet (UV)–visible spectroscopic techniques. Average crystallite size of the studied photocatalysts was within 39–46 nm. Whereas doped Ag in TiO2 minimized the photogenerated electron–hole recombination, doped N and P extended its photoabsorption edge to visible region. Tridoping of Ag, N, and P in TiO2 exhibited synergetic effect toward enhancing its photocatalytic degradation of 4-nitrophenol (4-NP), separately, under UV and visible irradiations. At three hours, degradations of 4-NP over Ag–N–P-tridoped TiO2 under UV and visible radiations were 73.8 and 98.1%, respectively. PMID:27081309

  18. Coloristic and antimicrobial behaviour of polymeric substrates using bioactive substances

    NASA Astrophysics Data System (ADS)

    Coman, D.; Vrînceanu, N.; Oancea, S.; Rîmbu, C.

    2016-08-01

    A major concern in reducing microbial contamination of healthcare and hygiene products motivated us to seek viable alternatives in order to create such barriers. The antimicrobial and anti-oxidant effects of natural extracts are well-known, their application onto polymeric supports is still challenging in terms of investigation. To our knowledge, the method of natural dyeing of different polymeric substrates using bioactive substances derived from black currant and green walnut shells, in conjunction with biomordants, and their long term effects have not been very consistently reported. The main objective of the study is based on the comparative study of different polymeric fibrous substrates dyed by means of laboratory scaled classic methodology with extracts from black currant fruits and green walnut shells, with the assistance of conventional and biomordants (copper sulphate, citric and tannic acids). The assistance of biomordant in the dyeing process seems to conduct to improved synergetic colouring and antibacterial performances. The main results demonstrated that the extract of green walnut shells reinforced by the biomordants solutions expressed the best antimicrobial behaviour. The present research is a milestone in the identification of potential technological alternatives applied in dyeing of synthetic and natural textile supports, quantified and controlled by antimicrobial response correlated with colorimetric features.

  19. Synergetic effect at the interfaces of solution processed MoS2-WS2 composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Kim, Seong Ku; Song, Wooseok; Ji, Seulgi; Lim, Yi Rang; Lee, Young Bum; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Lee, Sun Sook

    2017-12-01

    Recently, the importance of developing an effective catalyst for hydrogen evolution reaction is emphasized because hydrogen fueled energy conversion processes are gaining attention as the next generation energy production method. We propose a transition metal dichalcogenide composite catalyst based on molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on reduced graphene oxide coated nickel (rGO-Ni) foams. The composite exhibited enhanced catalytic activity with observed on-set potential of ∼275 mV at -10 mA/cm2 and Tafel slope of 54.1 mV/dec when the composition of the composite was 50%MoS2-50%WS2. The composite catalyst demonstrated high-stability up to 300 cycles. In order to understand the enhanced catalytic activity, X-ray photoelectron spectroscopy compositional analysis was utilized. We propose that the enhancement of catalytic activities exhibited by the composited samples were achieved due to introduction of new type of interface between MoS2 and WS2 grains, regional transition of 2H phase MoS2 and WS2 to 1T phase, and formation of excess sulfur which depended directly on the composition.

  20. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    NASA Astrophysics Data System (ADS)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  1. Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label.

    PubMed

    Zhang, Juan; Yuan, Yali; biXie, Shun; Chai, Yaqin; Yuan, Ruo

    2014-10-15

    In this work, we present a new strategy to construct an electrochemical aptasensor for sensitive detection of platelet-derived growth factor BB (PDGF-BB) based on the synergetic amplification of a three-dimensional (3D) nanoscale catalase (CAT) enzyme-functional DNA-platinum nanoparticles (PtNPs) dendrimer through autonomous layer-by-layer assembly. Firstly, polyamidoaminedendrimer (PAMAM) with a hyper-branched and three-dimensional structure was served as nanocarriers to coimmobilize a large number of PDGF-BB binding aptamer (PBA II) and ssDNA 1 (S1) to form PBA II-PAMAM-S1 bioconjugate. In the presence of PDGF-BB, the bioconjugate was self-assembled on the electrode by sandwich assay. Following that, the carried S1 propagated a chain reaction of hybridization events between CAT-PtNPs-S1 and CAT-PtNPs-ssDNA 2 (S2) to form a 3D nanoscale CAT-functional PtNPs-DNA dendrimer, which successfully immobilized substantial CAT enzyme and PtNPs with superior catalysis activity. In this process, the formed negatively charged double-helix DNA could cause the intercalation of hexaammineruthenium(III) chloride (RuHex) into the groove via electrostatic interactions. Thus, numerous RuHex redox probes and CAT were decorated inside/outside of the dendrimer. In the presence of H2O2 in electrolytic cell, the synergistic reaction of CAT and PtNPs towards electrocatalysis could further amplify electrochemical signal. Under optimal condition, the CAT-PtNPs-DNA dendrimer-based sensing system presented a linear dependence between the reduction peak currents and logarithm of PDGF-BB concentrations in the range of 0.00005-35 nM with a relatively low detection limit of 0.02 pM. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John

    2018-02-01

    Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.

  3. Highly sensitive aptasensor based on synergetic catalysis activity of MoS2-Au-HE composite using cDNA-Au-GOD for signal amplification.

    PubMed

    Song, Hai-Yan; Kang, Tian-Fang; Lu, Li-Ping; Cheng, Shui-Yuan

    2017-03-01

    Single or few-layer nanosheets of MoS 2 (MoS 2 nanosheets) and a composite composed of MoS 2 nanosheets, Au nanoparticles (AuNPs) and hemin (HE) (denoted as MoS 2 -Au-HE) were prepared. The composites possessed high synergetic catalysis activity towards the electroreduction of hydrogen peroxide. Furthermore, glucose oxidase (GOD) and AuNPs were used as marker of the complementary DNA (cDNA) strand of kanamycin aptamer to prepare a conjugate (reffered as cDNA-Au-GOD) that was designed as the signal probe. Both cDNA-Au-GOD and MoS 2 -Au-HE were applied to fabricate aptasensor for kanamycin. MoS 2 -Au-HE acted as solid platform for kanamycin aptamer and signal transmitters. AuNPs were employed as the supporter of cDNA and GOD which catalyze dissolved oxygen to produce hydrogen peroxide in the presence of glucose. Then cathodic peak current of H 2 O 2 was recorded by differential pulse voltammetry (DPV). The electrochemical reduction of H 2 O 2 was catalyzed by MoS 2 -Au-HE that was modified onto the surface of a glassy carbon electrode (GCE). The cathodic peak current of H 2 O 2 was highly linearly decreased with an increase of kanamycin concentrations from 1.0ng/L to 1.0×10 5 ng/L, with a detection limit of 0.8ng/L. This aptasensor can be used to detect kanamycin in milk with high specificity, sensitivity and selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less

  5. Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi.

    PubMed

    Li, You-Qing; Liu, Hong-Fang; Tian, Zhen-Le; Zhu, Li-Hua; Wu, Ying-Hui; Tang, He-Qing

    2008-06-01

    To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi. Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost complete degradation of diesel oil, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  6. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    PubMed

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  7. Influence of auxins combinations on accumulation of reserpine in the callus of Rauvolfia tetraphylla L.

    PubMed

    Anitha, S; Kumari, B D Ranjitha

    2007-11-01

    Reserpine is a monoterpene indole alkaloid used to treat hypertension because of its hypotensive property and psychiatric disorders because of its tranquilizing effect. Protocol has been standardized to enhance the synthesis of reserpine in leaf derived calli of Rauvolfia tetraphylla L. by adjusting the auxins combinations in the medium consisting of MS nutrient salts and B5 vitamins. Auxins such as naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were used in 1-5 microM concentration along with 9 microM concentration of 2,4 dichlorophenoxy acetic acid (2,4-D), which was found suitable for callus induction. The combination of (2,4-D) with NAA had been proved to accumulate maximum amount of reserpine followed by 2,4-D with IBA. The IAA with 2,4-D combination yielded very less amount of reserpine than the other combinations and 9 microM 2,4-D alone. The results suggest that there may be synergetic effect of NAA with 2,4-D and IBA with 2,4-D for increase in the biomass and reserpine accumulation and antagonistic effect of IAA with 2,4-D for the above said factors in the callus.

  8. Antimicrobial properties of natural substances in irradiated fresh poultry

    NASA Astrophysics Data System (ADS)

    Mahrour, A.; Lacroix, M.; Nketsa-Tabiri, J.; Calderon, N.; Gagnon, M.

    1998-06-01

    This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or vacuum) with irradiation could have a synergetic effect, in order to reduce the dose required for complete elimination of Salmonella on fresh poultry. The effect of these combined treatments on the shelf-life extension was also evaluated. The fresh chicken legs were irradiated at 0, 3 and 5 kGy. The poultry underwent microbial analysis(mesophilic and Salmonella detection). For each treatment, the total microbial count decreased with increase of irradiation dose. The marinating treatment have a synergistic effect with irradiation treatment to reduce the total microbial count and controlling the proliferation during storage at 4°C. Irradiation of fresh chicken pieces with a dose of 3 kGy appears to be able to extend the microbial shelf-life by a factor of 2. When the chicken is marinating and irradiated at 3 kGy or when irradiated at 5 kGy without marinating, the microbial shelf-life is extended by a factor of 7 to 8. No Salmonella was found during all the experiment in the chicken in air and marinated. However, a presence of Salmonella was found in samples irradiated at 5 kGy under vacuum, in unirradiated samples and samples irradiated at 3kGy in air and under vacuum.

  9. Synergetic effect of chelating agent and nonionic surfactant for benzotriazole removal on post Cu-CMP cleaning

    NASA Astrophysics Data System (ADS)

    Yanlei, Li; Yuling, Liu; Chenwei, Wang; Yue, Li

    2016-08-01

    The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a critical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance. Project supported by the Natural Science Foundation of Hebei Province, China (No. F2015202267) and the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology (No. 2015007).

  10. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    PubMed

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  11. Impact of Linear Alkyl Length on the Assembly of Twisted Perylene Bisimides: From Molecular Arrangement to Nanostructures.

    PubMed

    Guo, Zongxia; Wang, Kun; Yu, Ping; Wang, Xiangnan; Lan, Shusha; Sun, Kai; Yi, Yuanping; Li, Zhibo

    2017-11-02

    The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides (1: PBI with -C 6 H 13 ; 2: PBI with -C 12 H 25 ) has been investigated. Solvent-induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π-π stacking predominated in assemblies of 1, and the synergetic effect of van der Waals interactions from the long alkyl chains and π-π stacking between neighboring building blocks facilitated the growth of the long-range-ordered nanostructures of 2. By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR)

    PubMed Central

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical. PMID:25409507

  13. Measuring the Hydraulic Effectiveness of Low Impact Development Practices in a Heavily Urbanised Environment: A Case Study from London, UK

    NASA Astrophysics Data System (ADS)

    El Hattab, M. H.; Vernon, D.; Mijic, A.

    2017-12-01

    Low impact development practices (LID) are deemed to have a synergetic effect in mitigating urban storm water flooding. Designing and implementing effective LID practices require reliable real-life data about their performance in different applications; however, there are limited studies providing such data. In this study an innovative micro-monitoring system to assess the performance of porous pavement and rain gardens as retrofitting technologies was developed. Three pilot streets in London, UK were selected as part of Thames Water Utilities Limited's Counters Creek scheme. The system includes a V-notch weir installed at the outlet of each LID device to provide an accurate and reliable quantification over a wide range of discharges. In addition to, a low flow sensor installed downstream of the V-notch to cross-check the readings. Having a flow survey time-series of the pre-retrofitting conditions from the study streets, extensive laboratory calibrations under different flow conditions depicting the exact site conditions were performed prior to installing the devices in the field. The micro-monitoring system is well suited for high-resolution temporal monitoring and enables accurate long-term evaluation of LID components' performance. Initial results from the field validated the robustness of the system in fulfilling its requirements.

  14. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: A case study.

    PubMed

    Penolazzi, Barbara; Bergamaschi, Susanna; Pastore, Massimiliano; Villani, Daniele; Sartori, Giuseppe; Mondini, Sara

    2015-01-01

    In the present study we tested the cognitive effects of transcranial direct current stimulation (tDCS) in a case of probable Alzheimer disease (AD). The patient (male, 60 years, mild AD) underwent two cycles of treatments, separated by 2 months. In the first cycle, active stimulation (10 sessions, 2 mA for 20 min; anode over the left dorsolateral prefrontal cortex) was followed by computerised tasks (CTs) specifically chosen to engage the most impaired cognitive processes in the patient (tDCS+CT condition). In the second cycle, which was structured as the first, CTs were administered after placebo stimulation (sham+CT condition). Effects on cognitive performance were evaluated not only by the CTs, but also by neuropsychological tests assessing global cognitive functioning. Statistical analyses revealed that whereas the tDCS+CT condition had few effects on the CTs, it induced a stability of the patient's global cognitive functioning lasting approximately 3 months, which was not achieved when the patient underwent sham+CT condition. Therefore, the synergetic use of tDCS and CTs appeared to slow down the cognitive decline of our patient. This preliminary result, although in need of further confirmation, suggests the potentiality of tDCS as an adjuvant tool for cognitive rehabilitation in AD.

  15. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.

    PubMed

    Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun

    2012-12-10

    This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through synergetic hydrogen bonding effect. The thermogelling behavior of HBPEC block copolymers was further evidenced by the 1H NMR molecular dynamic study and rheological study, which further support the above hypothesis. The hydrolytic degradation study showed that the HBPEC copolymer hydrogels are biodegradable under physiological conditions. Together with the good cell biocompatibility demonstrated by the cytotoxicity study, the new thermogelling copolymers reported in this paper could potentially be used as in situ-forming hydrogels for biomedical applications.

  16. SU-F-303-15: Ion Chamber Dose Response in Magnetic Fields as a Function of Incident Photon Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, V. N.; Rogers, D. W. O.

    2015-06-15

    Purpose: In considering the continued development of synergetic MRI-radiation therapy machines, we seek to quantify the variability of ion chamber response per unit dose in the presence of magnetic fields of varying strength as a function of incident photon beam quality and geometric configuration. Methods: To account for the effect of magnetic fields on the trajectory of charged particles a new algorithm was introduced into the EGSnrc Monte Carlo code. In the egs-chamber user code the dose to the cavity of an NE2571 ion chamber is calculated in two configurations, in 0 to 2 T magnetic fields, with an incomingmore » parallel 10×10 cm{sup 2} photon beam with energies ranging between 0.5 MeV and 8 MeV. In the first, the photon beam is incident on the long-axis of the ion chamber (config-1), and in the second the beam is parallel to the long-axis and incident from the conical end of the chamber (config-2). For both, the magnetic field is perpendicular to the direction of the beam and the long axis of the chamber. Results: The ion chamber response per unit dose to water at the same point is determined as a function of magnetic field and is normalized to the 0T case for each of incoming photon energies. For both configurations, accurate modeling of the ion chamber yielded closer agreement with the experimental results obtained by Meijsing et. al (2009). Config-1 yields a gradual increase in response with increasing field strength to a maximum of 13.4% and 1.4% for 1 MeV and 8 MeV photon beams, respectively. Config-2 produced a decrease in response of up to 6% and 13% for 0.5 MeV and 8 MeV beams, respectively. Conclusion: These results provide further support for ion chamber calibration in MRI-radiotherapy coupled systems and demonstrates noticeable energy dependence for clinically relevant fields.« less

  17. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.

  18. A redox-hydrothermal route to β-MnO 2 hollow octahedra

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; Chen, Liyong; Zheng, Zhi; Yang, Fengling

    2009-07-01

    Beta-Manganese dioxides' (β-MnO 2) hollow octahedra have been prepared by a synergetic redox reaction using cuprous chloride (CuCl) and hydrochloric acid (HCl) as reductants and potassium permanganate (KMnO 4) as oxidant through a hydrothermal route. During the process, the self-generated chlorine (Cl 2) gas bubbles and HCl's etching appear to be necessary for the formation of MnO 2 hollow structure. The catalytic efficiency of the prepared β-MnO 2 hollow octahedra was high which has been demonstrated by the catalytic oxidation of methylene blue (MB) dye in the presence of hydrogen peroxide (H 2O 2) under natural light.

  19. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment.

    PubMed

    Tao, Yuequn; Cai, Jun; Huai, Xiulan; Liu, Bin

    2017-08-05

    Hydrodynamic cavitation is an effective advanced oxidation process. But sometimes it cannot obtain satisfactory treatment efficiency by using hydrodynamic cavitation individually, so it is necessary to introduce intensive methods. Based on double-cavitating-jets impingement, this paper presents a novel device that has advantages of strong heat and mass transfer and efficient chemical reactions. Based on the device, a series of experimental investigations on degradation of a basic dye, i.e. Rhodamine B were carried out. Significant Rhodamine B removal from aqueous solution was observed during 2h treatment and the degradation reaction conformed to pseudo-first-order kinetics. The synergetic effects between double-cavitating-jets impingement and Fenton chemistry on simultaneous degradation of Rhodamine B were confirmed. Both single-variable experiments and orthogonal experiments were carried out to study the effects of initial hydrogen peroxide, ferrous sulfate and Rhodamine B concentrations and the optimum conditions were found out. Effects of jet inlet pressure in the range of 6-12MPa and solution pH value in the range of 2-8 were also investigated. The cavitation yield was evaluated to assess the energy efficiency. The present treatment scheme showed advantages in terms of reducing the demand of hydrogen peroxide concentration and enhancing the treatment efficiency in large scale operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process.

    PubMed

    Liu, Bo; Li, Song; Zhao, Yongjun; Wu, Wenfei; Zhang, Xuxiang; Gu, Xueyuan; Li, Ruihua; Yang, Shaogui

    2010-04-15

    A microwave assisted zero-valent iron oxidation process was studied in order to investigate the synergetic effects of MW irradiation on Fe/EDTA system (Fe/EDTA/MW) treated 4-nitrophenol (4-NP) from aqueous solution. The results indicated that the thermal effect of microwave improved the removal effect of 4-NP and TOC through raising the temperature of the system, as well as the non-thermal effect generated by the interaction between the microwave and the Fe resulting in an increase in the hydrophobic character of Fe surface. During the degradation of 4-NP in Fe/EDTA/MW system, the optimum value for MW power, Fe, EDTA dosage was 400 W, 2 g and 0.4 mM, respectively. The possible pathway for degrading the 4-NP was proposed based on GC/MS and HPLC analysis of the degradation intermediates. The concentration change course of the main bio-refractory by-products, the aminophenol formed in the degradation of 4-NP suggested a more efficient degradation and mineralization in Fe/EDTA/MW system. Finally, BOD(5)/COD(Cr) of the solution increased from 0.237 to 0.635 after reaction for 18 min, indicating that the biodegradability of wastewater was greatly improved by Fe/EDTA/MW system and would benefit to further treatment by biochemical methods. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  1. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review

    USGS Publications Warehouse

    Passeri, Davina L.; Hagen, Scott C.; Medeiros, Stephen C.; Bilskie, Matthew V.; Alizad, Karim; Wang, Dingbao

    2015-01-01

    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems.

  2. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  3. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

    PubMed

    Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing

    2017-06-01

    Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  5. Amphiphilic dendrimer engineered nanocarrier systems for co-delivery of siRNA and paclitaxel to matrix metalloproteinase-rich tumors for synergistic therapy

    NASA Astrophysics Data System (ADS)

    Li, Xin; Sun, A.-ning; Liu, Yu-jie; Zhang, Wen-jie; Pang, Ning; Cheng, Shi-xuan; Qi, Xian-rong

    2018-04-01

    Combinations of chemotherapeutics with small interfering RNA (siRNA) can incorporate the advantages of their different mechanisms to exert a synergetic effect. A safe and effective vehicle for simultaneous delivery of the components to tumor cells is a prerequisite for obtaining the optimum effect. We developed an amphiphilic dendrimer engineered nanocarrier system (ADENS) for co-delivering paclitaxel and siRNA for cancer treatment. This nanocarrier possesses a unique hollow core/shell structure in which siRNA is incorporated in the hydrophilic cavity and large quantities of paclitaxel are stored in the hydrophobic interlayer, while the outer PEG layer serves to prolong the circulation time. Further modification by tumor microenvironment-sensitive polypeptides (TMSP) significantly enhanced the cellular uptake, tumor penetration and tumor accumulation of the ADENS by a tumor microenvironment-triggered mechanism. TMSP-ADENS had prominent therapeutic effects at a relatively low drug dose both in vitro and in vivo. In A375 xenograft mice, TMSP-ADENS/siRNA/PTX showed the highest VEGF mRNA inhibition rate of 73% and suppressed tumor growth and relapse, while Taxol did not show an effect on tumor relapse. The anti-tumor and anti-angiogenic effects were further confirmed in an HT-1080 xenograft tumor model. Our findings, combined with the known biodegradability and tunable physicochemical properties of these polymers, suggest that this TMSP-ADENS can be a robust co-delivery system for cancer combination therapy in the future.

  6. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  7. Single-crystalline dendritic bimetallic and multimetallic nanocubes.

    PubMed

    Kuang, Yun; Zhang, Ying; Cai, Zhao; Feng, Guang; Jiang, Yingying; Jin, Chuanhong; Luo, Jun; Sun, Xiaoming

    2015-12-01

    Developing facial synthetic routes for fabrication of multimetallic nanocatalysts with open porous morphology, tunable composition and tailored crystalline structure is a big challenge for fabrication of low-cost electrocatalysts. Here we report on the synthesis of single-crystalline dendritic bimetallic and multimetallic nanocubes via a solvothermal co-reduction method. These cubes show highly porous, complex 3D inner connections but single-crystalline structure. Tuning the reduction kinetics of metal precursors and introducing galvanic reaction at the active sites during growth were believed to be the keys for the formation of such unique nanostructure. Electro-catalytic oxygen reduction (ORR) and methanol oxidation (MOR) on these catalysts showed dramatic enhancements for both cathodic and anodic electrocatalysis in fuel cells, which were attributed to their unique morphology and crystalline structure, as well as synergetic effect of the multi-metallic components. This work uncovers the formation mechanism of such complex single-crystalline dendritic multimetallic nanocrystals and offers a promising synthetic strategy for geometric and crystalline control of multimetallic nanocrystals with tailored physical and chemical properties, which will benefit the development of clean energy.

  8. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.

    PubMed

    Liu, Z Q; Jiao, D; Meyers, M A; Zhang, Z F

    2015-04-01

    Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock's tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure-property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens.

    PubMed

    Yang, Jyh-Ferng; Yang, Cheng-Hong; Chang, Hsueh-Wei; Yang, Cheng-San; Wang, Shao-Ming; Hsieh, Ming-Che; Chuang, Li-Yeh

    2010-10-01

    In recent years, human pathogenic microorganisms have developed multiple drug resistance and caused serious nosocomial infections. In this study, we identified four new antimicrobial compounds from the Chinese herbal medicine Illicium verum and assessed their antibacterial efficacies. The supercritical CO₂ and ethanol extracts of Illicium verum showed substantial antibacterial activity against 67 clinical drug-resistant isolates, including 27 Acinetobacter baumannii, 20 Pseudomonas aeruginosa, and 20 methicillin-resistant Staphylococcus aureus. The diethyl ether (EE) fraction obtained from partition extraction and supercritical CO₂ extracts revealed an antibacterial activity with a minimum inhibitory concentration value of 0.15-0.70 mg/mL and 0.11 mg/mL, respectively. The EE fraction of I. verum showed synergetic effects with some commercial antibiotics. The antimicrobial mechanism was investigated with killing curves and scanning electron microscopy observation. The chemical components of the extracts were analyzed by spectrophotometry; (E)-anethole, anisyl acetone, anisyl alcohol, and anisyl aldehyde exhibited antibacterial activity against different clinical isolates. These extracts from I. verum can be further developed into antibiotic medicines due to their proven antibacterial activity.

  10. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  11. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin.

    PubMed

    Xu, Qiuxiang; Liu, Xuran; Zhao, Jianwei; Wang, Dongbo; Wang, Qilin; Li, Xiaoming; Yang, Qi; Zeng, Guangming

    2018-04-01

    Short-chain fatty acids (SCFA), raw substrates for biodegradable plastic production and preferred carbon source for biological nutrients removal, can be produced from anaerobic fermentation of waste activated sludge (WAS). This paper reports a new, high-efficient and eco-friendly strategy, i.e., using free nitrous acid (FNA) pretreatment combined with Tea saponin (TS), to enhance SCFA production. Experimental results showed 0.90 mg/L FNA pretreatment and 0.05 g/g total suspended solids TS addition (FNA + TS) not only significantly increased SCFA production to 315.3 ± 8.8 mg COD/g VSS (5.52, 1.76 and 1.93 times higher than that from blank, solo FNA and solo TS, respectively) but also shortened fermentation time to 4 days. Mechanism investigations revealed that FNA pretreatment combined with TS cause a positive synergetic effect on sludge solubilization, resulting in more release of organics. It was also found that the combination benefited hydrolysis and acidogenesis processes but inhibited the methanogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Atmospheric-pressure plasma jet processed Pt/ZnO composites and its application as counter-electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Chun; Wan, Ting-Hao; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2018-04-01

    Nitrogen dc-pulse atmospheric pressure plasma jet (APPJ) is used to fabricate Pt/ZnO composites as the counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Due to the synergetic effect of the reactive plasma species and heat in nitrogen APPJ, the spin-coated precursors including chloroplatinic acid and zinc acetate can be reduced on fluorine-doped tin oxide (FTO) glass substrates in a few seconds. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses indicate that the precursors are reduced to Pt/ZnO under APPJ calcination. Electrochemical impedance spectroscopy (EIS) and Tafel measurement show the promising catalytic activities of Pt/ZnO CEs with low charge transfer resistance and high exchange current density. The efficiency of a DSSC with a 30-s APPJ-calcined Pt/ZnO CE is similar to that with a conventional furnace-annealed Pt CE for 15 min. The results indicate that nitrogen dc-pulse APPJ treatment is an efficient tool for rapidly fabricating Pt/ZnO composite CEs of DSSCs.

  13. A smart upconversion-based light-triggered polymer for synergetic chemo-photodynamic therapy and dual-modal MR/UCL imaging.

    PubMed

    Du, Bin; Han, Shuping; Zhao, Feifei; Lim, Kok Hwa; Xi, Hongwei; Su, Xiangjie; Yao, Hanchun; Zhou, Jie

    2016-10-01

    We have developed a novel nanocomposite to achieve effective therapy and live surveillance of tumor tissue. In this study, fullerene (C 60 ) with iron oxide (Fe 3 O 4 ) nanoparticles and upconversion nanophosphors (UCNPs) was loaded into N-succinyl-N'-4-(2-nitrobenzyloxy)-succinyl-chitosan micelles (SNSC) with good biocompatibility. In addition, hydrophobic anticancer drug docetaxel (DTX) was also loaded into the nanocomposites. The experiments conducted in vitro and in vivo demonstrated that C 60 /Fe 3 O 4 -UCNPs@DTX@SNSC can act synergistically to kill tumor cells by releasing chemotherapy drugs at specific target site as well as generating reactive oxygen using 980nm. In addition, it can also be used for non-invasive deep magnetic resonance and upconversion fluorescence dual-mode imaging. The results indicated that this system provided an efficient method to surmount the drawback of UV or visible light-responsive polymeric systems for controlled drug release and generated reactive oxygen in deep tissues and ultimately realized the integration of dual-modal imaging and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Au-decorated sodium titanate nanotubes as high-performance selective photocatalysts for pollutant degradation

    NASA Astrophysics Data System (ADS)

    El Rouby, Waleed M. A.; Comesaña-Hermo, Miguel; Testa-Anta, Martín; Carbó-Argibay, Enrique; Salgueiriño, Verónica; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A.

    2017-04-01

    The bioaccumulation of polycyclic aromatic compounds originating from textile processing industries is nowadays a major environmental problem worldwide. In order to tackle this situation, several inorganic semiconductors have been tested as photocatalysts for the degradation of these harmful pollutants in the search of sustainable and cost-effective solutions. Nevertheless, these semiconductor materials often involve important limitations, such as poor efficiency and selectivity, which, in the end, substantially restrict their implementation at the industrial scale. As an alternative, we herein report the fabrication and application of Au-decorated titanate nanotubes (TNTs) as high-performance architectures for the selective degradation of organic contaminants. This synthetic strategy is intended to establish a synergetic integration of the physicochemical and photocatalytic features of these hybrid nanostructures, by combining the remarkable adsorption capabilities of TNTs with the enhanced light-harvesting efficiency provided by the incorporation of a noble metal component. The obtained results evidence the great potential that rationally designed plasmonic composites may have for the development of selective environmental remediation technologies and in particular on the current challenges faced by the wastewater treatment sector.

  15. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence.

    PubMed

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development.

  16. Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode

    NASA Astrophysics Data System (ADS)

    Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki

    We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  17. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.

    PubMed

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-08-07

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.

  18. Fabrication of Porous ZnO/Co₃O₄ Composites for Improving Cycling Stability of Supercapacitors.

    PubMed

    Su, Dongqing; Zhang, Longmei; Tang, Zehua; Yu, Tingting; Liu, Huili; Zhang, Junhao; Liu, Yuanjun; Yuan, Aihua; Kong, Qinghong

    2018-07-01

    To tackle the issue of poor cycling stability for metal oxide nanoparticles as supercapacitor electrode, porous ZnO/Co3O4 composites were fabricated via solid-state thermolysis of [CoZn(BTC)(NO3)](2H2O)(0.5DMF) under air atmosphere. The results demonstrate that the products are mesoporous polyhedron structure with the diameter of about 10 μm, which are constructed by many interconnected nanocrystals with the sizes of around 20 nm. ZnO/Co3O4 composites as supercapacitor electrode exhibited excellent cyclic stability capacity, showing a maximum specific capacitance of 106.7 F g-1 and a capacity retention of 102.7 F · g-1 after 1000 cycles at 0.5 A · g-1. The superior electrochemical performance was contributed to ZnO/Co3O4 composites with porous structures and small size, which shortened the route of electronic transmission as well as ions insertion and desertion processes. Additionally, the synergetic effect of bimetallic oxides improved the electrochemical stability.

  19. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands.

    PubMed

    Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis

    2017-06-15

    The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

    PubMed

    Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K

    2008-11-01

    Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

  1. Nickel-copper oxide nanowires for highly sensitive sensing of glucose

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofang; Chen, Wei; Song, Yanfang; Zhang, Jiazhou; Ge, Ruipeng; Wei, Wei; Jiao, Zheng; Sun, Yuhan

    2017-10-01

    Accurate determination of glucose is of considerable importance in diverse fields such as clinical diagnostics, biotechnology, and food industry. A low-cost and easy to scale-up approach has been developed for the preparation of nickel-copper oxide nanowires (Ni-CuO NWs) with hierarchical structures comprising porous NiO substrate and CuO nanowires. The successfully prepared Ni-CuO NWs were exploited as non-enzymatic electrochemical sensing probes for the reliable detection of glucose. Electrochemical measurements such as cyclic voltammetry (CV) and chronoamperometry (CA) illustrated that the Ni-CuO NWs exhibited excellent electrochemical performance toward glucose oxidation with a superior sensitivity of 5610.6 μA mM-1 cm-2, a low detection limit of 0.07 μM, a wide linear range from 0.2 to 3.0 mM, and a good selectivity. This was attributed to the synergetic effect of the hierarchical structures and active Ni(OH)2 surface species in Ni-CuO NWs. The rational design of the metal oxide composites provided an efficient strategy for the fabrication of electrochemical non-enzymatic sensors.

  2. Hydrogen bonding in basic copper salts: a spectroscopic study of malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Lutz, H. D.

    1993-05-01

    Infrared and Raman spectra of the basic copper salts malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4, as well as of deuterated and 13C substituted samples are presented and discussed in terms of group theory and the hydrogen bonds present. The main results are that (i) the hydrogen donor strengths of the OH- ions are strongly increased due to the very great synergetic effect of the copper ions, (ii) the acceptor strengths of the H-bond acceptor groups (SO4 2-, CO3 2-, and OH- ions) are significantly modified by the linkage and coordination of the acceptor atoms — this complicates true assignment of the OH bands observed to the two and six different OH- ions present in malachite and brochantite, respectively -, and (iii) the Cu — O stretching modes at 430 590 cm-1 and 420 520 cm-1 for malachite and brochantite, respectively, exhibit strong, partially covalent Cu — O bonding.

  3. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.

    PubMed

    Wang, Xiaojiao; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui

    2012-09-01

    This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH(3). Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2.

    PubMed

    Bian, J; Xiao, M; Wang, S J; Lu, Y X; Meng, Y Z

    2009-06-01

    Novel Cu-Ni bimetallic catalysts supported on thermally expanded graphite (TEG) were prepared as an example to show the particular characteristics of TEG as a carbon support material. The structures of TEG and the synthesized Cu-Ni/TEG catalysts were characterized using BET, FTIR, TG, SEM, TEM, XRD and TPR techniques. The catalytic activities of the prepared catalysts were investigated by performing micro-reaction in the direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2. The experimental results indicated that the prepared Cu-Ni/TEG catalysts exhibited highly catalytic activity. Under the optimal catalytic conditions at 100 degrees C and under 1.2 MPa, the highest conversion of CH3OH of 4.97% and high selectivity of DMC of 89.3% can be achieved. The highly catalytic activity of Cu-Ni/TEG in DMC synthesis can be attributed to the synergetic effects of metal Cu, Ni and Cu-Ni alloy in the activation of CH3OH and CO2 and the particular characteristics of TEG as a carbon support material.

  5. Treatment of sepsis: What is the antibiotic choice in bacteremia due to carbapenem resistant Enterobacteriaceae?

    PubMed Central

    Alhashem, Fatema; Tiren-Verbeet, Nicolette Leonie; Alp, Emine; Doganay, Mehmet

    2017-01-01

    Sepsis is one of the major challenges of today. Although gram-positive bacteria related infections are more prevalent in hospital setting, the highest mortality rate is associated with gram-negative microorganisms especially Enterobacteriaceae. Enterobacteriaceae, including Escherichia coli, Klebsiella spp., Proteus spp., Enterobacter spp. and Serratia spp. Resistance to β-lactams in Enterobacteriaceae is primarily attributed to the production of B-lactamase enzymes with subsequent antibiotic hydrolysis and to a lesser extent by alteration of efflux pump or porins expression. Carbapenem resistant Enterobacteriaceae (CRE) and Acinetobacter baumannii are the most notorious pathogens due to the high incidence of morbidity and mortality especially in the immunocompromised patients in the intensive care unit. The most appropriate antimicrobial therapy to treat CRE is still controversial. Combination therapy is preferred over monotherapy due to its broad-spectrum coverage of micro-organisms, due to its synergetic effect and to prevent development of further resistance. Current suggested therapies for CRE resistance as well as promising antibiotics that are currently under investigation for winning the war against the emerging CRE resistance are reviewed and discussed. PMID:28868304

  6. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Heo, Youn-Jung; Kim, Jueng-Eun; Lee, Donmin; Lee, Cheol-Ho; Joh, Han-Ik; Yeo, Jun-Seok; Kim, Dong-Yu

    2017-08-23

    Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH 3 NH 3 PbI 3 (MAPbI 3 ) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

  7. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes.

    PubMed

    Tan, Vanessa X; Mazzocco, Claire; Varney, Bianca; Bodet, Dominique; Guillemin, Tristan A; Bessede, Alban; Guillemin, Gilles J

    2018-01-01

    We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.

  8. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol

    PubMed Central

    Wang, Jijie; Li, Guanna; Li, Zelong; Tang, Chizhou; Feng, Zhaochi; An, Hongyu; Liu, Hailong; Liu, Taifeng; Li, Can

    2017-01-01

    Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions of 5.0 MPa, 24,000 ml/(g hour), H2/CO2 = 3:1 to 4:1, 320° to 315°C. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The ZnO-ZrO2 solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of 50 ppm SO2 or H2S in the reaction stream. PMID:28989964

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali Sinag; Melike Sungur; Muammer Canel

    Copyrolysis of a Turkish lignite with low-density polyethylene (LDPE) is conducted in a tubular reactor. The effect of experimental conditions (temperature of 400-700{sup o}C, catalyst, LDPE contents of the mixture are 33, 50, and 67 wt %) on the formation of tar, gas, and char and their effects on the formation of phenol are investigated. The catalysts used are red mud (which is a waste product of an aluminum factory in Turkey), zeolite (Linde type A (LTA)), and K{sub 2}CO{sub 3}. Tar evolution is determined to be increased significantly by increasing the LDPE content of the coal-LDPE mixture during themore » pyrolysis. The effect of adding LDPE to the coal on the gas generation is not remarkable. An increase in temperature leads to increased gas yields. Phenol and phenol derivatives are the obstacles for the complete conversion of lignite to tar and gas. To investigate this negative effect of phenols on the yields, the phenols found in tar from coal pyrolysis are detected by gas chromatography-mass spectroscopy (GC-MS), and it is observed that phenolic structures detected in the tar obtained by individual pyrolysis of coal are dramatically decreased by adding polymer to the coal. The use of catalysts during the copyrolysis procedure leads to improved gas generation. The possible reasons of these variations are discussed. A remarkable synergetic effect between lignite and LDPE on the tar yields is also observed. 21 refs., 8 figs., 4 tabs.« less

  10. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Kang, Hongyan; Jiao, Lifang; Chen, Chengcheng; Cao, Kangzhe; Wang, Yijing; Yuan, Huatang

    2015-01-01

    Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling.Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling. Electronic supplementary information (ESI) available: Scheme S1, Fig. S1-S4. See DOI: 10.1039/c4nr05106h

  11. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    PubMed Central

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination. PMID:26064886

  12. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    PubMed

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO 2 nanoparticles (F-SiO 2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO 2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO 2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO 2 ratios were studied using 1 H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO 2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (<1°) and good transparency. Additionally, MTT experiments results certified the prominent cell viability and biocompatibility for clinical application. Based on its fantastically superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  14. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from themore » biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.« less

  15. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Magnetic Nanoliposomes as in Situ Microbubble Bombers for Multimodality Image-Guided Cancer Theranostics.

    PubMed

    Liu, Yang; Yang, Fang; Yuan, Chuxiao; Li, Mingxi; Wang, Tuantuan; Chen, Bo; Jin, Juan; Zhao, Peng; Tong, Jiayi; Luo, Shouhua; Gu, Ning

    2017-02-28

    Nanosized drug delivery systems have offered promising approaches for cancer theranostics. However, few are effective to simultaneously maximize tumor-specific uptake, imaging, and therapy in a single nanoplatform. Here, we report a simple yet stimuli-responsive anethole dithiolethione (ADT)-loaded magnetic nanoliposome (AML) delivery system, which consists of ADT, hydrogen sulfide (H 2 S) pro-drug, doped in the lipid bilayer, and superparamagnetic nanoparticles encapsulated inside. HepG2 cells could be effectively bombed after 6 h co-incubation with AMLs. For in vivo applications, after preferentially targeting the tumor tissue when spatiotemporally navigated by an external magnetic field, the nanoscaled AMLs can intratumorally convert to microsized H 2 S bubbles. This dynamic process can be monitored by magnetic resonance and ultrasound dual modal imaging. Importantly, the intratumoral generated H 2 S bubbles imaged by real-time ultrasound imaging first can bomb to ablate the tumor tissue when exposed to higher acoustic intensity; then as gasotransmitters, intratumoral generated high-concentration H 2 S molecules can diffuse into the inner tumor regions to further have a synergetic antitumor effect. After 7-day follow-up observation, AMLs with magnetic field treatments have indicated extremely significantly higher inhibitions of tumor growth. Therefore, such elaborately designed intratumoral conversion of nanostructures to microstructures has exhibited an improved anticancer efficacy, which may be promising for multimodal image-guided accurate cancer therapy.

  17. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    PubMed

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    PubMed

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Programmed release triggered by osmotic gradients in multicomponent vesicles

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Jang, Hyun-Sook; Granick, Steve

    Polymersomes, a good candidate for encapsulation and delivery of active ingredients, can be constructed with inter-connected multiple compartments. These so-called multisomes on the one hand enable the spatial separation of various incompatible contents or processes, and on the other hand provide an efficient route for inter-compartment communication via the interface semipermeable membrane. Here we show that by establishing osmotic imbalances between different compartments, interesting synergetic morphology changes of the multisomes can be observed. And by further carefully adjusting the osmotic gradients and the arrangement of compartments, we can realize a cascade rupture of these individual units, which may be a new step towards controlled mixing and timed sequences of chemical reactions.

  20. FR Performance of New Fire-off on PET/CO blend fabrics

    NASA Astrophysics Data System (ADS)

    Atakan, R.; Çelebi, E.; Ozcan, G.; Soydan, N.; Sarac, A. S.

    2017-10-01

    This paper represents the investigation on flame retardancy performance and durability of polyester/cotton (P/C) fabrics treated with a novel halogen/formaldehyde free, P-N synergetic FR finishing agent called New Fire-off. 100 % Cotton, 100 % Polyester and three different blend P/C fabrics were chosen in this study. Fabric samples were treated with New Fire-off through pad-dry-cure process. Flammability and thermal properties of the treated samples with New Fire-off were tested according to relevant ISO standard and procedures. The obtained results showed that this new finishing formulation is a good char-forming agent. However, further studies are required to achieve washing durability for the P/C blends.

  1. Humans' Relationship to Flowers as an Example of the Multiple Components of Embodied Aesthetics.

    PubMed

    Huss, Ephrat; Bar Yosef, Kfir; Zaccai, Michele

    2018-03-01

    This paper phenomenologically and qualitatively explores the relationship between humans and flowers as a relationship that throws light on the synergetic dynamics of embodied aesthetics. Its methods include qualitative description and thematic analyses of preferred flower types, as well as concept maps of the general term 'flower' by 120 students in Israel. The results revealed the interactive perceptual-compositional elements, as well as embodied, relational, and socially embedded elements of the aesthetic pleasure associated with flowers. Implications of this case study are generalized to understand the multiple and interactive components of embodied aesthetic experiences as a deep source of pleasure through interactive stimulation by and connection to the natural world.

  2. Managing a monotown as a priority social and economic development area

    NASA Astrophysics Data System (ADS)

    Trifonov, Vladimir; Loyko, Olga; Nesteruk, Dmitriy; Zhironkin, Sergey; Strekovtsova, Ekaterina

    2017-01-01

    The goal of the study is studying the specific features of organizing a priority social and economic development area (PSEDA) on the example of PSEDA "Yurga" in Kemerovo region (Russia). The problem is formulated as the question: which institutes, ideas, resources and management technologies may fuel transition to the new stage of the monotown development. The practical task is to determine the promising trends of development of single-industry municipalities on the example of the town of Yurga in Kemerovo region. In the paper we formulate the trends of developing sustainable urban environment of the monotown as of priority social and economic development area for further synergetic integration into higher order structures.

  3. Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S-Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode.

    PubMed

    Chai, Shouning; Wang, Yujing; Zhang, Ya-Nan; Liu, Meichuan; Wang, Yanbin; Zhao, Guohua

    2017-07-18

    To improve selectivity of electrocatalytic degradation of toxic, odorous mercaptans, the fractal-structured dendritic Au/BDD (boron-doped diamond) anode with molecular recognition is fabricated through a facile replacement method. SEM and TEM characterizations show that the gold dendrites are single crystals and have high population of the Au (111) facet. The distinctive structure endows the electrode with advantages of low resistivity, high active surface area, and prominent electrocatalytic activity. To evaluate selectivity, the dendritic Au/BDD is applied in degrading two groups of synthetic wastewater containing thiophenol/2-mercaptobenzimidazole (targets) and phenol/2-hydroxybenzimidazole (interferences), respectively. Results show that targets removals reach 91%/94%, while interferences removals are only 58%/48% in a short time. The corresponding degradation kinetic constants of targets are 3.25 times and 4.1 times that of interferences in the same group, demonstrating modification of dendritic gold on BDD could effectively enhance electrocatalytic target-selectivity. XPS and EXAFS further reveal that the selective electrocatalytic degradation derives from preferential recognition and fast adsorption to thiophenol depending on strong Au-S bond. The efficient, selective degradation is attributed to the synergetic effects between accumulative behavior and outstanding electrochemical performances. This work provides a new strategy for selective electrochemical degradation of contaminants for actual wastewater treatment.

  4. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.

    PubMed

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite-polyetheretherketone (HAP-PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP-PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP-PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.

  6. Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenqi; Ding, Xingeng; Wu, Huating; Yang, Hui

    2018-07-01

    Semiconductor photocatalysis is an effective green way to combat water pollution. For the first time, this study reports a novel method to develop Bi2MoxW1-xO6 solid solution with microsphere structure through anion-exchange method. All Bi2MoxW1-xO6 samples exhibit an Aurivillius-type crystal structure without any secondary phase, confirming that in complete solid solutions as the value of x increases, the band gap energy of Bi2MoxW1-xO6 solid solutions decreases, while the optical absorption edge moves to longer wavelength. The Raman spectra research shows an increase in orthorhombic distortion with progressive replacement of W sites in Bi2WO6 with Mo6+ ions. Compared to Bi2MoO6 and Bi2WO6 samples, Bi2Mo0.4W0.6O6 sample displayed best photocatalytic activity and cycling stability for degradation of RhB dye. The enhanced photocatalytic activity of Bi2Mo0.4W0.6O6 sample can be synergetically linked to hierarchical hollow structure, enhanced light absorbance, and high carrier-separation efficiency. Additionally, the hollow Bi2MoxW1-xO6 microspheres formation can be attributed to the Kirkendall effect.

  7. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    NASA Astrophysics Data System (ADS)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  8. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs.

    PubMed

    Wang, Wenlong; Zhang, Liang; Le, Yuan; Chen, Jian-Feng; Wang, Jiexin; Yun, Jimmy

    2016-02-10

    Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance. PEG-RES and PEG-Glycine-RES nanoparticles were prepared and characterized. The size of the prepared particles was around 50 nm with RES content of 17.2 and 16.3 wt% for PEG-RES and PEG-Glycine-RES, respectively, and BIC loading efficiency were of 81.6% and 84.5%, separately. Release rate of RES from conjugates depended on the stability of ester group against hydrolysis. BIC release was much faster than RES release. The anticancer activity of BIC loaded PEGylated RES nanoparticles was much better than that of free BIC, indicating the conjugates provided a synergetic cytotoxicity to cancer cells. Confocal laser scanning microscopy observation and flow cytometry analyses indicated that PEGylated RES conjugates were more efficiently internalized into cells, released drug into cytoplasm. These results suggest that PEGylated RES conjugates show great potential for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of molecular size and chemical factor on plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  10. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite–polyetheretherketone scaffolds

    PubMed Central

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Xiao, Tao; Shuai, Cijun

    2016-01-01

    A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering. PMID:27555770

  11. Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong; Liu, Yuankun

    2015-03-01

    The gamma-irradiation-induced degradation of antibiotics sulfamethazine (SMT) in sludge mixture was investigated. The results showed that gamma irradiation was effective in removing SMT from contaminated sludge mixture. With an initial SMT concentration of 10 mg/L, the SMT removal efficiency reached 65% at 1.0 kGy and increased to 98% at 2.5 kGy. The SMT degradation rate was lower in the sludge mixture than that in pure water. The pseudo first-order kinetic constant of SMT degradation in pure water was 2.3 times higher than that in the sludge mixture. Analysis of the SMT concentrations in the supernatant and sludge residue revealed that 93-97% of SMT was observed in the supernatant and the detected SMT in the sludge residue was 168±29, 147±4, and 87±9 μg/g dry weight following irradiation at doses of 0, 1.0 and 2.5 kGy, respectively. The sludge solubilization slowly increased from 1.5% to 3.5% with increasing dose from 1.0 to 5.0 kGy, while the sludge activity decreased by 85-98%. Addition of H2O2 exhibited a synergetic effect on the degradation of SMT, with the pseudo first-order kinetic constant k increasing by around 25%.

  12. Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition

    PubMed Central

    Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei

    2013-01-01

    We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183

  13. Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition.

    PubMed

    Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei

    2013-01-01

    We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.

  14. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries.

    PubMed

    Liu, Huiqiao; Cao, Kangzhe; Xu, Xiaohong; Jiao, Lifang; Wang, Yijing; Yuan, Huatang

    2015-06-03

    To inhibit the aggregation of TiO2 nanoparticles and to improve the electrochemical kinetics of TiO2 electrode, a hybrid material of ultrasmall TiO2 nanoparticles in situ grown on rGO nanosheets was obtained by ultraphonic and reflux methods. The size of the TiO2 particles was controlled about 10 nm, and these particles were evenly distributed across the rGO nanosheets. When used for the anode of a sodium ion battery, the electrochemical performance of this hybrid TiO2@rGO was much improved. A capacity of 186.6 mAh g(-1) was obtained after 100 cycles at 0.1 A g(-1), and 112.2 mAh g(-1) could be maintained at 1.0 A g(-1), showing a high capacity and good rate capability. On the basis of the analysis of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the achieved excellent electrochemical performance was mainly attributed to the synergetic effect of well-dispersed ultrasmall TiO2 nanoparticles and conductive graphene network and the improved electrochemical kinetics. The superior electrochemical performance of this hybrid material on lithium storage further confirmed the positive effect of rGO.

  15. Anti-inflammatory effects of interleukin-23 receptor cytokine-binding homology region rebalance T cell distribution in rodent collagen-induced arthritis

    PubMed Central

    Guo, Wei; Yu, Dongmei; Wang, Xin; Luo, Cheng; Chen, Yucong; Lei, Wen; Wang, Chen; Ge, Yaoyao; Xue, Wenyao; Tian, Qiqi; Gao, Xiangdong; Yao, Wenbing

    2016-01-01

    IL-23 is an important cytokine to regulate Th17 cell differentiation and promote the proliferation of inflammatory cells in Th17-mediated autoimmune diseases. The collagen-induced arthritis (CIA) in rat is a model of rheumatoid arthritis characterized by pronounced inflammatory auto-responses from B and T cells, especially Th17 cells in lesions. In the present study, we used rhIL23R-CHR to block the IL-23 signaling pathway to probe the importance of IL-23 in misbalancing the ratio of Th17/Th9/Treg cells in CIA rats. After treatments with rhIL23R-CHR, the CIA rats showed a significant decrease of secretions of IL-17 and IL-9, whereas FoxP3 was activated in the process, indicating that IL-23 can manipulate the balance of Th17/Th9/Treg cells. Similar to the animal model, IL-23 also possessed remarkable proinflammatory effects on human fibroblast-like synoviocyte cells (HFLS), showing synergetic outcomes with TNF-α. Together, IL-23 could act as a modulator to imbalance the ratio of Th17/Th9/Treg cells, and rhIL23R-CHR could serve as a potential therapeutic agent for RA patients. PMID:27177334

  16. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    PubMed

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Continuous hesitant fuzzy aggregation operators and their application to decision making under interval-valued hesitant fuzzy setting.

    PubMed

    Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua

    2014-01-01

    Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.

  18. Continuous Hesitant Fuzzy Aggregation Operators and Their Application to Decision Making under Interval-Valued Hesitant Fuzzy Setting

    PubMed Central

    Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua

    2014-01-01

    Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747

  19. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Zhang, Peng; Fan, Jiajie; Hu, Junhua; Shao, Guosheng

    2018-02-01

    Advanced materials for photoelectrochemical H2 production are important to the field of renewable energy. Despite great efforts have been made, the present challenge in materials science is to explore highly active photocatalysts for splitting of water at low cost. In this work, we report a new composite material consisting of 2D layered MoS2 nanosheets grown on the presence of TiO2/WO3 nanofibers (TW) as a high-performance photocatalyst for H2 evolution. This composite material was prepared by a two-step simple process of electrospinning and hydrothermal. We found that the as-prepared TiO2/WO3@MoS2 (TWM) hybrid exhibited superior photocatalytic activity in the hydrogen evolution reaction (HER) even without the noble metal-cocatalyst. Importantly, the TiO2/WO3@MoS2 heterostructure with 60 wt% of MoS2 exhibits the highest hydrogen production rate. This great improvement is attributed to the positive synergetic effect between the WO3 and MoS2 components in this hybrid cocatalyst, which serve as hole collector and electron collector, respectively. Moreover, the effective charge separation was directly proved by ultraviolet photoelectron spectroscopy, electrochemical impedance spectroscopy, and photocurrent analysis.

  20. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells.

    PubMed

    Shi, Yan-Qiu; Qu, Xian-Jun; Liao, Yong-Xiang; Xie, Chun-Feng; Cheng, Yan-Na; Li, Song; Lou, Hong-Xiang

    2008-04-14

    Plagiochin E is a new macrocyclic bisbibenzyl compound isolated from Marchantia polymorpha. In the previous studies, we reported that when combined with fluconazole, plagiochin E had synergetic effects against the resistant strain of Candida albicans. Herein, we examined the reversal effect of plagiochin E on multidrug resistance in adriamycin-induced resistant K562/A02 cells and the parental K562 cells. Its cytotoxicity and reversal effects on multidrug resistance were assessed by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) assay. Apoptosis percentage of cells was obtained from Annexin V/fluorescein isothiocyanate (FITC) and propridium iodide (PI) double-staining. The effects of plagiochin E on P-glycoprotein activity were evaluated by measuring rhodamine 123 (Rh123)-associated mean fluorescence intensity and P-glycoprotein expression on the basis of the flow cytometric technology, respectively. The results showed that plagiochin E ranging from 2 to 12 mug/ml had little cytotoxicity against K562/A02 cells. When combined with adriamycin, it significantly promoted the sensitivity of K562/A02 cells toward adriamycin through increasing intracellular accumulation of adriamycin in a dose-dependent manner. Further study demonstrated that the inhibitory effect of plagiochin E on P-glycoprotein activity was the major cause of increased stagnation of adriamycin inside K562/A02 cells, indicating that plagiochin E, as a new class of mutidrug resistance inhibitor, may effectively reverse the multidrug resistance in K562/A02 cells via inhibiting expression and drug-transport function of P-glycoprotein.

  1. Research on the reasonable pile spacing of micro pile composite soil nailing

    NASA Astrophysics Data System (ADS)

    Liu, Jun yan; Liu, Yan; Song, Xiang hua

    2017-08-01

    Through the numerical simulation software FLAC3D, study on the synergetic effect of micro pile composite soil nailing will be studied. By adjusting the micro pile spacing and analysing the displacement field and stress field of soil, we can find that supporting effect of the soil nail hasn’t work yet when the micro pile spacing is 2D. The soil arching between piles has been formed in the pile spacing 4D ∼ 6D. The composite effect of micro pile and soil nailing will be the best and the soil arch behind piles will be firstly formed in 6D, the horizontal saddle soil arch will be formed between the nails. The nail head coincidence pressure area and micro pile pressure area are overlapping to maintain stability in the soil between piles. When the micro pile spacing is 9D, the arch behind piles will be failure, the soil flows around, but the saddle arch between the nails into circular arch, the supporting effect of the soil nailing is enhanced. When the micro pile spacing is 12D, the arch of the nails becomes smaller, sliding surface appears primitively. Based on the conclusions above, it is suggested that the micro pile spacing between 2D ∼ 6D is suitable for the micro pile and soil nailing composite support. The conclusion can provide theoretical basis for the design and construction of micro pile composite soil nailing.

  2. Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds.

    PubMed

    Edraki, Mitra; Akbarzadeh, Armin; Hosseinzadeh, Massood; Tanideh, Nader; Salehi, Alireza; Koohi-Hosseinabadi, Omid

    2014-07-01

    The purpose of this study is to evaluate the healing effect of silver sulfadiazine (SSD), sea buckthorn, olive oil, and 5% sea buckthorn and olive oil mixture on full-thickness burn wounds with respect to both gross and histopathologic features. Full-thickness burns were induced on 60 rats; the rats were then were divided into 5 groups and treated with sea buckthorn, olive oil, a 5% sea buckthorn/olive oil mixture, SSD, and normal saline (control). They were observed for 28 days, and the wounds' healing process was evaluated. Wound contraction occurred faster in sea buckthorn, olive oil, and the sea buckthorn/olive oil mixture groups compared with the SSD and control groups. The volume of the exudates was controlled more effectively in wounds treated with the sea buckthorn/olive oil mixture. Purulent exudates were observed in the control group, but the others did not show infection. The group treated with sea buckthorn/olive oil mixture revealed more developed re-epithelialization with continuous basement membrane with a mature granulation tissue, whereas the SSD-treated group showed ulceration, necrosis, and immature granulation. The results show that sea buckthorn and olive oil individually are proper dressing for burn wounds and that they also show a synergetic effect when they are used together. A sea buckthorn and olive oil mixture could be considered as an alternative dressing for full-thickness burns because of improved wound healing characteristics and antibacterial property.

  3. Enhancement of the depigmenting effect of hydroquinone and 4-hydroxyanisole by all-trans-retinoic acid (tretinoin): the impairment of glutathione-dependent cytoprotection?

    PubMed

    Kasraee, Behrooz; Handjani, Farhad; Aslani, Fatemeh S

    2003-01-01

    Many of the well-known depigmenting agents such as hydroquinone and 4-hydroxyanisole are, in fact, melanocytotoxic chemicals which are oxidized in melanocytes to produce highly toxic compounds such as quinones. These cytotoxic compounds are responsible for the destruction of pigment cells, which results in skin depigmentation. However, cells are capable of protecting themselves against cytotoxic agents by intracellular glutathione (GSH). This protection takes place under the enzymatic action of the detoxification enzyme glutathione S-transferase (GST), which is responsible for the conjugation of toxic species to GSH. The depigmenting effect of hydroquinone is shown to be potentiated by buthionine sulfoximine (BSO) and cystamine as the result of the reduction of intracellular levels of GSH by these two agents. Additionally, BSO and cystamine are shown to inhibit the activity of GST. The combination of all-trans-retinoic acid (tretinoin, TRA) with hydroquinone or 4-hydroxyanisole is also known to produce synergetic skin depigmentation. TRA serves as a potent inhibitor of mammalian GSTs and is known to make cells more susceptible to the cytotoxic effect of chemicals by inhibiting the activity of this enzyme. This agent is also shown to reduce the level of intracellular GSH in certain cells. We have proposed that the mechanism of action of TRA to synergistically enhance the melanocytotoxic effect of chemicals involves the inhibition of GST and the impairment of glutathione-dependent cytoprotection against melanocytotoxic agents. Copyright 2003 S. Karger AG, Basel

  4. Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Zhaoyue; Zhang, Tierui; Zhai, Jin; Jiang, Lei

    2013-06-01

    TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%.TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%. Electronic supplementary information (ESI) available: Morphology images of TiO2 nanotubular arrays crystallized by hydrothermal solid-liquid reaction at 130 °C, 160 °C and 180 °C for 4 h. Cross-sectional image of TiO2 nanotubular arrays prepared by anodizing Ti foil at 20 V for 20 min in 0.5 wt% HF solution followed by drying in air at 100 °C for 1 h; Photocurrent density-potential curves of TiO2 nanotubular arrays crystallized by thermal annealing at 450 °C and atmospheric pressure for 4 h. See DOI: 10.1039/c3nr01286g

  5. Multi-disciplinary coupling effects for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  6. Interactive effects of microcystin and ammonia on the reproductive performance and phenotypic traits of the rotifer Brachionus calyciflorus.

    PubMed

    Liang, Ye; Lu, Xuxin; Min, Yuanqi; Liu, Lulu; Yang, Jiaxin

    2018-01-01

    Elevated microcystin-LR (MC-LR) and ammonia (NH 3 -N) concentrations co-occur during the degradation of Microcystis blooms, and are toxic to aquatic organisms. The freshwater rotifer, Brachionus calyciflorus, was exposed to mixtures of MC-LR (0, 10, 30, and 100µgL -1 ) and NH 3 -N (0, 270, and 540µgL -1 ) to assess the combined effects of the two toxicants on reproductive performance and phenotype traits. Single solutions of MC-LR (100µgL -1 ) and NH 3 -N (540µgL -1 ) had negative effects on rotifer reproductive timing and fecundity. Pre- and post-reproductive periods fluctuated with MC-LR and NH 3 -N concentrations, while reproductive period and total offspring per female were reduced in mixtures of MC-LR and NH 3 -N (p < 0.05). Grazing rate of rotifers decreased with grazing time and concentrations of the two toxicants (p < 0.001). MC-LR in combination with NH 3 -N had negative effects on swimming speed and body length but positively stimulated posterolateral spine development (p < 0.001). MC-LR and NH 3 -N had synergetic interactive effects on pre-reproductive period, reproductive period, total offspring per female, grazing rate, swimming speed, and body length (p < 0.05). In contrast, these effects were antagonistic on post-reproductive period and posterolateral spine length (p > 0.05). These results indicate that MC-LR and NH 3 -N act synergistically and antagonistically in causing toxicity to B. calyciflorus regarding reproductive performance and the formation of defensive phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer.

    PubMed

    Zhang, Jin-Liang; Liu, Min; Yang, Qing; Lin, Shi-Yong; Shan, Hong-Bo; Wang, Hui-Yun; Xu, Guo-Liang

    2017-04-14

    To explore the effects of omeprazole on chemoradiotherapy efficacy and tumor recurrence in rectal cancer. The medical data of 125 rectal cancer patients who received the same neoadjuvant chemoradiotherapy (CRT) followed by surgery were retrospectively collected. Patients who received omeprazole (OME) orally at a dose of 20 mg at least once daily for six days and/or intravenously at 40 mg a day were recognized as eligible OME users (EOU). Otherwise, patients were regarded as non-eligible OME users (non-EOU). Moreover, a preferred OME dose cut-off of 200 mg on tumor recurrence was obtained by receiver operating characteristic (ROC) curves. Patients were divided into two groups: the effective OME group (EOG, OME ≥ 200 mg) and the non-effective OME group (non-EOG, OME < 200 mg). The good response rate of CRT efficacy (50.8%) in EOU was significantly increased compared with non-EOU (30.6%) ( P = 0.02). The recurrence rate in the EOG was 10.3%, which was significantly lower compared with 31.3% in non-EOG ( P = 0.025). The good response rate of CRT efficacy in EOG was 55.2%, which was obviously higher compared with 36.5% in non-EOG, with a significant difference ( P = 0.072). Multivariate Cox analysis demonstrated that OME (non-EOG and EOG) was an independent and significant impact factor for DFS ( P = 0.048, HR = 0.30, 95%CI: 0.09-0.99). When applied as an adjuvant drug in cancer treatment for relieving common side effects of chemotherapy, omeprazole has a synergetic effect in improving CRT efficacy and decreasing rectal cancer recurrence.

  8. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes. Electronic supplementary information (ESI) available: EDAX, XRD, and SEM images. See DOI: 10.1039/c0nr00106f

  9. Singular perturbation analysis of AOTV-related trajectory optimization problems

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1990-01-01

    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.

  10. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris.

    PubMed

    He, Zhenggui; Zhang, Lujia; Mao, Youzhi; Gu, Jingchao; Pan, Qi; Zhou, Sixing; Gao, Bei; Wei, Dongzhi

    2014-12-24

    Fungal amylase, mainly constitute of fungal α-amylase and glucoamylase, are utilized in a broad range of industries, such as starch hydrolysis, food and brewing. Although various amylases have been found in fungi, the amylases from Aspergillus dominate the commercial application. One of main problems exist with regard to these commercial use of amylases is relatively low thermal and acid stability. In order to maximize the efficiency of starch process, developing fungal amylases with increased thermostability and acid stability has been attracting researchers' interest continually. Besides, synergetic action of glucoamylase and α-amylase could facilitate the degradation of starch. And co-expressing glucoamylase with α-amylase in one host could avoid the need to ferment repeatedly and improves cost-effectiveness of the process. A novel fungal glucoamylase (RpGla) gene encoding a putative protein of 512 amino acid residues was cloned from Rhizomucor pusillus. BLAST analysis revealed that RpGla shared highest identity of 51% with the Rhizopus oryzae glucoamylase (ABB77799.1). The fungal glucoamylase RpGla was expressed in Pichia pastoris (KM71/9KGla) with maximum activity of 1237 U ml(-1). The optimum pH and temperature of RpGla were pH 4.0 and 70 °C, respectively. Fungal α-amylase (RpAmy) gene was also cloned from R. pusillus and transformed into KM71/9KGla, resulted in recombinant yeast KM71/9KGla-ZαAmy harboring the RpGla and RpAmy genes simultaneously. The maximum saccharogenic activity of KM71/9KGla-ZαAmy was 2218 U ml(-1), which improved 79% compared to KM71/9KGla. Soluble starch hydrolyzed by purified RpGla achieved 43% glucose and 34% maltose. Higher productivity was achieved with a final yield of 48% glucose and 47% maltose catalyzed by purified enzyme preparation produced by KM71/9KGla-ZαAmy. A novel fungal glucoamylase and fungal α-amylase genes were cloned from Rhizomucor pusillus. The two enzymes showed good thermostability and acid stability, and similar biochemical properties facilitated synergetic action of the two enzymes. A dramatic improvement was seen in amylase activity through co-expressing RpGla with RpAmy in Pichia pastoris. This is the first report of improving activity through co-expression glucoamylase with α-amylase in P. pastoris. Besides, fungal glucoamylase and α-amylase from R. pusillus were shown as promising candidates for further application in starch hydrolysis.

  11. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke.

    PubMed

    Wu, Hai-Yin; Tang, Ying; Gao, Li-Yan; Sun, Wei-Xiang; Hua, Yao; Yang, Shi-Bao; Zhang, Zheng-Ping; Liao, Gao-Yong; Zhou, Qi-Gang; Luo, Chun-Xia; Zhu, Dong-Ya

    2014-10-05

    Free radical production contributes to the early ischemic response and the neuroinflammatory response to injury initiates the second wave of cell death following ischemic stroke. Edaravone is a free radical scavenger, and borneol has shown anti-inflammatory effect. We investigated the synergistic effect of these two drugs in the rat model of transient cerebral ischemia. Edaravone scavenged OH, NO and ONOO─ concentration-dependently, and borneol inhibited ischemia/reperfusion-induced tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) expressions. In the rat model of transient cerebral ischemia and reperfusion, the combination of edaravone and borneol significantly ameliorated ischemic damage with an optimal proportion of 4:1. Emax (% inhibition) of edaravone, borneol and two drugs in combination was 55.7%, 65.8% and 74.3% respectively. ED50 of edaravone and borneol was 7.17 and 0.36 mg/kg respectively. When two drugs in combination, ED50 was 0.484 mg/kg, in which edaravone was 0.387 mg/kg (ineffective dose) and borneol was 0.097 mg/kg (ineffective dose). Combination index (CI)<1 among effects observed in experiments, suggesting a significant synergistic effect. Reduced levels of pro-inflammatory mediators and free radicals were probably associated with the synergistic effect of edaravone and borneol. The combination exhibited a therapeutic time window of 6h in ischemia/reperfusion model, and significantly ameliorated damages in permanent ischemia model. Moreover, two drugs in combination promoted long-term effect, including improved elemental vital signs, sensorimotor functions and spatial cognition. Our results suggest that the combination of edaravone and borneol have a synergistic effect for treating ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Threshold and flavor effects in the renormalization group equations of the MSSM: Dimensionless couplings

    NASA Astrophysics Data System (ADS)

    Box, Andrew D.; Tata, Xerxes

    2008-03-01

    In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge (Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we calculate the β functions using a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY cousins that is ignored in the literature may be larger than two-loop effects which are included, and further that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a companion paper.

  13. Experimental Results from a Flat Plate, Turbulent Boundary Layer Modified for the Purpose of Drag Reduction

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.

    2006-11-01

    Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.

  14. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei

    2018-07-01

    Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS2/Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS2/Ag. The developed 1T@2H-MoS2/Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS2, the catalytic efficiency of 1T@2H-MoS2/Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS2. The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.

  16. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots.

    PubMed

    Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei

    2018-07-13

    Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS 2 /Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS 2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS 2 /Ag. The developed 1T@2H-MoS 2 /Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS 2 , the catalytic efficiency of 1T@2H-MoS 2 /Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS 2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS 2 . The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.

  17. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    NASA Astrophysics Data System (ADS)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-05-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  18. Enhancing Specific Energy and Power in Asymmetric Supercapacitors - A Synergetic Strategy based on the Use of Redox Additive Electrolytes

    PubMed Central

    Singh, Arvinder; Chandra, Amreesh

    2016-01-01

    The strategy of using redox additive electrolyte in combination with multiwall carbon nanotubes/metal oxide composites leads to a substantial improvements in the specific energy and power of asymmetric supercapacitors (ASCs). When the pure electrolyte is optimally modified with a redox additive viz., KI, ~105% increase in the specific energy is obtained with good cyclic stability over 3,000 charge-discharge cycles and ~14.7% capacitance fade. This increase is a direct consequence of the iodine/iodide redox pairs that strongly modifies the faradaic and non-faradaic type reactions occurring on the surface of the electrodes. Contrary to what is shown in few earlier reports, it is established that indiscriminate increase in the concentration of redox additives will leads to performance loss. Suitable explanations are given based on theoretical laws. The specific energy or power values being reported in the fabricated ASCs are comparable or higher than those reported in ASCs based on toxic acetonitrile or expensive ionic liquids. The paper shows that the use of redox additive is economically favorable strategy for obtaining cost effective and environmentally friendly ASCs. PMID:27184260

  19. Climatic influences on the breeding biology of the agile frog ( Rana dalmatina)

    NASA Astrophysics Data System (ADS)

    Combes, Magali; Pinaud, David; Barbraud, Christophe; Trotignon, Jacques; Brischoux, François

    2018-02-01

    Severe population declines of amphibians have been shown to be attributed to climate change. Nevertheless, the various mechanisms through which climate can influence population dynamics of amphibians remain to be assessed, notably to disentangle the relative synergetic or antagonistic influences of temperature and precipitations on specific life history stages. We investigated the impact of rainfall and temperature on the egg-clutch abundance in a population of agile frog ( Rana dalmatina) during 29 years (1987-2016) on 14 breeding sites located in Brenne Natural Park, France. Specifically, we examined the influence of environmental conditions occurring during five temporal windows of the year cycle corresponding to specific life history stages. Overall, our results suggest that the year-to-year fluctuations of egg-clutch abundances in Brenne Natural Park were partly dependent on local climatic conditions (rainfall and temperature). Climate seemed to influence breeding frogs during the autumn-winter period preceding reproduction. Spring and summer conditions did not influence reproduction. Additionally, we failed to detect effects of climatic conditions on newly metamorphosed individuals. Other factors such as density dependence and inter-specific interactions with introduced predators are likely to play a significant role in reproduction dynamics of the studied frog populations.

  20. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.

    PubMed

    Hu, Yandong; Werner, Carsten; Li, Dongqing

    2004-12-15

    Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.

Top