Science.gov

Sample records for synergistically induces apoptosis

  1. Gambogenic acid synergistically potentiates bortezomib-induced apoptosis in multiple myeloma

    PubMed Central

    Chen, Runzhe; Zhang, Hongming; Liu, Ping; Wu, Xue; Chen, Baoan

    2017-01-01

    Background: Although the introduction of protease inhibitor bortezomib (BTZ) and immunomodulatory agent lenalidomide has led to improved outcomes in patients with multiple myeloma (MM), the disease remains incurable. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional Chinese medicine gamboge, has been reported to have potent antitumor activity and can effectively inhibit the survival and proliferation of cancer. In this study, we hypothesized that GNA could synergistically potentiate BTZ-induced apoptosis of MM cells and that combining BTZ and GNA may provide a more effective approach to treat MM. Hence, we investigate the in vitro and in vivo effects of BTZ and GNA, alone or in combination, against myeloma MM.1S cells. Methods: Cell counting kit-8 (CCK-8) assay, combination index (CI) isobologram, flow cytometry, western blot, xenograft tumor models, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and immunochemistry were used in this study. Results: The results showed that BTZ and GNA combination treatment resulted in a strong synergistic action against the MM.1S cell line. Increased G2/M phase cells were triggered by BTZ, GNA and the combined treatment. The combined treatment could induce more markedly apoptosis of MM.1S cells via the activation of PARP cleavage, P53, Caspase-3 cleavage and Bax and inhibition of Bcl-2 expression. An increased antitumor effects of combination therapy of BTZ and GNA on MM.1S xenograft models were observed, and combining BTZ and GNA was found to be superior to a single agent. Conclusions: Our data support that a synergistic antitumor activity exists between BTZ and GNA, and provide a rationale for successful utilization of dual BTZ and GNA in MM chemotherapy in the future. PMID:28382147

  2. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    SciTech Connect

    Martinotti, Simona; Ranzato, Elia; Parodi, Monica; Vitale, Massimo; Burlando, Bruno

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  3. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma.

    PubMed

    Lin, Shibo; Hoffmann, Katrin; Gao, Chao; Petrulionis, Marius; Herr, Ingrid; Schemmer, Peter

    2017-02-08

    Melatonin has been shown to exert anticancer activity on hepatocellular carcinoma (HCC) through its antiproliferative and pro-apoptotic effect in both experimental and clinical studies, and sorafenib is the only approved drug for the systemic treatment of HCC. Thus, this study was designed to investigate the combined effect of melatonin and sorafenib on proliferation, apoptosis, and its possible mechanism in human HCC. Here, we found that both melatonin and sorafenib resulted in a dose-dependent growth inhibition of HuH-7 cells after 48 hours treatment, and the combination of them enhanced the growth inhibition in a synergistic manner. Colony formation assay indicated that co-treatment of HuH-7 cells with melatonin and sorafenib significantly decreased the clonogenicity compared to the treatment with single agent. Furthermore, FACS and TUNEL assay confirmed that melatonin synergistically augmented the sorafenib-induced apoptosis after 48 hours incubation, which was in accordance with the activation of caspase-3 and the JNK/c-jun pathway. Inhibition of JNK/c-jun pathway with its inhibitor SP600125 reversed the phosphorylation of c-jun and the activation of caspase-3 induced by co-treatment of HuH-7 cells with melatonin and sorafenib in a dose-dependent manner. Furthermore, SP600125 exhibited protective effect against apoptosis induced by the combination of melatonin and sorafenib. This study demonstrates that melatonin in combination with sorafenib synergistically inhibits proliferation and induces apoptosis in human HCC cells; therefore, supplementation of sorafenib with melatonin may serve as a potential therapeutic choice for advanced HCC.

  4. Intracellular Ca2+ elevation and cyclosporin A synergistically induce TGF-beta 1-mediated apoptosis in lymphocytes.

    PubMed

    Andjelíc, S; Khanna, A; Suthanthiran, M; Nikolić-Zugić, J

    1997-03-15

    Apoptosis plays an essential role in the development and homeostasis of the immune system. During lymphocyte development, potentially autoreactive cells are eliminated via the activation of a tightly regulated cell death program(s). Similar processes operate in mature lymphocytes, to control the magnitude of the normal immune response by eliminating activated lymphocytes. However, differences in susceptibility to signal-induced apoptosis between immature and mature lymphocytes are numerous. One well-characterized example occurs in response to Ca2+ elevation: peripheral T lymphocytes are resistant, while immature thymocytes are highly susceptible, to Ca2+-mediated cell death (CMCD). In this study, we show that the immunosuppressant cyclosporin A (CsA) primes splenic lymphocytes to undergo CMCD upon ionomycin stimulation. This CsA-induced CMCD affected both T and B lymphocytes. CsA-plug Ca2+-mediated apoptosis was dissected into a two-step process: first, CsA and Ca2+ synergized to induce TGF-beta 1 secretion by B cells; and then TGF-beta 1 and Ca2+ synergistically triggered T and B lymphocyte apoptosis. Together, our results suggest that lymphocyte apoptosis may play a role in CsA-induced immunosuppression via a TGF-beta-dependent mechanism.

  5. Synergistic Apoptosis-Inducing Effects on A375 Human Melanoma Cells of Natural Borneol and Curcumin

    PubMed Central

    Chen, Jianping; Li, Lin; Su, Jianyu; Li, Bing; Chen, Tianfeng; Wong, Yum-Shing

    2014-01-01

    This study was to investigate the synergistic effect of NB/Cur on growth and apoptosis in A375 human melanoma cell line by MTT assay, flow cytometry and Western blotting. Our results demonstrated that NB effectively synergized with Cur to enhance its antiproliferative activity on A375 human melanoma cells by induction of apoptosis, as evidenced by an increase in sub-G1 cell population, DNA fragmentation, PARP cleavage and caspase activation. Further mechanistic studies by Western blotting showed that after treatment of the cells with NB/Cur, up-regulation of the expression level of phosphorylated JNK and down-regulation of the expression level of phosphorylated ERK and Akt contributed to A375 cells apoptosis. Moreover, NB also potentiated Cur to trigger intracellular ROS overproduction and the DNA damage with up-regulation of the expression level of phosphorylated ATM, phosphorylated Brca1 and phosphorylated p53. The results indicate the combinational application potential of NB and Cur in treatments of cancers. PMID:24971451

  6. Suberoylanilide hydroxamic acid (SAHA) and cladribine synergistically induce apoptosis in NK-LGL leukaemia.

    PubMed

    Sun, Xiaoshen; Hasanali, Zainul S; Chen, Allshine; Zhang, Dianzheng; Liu, Xin; Wang, Hong-Gang; Feith, David J; Loughran, Thomas P; Xu, Kailin

    2015-02-01

    Natural killer (NK) large granular lymphocyte (LGL) leukaemia features a clonal proliferation of CD3(-) NK cells that can be classified into either aggressive or chronic categories. The NKL cell line, derived from an aggressive Asian NK cell leukaemia, and patient samples from chronic NK-LGL leukaemia were used in our study to probe for synergistic efficacy of the epigenetic drugs vorinostat (SAHA) and cladribine in this disease. We demonstrate that histone deacetylases (HDACs) are over-expressed in both aggressive and chronic NK leukaemia. Administration of the HDAC inhibitor SAHA reduces class I and II HDAC expression and enhances histone acetylation in leukaemic NK cells. In vitro combination treatment with SAHA and cladribine dose-dependently exerts synergistic cytotoxic and apoptotic effects on leukaemic NK cells. Expression profiling of apoptotic regulatory genes suggests that both compounds led to caspase-dependent apoptosis through activation of intrinsic mitochondrial and extrinsic death receptor pathways. Collectively, these data show that combined epigenetic therapy, using HDAC and DNA methyltransferase inhibitors, may be a promising therapeutic approach for NK-LGL leukaemia.

  7. Ascorbic Acid and a Cytostatic Inhibitor of Glycolysis Synergistically Induce Apoptosis in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Vuyyuri, Saleha B.; Rinkinen, Jacob; Worden, Erin; Shim, Hyekyung; Lee, Sukchan; Davis, Keith R.

    2013-01-01

    Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis

  8. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    NASA Astrophysics Data System (ADS)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  9. Oblongifolin C and guttiferone K extracted from Garcinia yunnanensis fruit synergistically induce apoptosis in human colorectal cancer cells in vitro

    PubMed Central

    Li, Hui; Meng, Xiao-xiao; Zhang, Li; Zhang, Bao-jun; Liu, Xin-yu; Fu, Wen-wei; Tan, Hong-sheng; Lao, Yuan-zhi; Xu, Hong-xi

    2017-01-01

    Oblongifolin C (OC) and guttiferone K (GUTK) are two anticancer compounds extracted from Garcinia yunnanensis Hu, but they act by different mechanisms. In this study we investigated whether a combination of OC and GUTK (1:1 molar ratio) could produce synergistic anticancer effects against human colorectal cancer cells in vitro. For comparison, we also examined the anticancer efficacy of ethanol extracts from G yunnanensis fruit, which contain OC and GUTK up to 5%. Compared to OC and GUTK alone, the combination of OC and GUTK as well as the ethanol extracts more potently inhibited the cancer cell growth with IC50 values of 3.4 μmol/L and 3.85 μg/mL, respectively. Furthermore, OC and GUTK displayed synergistic inhibition on HCT116 cells: co-treatment with OC and GUTK induced more prominent apoptosis than treatment with either drug alone. Moreover, the combination of OC and GUTK markedly increased cleavage of casapse-3 and PARP, and enhanced cellular ROS production and increased JNK protein phosphorylation. In addition, the combination of OC and GUTK exerted stronger effects under nutrient-deprived conditions than in complete medium, suggesting that autophagy played an essential role in regulating OC- and GUTK-mediated cell death. OC and GUTK are the main components that contribute to the anticancer activity of G yunnanensis and the compounds have apoptosis-inducing effects in HCT116 cells in vitro. PMID:27840412

  10. Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol

    PubMed Central

    Banerjee, Bhaswati; Chakraborty, Supriya; Ghosh, Debidas; Raha, Sanghamitra; Sen, Parimal C.; Jana, Kuladip

    2016-01-01

    Benzo(a)pyrene (B(a)P) is an environmental toxicant that induces male germ cell apoptosis. Curcumin and resveratrol are phytochemicals with cytoprotective and anti-oxidative properties. At the same time resveratrol is also a natural Aryl hydrocarbon Receptor (AhR) antagonist. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted the synergistic protective effect of curcumin and resveratrol against B(a)P induced p53 mediated germ cell apoptosis. Curcumin-resveratrol significantly prevented B(a)P induced decrease in sperm cell count and motility, as well as increased serum testosterone level. Curcumin-resveratrol co-treatment actively protected B(a)P induced testicular germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3, 8 and 9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, and Apaf1. B(a)P induced testicular reactive oxygen species (ROS) generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 (Cytochrome P4501A1) expression. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ

  11. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    PubMed Central

    Belyanskaya, Larisa L; Marti, Thomas M; Hopkins-Donaldson, Sally; Kurtz, Stefanie; Felley-Bosco, Emanuela; Stahel, Rolf A

    2007-01-01

    Background The incidence of malignant pleural mesothelioma (MPM) is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1) or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab) and TRAIL-R2 (Lexatumumab) and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM. PMID:17953743

  12. Citrate and celecoxib induce apoptosis and decrease necrosis in synergistic manner in canine mammary tumor cells.

    PubMed

    Vahidi, R; Safi, S; Farsinejad, A; Panahi, N

    2015-10-16

    Celecoxib and citrate have been shown to possess antitumor activity in a variety of cancer cells. However, the antitumor activities of these agents in canine mammary tumors have not been well demonstrated. The aim of our study was to investigate the apoptotic and antiproliferative effects of citrate and celecoxib, individually and in combination, on canine mammary tumor cell line CF41—Mg. MTT assay was performed to determine cell viability, and Annexin—PI test was performed to evaluate apoptosis induction. MTT assay results revealed that compared with the control groups, treatment groups, as both single and combined treatments, showed significant inhibition of tumor growth in a dose—dependent manner. IC50 concentrations of citrate and celecoxib were defined 26mM and 22μM, respectively. In another set of experiment, significant increase in cell apoptosis was observed at IC50 concentrations of citrate and celecoxib after 48h incubation. In spite of that, simultaneous treatment of cells with citrate and celecoxib eventuated with meaningful toxicity augmentation and induction of apoptosis at lower concentrations. Also necrotic cells were decreased by coadministration of the two agents. In conclusion, the present study indicates significant cytotoxic and apoptotic effects of citrate and celecoxib coadministration on CF41—Mg cells, and proposes new strategies for counteracting cancer cells proliferation and overcoming chemo resistance.

  13. Synergistic Apoptosis-Inducing Antileukemic Effects of Arsenic Trioxide and Mucuna macrocarpa Stem Extract in Human Leukemic Cells via a Reactive Oxygen Species-Dependent Mechanism

    PubMed Central

    Lu, Kuan-Hung; Lee, Hui-Ju; Huang, Min-Li; Lai, Shang-Chih; Ho, Yu-Ling; Chang, Yuan-Shiun; Chi, Chin-Wen

    2012-01-01

    The objective of this study was to examine the potential of enhancing the antileukemic activity of arsenic trioxide (ATO) by combining it with a folk remedy, crude methanolic extract of Mucuna macrocarpa (CMEMM). Human leukemia cells HL-60, Jurkat, and Molt-3 were treated with various doses of ATO, CMEMM, and combinations thereof for 24 and 48 h. Results indicated that the combination of 2.5 μM ATO and 50 μg/mL CMEMM synergistically inhibited cell proliferation in HL-60 and Jurkat cell lines. Apoptosis triggered by ATO/CMEMM treatment was confirmed by accumulation of cells in the sub-G1 phase in cell cycle analyses, characteristic apoptotic nuclear fragmentation, and increased percentage of annexin V-positive apoptotic cells. Such combination treatments also led to elevation of reactive oxygen species (ROS). The antioxidants N-acetyl cysteine (NAC), butylated hydroxytoluene, and α-tocopherol prevented cells from ATO/CMEMM-induced apoptosis. The ATO/CMEMM-induced activation of caspase-3 and caspase-9 can be blocked by NAC. In summary, these results suggest that ATO/CMEMM combination treatment exerts synergistic apoptosis-inducing effects in human leukemic cells through a ROS-dependent mechanism and may provide a promising antileukemic approach in the future. PMID:21826188

  14. The PI3K inhibitor GS-1101 synergistically potentiates HDAC inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and ERK pathways

    PubMed Central

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T.; Portell, Craig A.; Lannutti, Brian J.; Almasan, Alexandru; Hsi, Eric D.

    2013-01-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines and primary Non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic. PMID:23889282

  15. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2015-12-10

    Glioblastoma is the most lethal brain tumor. Failure of conventional chemotherapies prompted the search for natural compounds for treatment of glioblastoma. Plant-derived flavonoids could be alternative medicine for inhibiting not only glioblastoma cells but also glioblastoma stem cells (GSC). Two plant-derived flavonoids are luteolin (LUT) and silibinin (SIL). We investigated anti-tumor mechanisms of LUT and SIL in different human glioblastoma cells and GSC and found significant synergistic inhibition of human glioblastoma LN18 and SNB19 cells and GSC following treatment with combination of 20µM LUT and 50µM SIL. Combination of 20µM LUT and 50µM SIL was more effective than a conventional chemotherapeutic agent (BCNU or TMZ). We continued our studies with SNB19 cells and GSC and found dramatic inhibition of cell migration from spheroids and also cell invasion through matrigel following treatment with combination of LUT and SIL. This combination was highly effective to block angiogenesis and survival pathways leading to induction of apoptosis. Inhibition of PKCα, XIAP, and iNOS ultimately caused induction of extrinsic and intrinsic pathways of apoptosis. Collectively, synergistic efficacy of LUT and SIL could be a promising therapy to inhibit cell migration and invasion and induce apoptosis in different glioblastoma cells including GSC.

  16. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  17. Inhibition of γ-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5

    PubMed Central

    Greene, Lisa M.; Nathwani, Seema M.; Zisterer, Daniela M.

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID). Clinical trials of γ-secretase small molecule inhibitors (GSIs) as single agents for the treatment of T-ALL have been unsuccessful. The present study demonstrated, using immunofluorescence and western blotting, that blocking γ-secretase activity in T-ALL cells with N-[(3,5-difluorophenyl) acetyl]-L-alanyl-2-phenyl] glycine-1,1-dimethylethyl ester (DAPT) downregulated NCID and upregulated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5). Upregulation of DR5 restored the sensitivity of T-ALL cells to TRAIL. Combination index revealed that the combined treatment of DAPT and TRAIL synergistically enhanced apoptosis compared with treatment with either drug alone. TRAIL combined with the clinically evaluated γ-secretase inhibitor 3-[(1r, 4s)-4-(4-chlorophenylsulfonyl)-4-(2, 5-difluorophenyl) cyclohexyl] propanoic acid (MK-0752) also significantly enhanced TRAIL-induced cell death compared with either drug alone. DAPT/TRAIL apoptotic synergy was dependent on the extrinsic apoptotic pathway and was associated with a decrease in BH3 interacting-domain death agonist and x-linked inhibitor of apoptosis. In conclusion, γ-secretase inhibition represents a potential therapeutic strategy to overcome TRAIL resistance for the treatment of T-ALL. PMID:27698877

  18. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A.

    PubMed

    Lu, Mei-Chin; Du, Ying-Chi; Chuu, Jiunn-Jye; Hwang, Shiuh-Lin; Hsieh, Pao-Chuan; Hung, Chih-Sheng; Chang, Fang-Rong; Wu, Yang-Chang

    2009-02-01

    The endemic species of Antrodia camphorate (AC) is a promising chemotherapeutic drug for cancer. We found that the ethanol extract from wild fruiting bodies of Antrodia camphorata (EEAC) could induce HL 60 cells apoptosis via histone hypoacetylation, up-regulation of histone deacetyltransferase 1 (HDAC 1), and down-regulation of histone acetyltransferase activities including GCN 5, CBP and PCAF in dose-dependent manner. In combination with histone deacetylase inhibitor, trichostatin A (TSA), did not block EEAC-induced apoptosis. Interestingly, combined treatment (100 nM of TSA and 100 microg/ml EEAC) caused synergistic inhibition of cell growth and increase of apoptotic induction. EEAC could effectively increase the cytotoxic sensitivity of TSA through the up-regulation of DR5 and NFkappaB activation. In this present study, bioassay-guided fractionation of EEAC led to a major active compound, zhankuic acid A, as the bioactive marker. Moreover, our findings may represent an experimental basis for developing EEAC as a potential chemotherapeutic adjuvant.

  19. Chan-Yu-Bao-Yuan-Tang and 5-fluorouracil synergistically induce apoptosis by means of the caspase-3 signaling pathway in lung and cervical cancer cells.

    PubMed

    Zeng, Fang; Liu, Xiaoguang; Li, Yuncheng; Chen, Gang; Wang, Yekai; Zhou, Shiquan; Zhu, Wangyu; Huang, Yanyan; Zhou, Jiehang; Li, Shibo; Zhang, Yongkui

    2011-01-01

    Previous clinical studies have shown the safety and efficacy of the traditional Chinese medicinal herbal aqueous extract Chan-Yu-Bao-Yuan-Tang (CYBYT) for the treatment of lung and cervical cancer patients. Used in combination with 5-fluorouracil (5-Fu), CYBYT has been observed to be particularly effective in cancer treatment. Herein, the combined anticancer effect and the underlying mechanisms of 5-Fu and CYBYT in the human lung cancer cell line A549 and the human cervical cancer cell line HeLa were investigated in vitro. The MTT assay, Annexin V-FITC staining and Western blotting were applied to identify cell viability, the stages of apoptosis and the expression of signaling proteins, respectively. The results indicated that CYBYT and 5-Fu, alone or in combination, significantly inhibited proliferation and induced marked apoptosis in A549 and HeLa cells, but had no significant inhibitory effects on normal human IMR-90 fibroblasts. The rate of mid and late apoptosis or necrosis was greater after 5-Fu treatment compared to treatment with CYBYT or the combination of agents; however, the early apoptotic rate showed opposite results. CYBYT and 5-Fu, alone or in combination, up-regulated cleaved caspase-3 expression in a time-dependent manner, with CYBYT being more effective than 5-Fu. Taken together, our data show that the pro-apoptotic activity of the two-drug combination was much stronger than that of CYBYT or 5-Fu alone; CYBYT combined with 5-Fu had synergistic effects at lower concentrations and promoted apoptosis, while the combined treatment also decreased the cytotoxic side effects of 5-Fu.

  20. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer

    PubMed Central

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer. PMID:26431378

  1. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    PubMed

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  2. Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis, and inhibits the proliferation of human gastric cancer cells in vitro.

    PubMed

    Sun, Wei-Hao; Zhu, Feng; Chen, Guo-Sheng; Su, Han; Luo, Cheng; Zhao, Qin-Shi; Zhang, Yuan; Shao, Yun; Sun, Jian; Zhou, Su-Ming; Ding, Guo-Xian; Cheng, Yun-Lin

    2008-05-18

    Gastrin and cyclooxygenase-2 (COX-2) play important roles in the carcinogenesis and progression of gastric cancer. However, it remains unknown whether the combination of cholecystokinin-2 (CCK-2) receptor antagonist plus COX-2 inhibitor exerts synergistic anti-tumor effects on human gastric cancer. Here, we demonstrated that the combination of AG-041R (a CCK-2 receptor antagonist) plus NS-398 (a selective COX-2 inhibitor) treatment had synergistic effects on proliferation inhibition, apoptosis induction, down-regulation of Bcl-2 and up-regulation of Bax expression in MKN-45 cells. These results indicate that simultaneous targeting of CCK-2 receptor and COX-2 may inhibit gastric cancer development more effectively than targeting either molecule alone.

  3. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways.

    PubMed

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T; Portell, Craig A; Lannutti, Brian J; Almasan, Alexandru; Hsi, Eric D

    2013-10-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.

  4. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling.

    PubMed

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Siddharth, Sumit; Das, Dipon; Nayak, Anmada; Kundu, Chanakya Nath

    2015-09-01

    Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3μM) and curcumin (3μM) in comparison to 30μM of resveratrol or curcumin alone. Resveratrol+curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21(Waf/Cip1) in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21(Waf/Cip1) knockout cells suggests this combination caused apoptosis through p21(Waf/Cip1). Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2(Waf/Cip1) mediated inhibition of Hedgehog-Gli cascade.

  5. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases.

    PubMed

    Lamottke, Britta; Kaiser, Martin; Mieth, Maren; Heider, Ulrike; Gao, Zhenhai; Nikolova, Zariana; Jensen, Michael R; Sterz, Jan; von Metzler, Ivana; Sezer, Orhan

    2012-05-01

    Heat shock protein 90 (HSP90) binds and stabilizes numerous proteins and kinases essential for myeloma cell survival and proliferation. We and others have recently demonstrated that inhibition of HSP90 by small molecular mass inhibitors induces cell death in multiple myeloma (MM). However, some of the HSP90 inhibitors involved in early clinical trials have shown limited antitumor activity and unfavorable toxicity profiles. Here, we analyzed the effects of the novel, orally bioavailable HSP90 inhibitor NVP-HSP990 on MM cell proliferation and survival. The inhibitor led to a significant reduction in myeloma cell viability and induced G2 cell cycle arrest, degradation of caspase-8 and caspase-3, and induction of apoptosis. Inhibition of the HSP90 ATPase activity was accompanied by the degradation of MM phospho-Akt and phospho-ERK1/2 and upregulation of Hsp70. Exposure of MM cells to a combination of NVP-HSP990 and either melphalan or histone deacetylase (HDAC) inhibitors caused synergistic inhibition of viability, increased induction of apoptosis, and was able to overcome the primary resistance of the cell line RPMI-8226 to HSP90 inhibition. Combined incubation with melphalan and NVP-HSP990 led to synergistically increased cleavage of caspase-2, caspase-9, and caspase-3. These data demonstrate promising activity for NVP-HSP990 as single agent or combination treatment in MM and provide a rationale for clinical trials.

  6. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways

    SciTech Connect

    Hwang, Jin-Taek; Ha, Joohun; Park, Ock Jin . E-mail: ojpark@hannam.ac.kr

    2005-07-01

    5-Fluorouracil (5-FU) is one of the widely used chemotherapeutic drugs targeting various cancers, but its chemo-resistance remains as a major obstacle in clinical settings. In the present study, HT-29 colon cancer cells were markedly sensitized to apoptosis by both 5-FU and genistein compared to the 5-FU treatment alone. There is an emerging evidence that genistein, soy-derived phytoestrogen, may have potential as a chemotherapeutic agent capable of inducing apoptosis or suppressing tumor promoting proteins such as cyclooxygenase-2 (COX-2). However, the precise mechanism of cellular cytotoxicity of genistein is not known. The present study focused on the correlation of AMPK and COX-2 in combined cytotoxicity of 5-FU and genistein, since AMPK is known as a primary cellular homeostasis regulator and a possible target molecule of cancer treatment, and COX-2 as cell proliferation and anti-apoptotic molecule. Our results demonstrated that the combination of 5-FU and genistein abolished the up-regulated state of COX-2 and prostaglandin secretion caused by 5-FU treatment in HT-29 colon cancer cells. These appear to be followed by the specific activation of AMPK and the up-regulation of p53, p21, and Bax by genistein. Under same conditions, the induction of Glut-1 by 5-FU was diminished by the combination treatment with 5-FU and genistein. Furthermore, the reactive oxygen species (ROS) was found as an upstream signal for AMPK activation by genistein. These results suggested that the combination of 5-FU and genistein exert a novel chemotherapeutic effect in colon cancers, and AMPK may be a novel regulatory molecule of COX-2 expression, further implying its involvement in cytotoxicity caused by genistein.

  7. Synergistic Effects Induced by a Low Dose of Diesel Particulate Extract and Ultraviolet-A in Caenorhabditis elegans: DNA Damage-Triggered Germ Cell Apoptosis

    PubMed Central

    2015-01-01

    Diesel exhaust has been classified as a potential carcinogen and is associated with various health effects. A previous study showed that the doses for manifesting the mutagenetic effects of diesel exhaust could be reduced when coexposed with ultraviolet-A (UVA) in a cellular system. However, the mechanisms underlying synergistic effects remain to be clarified, especially in an in vivo system. In the present study, using Caenorhabditis elegans (C. elegans) as an in vivo system we studied the synergistic effects of diesel particulate extract (DPE) plus UVA, and the underlying mechanisms were dissected genetically using related mutants. Our results demonstrated that though coexposure of wild type worms at young adult stage to low doses of DPE (20 μg/mL) plus UVA (0.2, 0.5, and 1.0 J/cm2) did not affect worm development (mitotic germ cells and brood size), it resulted in a significant induction of germ cell death. Using the strain of hus-1::gfp, distinct foci of HUS-1::GFP was observed in proliferating germ cells, indicating the DNA damage after worms were treated with DPE plus UVA. Moreover, the induction of germ cell death by DPE plus UVA was alleviated in single-gene loss-of-function mutations of core apoptotic, checkpoint HUS-1, CEP-1/p53, and MAPK dependent signaling pathways. Using a reactive oxygen species (ROS) probe, it was found that the production of ROS in worms coexposed to DPE plus UVA increased in a time-dependent manner. In addition, employing a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron spin resonance analysis, we demonstrated the increased 1O2 production in worms coexposed to DPE plus UVA. These results indicated that UVA could enhance the apoptotic induction of DPE at low doses through a DNA damage-triggered pathway and that the production of ROS, especially 1O2, played a pivotal role in initiating the synergistic process. PMID:24841043

  8. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells.

  9. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas.

    PubMed

    Cheng, Yu-Chen; Hueng, Dueng-Yuan; Huang, Hua-Yin; Chen, Jang-Yi; Chen, Ying

    2016-05-17

    Glioblastoma (GBM) is a malignant brain tumor associated with a high mortality rate. The aim of this study is to investigate the synergistic effects of honokiol (Hono) and magnolol (Mag), extracted from Magnolia officinalis, on cytotoxicity and inhibition of human GBM tumor progression in cellular and animal models. In comparison with Hono or Mag alone, co-treatment with Hono and Mag (Hono-Mag) decreased cyclin A, D1 and cyclin-dependent kinase 2, 4, 6 significantly, leading to cell cycle arrest in U87MG and LN229 human glioma cells. In addition, phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, and Ki67 were decreased after Hono-Mag treatment, showing proliferation inhibition. Hono-Mag treatment also reduced p-p38 and p-JNK but elevated p-ERK expression. Besides, Hono-Mag treatment induced autophagy and intrinsic and extrinsic apoptosis. Both ERK and autophagy inhibitors enhanced Hono-Mag-induced apoptosis in LN229 cells, indicating a rescuer role of ERK. In human GBM orthotopic xenograft model, the Hono-Mag treatment inhibited the tumor progression and induced apoptosis more efficiently than Temozolomide, Hono, or Mag group. In conclusion, the Hono-Mag exerts a synergistic anti-tumor effect by inhibiting cell proliferation and inducing autophagy and apoptosis in human GBM cells. The Hono-Mag may be applied as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment.

  10. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma

    PubMed Central

    Twardziok, Monika; Kleinsimon, Susann; Rolff, Jana; Jäger, Sebastian; Eggert, Angelika

    2016-01-01

    Ewing sarcoma is the second most common bone cancer in children and adolescents, with poor prognosis and outcome in ~70% of initial diagnoses and 10–15% of relapses. Hydrophobic triterpene acids and hydrophilic lectins and viscotoxins from European mistletoe (Viscum album L.) demonstrate anticancer properties, but have not yet been investigated for Ewing sarcoma. Commercial Viscum album L. extracts are aqueous, excluding the insoluble triterpenes. We recreated a total mistletoe effect by combining an aqueous extract (viscum) and a triterpene extract (TT) solubilized with cyclodextrins. Ewing sarcoma cells were treated with viscum, TT and viscumTT in vitro, ex vivo and in vivo. In vitro and ex vivo treatment of Ewing sarcoma cells with viscum inhibited proliferation and induced apoptosis in a dose-dependent fashion, while viscumTT combination treatment generated a synergistic effect. Apoptosis occurred via intrinsic and extrinsic apoptotic pathways, evidenced by activation of both CASP8 and CASP9. We show that viscumTT treatment shifts the balance of apoptotic regulatory proteins towards apoptosis, mainly via CLSPN, MCL1, BIRC5 and XIAP downregulation. ViscumTT also demonstrated strong antitumor activity in a cell line- and patient-derived mouse model, and may be considered an adjuvant therapy option for pediatric patients with Ewing sarcoma. PMID:27589063

  11. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells.

    PubMed

    Hu, Song; Li, Xiaolin; Xu, Rongrong; Ye, Lingyun; Kong, Hui; Zeng, Xiaoning; Wang, Hong; Xie, Weiping

    2016-06-01

    Several studies have shown that combination treatment with natural products and chemotherapy agents can improve the sensitivity and cytotoxicity of chemotherapy agents. Resveratrol, a natural product, has many biological effects including antitumor and antiviral activities, as well as vascular protective effect. The aim of this study is to investigate the synergistic anticancer effect of resveratrol in combination with cisplatin and the potential anticancer mechanisms involved in A549 cells. The results obtained from Cell Counting Kit-8 and isobolographic analysis demonstrated that combination of resveratrol and cisplatin resulted in synergistic cytotoxic effects in A549 cells. Results from Hoechst staining, flow cytometry and western blot analysis suggested that resveratrol enhanced cisplatin-mediated apoptosis. Meanwhile, the changes of LC3-II and P62 levels and formation of autophagosome suggested that resveratrol in combination with cisplatin triggered autophagy. More importantly, inhibiting autophagy by 3-methyladenine markedly attenuated the apoptosis caused by combination of resveratrol and cisplatin in A549 cells. Taken together, our study provides the first evidence that resveratrol combined with cisplatin synergistically induce apoptosis via modulating autophagic cell death in A549 cells. These findings also help us to understand the role of natural products in combination with chemotherapy agents in lung cancer.

  12. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    PubMed

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma.

  13. The mechanism of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Cai, Xiongwei; Liu, Timon C.; Ding, Xin-Min; Gu, Ying; Liu, Fan-Guang; Liu, Song-Hao

    2003-12-01

    Photodynamic therapy (PDT) can induce apoptosis in many cancer cells in vitro and in tumors in vivo. Cells become more oxidation with PDT, and maintain differentiation and proliferation, go apoptosis and necrosis with the increase of reactive oxygen species (ROS) concentration. ROS can induce apoptosis through mitochondria by inhibiting respiration chain or oxidative phosphorylation or damaging mitochondrial membrane. ROS can initiate apoptosis through endoplamic reticulum(ER) by opening Ca2+ channel or starting unfold protein response (UPR). ROS can also induce apoptosis through Golgi by producing ganglioside GD3 by use of ceramide, which induces apoptosis by activating caspase-3, JNK and p38 MAPK. It can also induce apoptosis by activating Bip (mitochondria-dependant) or preocaspase-12 (mitochondria- independent) or inhibiting protein synthesizing. There are so complicated cross-talking among different signal pathways or organnells that we think PDT-induced apoptosis is mediated by multiplex pathways and excessive levels in a refined network.

  14. Ibuprofen enhances TRAIL-induced apoptosis through DR5 upregulation.

    PubMed

    Todo, Momoko; Horinaka, Mano; Tomosugi, Mitsuhiro; Tanaka, Ryoichi; Ikawa, Haruna; Sowa, Yoshihiro; Ishikawa, Hideki; Fujiwara, Hitoshi; Otsuji, Eigo; Sakai, Toshiyuki

    2013-11-01

    Numerous human chemoprevention studies have demonstrated that non-steroidal anti-inflammatory drugs (NSAIDs) possess chemopreventive effects against a variety of malignant tumors. However, there have been many clinical studies on aspirin, but not ibuprofen, even though ibuprofen is one of the most clinically and safely used NSAIDs showing potent anti-inflammatory effects. Moreover, we reported that many chemopreventive agents enhance the apoptosis-inducing effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is known to be crucial for cancer prevention. We, therefore, investigated whether ibuprofen enhances the cytocidal effect of TRAIL and found that ibuprofen markedly stimulated the apoptosis-inducing efficacy of TRAIL against human colon cancer HCT116 cells. As detected by western blot analysis and real-time RT-PCR, ibuprofen upregulated the expression of death receptor 5 (DR5), a TRAIL receptor. TRAIL-induced apoptosis enhanced by ibuprofen was effectively decreased by a caspase inhibitor and dominant-negative DR5. Noteworthy, co-treatment of ibuprofen with TRAIL did not enhance apoptosis in normal peripheral blood mononuclear cells (PBMCs). These results demonstrated that ibuprofen and TRAIL synergistically induced apoptosis in human colon cancer HCT116 cells but not in normal PBMCs, raising the possibility that ibuprofen may be promising as a safe chemopreventive agent against colon cancer.

  15. Methods for determining Myc-induced apoptosis.

    PubMed

    Lu, Dan; Littlewood, Trevor D

    2013-01-01

    Although many oncoproteins promote cell growth and proliferation, some also possess the potential to induce cell death by apoptosis. Deregulated expression of the myc oncogene promotes apoptosis in both cultured cells and in some tissues in vivo. Here we describe techniques to detect Myc-induced apoptosis in vitro using flow cytometry and microscopy and in vivo using immunohistochemical staining.

  16. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  17. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  18. Dacarbazine and the agonistic TRAIL receptor-2 antibody lexatumumab induce synergistic anticancer effects in melanoma.

    PubMed

    Engesæter, Birgit; Engebraaten, Olav; Flørenes, Vivi Ann; Mælandsmo, Gunhild Mari

    2012-01-01

    Mapatumumab and lexatumumab (targeting death receptor 4 (DR4) and 5 (DR5), respectively) are agonistic TRAIL receptor antibodies that induce apoptosis in a wide range of cancer cells. The potency of mapatumumab and lexatumumab was assessed in mono therapy protocols, and the ability to sensitize for dacarbazine (DTIC) treatment was explored in ten different melanoma cell lines. Our data indicated that melanoma cell lines tend to be resistant to mapatumumab, most likely due to low expression of DR4, while a dose dependent response to lexatumumab was observed. Combining DTIC and lexatumumab induced an additive or synergistic effect on cell death in the various melanoma cell lines. The synergistic effect observed in the FEMX-1 cell line was related to enhanced cleavage of Bid in parallel with elevated expression of the pro-apoptotic proteins Bim, Bax and Bak. Furthermore, the anti-apoptotic proteins Bcl-XL, cIAP-1, XIAP and livin were down regulated. Cleavage of Bid and down regulation of cIAP-2 and livin were observed in vivo. Altogether, these data suggest a change in the balance between pro- and anti-apoptotic proteins favoring induction of apoptosis. In the more therapy resistant cell line, HHMS, no changes in the pro- and anti-apoptotic proteins were observed. FEMX-1 xenografts treated with DTIC and lexatumumab showed reduced growth and increased level of apoptosis compared to the control groups, providing arguments for further evaluation of this combination in melanoma patients.

  19. Phytosphingosine induced mitochondria-involved apoptosis.

    PubMed

    Nagahara, Yukitoshi; Shinomiya, Takahisa; Kuroda, Sachiko; Kaneko, Naoki; Nishio, Reiji; Ikekita, Masahiko

    2005-02-01

    Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Sphingosine, sphinganine, and phytosphingosine are structural analogs of sphingolipids and are classified as long-chain sphingoid bases. Sphingosine and sphinganine are known to play important roles in apoptosis. In the present study, we examined the phytosphingosine-induced apoptosis mechanism, focusing on mitochondria in human T-cell lymphoma Jurkat cells. Phytosphingosine significantly induced chromatin DNA fragmentation, which is a hallmark of apoptosis. Enzymatic activity measurements of caspases revealed that caspase-3 and caspase-9 are activated in phytosphingosine-induced apoptosis, but there is little activation of caspase-8 suggesting that phytosphingosine influences mitochondrial functions. In agreement with this hypothesis, a decrease in DeltaPsi(m) and the release of cytochrome c to the cytosol were observed upon phytosphingosine treatment. Furthermore, overexpression of mitochondria-localized anti-apoptotic protein Bcl-2 prevented phytosphingosine apoptotic stimuli. Western blot assays revealed that phytosphingosine decreases phosphorylated Akt and p70S6k. Dephosphorylation of Akt was partially inhibited by protein phosphatase inhibitor OA and OA attenuated phytosphingosine-induced apoptosis. Moreover, using a cell-free system, phytosphingosine directly reduced DeltaPsi(m). These results indicate that phytosphingosine perturbs mitochondria both directly and indirectly to induce apoptosis.

  20. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  1. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis

    PubMed Central

    Shi, Shaoqing; Wang, Qiong; Xu, Jennings; Jang, Jun-Ho; Padilla, Mabel T.; Nyunoya, Toru; Xing, Chengguo; Zhang, Lin; Lin, Yong

    2015-01-01

    Drug resistance is a major hurdle in anticancer chemotherapy. Combined therapy using drugs with distinct mechanisms of function may increase anticancer efficacy. We have recently identified the novel chalcone derivative, chalcone-24 (Chal-24), as a potential therapeutic that kills cancer cells through activation of an autophagy-mediated necroptosis pathway. In this report, we investigated if Chal-24 can be combined with the frontline genotoxic anticancer drug, cisplatin for cancer therapy. The combination of Chal-24 and cisplatin synergistically induced apoptotic cytotoxicity in lung cancer cell lines, which was dependent on Chal-24-induced autophagy. While cisplatin slightly potentiated the JNK/Bcl2/Beclin1 pathway for autophagy activation, its combination with Chal-24 strongly triggered proteasomal degradation of the cellular inhibitor of apoptosis proteins (c-IAPs) and formation of the Ripoptosome complex that contains RIP1, FADD and caspase 8. Furthermore, the cisplatin and Chal-24 combination induced dramatic degradation of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein large (cFLIPL) which suppresses Ripoptosome-mediated apoptosis activation. These results establish a novel mechanism for potentiation of anticancer activity with the combination of Chal-24 and cisplatin: to enhance apoptosis signaling through Ripoptosome formation and to release the apoptosis brake through c-FLIPL degradation. Altogether, our work suggests that the combination of Chal-24 and cisplatin could be employed to improve chemotherapy efficacy. PMID:25682199

  2. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells

    PubMed Central

    Keshavarz, Reihaneh; Bakhshinejad, Babak; Babashah, Sadegh; Baghi, Narges; Sadeghizadeh, Majid

    2016-01-01

    Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. Results: The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. Conclusion: The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment. PMID:28096969

  3. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  4. Molecular mechanisms of UV-induced apoptosis.

    PubMed

    Kulms, D; Schwarz, T

    2000-10-01

    Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation. UV-mediated apoptosis is a highly complex process in which different molecular pathways are involved. These include DNA damage, activation of the tumor suppressor gene p53, triggering of cell death receptors either directly by UV or by autocrine release of death ligands, mitochondrial damage and cytochrome C release. Detailed knowledge about the interplay between these pathways will increase our understanding of photocarcinogenesis. This review briefly discusses recent findings concerning the molecular mechanisms underlying UV-induced apoptosis.

  5. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells

    PubMed Central

    Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng

    2015-01-01

    A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer. PMID:25709440

  6. Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    PubMed Central

    Allegretti, Matteo; Mirabilii, Simone; Licchetta, Roberto; Bergamo, Paola; Rinaldo, Cinzia; Zeuner, Ann; Foà, Robin; Milella, Michele; McCubrey, James A.; Martelli, Alberto M.; Tafuri, Agostino

    2015-01-01

    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL. PMID:26392332

  7. Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells.

    PubMed

    Zhao, Qing-Li; Fujiwara, Yoshisada; Kondo, Takashi

    2010-10-01

    We have shown that heat stress or a superoxide dismutase mimic nitroxide, Tempo, induces apoptosis, while their combination causes nonapoptotic cell death; however, the underlying mechanism for this switch remains unclear. Here we identified for the first time that 10 mM Tempo present during heating at 44°C for 30 min rapidly induced autophagy in U937 leukemic cells in spite of Bax activation and mitochondrial outer membrane (MOM) permeabilization. This co-treatment inhibited the processing of heat-activated procaspases-2, -8, -9 and -3 into active small subunits, leading to the inhibition of caspase-dependent apoptosis, and instead caused the induction of autophagy. The inactivation of caspases, a key event, could result from oxidation of active-site-CysSH of all caspases by a prooxidant oxo-ammonium cation, an intermediate derived Tempo during dismutation of heat-induced superoxide anion. In addition, the co-treatment caused mitochondrial calcium overloads, the mitochondrial inner membrane permeabilization, profound mitochondrial dysfunction, and liberation of Beclin 1 from the Bcl-2/Beclin 1 complex, all of which contributed to induction of autophagy. These autophagic cells underwent propidium iodide-positive necrosis in a delayed fashion, leading to the complete proliferative inhibition. Remarkably, ruthenium red and BAPTA, which interfere with mitochondrial calcium uptake, facilitated autophagic necrotic death. Cyclosporin A, which binds to cyclophilin D, had a similar necrotic effect. 3-Methyladenine facilitated the necrosis of autophagic cells. In contrast, 5 mM Tempo-44°C/10 min or 44°C/30 min induced Bax-mediated MOM permeabilization and caspase-dependent apoptosis more potently than Tempo alone. Thus, Tempo is a unique thermosensitizer to synergistically induce apoptosis and autophagic cell death.

  8. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  9. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  10. Statin-induced apoptosis and skeletal myopathy.

    PubMed

    Dirks, Amie J; Jones, Kimberly M

    2006-12-01

    Over 100 million prescriptions were filled for statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) in 2004. Statins were originally developed to lower plasma cholesterol in patients with hypercholesterolemia and are the most effective drugs on the market in doing so. Because of the discovered pleiotropic effects of statins, the use has expanded to the treatment of many other conditions, including ventricular arrythmias, idiopathic dilated cardiomyopathy, cancer, osteoporosis, and diabetes. The elderly population is growing. Therefore, it is estimated that the number of statin users will also increase. Fortunately, the use of statins is relatively safe with few side effects. Myopathy is the most common side effect with symptoms ranging from fatigue, weakness, and pain to symptoms associated with rhabdomyolysis which is a life-threatening condition. The development of statin-induced rhabdomyolysis is rare occurring in approximately 0.1% of patients; however, the occurrence of less severe symptoms is underreported and may be 1-5% or more. Physical exercise appears to increase the likelihood for the development of myopathy in patients taking statins. It is thought that as many as 25% of statin users who exercise may experience muscle fatigue, weakness, aches, and cramping due to statin therapy and potentially dismissed by the patient and physician. The mechanisms causing statin-induced myopathy have not been elucidated; however, research efforts suggest that apoptosis of myofibers may contribute. The mitochondrion is considered a regulatory center of apoptosis, and therefore its role in the induction of apoptosis will be discussed as well as the mechanism of statin-induced apoptosis and myopathy.

  11. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  12. Mitochondria apoptosis pathway synergistically activated by hierarchical targeted nanoparticles co-delivering siRNA and lonidamine.

    PubMed

    Zhang, Bing-Feng; Xing, Lei; Cui, Peng-Fei; Wang, Feng-Zhen; Xie, Rong-Lin; Zhang, Jia-Liang; Zhang, Mei; He, Yu-Jing; Lyu, Jin-Yuan; Qiao, Jian-Bin; Chen, Bao-An; Jiang, Hu-Lin

    2015-08-01

    The mitochondria-mediated apoptosis pathway is an effective option for cancer therapy due to the presence of cell-suicide weapons in mitochondria. However, anti-apoptotic proteins that are over-expressed in the mitochondria of many malignant tumors, such as Bcl-2 protein, could allow the cancer cells to evade apoptosis, greatly reducing the efficacy of this type of chemotherapy. Here, we constructed a hierarchical targeted delivery system that can deliver siRNA and chemotherapeutic agents sequentially to tumor cells and mitochondria. In detail, the copolymer TPP-CP-LND (TCPL) was synthesized by the mitochondria-targeting ligand triphenylphosphine (TPP) and therapeutic drug lonidamine (LND) conjugated to the polyethyleneimine in chitosan-graft-PEI (CP), and then complexed with siRNA. Followed, the complexes were coated with poly(acrylic acid)-polyethylene glycol-folic acid (PPF) copolymer to form a hierarchical targeted co-delivery system (TCPL/siRNA/PPF NPs). The TCPL/siRNA/PPF NPs had a neutral surface charge, were stable in plasma and exhibited pH-responsive shell separation. Remarkably, the TCPL/siRNA/PPF NPs simultaneously released siBcl-2 into the cytoplasm and delivered LND to mitochondria in the same cancer cell after FA-directed internalization, and even synergistically activated mitochondria apoptosis pathway. This work demonstrated the potential of RNA-interference and mitochondria-targeted chemotherapeutics to collaboratively stimulate the mitochondria apoptosis pathway for cancer therapy.

  13. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  14. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  15. The Synergistic Effect of Everolimus and Chloroquine on Endothelial Cell Number Reduction Is Paralleled by Increased Apoptosis and Reduced Autophagy Occurrence

    PubMed Central

    Grimaldi, Anna; Balestrieri, Maria Luisa; D'Onofrio, Nunzia; Di Domenico, Gilda; Nocera, Cosimo; Lamberti, Monica; Tonini, Giuseppe; Zoccoli, Alice; Santini, Daniele; Caraglia, Michele; Pantano, Francesco

    2013-01-01

    Endothelial Progenitor Cells (EPCs), a minor subpopulation of the mononuclear cell fraction in peripheral blood, play a critical role in cancer development as they contribute to angiogenesis-mediated pathological neovascularization. In response to tumor cytokines, including VEGF, EPCs mobilize from the bone marrow into the peripheral circulation and move to the tumor bed where they incorporate into sprouting neovessels. In the present study, we evaluated the effects of everolimus (Afinitor, Novartis), a rapamycin analogue, alone or in combination with chloroquine, a 4-alkylamino substituted quinoline family member, one of the autophagy inhibitors, on EPCs biological functions. We found that either everolimus or chloroquine induce growth inhibition on EPCs in a dose-dependent manner after 72 h from the beginning of incubation. The combined administration of the two drugs to EPC was synergistic in inducing growth inhibition; in details, the maximal pharmacological synergism between everolimus and chloroquine in inducing growth inhibition on EPCs cells was recorded when chloroquine was administered 24 h before everolimus. Moreover, we have studied the mechanisms of cell death induced by the two agents alone or in combination on EPCs and we have found that the synergistic effect of combination on EPC growth inhibition was paralleled by increased apoptosis induction and reduced autophagy. These effects occurred together with biochemical features that are typical of reduced autophagic death such as increased co-immunoprecipitation between Beclin 1 and Bcl-2. Chloroquine antagonized the inhibition of the activity of Akt→4EBP1 axis mediated by everolimus and at the same time it blocked the feed-back activation of Erk-1/2 induced by RAD in EPCs. These data suggest a new strategy in order to block angiogenesis in tumours in which this process plays a key role in both the sustainment and spreading of cancer cells. PMID:24244540

  16. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  17. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  18. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  19. Apoptosis induced by a human milk protein.

    PubMed

    Håkansson, A; Zhivotovsky, B; Orrenius, S; Sabharwal, H; Svanborg, C

    1995-08-15

    To the breast-fed infant, human milk is more than a source of nutrients; it furnishes a wide array of molecules that restrict microbes, such as antibodies, bactericidins, and inhibitors of bacterial adherence. However, it has rarely been considered that human milk may also contain substances bioactive toward host cells. While investigating the effect of human milk on bacterial adherence to a human lung cancer cell line, we were surprised to discover that the milk killed the cells. Analysis of this effect revealed that a component of milk in a particular physical state--multimeric alpha-lact-albumin--is a potent Ca(2+)-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric alpha-lactalbumin killed all transformed, embryonic, and lymphoid cells tested but spared mature epithelial elements. These findings raise the possibility that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. Finally, analysis of the mechanism by which multimeric alpha-lactalbumin induces apoptosis in transformed epithelial cells could lead to the design of antitumor agents.

  20. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis.

    PubMed

    Zhang, Yiying; Dong, Yuanlin; Wu, Xu; Lu, Yan; Xu, Zhipeng; Knapp, Andrew; Yue, Yun; Xu, Tiejun; Xie, Zhongcong

    2010-02-05

    The common inhalation anesthetic isoflurane has been shown to induce apoptosis, which then leads to accumulation of beta-amyloid protein, the hallmark feature of Alzheimer disease neuropathogenesis. The underlying molecular mechanism of the isoflurane-induced apoptosis is largely unknown. We, therefore, set out to assess whether isoflurane can induce apoptosis by regulating Bcl-2 family proteins, enhancing reactive oxygen species (ROS) accumulation, and activating the mitochondrial pathway of apoptosis. We performed these studies in cultured cells, primary neurons, and mice. Here we show for the first time that treatment with 2% isoflurane for 6 h can increase pro-apoptotic factor Bax levels, decrease anti-apoptotic factor Bcl-2 levels, increase ROS accumulation, facilitate cytochrome c release from the mitochondria to the cytosol, induce activation of caspase-9 and caspase-3, and finally cause apoptosis as compared with the control condition. We have further found that isoflurane can increase the mRNA levels of Bax and reduce the mRNA levels of Bcl-2. The isoflurane-induced ROS accumulation can be attenuated by the intracellular calcium chelator BAPTA. Finally, the anesthetic desflurane does not induce activation of mitochondrial pathway of apoptosis. These results suggest that isoflurane may induce apoptosis through Bcl-2 family proteins- and ROS-associated mitochondrial pathway of apoptosis. These findings, which have identified at least partially the molecular mechanism by which isoflurane induces apoptosis, will promote more studies aimed at studying the potential neurotoxic effects of anesthetics.

  1. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes

    PubMed Central

    Wensink, Annette C.; Kemp, Vera; Fermie, Job; García Laorden, M. Isabel; van der Poll, Tom; Hack, C. Erik; Bovenschen, Niels

    2014-01-01

    Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS–CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS–TLR4 signaling during the antimicrobial innate immune response. PMID:24711407

  2. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.

    PubMed

    Iseni, Frédéric; Garcin, Dominique; Nishio, Machiko; Kedersha, Nancy; Anderson, Paul; Kolakofsky, Daniel

    2002-10-01

    Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recom binant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5' UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. More over, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.

  3. Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function.

    PubMed

    Zhu, Xiandi; Sun, Yn; Chen, Di; Li, Jingfeng; Dong, Xia; Wang, Jie; Chen, Huaiwen; Wang, Ying; Zhang, Fulei; Dai, Jinaxin; Pirraco, Rogério P; Guo, Shangjing; Marques, Alexandra P; Reis, Rui L; Li, Wei

    2017-03-22

    This manuscript describes a synergistic therapy for mastocarcinoma by pH and temperature dual-sensitive nanogel, and effects of microstructure, composition and properties of nanogel on the cellular response mechanism. The extracellular internalization of nanogels was obviously enhanced, due to the passive targeting function at T>VPTT. Interestingly, the increased cytotoxicity was further synergistically enhanced by an unexpected apoptosis as evoked by the 5-fluorouracil loaded nanogel (FLNG). The systemically evaluation of the effectors generated from different sub-cellular organelles including endosome, lysosome, autophagosome confirmed that it was a lysomal dependent apoptosis. Such specific apoptosis was mainly attributed to its activatable protonated PEI at low pH, which caused lysosomal membrane destruction and lysosomal enzyme cathepsin B (Cat B) leakage. This Cat B was then translocated to the mitochondria resulting in mitochondrial membrane permeability increase and mitochondrial membrane potential (MMP) decrease, followed by cytochrome c (Cyt C) release. Cyt C was the main molecule that evoked apoptosis as reflected by overexpression of caspase 9. Additionally, such lysosome dependent, apoptosis was further enhanced by the passive cellular targeting at T>VPTT. Thus, the tumor growth inhibition was synergistically enhanced by the extracellular temperature dependent passive targeting and intracellular pH activatable lysosomal dependent apoptosis.

  4. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  5. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  6. Quercetin-induced apoptosis prevents EBV infection.

    PubMed

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  7. Quercetin-induced apoptosis prevents EBV infection

    PubMed Central

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  8. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    PubMed

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  9. Piperlongumine Induces Apoptosis and Synergizes with Cisplatin or Paclitaxel in Human Ovarian Cancer Cells

    PubMed Central

    Chen, Xiu-Xiu; Wang, Huan; Jiang, Qi-Wei; Pan, Shi-Shi; Qiu, Jian-Ge; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Zheng, Fei-Yun; Yan, Xiao-Jian

    2014-01-01

    Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer. PMID:24895529

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  11. Apoptosis Induced by Metal Complexes and Interaction with Dexamethasone

    PubMed Central

    Kim, Jung Sun; Barros, José Carlos Almeida

    2002-01-01

    Apoptosis induced by rhodium II amidate, rhodium II propionate, cisplatin and interactions with dexamethaxone were studied on some human leukemia cell lines Raji, Jurkat and U937. Apoptosis was studied by flow cytometry, agarose gel electrophoresis and morphological analysis. Rhodium II propionate induced apoptosis in all the three cell lines, Rhodium II amidate, in the lymphoid cell lines Jurkat and Raji, and cisplatin, only in the Jurkat, a T lymphoid cell line. It has also been observed that the addition of dexamethasone enhances the apoptosis index only in U937, a monocytic line with a glucocorticoid receptor bearing. PMID:18476001

  12. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    SciTech Connect

    Zuo, Chaohui; Qiu, Xiaoxin; Liu, Nianli; Yang, Darong; Xia, Man; Liu, Jingshi; Wang, Xiaohong; and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  13. Role of PUMA in methamphetamine-induced neuronal apoptosis.

    PubMed

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-05

    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  14. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy.

    PubMed

    Dirks-Naylor, Amie J; Griffiths, Carrie L

    2009-10-01

    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  15. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  16. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    DTIC Science & Technology

    2010-01-01

    system to respond to infection (5, 6). However, recent studies have indicated that a functional CD8+ T cell-mediated immune response is generated in...systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that EBOV-induced lymphocyte apoptosis in...apoptosis in vitro through an unknown mechanism (11). However, no previous studies have analyzed the effect of blocking either the intrinsic or extrinsic

  17. Unfolded Protein Response Promotes Doxorubicin-Induced Nonsmall Cell Lung Cancer Cells Apoptosis via the mTOR Pathway Inhibition.

    PubMed

    Zhao, Xiaofang; Yang, Yan; Yao, Fuli; Xiao, Bin; Cheng, Ying; Feng, Chunhong; Duan, Chunyan; Zhang, Chunyan; Liu, Youping; Li, Hong; Xiao, Bo; Dai, Rongyang

    2016-12-01

    Drug resistance is extremely common in nonsmall cell lung cancer (NSCLC) and is one of the major problems in NSCLC chemotherapy. However, the detailed mechanisms remain largely unknown. Unfolded protein response (UPR) is involved in the tumorigenesis of NSCLC. Here, the authors demonstrated that the UPR promotes poly (ADP-ribose) polymerase activation (PARP) cleavage in NSCLC cells on doxorubicin treatment, which is a hallmark of apoptosis and caspase activation. In NSCLC cells, doxorubicin treatment triggers the UPR activation, which subsequently promotes doxorubicin-mediated apoptosis. Importantly, mild endoplasmic reticulum stress precondition enhances the sensitivity of NSCLC cells to doxorubicin-initiated apoptosis. Furthermore, the eukaryotic translation initiation factor 2α (eIF2α) branch of the UPR is involved in the synergistic role of the UPR in NSCLC cell apoptosis on doxorubicin treatment. They also demonstrated that the mTOR pathway plays an essential role in synergistic induction of apoptosis by the UPR and doxorubicin in NSCLC cells. Taken together, these results provide a potential mechanism that the UPR promotes doxorubicin-induced apoptosis in NSCLC cells, at least in part, by eIF2α-mediated mTOR signal inactivation.

  18. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    PubMed

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  19. UXT plays dual opposing roles on SARM-induced apoptosis.

    PubMed

    Sethurathinam, Shalini; Singh, Laishram Pradeepkumar; Panneerselvam, Porkodi; Byrne, Bernadette; Ding, Jeak Ling

    2013-10-11

    Apoptosis is a vital defense mechanism for the clearance of infected cells. Ubiquitously expressed transcript (UXT), which exists in two isoforms (V1 and V2), interact with both apoptotic and cellular proteins. By yeast two-hybrid analysis, we found that UXT interacts with SARM (sterile α and HEAT armadillo motif-containing protein). Since SARM is a TLR adaptor which induces intrinsic apoptosis following immune activation, we were prompted to query whether UXT and SARM might co-regulate apoptosis. We found that the UXT isoforms elicit dual opposing regulatory effects on SARM-induced apoptosis; while UXT V1, co-expressed with SARM, caused a reduction in caspase 8 activity, UXT V2 strongly increased caspase 8 activity and enhanced SARM-induced apoptosis by activating the extrinsic pathway and depolarizing the mitochondria.

  20. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes

    PubMed Central

    Smith, Lindsay K.; Cidlowski, John A.

    2016-01-01

    Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies. PMID:20541659

  1. MLN4924 Synergistically Enhances Cisplatin-induced Cytotoxicity via JNK and Bcl-xL Pathways in Human Urothelial Carcinoma.

    PubMed

    Ho, I-Lin; Kuo, Kuan-Lin; Liu, Shing-Hwa-; Chang, Hong-Chiang; Hsieh, Ju-Ton; Wu, June-Tai; Chiang, Chih-Kang; Lin, Wei-Chou; Tsai, Yu-Chieh; Chou, Chien-Tso; Hsu, Chen-Hsun; Pu, Yeong-Shiau; Shi, Chung-Sheng; Huang, Kuo-How

    2015-11-23

    Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma. However, the response rate is only 40-65%. This study investigated the anti-tumor effect and underlying mechanisms of the combination of cisplatin and the NEDD8-activating enzyme inhibitor MLN4924 in human bladder urothelial carcinoma. The combination of cisplatin and MLN4924 exerted synergistic cytotoxicity on two high-grade bladder urothelial carcinoma cell lines, NTUB1 and T24 (combination index <1). MLN4924 also potentiated the cisplatin-induced apoptosis and activation of caspase-3 and -7, phospho-histone H2A.X and PARP. c-Jun N-terminal kinase (JNK) activation and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) were also observed during cisplatin and MLN4924 treatment. Inhibition of JNK activation partially restored cell viability and Bcl-xL expression. Bcl-xL overexpression also rescued cell viability. MLN4924 significantly potentiated cisplatin-induced tumor suppression in urothelial carcinoma xenograft mice. In summary, MLN4924 synergistically enhanced the anti-tumor effect of cisplatin via an increase in DNA damage, JNK activation and down-regulation of Bcl-xL in urothelial carcinoma cells. These findings provide a new therapeutic strategy for the treatment of bladder cancer.

  2. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  3. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  4. Preventive effects of bicarbonate on cerivastatin-induced apoptosis.

    PubMed

    Kobayashi, Masaki; Kaido, Fumie; Kagawa, Toshiki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2007-08-16

    Although HMG-CoA reductase inhibitors such as statins are the most widely used cholesterol-lowering agents, there is a risk of myopathy or rhabdmyolysis occurring in patients taking these drugs. It has been reported that a number of lipophilic statins cause apoptosis in various cells, but it is still not clear whether intracellular acidification is involved in statin-induced apoptosis. There have been few studies aimed at identifying compounds that suppress statin-induced myotoxicity. In the present study, we examined the relationship between cerivastatin-induced apoptosis and intracellular acidification and the effect of bicarbonate on cerivastatin-induced apoptosis using an RD cell line as a model of in vitro skeletal muscle. Cerivastatin reduced the number of viable cells and caused dramatic morphological changes and DNA fragmentation in a concentration-dependent manner. Moreover, cerivastatin-induced apoptosis was associated with intracellular acidification and caspase-9 and -3/7 activation. On the other hand, bicarbonate suppressed cerivastatin-induced pH alteration, caspase activation, morphological change and reduction of cell viability. Accordingly, bicarbonate suppressed statin-induced apoptosis. The strategy to combine statins with bicarbonate can lead to reduction in the chance of the severe adverse events including myopathy or rhabdmyolysis.

  5. Down-regulation of histone deacetylase 4, -5 and -6 as a mechanism of synergistic enhancement of apoptosis in human lung cancer cells treated with the combination of a synthetic retinoid, Am80 and green tea catechin.

    PubMed

    Oya, Yukiko; Mondal, Anupom; Rawangkan, Anchalee; Umsumarng, Sonthaya; Iida, Keisuke; Watanabe, Tatsuro; Kanno, Miki; Suzuki, Kaori; Li, Zhenghao; Kagechika, Hiroyuki; Shudo, Koichi; Fujiki, Hirota; Suganuma, Masami

    2017-04-01

    (-)-Epigallocatechin gallate (EGCG), a green tea catechin, acts as a synergist with various anticancer drugs, including retinoids. Am80 is a synthetic retinoid with a different structure from all-trans-retinoic acid: Am80 is now clinically utilized as a new drug for relapsed and intractable acute promyelocytic leukemia patients. Our experiments showed that the combination of EGCG and Am80 synergistically induced both apoptosis in human lung cancer cell line PC-9 and up-regulated expressions of growth arrest and DNA damage-inducible gene 153 (GADD153), death receptor 5, and p21(waf1) genes in the cells. To understand the mechanisms of synergistic anticancer activity of the combination, we gave special attention to the lysine acetylation of proteins. Proteomic analysis using nanoLC-ESI-MS/MS revealed that PC-9 cells treated with the combination contained 331 acetylated proteins, while nontreated cells contained 553 acetylated proteins, and 59 acetylated proteins were found in both groups. Among them, the combination increased acetylated-p53 and acetylated-α-tubulin through reduction of histone deacetylase (HDAC) activity in cytosol fraction, although the levels of acetylation in histones H3 or H4 did not change, and the combination reduced protein levels of HDAC4, -5 and -6 by 20% to 80%. Moreover, we found that a specific inhibitor of HDAC4 and -5 strongly induced p21(waf1) gene expression, and that of HDAC6 induced both GADD153 and p21(waf1) gene expression, which resulted in apoptosis. All results demonstrate that EGCG in combination with Am80 changes levels of acetylation in nonhistone proteins via down-regulation of HDAC4, -5 and -6 and stimulates apoptotic induction.

  6. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis.

    PubMed

    Löder, S; Fakler, M; Schoeneberger, H; Cristofanon, S; Leibacher, J; Vanlangenakker, N; Bertrand, M J M; Vandenabeele, P; Jeremias, I; Debatin, K-M; Fulda, S

    2012-05-01

    Evasion of apoptosis may contribute to poor treatment response in pediatric acute lymphoblastic leukemia (ALL), calling for novel treatment strategies. Here, we report that inhibitors of apoptosis (IAPs) at subtoxic concentrations cooperate with various anticancer drugs (that is, AraC, Gemcitabine, Cyclophosphamide, Doxorubicin, Etoposide, Vincristine and Taxol) to induce apoptosis in ALL cells in a synergistic manner as calculated by combination index and to reduce long-term clonogenic survival. Importantly, we identify RIP1 as a critical regulator of this synergism of IAP inhibitors and AraC that mediates the formation of a RIP1/FADD/caspase-8 complex via an autocrine/paracrine loop of tumor necrosis factor-α (TNFα). Knockdown of RIP1 abolishes formation of this complex and subsequent activation of caspase-8 and -3, mitochondrial perturbations and apoptosis. Similarly, inhibition of RIP1 kinase activity by Necrostatin-1 or blockage of TNFα by Enbrel inhibits IAP inhibitor- and AraC-triggered interaction of RIP1, FADD and caspase-8 and apoptosis. In contrast to malignant cells, IAP inhibitors and AraC at equimolar concentrations are non-toxic to normal peripheral blood lymphocytes or mesenchymal stromal cells. Thus, our findings provide first evidence that IAP inhibitors present a promising strategy to prime childhood ALL cells for chemotherapy-induced apoptosis in a RIP1-dependent manner. These data have important implications for developing apoptosis-targeted therapies in childhood leukemia.

  7. Potentiation of UVB-induced apoptosis by novel phytosphingosine derivative, tetraacetyl phytosphingosine in HaCaT cell and mouse skin.

    PubMed

    Kim, H J; Kang, S-Y; Kim, S J; Kim, S H; Kim, T-Y

    2004-07-01

    Inappropriate apoptosis results in the epidermal hyperplasia as in psoriasis and UVB irradiation has been successfully used to treat this kind of skin disorders. Previously, we reported that the novel phytosphingosine derivative, tetraacetyl phytosphingosine (TAPS) induced apoptosis in HaCaT cells. This study examined the effect of UVB irradiation and/or TAPS on the induction of apoptosis in HaCaT. 10 mJ/cm2 of UVB irradiation or 10 microM of TAPS alone exhibited weak cytotoxicity but co-treatment of UVB and TAPS synergistically enhanced the cytotoxicity and apoptosis in HaCaT. The cells treated with UVB and TAPS showed much higher levels of cleaved caspase-3, -8, -9 and Bax than with UVB or TAPS alone, whereas Bcl-2 level was decreased by co-administration of UVB and TAPS. In hairless mice, co-treatment of UVB and TAPS synergistically increased apoptosis, as shown in the HaCaT co-treated with UVB and TAPS. Furthermore, UVB irradiation caused an increase of apoptotic cells in the epidermis and the TAPS-treated mice showed an increase of apoptotic cells in the dermis as well as in the epidermis. These results suggest that the TAPS co-treatment synergistically increases the level of UVB-induced apoptosis via caspase activation by regulating the level of pro-apoptotic Bax and anti-apoptotic Bcl-2.

  8. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  9. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  10. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    SciTech Connect

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  11. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  12. [Apoptosis of NB4 cells induced by flavonoids of puerarin in vitro].

    PubMed

    Tang, Yu-Hong; Zhu, Hong-Qing; Zhang, Ya-Cheng; Shao, Hua-Min; Ji, Jian-Min; Zhu, Guang-Rong; Jiang, Peng-Jun; Ji, Ou; Shen, Qun

    2010-04-01

    This study was aimed to investigate the effects of flavonoids of puerarin (PR) on apoptosis of acute promyelocytic leukemia (APL) cell line NB4 cells and its mechanism. The NB4 were treated with PR in vitro, the MTT assay was used to detect the inhibitory effect of PR on cell proliferation. The apoptosis of NB4 cells were detected by flow cytometry labelled with Annexin V/PI. The expressions of pml/rar alpha, bcl-2 and survivin were detected by real time reverse transcription-polymerase chain reaction (real time RT-PCR), the expressions of JNK, p38 MAPK, FasL, caspase 3, caspase 8 were detected by Western blot. The results showed that with the increasing of PR concentrations, the apoptosis rates of NB4 cells were gradually elevated. Simultaneously, the mRNA expression of pml/rar alpha, bcl-2 and survivin decreased, while the protein expression of JNK, FasL, caspase 3 and caspase 8 increased, which presented the positive correlation to PR concentrations. When PR combined with arsenic trioxide (ATO), the expression levels of above mentioned mRNA and protein decreased or increased more significantly. It is concluded that PR can effectively induce the apoptosis of NB4 cells. PR combined with ATO displays synergistic effect. It may be triggered by the activation of JNK signal pathway.

  13. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.

    PubMed

    Kumar, Bhupender; Iqbal, Mohammad Askandar; Singh, Rajnish Kumar; Bamezai, Rameshwar N K

    2015-11-01

    Resveratrol has been shown to exhibit its anti-cancer effect through a variety of mechanisms. Here, TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator) was identified as an important target of resveratrol for exhibiting ROS-dependent-consequences on apoptosis and autophagy. Resveratrol treatment decreased TIGAR protein irrespective of cell line used. Down-regulated TIGAR protein triggered a drop in reduced-glutathione levels which resulted in sustained ROS, responsible for apoptosis and autophagy. Over-expression and silencing experiments demonstrated the importance of TIGAR in affecting the ROS-dependent anti-cancer effects of resveratrol. Resveratrol treated cells exhibited autophagy to escape apoptosis, however, chloroquine treatment along with resveratrol, blocked protective autophagy and facilitated apoptosis. Collectively, results unravel the effects of resveratrol on TIGAR in mediating its ROS dependent influence and suggest a better combination therapy of resveratrol and chloroquine for probable cancer treatment.

  14. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-05

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  15. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803.

    PubMed

    Nie, Chao; Zhou, Jie; Qin, Xiaokang; Shi, Xianming; Zeng, Qingqi; Liu, Jia; Yan, Shihai; Zhang, Lei

    2016-02-01

    Proanthocyanidins are flavonoids that are widely present in the skin and seeds of various plants, with the highest content in grape seeds. Many experiments have shown that proanthocyanidins have antitumor activity both in vivo and in vitro. Autophagy and apoptosis of tumor cells induced by drugs are two of the major causes of tumor cell death. However, reports on the effect of autophagy induced by drugs in tumor cells are not consistent and suggest that autophagy can have synergistic or antagonistic effects with apoptosis. This research was aimed at investigating whether proanthocyanidins induced autophagy and apoptosis in human gastric cancer cell line MGC-803 cells and to identify the mechanism of proanthocyanidins action to further determine the effect of proanthocyanidins-induced autophagy on apoptosis. MTT assay was used to examine the proanthocyanidin cytotoxicity against human gastric cancer cell line MGC-803. Transmission electron microscopy and monodansylcadaverine (MDC) staining were used to detect autophagy. Annexin V APC/7-AAD double staining and Hoechst 33342/propidium iodide (PI) double staining were used to explore apoptosis. Western blotting was used to determine expression of proteins related to autophagy and apoptosis. Real-time quantitative PCR technology was used to determine the mRNA level of Beclin1 and BCL-2. The results showed that proanthocyanidins exhibit a significant inhibitory effect on the human gastric cancer cell line MGC-803 proliferation in vitro and simultaneously activate autophagy and apoptosis to promote cell death. Furthermore, when proanthocyanidin-induced autophagy is inhibited, apoptosis increases significantly, proanthocyanidins can be used together with autophagy inhibitors to enhance cytotoxicity.

  16. Reduction of apoptosis by proanthocyanidin-induced autophagy in the human gastric cancer cell line MGC-803

    PubMed Central

    NIE, CHAO; ZHOU, JIE; QIN, XIAOKANG; SHI, XIANMING; ZENG, QINGQI; LIU, JIA; YAN, SHIHAI; ZHANG, LEI

    2016-01-01

    Proanthocyanidins are flavonoids that are widely present in the skin and seeds of various plants, with the highest content in grape seeds. Many experiments have shown that proanthocyanidins have antitumor activity both in vivo and in vitro. Autophagy and apoptosis of tumor cells induced by drugs are two of the major causes of tumor cell death. However, reports on the effect of autophagy induced by drugs in tumor cells are not consistent and suggest that autophagy can have synergistic or antagonistic effects with apoptosis. This research was aimed at investigating whether proanthocyanidins induced autophagy and apoptosis in human gastric cancer cell line MGC-803 cells and to identify the mechanism of proanthocyanidins action to further determine the effect of proanthocyanidins-induced autophagy on apoptosis. MTT assay was used to examine the proanthocyanidin cytotoxicity against human gastric cancer cell line MGC-803. Transmission electron microscopy and monodansylcadaverine (MDC) staining were used to detect autophagy. Annexin V APC/7-AAD double staining and Hoechst 33342/propidium iodide (PI) double staining were used to explore apoptosis. Western blotting was used to determine expression of proteins related to autophagy and apoptosis. Real-time quantitative PCR technology was used to determine the mRNA level of Beclin1 and BCL-2. The results showed that proanthocyanidins exhibit a significant inhibitory effect on the human gastric cancer cell line MGC-803 proliferation in vitro and simultaneously activate autophagy and apoptosis to promote cell death. Furthermore, when proanthocyanidin-induced autophagy is inhibited, apoptosis increases significantly, proanthocyanidins can be used together with autophagy inhibitors to enhance cytotoxicity. PMID:26572257

  17. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis

    PubMed Central

    Dun, Jiening; Chen, Xueyan; Gao, Haixia; Zhang, Yan; Zhang, Huajun

    2015-01-01

    Many studies have shown that natural dietary agents, in combination with chemical agents, can improve the therapeutic response of cancers to chemotherapy and reduce the associated side-effects. In the present study, we investigated the therapeutic potential and mechanisms of anticancer effects for the combination of 5-fluorouracil (5-FU) and resveratrol (Res). In these studies, we employed the cancer cell lines TE-1 and A431 and an animal model of skin cancer. The presented results provide the first evidence that Res can enhance the anti-tumor potency of 5-FU by inducing S-phase arrest. The combination of Res and 5-FU demonstrates synergistic efficacy, causing tumor regression in a two-stage model of mouse skin carcinogenesis induced by DMBA and TPA. There was clear evidence of Res augmenting the growth inhibitory effect of 5-FU on the TE-1 and A431 cancer cells in vitro. In the in vivo studies, the tumor regression rate in the combination group increased significantly after four weeks of treatment (P < 0.01). The combination of 5-FU and Res significantly increased the percentage of apoptotic cells and the level of activated caspase-3, cleaved PARP and p53 proteins as well as increased the Bax/Bcl-2 ratio. In conclusion, the 5-FU/Res combination enabled a more effective inhibition of cell growth and the induction of apoptosis in cancer cells than 5-FU alone. The results of this study suggest that chemotherapy using natural dietary agents with chemical agents represents a superior cancer treatment option. PMID:25736303

  18. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis.

    PubMed

    Dun, Jiening; Chen, Xueyan; Gao, Haixia; Zhang, Yan; Zhang, Huajun; Zhang, Yongjian

    2015-12-01

    Many studies have shown that natural dietary agents, in combination with chemical agents, can improve the therapeutic response of cancers to chemotherapy and reduce the associated side-effects. In the present study, we investigated the therapeutic potential and mechanisms of anticancer effects for the combination of 5-fluorouracil (5-FU) and resveratrol (Res). In these studies, we employed the cancer cell lines TE-1 and A431 and an animal model of skin cancer. The presented results provide the first evidence that Res can enhance the anti-tumor potency of 5-FU by inducing S-phase arrest. The combination of Res and 5-FU demonstrates synergistic efficacy, causing tumor regression in a two-stage model of mouse skin carcinogenesis induced by DMBA and TPA. There was clear evidence of Res augmenting the growth inhibitory effect of 5-FU on the TE-1 and A431 cancer cells in vitro. In the in vivo studies, the tumor regression rate in the combination group increased significantly after four weeks of treatment (P < 0.01). The combination of 5-FU and Res significantly increased the percentage of apoptotic cells and the level of activated caspase-3, cleaved PARP and p53 proteins as well as increased the Bax/Bcl-2 ratio. In conclusion, the 5-FU/Res combination enabled a more effective inhibition of cell growth and the induction of apoptosis in cancer cells than 5-FU alone. The results of this study suggest that chemotherapy using natural dietary agents with chemical agents represents a superior cancer treatment option.

  19. Cyclic AMP induces IPC leukemia cell apoptosis via CRE-and CDK-dependent Bim transcription.

    PubMed

    Huseby, S; Gausdal, G; Keen, T J; Kjærland, E; Krakstad, C; Myhren, L; Brønstad, K; Kunick, C; Schwede, F; Genieser, H-G; Kleppe, R; Døskeland, S O

    2011-12-08

    The IPC-81 cell line is derived from the transplantable BNML model of acute myelogenic leukemia (AML), known to be a reliable predictor of the clinical efficiency of antileukemic agents, like the first-line AML anthracycline drug daunorubicin (DNR). We show here that cAMP acted synergistically with DNR to induce IPC cell death. The DNR-induced death differed from that induced by cAMP by (1) not involving Bim induction, (2) being abrogated by GSK3β inhibitors, (3) by being promoted by the HSP90/p23 antagonist geldanamycin and truncated p23 and (4) by being insensitive to the CRE binding protein (CREB) antagonist ICER and to cyclin-dependent protein kinase (CDK) inhibitors. In contrast, the apoptosis induced by cAMP correlated tightly with Bim protein expression. It was abrogated by Bim (BCL2L11) downregulation, whether achieved by the CREB antagonist ICER, by CDK inhibitors, by Bim-directed RNAi, or by protein synthesis inhibitor. The forced expression of BimL killed IPC-81(WT) cells rapidly, Bcl2-overexpressing cells being partially resistant. The pivotal role of CREB and CDK activity for Bim transcription is unprecedented. It is also noteworthy that newly developed cAMP analogs specifically activating PKA isozyme I (PKA-I) were able to induce IPC cell apoptosis. Our findings support the notion that AML cells may possess targetable death pathways not exploited by common anti-cancer agents.

  20. Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2.

    PubMed

    Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Saba, Nabil F; Khuri, Fadlo R; Shin, Dong M; Ruhul Amin, A R M

    2015-07-01

    Combinatorial approaches using two or more compounds are gaining increasing attention for cancer therapy. We have previously reported that the combination of the EGFR-TKI erlotinib and epigallocatechin-3-gallate (EGCG) exhibited synergistic chemopreventive effects in head and neck cancers by inducing the expression of Bim, p21, p27, and by inhibiting the phosphorylation of ERK and AKT and expression of Bcl-2. In the current study, we further investigated the mechanism of regulation of Bim, Bcl-2, p21 and p27, and their role in apoptosis. shRNA-mediated silencing of Bim significantly inhibited apoptosis induced by the combination of erlotinib and EGCG (p = 0.005). On the other hand, overexpression of Bcl-2 markedly protected cells from apoptosis (p = 0.003), whereas overexpression of constitutively active AKT only minimally protected cells from apoptosis induced by the combination of the two compounds. Analysis of mRNA expression by RT-PCR revealed that erlotinib, EGCG and their combination had no significant effects on the mRNA expression of Bim, p21, p27 or Bcl-2 suggesting the post-transcriptional regulation of these molecules. Furthermore, we found that erlotinib or the combination of EGCG and erlotinib inhibited the phosphorylation of Bim and stabilized Bim after inhibition of protein translation by cycloheximide. Taken together, our results strongly suggest that the combination of erlotinib and EGCG induces apoptosis of SCCHN cells by regulating Bim and Bcl-2 at the posttranscriptional level.

  1. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    PubMed

    Petanidis, Savvas; Kioseoglou, Efrosini; Domvri, Kalliopi; Zarogoulidis, Paul; Carthy, Jon M; Anestakis, Doxakis; Moustakas, Aristidis; Salifoglou, Athanasios

    2016-05-01

    Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.

  2. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  3. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice

    PubMed Central

    Cui, Hengmin; Chen, Lian; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling

    2016-01-01

    Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways. PMID:27655720

  4. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    PubMed

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  5. Simulating cell apoptosis induced sinus node dysfunction.

    PubMed

    Kharche, Sanjay; Beling, John; Biktasheva, Irina V; Zhang, Henggui; Biktashev, Vadim N

    2013-01-01

    Sinus node dysfunction (SND) is correlated to the pacemaker sinoatrial node (SAN) cell apoptosis. This study explores the effect of such a dysfunctional SAN on electrical propagation into neighboring atrial tissue. The Fenton Karma model was extended to simulate mouse SAN and atrial cell action potentials. The cell models were incorporated into a 2D model consisting of a central SAN region surrounded by atrial tissue. The intercellular gap junctional coupling, as quantified by the diffusion constant, was estimated to give conduction speeds as observed in mouse atrial tissue. The size of mouse SAN pacemaking region was estimated using the 2D model. In multiple simulations, the effects of an increasing proportion of apoptotic pacemaker cells on atrial tissue pacing were simulated and quantified. The SAN size that gave a basal mouse atrial cycle length (ACL) of 295 ms was found to be 0.6 mm in radius. At low pacemaker cell apoptosis proportion, there was a drastic increase of ACL. At modest increase in the number of apoptotic cells, bradycardia was observed. The incidence of sinus arrest was also found to be high. When the number of apoptotic cells were 10% of the total number of pacemaking cells, all pacemaking was arrested. Phenomenological models have been developed to study mouse atrial electrophysiology and confirm experimental findings. The results show the significance of cell apoptosis as a major mechanism of SND.

  6. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  7. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  8. hvTRA, a novel TRAIL receptor agonist, induces apoptosis and sustained growth retardation in melanoma.

    PubMed

    Fleten, Karianne G; Flørenes, Vivi Ann; Prasmickaite, Lina; Hill, Oliver; Sykora, Jaromir; Mælandsmo, Gunhild M; Engesæter, Birgit

    2016-01-01

    In recent years, new treatment options for malignant melanoma patients have enhanced the overall survival for selected patients. Despite new hope, most melanoma patients still relapse with drug-resistant tumors or experience intrinsic resistance to the therapy. Therefore, novel treatment modalities beneficial for subgroups of patients are needed. TRAIL receptor agonists have been suggested as promising candidates for use in cancer treatment as they preferentially induce apoptosis in cancer cells. Unfortunately, the first generation of TRAIL receptor agonists showed poor clinical efficacy. hvTRA is a second-generation TRAIL receptor agonist with improved composition giving increased potency, and in the present study, we showed hvTRA-induced activation of apoptosis leading to an efficient and sustained reduction in melanoma cell growth in cell lines and xenograft models. Furthermore, the potential of hvTRA in a clinical setting was demonstrated by showing efficacy on tumor cells harvested from melanoma patients with lymph node metastasis in an ex vivo drug sensitivity assay. Inhibition of mutated BRAF has been shown to regulate proteins in the intrinsic apoptotic pathway, making the cells more susceptible for apoptosis induction. In an attempt to increase the efficacy of hvTRA, combination treatment with the mutated BRAF inhibitor vemurafenib was investigated. A synergistic effect by the combination was observed for several cell lines in vitro, and an initial cytotoxic effect was observed in vivo. Unfortunately, the initial increased reduction in tumor growth compared with hvTRA mono treatment was not sustained, and this was related to downregulation of the DR5 level by vemurafenib. Altogether, the presented data imply that hvTRA efficiently induce apoptosis and growth delay in melanoma models and patient material, and the potential of this TRAIL receptor agonist should be further evaluated for treatment of subgroups of melanoma patients.

  9. hvTRA, a novel TRAIL receptor agonist, induces apoptosis and sustained growth retardation in melanoma

    PubMed Central

    Fleten, Karianne G; Flørenes, Vivi Ann; Prasmickaite, Lina; Hill, Oliver; Sykora, Jaromir; Mælandsmo, Gunhild M; Engesæter, Birgit

    2016-01-01

    In recent years, new treatment options for malignant melanoma patients have enhanced the overall survival for selected patients. Despite new hope, most melanoma patients still relapse with drug-resistant tumors or experience intrinsic resistance to the therapy. Therefore, novel treatment modalities beneficial for subgroups of patients are needed. TRAIL receptor agonists have been suggested as promising candidates for use in cancer treatment as they preferentially induce apoptosis in cancer cells. Unfortunately, the first generation of TRAIL receptor agonists showed poor clinical efficacy. hvTRA is a second-generation TRAIL receptor agonist with improved composition giving increased potency, and in the present study, we showed hvTRA-induced activation of apoptosis leading to an efficient and sustained reduction in melanoma cell growth in cell lines and xenograft models. Furthermore, the potential of hvTRA in a clinical setting was demonstrated by showing efficacy on tumor cells harvested from melanoma patients with lymph node metastasis in an ex vivo drug sensitivity assay. Inhibition of mutated BRAF has been shown to regulate proteins in the intrinsic apoptotic pathway, making the cells more susceptible for apoptosis induction. In an attempt to increase the efficacy of hvTRA, combination treatment with the mutated BRAF inhibitor vemurafenib was investigated. A synergistic effect by the combination was observed for several cell lines in vitro, and an initial cytotoxic effect was observed in vivo. Unfortunately, the initial increased reduction in tumor growth compared with hvTRA mono treatment was not sustained, and this was related to downregulation of the DR5 level by vemurafenib. Altogether, the presented data imply that hvTRA efficiently induce apoptosis and growth delay in melanoma models and patient material, and the potential of this TRAIL receptor agonist should be further evaluated for treatment of subgroups of melanoma patients. PMID:28028438

  10. Bortezomib sensitizes primary human esthesioneuroblastoma cells to TRAIL-induced apoptosis.

    PubMed

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Erdal, Hande; Krupp, Wolfgang; Bauer, Manfred; Bockmuehl, Ulrike; Ahnert, Peter; Meixensberger, Jürgen; Stremmel, Wolfgang; Walczak, Henning; Ganten, Tom M

    2010-04-01

    TNF-related apoptosis-inducing ligand (TRAIL), a promising novel anti-cancer cytokine of the TNF superfamily, and Bortezomib, the first-in-class clinically used proteasome inhibitor, alone or in combination have been shown to efficiently kill numerous tumor cell lines. However, data concerning primary human tumor cells are very rare. Using primary esthesioneuroblastoma cells we analyzed the anti-tumor potential and the mechanism employed by Bortezomib in combination with TRAIL for the treatment of this rare but aggressive tumor. Expression of components of the TRAIL pathway was analyzed in tumor specimens and isolated primary tumor cells at the protein level. Cells were treated with TRAIL, Bortezomib, and a combination thereof, and apoptosis induction was quantified. Clonogenicity assays were performed to elucidate the long-term effect of this treatment. Despite expressing all components of the TRAIL pathway, freshly isolated primary esthesioneuroblastoma cells were completely resistant to TRAIL-induced apoptosis. They could, however, be very efficiently sensitized by subtoxic doses of Bortezomib. The influence of Bortezomib on the TRAIL pathway was analyzed and showed upregulation of TRAIL death receptor expression, enhancement of the TRAIL death-inducing signaling complex (DISC), and downregulation of anti-apoptotic proteins of the TRAIL pathway. Of clinical relevance, TRAIL-resistant primary tumor cells could be repeatedly sensitized by Bortezomib, providing the basis for repeated clinical application schedules. This is the first report on the highly synergistic induction of apoptosis in primary esthesioneuroblastoma cells by Bortezomib and TRAIL. This combination, therefore, represents a promising novel therapeutic option for esthesioneuroblastoma.

  11. Crocin prevents sesamol-induced oxidative stress and apoptosis in human platelets.

    PubMed

    Thushara, Ram M; Hemshekhar, Mahadevappa; Paul, Manoj; Shanmuga Sundaram, Mahalingam; Shankar, Rohith L; Kemparaju, Kempaiah; Girish, Kesturu S

    2014-10-01

    Recent studies have reported the platelet proapoptotic propensity of plant-derived molecules such as, resveratrol, thymoquinone, andrographolide and gossypol. Meanwhile, there were also reports of phytochemicals such as cinnamtannin B1, which shows antiapoptotic effect towards platelets. Platelets are mainly involved in hemostasis, thrombosis and wound healing. However, altered platelet functions can have serious pathological outcomes that include cardiovascular diseases. Platelets are sensitive to external and internal stimuli including therapeutic and dietary components. The anuclear platelets do undergo apoptosis via mitochondrial pathway. However, exaggerated rate of platelet apoptosis could lead to thrombocytopenia and other bleeding disorders. The present study deals with ameliorative efficacy of crocin on sesamol-induced platelet apoptosis. The antiapoptotic property of crocin and the proapoptotic tendency of sesamol in platelets were previously demonstrated. Therefore, it was interesting to see how these two compounds would interact and wield their effects on human platelets. Crocin effectively inhibited sesamol-induced oxidative stress on platelets, which was evidenced by the measurement of endogenously generated reactive oxygen species, particularly hydrogen peroxide, and changes in thiol levels. Further, crocin abrogated sesamol-induced biochemical events of apoptosis in platelets, which include intracellular calcium mobilization, changes in mitochondrial membrane integrity, cytochrome c release, caspase activity and phosphatidylserine externalization. Even though sesamol has proapoptotic effects on platelets, its anti-platelet activity cannot be neglected. Thus, the study proposes that sesamol could be supplemented with crocin, an approach that could not only abolish the toxic effects of sesamol on platelets, but also enhance the quality of treatment due to their synergistic action.

  12. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  13. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  14. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  15. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria.

  16. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  17. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  18. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  19. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    NASA Astrophysics Data System (ADS)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  20. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  1. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  2. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  3. Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning : A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory...AD_________________ Award Number: W81XWH-05-1-0622 TITLE: Molecular Mechanisms of Par-4-Induced...SUBTITLE 5a. CONTRACT NUMBER Molecular Mechanisms of Par-4-Induced Apoptosis in Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0622 5c. PROGRAM

  4. Determinants of PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Kessel, David; Luo, Yu; Kim, Hyeong-Reh C.

    2000-03-01

    Photodynamic therapy can initiate cell death by apoptosis or necrosis. Using agents with known patterns of sub-cellular localization, we examined the correlation between sites of photodamage and the mode of cell death, using murine leukemia cells in vitro. Mitochondrial or mitochondrial/lysosomal photodamage caused the rapid release of cytochrome c. This effect was not temperature sensitive, and could be demonstrated immediately after irradiation of photosensitized cells at 10 degrees C. Subsequent warming to 37 degrees C led to a rapid apoptotic response, consistent with the known ability of cytochrome c to trigger the activation of caspase-3. In contrast, lysosomal or lysosomal/membrane photodamage resulted in the release of cathepsins and other proteolytic enzymes. A subsequent incubation at 37 degrees C resulted in mitochondrial degradation, leading to loss of cytochrome c within 30 min. The apoptotic response was both delayed and incomplete, with many dead cells not exhibiting an apoptotic morphology. The latter outcome was traced to photodamage to procaspase-3, an effect not observed with sensitizers that caused mainly mitochondrial photodamage. Studies in a cell-free system demonstrated that agents with lysosomal and/or membrane targets could bring about photoinactivation of caspase-3. These result are consistent with the proposal that photodynamic therapy can both activate and inactivate components of the apoptotic process.

  5. Perfluorooctane sulfonate induces apoptosis in N9 microglial cell line.

    PubMed

    Zhang, Ling; Li, Yuan-yuan; Zeng, Huai-cai; Li, Miao; Wan, Yan-Jian; Schluesener, Hermann J; Zhang, Zhi-yuan; Xu, Shun-qing

    2011-03-01

    Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA. These results suggested that PFOS could disturb homeostasis of N9 cells, impact mitochondria, and affect gene expression of apoptotic regulators, all of which resulted in a start-up of apoptosis.

  6. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3.

    PubMed

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-04-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired pro-apoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that (1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and (2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils.

  7. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    PubMed Central

    2011-01-01

    Background 5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. Methods The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Results Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. Conclusions AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression. PMID:21801359

  8. Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus (L.).

    PubMed

    Oweson, Carolina A M; Baden, Susanne P; Hernroth, Bodil E

    2006-05-10

    Manganese (Mn) is highly abundant as MnO2 in marine sediments. During hypoxia in bottom waters, the reduced bioavailable fraction of manganese, Mn2+, increases. Thereby, Norway lobster, Nephrops norvegicus, can experience concentrations up to 1000 times normoxic levels. A previous study has shown that exposure to a realistic concentration of 20 mg l(-1) of Mn for 10 days reduced the number of circulating haemocytes in N. norvegicus significantly. Here we aimed to investigate if apoptosis contributes to the Mn-induced haemocytopenia, with the overall hypothesis that Mn induces apoptosis in a time and concentration dependent manner. N. norvegicus were exposed to Mn (0, 5, 10 and 20 mg l(-1)) for 5 and 10 days. After 5 days of exposure the total haemocyte counts were not affected. However, after 10 days there was a gradual decrease in cell numbers, reaching a reduction by 44% when the animals were exposed to 20 mg Mn l(-1). Apoptosis in cells, released from the haematopoietic tissue, was investigated by using TUNEL assay, which detects specific DNA strand breaks. The fraction of apoptotic cells gradually increased from 2.5% in un-exposed lobsters to 15% in those exposed to 20 mg l(-1) but there was no difference related to the exposure time. A gradual increase of apoptosis was further confirmed by electrophoretic DNA-ladder formation, however to a lower extent in lobsters exposed during 5 days. Cell viability, determined by metabolic activity and cell membrane integrity, was not reduced, indicating that apoptosis rather than necrosis caused reduced number of haemocytes. It was concluded that apoptosis seemed to increase already after 5 days of 5 mg l(-1) of Mn-exposure, although exposure for 10 days was required before it was reflected in the haemocyte numbers. Reduced numbers of haemocytes may increase the prevalence for infections in N. norvegicus in their natural habitat.

  9. p73-induced apoptosis: A question of compartments and cooperation

    SciTech Connect

    Dobbelstein, Matthias; Strano, Sabrina; Roth, Judith; Blandino, Giovanni . E-mail: blandino@ifo.it

    2005-06-10

    The transcriptionally active forms of p73 are capable of inducing apoptosis, and the isoforms termed TAp73 are important players when E2F and its oncogenic activators induce programmed cell death. However, the conditions under that TAp73 can kill a cell remain to be clarified. Recently, it has been found that p73 proteins are not merely floating in the nucleoplasm but rather can associate with specific compartments in the cell. Examples of intranuclear compartments associated with p73 proteins include the PML oncogenic domains and the nuclear matrix. In addition, p73 is found in the cytoplasm. It remains to be seen whether p73 might also associate with mitochondria, in analogy with p53. The relocalization of p73 is expected to be mediated by specific binding partners, mostly other proteins. Here, we discuss the possibility that the compartmentalization of p73, and the cooperation with the corresponding binding partners, might decide about its apoptosis-inducing activity.

  10. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  11. Analogs of farnesylcysteine induce apoptosis in HL-60 cells.

    PubMed

    Pérez-Sala, D; Gilbert, B A; Rando, R R; Cañada, F J

    1998-04-24

    S-Farnesyl-thioacetic acid (FTA), a competitive inhibitor of isoprenylated protein methyltransferase, potently suppressed the growth of HL-60 cells and induced apoptosis, as evidenced by the development of increased annexin-V binding, decreased binding of DNA dyes and internucleosomal DNA degradation. FTA did not impair the membrane association of ras proteins, conversely, it brought about a decrease in the proportion of ras present in the cytosolic fraction. Farnesylated molecules which are weak inhibitors of the methyltransferase also induced DNA laddering and reduced the proportion of cytosolic ras. These findings suggest that neither inhibition of isoprenylated protein methylation nor impairment of ras membrane association are essential for apoptosis induced by farnesylcysteine analogs.

  12. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  13. Bias dependence of synergistic radiation effects induced by electrons and protons on silicon bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi

    2015-06-01

    Bias dependence on synergistic radiation effects caused by 110 keV electrons and 170 keV protons on the current gain of 3DG130 NPN bipolar junction transistors (BJTs) is studied in this paper. Experimental results indicate that the influence induced by 170 keV protons is always enhancement effect during the sequential irradiation. However, the influence induced by 110 keV electrons on the BJT under various bias cases is different during the sequential irradiation. The transition fluence of 110 keV electrons is dependent on the bias case on the emitter-base junction of BJT.

  14. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer.

    PubMed

    Zhang, Lisa; Boufraqech, Myriem; Lake, Ross; Kebebew, Electron

    2016-03-29

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells. The combination of carfilzomib and CUDC-101 synergistically inhibited cellular proliferation and caused cell death in multiple ATC cell lines harboring various driver mutations observed in human ATC tumors. This increased anti-ATC effect was associated with a synergistically enhanced G2/M cell cycle arrest and increased caspase 3/7 activity induced by the drug combination. Mechanistically, treatment with carfilzomib and CUDC-101 increased p21 expression and poly (ADP-ribose) polymerase protein cleavage. Our results suggest that combining carfilzomib and CUDC-101 would offer an effective therapeutic strategy to treat ATC.

  15. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    PubMed Central

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-01-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer. PMID:25364657

  16. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression.

    PubMed

    Kumazaki, Minami; Shinohara, Haruka; Taniguchi, Kohei; Yamada, Nami; Ohta, Shozo; Ichihara, Kenji; Akao, Yukihiro

    2014-01-01

    Propolis cinnamic acid derivatives have a number of biological activities including anti-oxidant and anti-cancer ones. In this study, we aimed to elucidate the mechanism of the anti-cancer activity of 3 representative propolis cinnamic acid derivatives, i.e., Artepilin C, Baccharin and Drupanin in human colon cancer cell lines. Our study demonstrated that these compounds had a potent apoptosis-inductive effect even on drug-resistant colon cancer cells. Combination treatment of human colon cancer DLD-1 cells with 2 of these compounds, each at its IC20 concentration, induced apoptosis by stimulating both intrinsic and extrinsic apoptosis signaling pathways. Especially, Baccharin plus Drupanin exhibited a synergistic growth-inhibitory effect by strengthening both intrinsic and extrinsic apoptotic signaling transduction through TRAIL/DR4/5 and/or FasL/Fas death-signaling loops and by increasing the expression level of miR-143, resulting in decreased expression levels of the target gene MAPK/Erk5 and its downstream target c-Myc. These data suggest that the supplemental intake of these compounds found in propolis has enormous significance with respect to cancer prevention.

  17. Caspase-Dependent and Caspase-Independent Pathways Are Involved in Cadmium-Induced Apoptosis in Primary Rat Proximal Tubular Cell Culture

    PubMed Central

    Long, Mengfei; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Yuan, Yan; Song, Ruilong; Wang, Yi; Zhu, Jiaqiao; Liu, Zongping

    2016-01-01

    We designed this study to investigate whether cadmium induces caspase-independent apoptosis and to investigate the relationship between the caspase-dependent and caspase-independent apoptotic pathways. Cadmium (1.25–2.5 μM) induced oxidative stress in rat proximal tubular (rPT) cells, as seen in the reactive oxygen species levels; N-acetylcysteine prevented this. Cyclosporin A (CsA) prevented mitochondrial permeability transition pore opening and apoptosis; there was mitochondrial ultrastructural disruption, mitochondrial cytochrome c (cyt c) translocation to the cytoplasm, and subsequent caspase-9 and caspase-3 activation. Z-VAD-FMK prevented caspase-3 activation and apoptosis and decreased BNIP-3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) expression levels and apoptosis-inducing factor/endonuclease G (AIF/Endo G) translocation. Simultaneously, cadmium induced prominent BNIP-3 expression in the mitochondria and cytoplasmic AIF/Endo G translocation to the nucleus. BNIP-3 silencing significantly prevented AIF and Endo G translocation and decreased the apoptosis rate, cyt c release, and caspase-9 and caspase-3 activation. These results suggest that BNIP-3 is involved in the caspase-independent apoptotic pathway and is located upstream of AIF/Endo G; both the caspase-dependent and caspase-independent pathways are involved in cadmium-induced rPT cell apoptosis and act synergistically. PMID:27861627

  18. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  19. Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats.

    PubMed

    Prasanna, Rajagopalan; Ashraf, Elbessoumy A; Essam, Mahmoud A

    2017-01-01

    The bio-activities of separate Matricaria chamomilla (chamomile) and Origanum vulgare (oregano) are well studied; however, the combined effects of both natural products in animal diabetic models are not well characterized. In this study, alloxan-induced male albino rats were treated with single dose aqueous suspension of chamomile or oregano at dose level of either 150 or 300 mg/kg body mass or as equal parts as combination by stomach tube for 6 weeks. After treatment, blood samples were assessed for diabetic, renal, and lipid profiles. Insulin, amylase activity, and diabetic renal apoptosis were further evaluated. Treatment with higher dose of the extracts (300 mg/kg) as individual or as mixture of low doses (150 mg/kg of both the extracts) had significant mass gain, hypoglycemic effect (p ≤ 0.05) with decreased amylase activity and increased serum insulin levels. Restoration of renal profile, lipid profile with increase in HDL-c (p ≤ 0.05) along with reversal of pro-apoptotic Bax and anti-apoptotic Bcl-2 were well observed with 300 mg/kg mixture, showing synergistic activity of the extracts compared with individual low dose of 150 mg/kg. Collectively, our results indicate that combination of chamomile and oregano extracts will form a new class of drugs to treat diabetic complications.

  20. Nicotine induces Nme2-mediated apoptosis in mouse testes.

    PubMed

    Gu, Yunqi; Xu, Wangjie; Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhao, Xianglong; Zhang, Meixing; Wang, Zhaoxia; Chen, Zhong; Qiao, Zhongdong

    2016-04-15

    In mouse testes, germ cell apoptosis can be caused by cigarette smoke and lead to declining quality of semen, but the exact molecular mechanisms remain unclear. To evaluate the effects of nicotine exposure on apoptosis during spermatogenesis, we first constructed a nicotine-treated mouse model and detected germ cell apoptosis activity in the testes using the TUNEL method. Then we analyzed the variation of telomere length and telomerase activity by real-time PCR and TRAP-real-time PCR, respectively. Further, we investigated a highly expressed gene, Nme2, in mouse testes after nicotine treatment from our previous results, which has close correlation with the apoptosis activity predicted by bioinformatics. We performed NME2 overexpression in Hela cells to confirm whether telomere length and telomerase activity were regulated by the Nme2 gene. Finally, we examined methylation of CpG islands in the Nme2 promoter with the Bisulfite Sequencing (BSP) method. The results showed that apoptosis had increased significantly, and then telomerase activity became weak. Further, telomere length was shortened in the germ cells among the nicotine-treated group. In Hela cells, both overexpression of the Nme2 gene and nicotine exposure can suppress the activity of telomerase activity and shorten telomere length. BSP results revealed that the Nme2 promoter appeared with low methylation in mouse testes after nicotine treatment. We assume that nicotine-induced apoptosis may be caused by telomerase activity decline, which is inhibited by the up expression of Nme2 because of its hypomethylation in mouse germ cells.

  1. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells.

    PubMed

    Benachour, Nora; Séralini, Gilles-Eric

    2009-01-01

    We have evaluated the toxicity of four glyphosate (G)-based herbicides in Roundup formulations, from 10(5) times dilutions, on three different human cell types. This dilution level is far below agricultural recommendations and corresponds to low levels of residues in food or feed. The formulations have been compared to G alone and with its main metabolite AMPA or with one known adjuvant of R formulations, POEA. HUVEC primary neonate umbilical cord vein cells have been tested with 293 embryonic kidney and JEG3 placental cell lines. All R formulations cause total cell death within 24 h, through an inhibition of the mitochondrial succinate dehydrogenase activity, and necrosis, by release of cytosolic adenylate kinase measuring membrane damage. They also induce apoptosis via activation of enzymatic caspases 3/7 activity. This is confirmed by characteristic DNA fragmentation, nuclear shrinkage (pyknosis), and nuclear fragmentation (karyorrhexis), which is demonstrated by DAPI in apoptotic round cells. G provokes only apoptosis, and HUVEC are 100 times more sensitive overall at this level. The deleterious effects are not proportional to G concentrations but rather depend on the nature of the adjuvants. AMPA and POEA separately and synergistically damage cell membranes like R but at different concentrations. Their mixtures are generally even more harmful with G. In conclusion, the R adjuvants like POEA change human cell permeability and amplify toxicity induced already by G, through apoptosis and necrosis. The real threshold of G toxicity must take into account the presence of adjuvants but also G metabolism and time-amplified effects or bioaccumulation. This should be discussed when analyzing the in vivo toxic actions of R. This work clearly confirms that the adjuvants in Roundup formulations are not inert. Moreover, the proprietary mixtures available on the market could cause cell damage and even death around residual levels to be expected, especially in food and feed

  2. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  3. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    PubMed

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  4. Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells

    PubMed Central

    Chen, Lian; Cui, Hengmin; Fang, Jing; Deng, Huidan; Kuang, Ping; Guo, Hongrui; Wang, Xun; Zhao, Ling

    2016-01-01

    Glutamine provides cancer cells with the energy required to synthesize macromolecules. Methods which block glutamine metabolism in treatment of breast cancer inhibit oncogenic transformation and tumor growth. We investigated whether inhibiting glutamine metabolism produces effects that are synergistic with those produced by drugs which damage DNA in triple-negative breast cancer cells. HCC1937 and BT-549 breast cancer cells were co-treated with either cisplatin or etoposide in combination with BPTES (a specific inhibitor of glutaminase 1) or exposure to a glutamine-free medium, and the cell proliferation and cell apoptosis were measured by flow cytometry, immunoblotting studies, and CCK-8 assays. The results showed that both glutamine deprivation and BPTES pretreatments increased the toxic effects of cisplatin and etoposide on HCC1937 cells, as demonstrated by their reduced proliferation, increased expression of apoptosis-related proteins (cleaved-PARP, cleaved-caspase 9, and cleaved-caspase 3) and decreased Bcl-2/BAX ratio. However, in BT-549 cells, glutamine deprivation and BPTES treatment increased etoposide-induced apoptosis only when used with higher concentrations of etoposide, and the effect on cisplatin-induced apoptosis was minimal. These results suggest that the anti-cancer effects produced by a combined approach of inhibiting glutamine metabolism and administering common chemotherapeutic agents correlate with the tumor cell type and specific drugs being administered. PMID:27419628

  5. Alpha particles induce apoptosis through the sphingomyelin pathway.

    PubMed

    Seideman, Jonathan H; Stancevic, Branka; Rotolo, Jimmy A; McDevitt, Michael R; Howell, Roger W; Kolesnick, Richard N; Scheinberg, David A

    2011-10-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET α particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with α particles emitted by the ²²⁵Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated α particles using a planar ²⁴¹Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that α particles can activate the sphingomyelin pathway to induce apoptosis.

  6. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  7. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model.

    PubMed

    Settem, Rajendra P; El-Hassan, Ahmed Taher; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2012-07-01

    Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.

  8. Acetaminophen Induces Apoptosis in Rat Cortical Neurons

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Blanco, Almudena; Muñoz-Fernández, Maríangeles; Ceña, Valentín

    2010-01-01

    Background Acetaminophen (AAP) is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. Methodology/Principal Findings We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM) that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/Kg) that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial–mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/Kg) injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. Conclusions/Significance The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment) are present. PMID:21170329

  9. Sphingosine-induced apoptosis is dependent on lysosomal proteases.

    PubMed Central

    Kågedal, K; Zhao, M; Svensson, I; Brunk, U T

    2001-01-01

    We propose a new mechanism for sphingosine-induced apoptosis, involving relocation of lysosomal hydrolases to the cytosol. Owing to its lysosomotropic properties, sphingosine, which is also a detergent, especially when protonated, accumulates by proton trapping within the acidic vacuolar apparatus, where most of its action as a detergent would be exerted. When sphingosine was added in low-to-moderate concentrations to Jurkat and J774 cells, partial lysosomal rupture occurred dose-dependently, starting within a few minutes. This phenomenon preceded caspase activation, as well as changes of mitochondrial membrane potential. High sphingosine doses rapidly caused extensive lysosomal rupture and ensuing necrosis, without antecedent apoptosis or caspase activation. The sphingosine effect was prevented by pre-treatment with another, non-toxic, lysosomotropic base, ammonium chloride, at 10 mM. The lysosomal protease inhibitors, pepstatin A and epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester ('E-64d'), inhibited markedly sphingosine-induced caspase activity to almost the same degree as the general caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone ('Z-VAD-FMK'), although they did not by themselves inhibit caspases. We conclude that cathepsin D and one or more cysteine proteases, such as cathepsins B or L, are important mediators of sphingosine-induced apoptosis, working upstream of the caspase cascade and mitochondrial membrane-potential changes. PMID:11583579

  10. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis.

    PubMed

    Boivin, Dominique; Gendron, Sébastien; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2002-08-01

    Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytochrome c from mitochondria to the cytoplasm. Neovastat-induced apoptosis appears to be specific to endothelial cells because treatment of other cell types such as U-87, COS-7, NIH-3T3, and SW1353 did not result in increased caspase-3 activity. These results demonstrate that Neovastat contains a proapoptotic factor that specifically induces the activation of caspases in endothelial cells and the resulting apoptosis of these cells.

  11. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells

    PubMed Central

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-01

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications. PMID:28008149

  12. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    PubMed

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc.

  13. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-24

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.

  14. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  15. Holothuria leucospilota Extract Induces Apoptosis in Leishmania major Promastigotes

    PubMed Central

    FOROUTAN-RAD, Masoud; KHADEMVATAN, Shahram; SAKI, Jasem; HASHEMITABAR, Mahmoud

    2016-01-01

    Background: The present study aimed to survey antileishmanial activity of methanolic Holothuria leucospilota extract against Leishmania major promastigotes in vitro. Methods: Promastigotes were cultured in RPMI 1640 and after reaching the stationary phase, the study was conducted with different concentrations of the extract. Afterwards, MTT colorimetric assay for the obtaining of 50% inhibitory concentration (IC50) was utilized. Furthermore, in order to determine the possible induction of apoptosis in L. major promastigotes, flow cytometry and DNA fragmentation methods were employed using annexin-V FLUOS staining kit and DNA ladder kit, respectively. Results: The IC50 value of H. leucospilota extract at three time points of 24, 48, and 72 h was estimated 2000, 300 and 85 μg/ml, respectively. In addition, the extract revealed a dose and time-dependent antileishmanial activity. Furthermore, various characteristics of apoptosis appeared after L. major promastigotes treatment, which included cell shrinkage, formation of apoptotic bodies, blebbing of the cell membrane, and externalization of phosphatidylserine, although no laddering pattern was observed. Conclusion: The methanolic extract of H. leucospilota possesses lethal effect on L. major promastigotes and induces the apoptosis in parasites. Further studies are required to address the apoptosis mechanism in vivo. PMID:28127339

  16. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  17. Amphiregulin impairs apoptosis-stimulating protein 2 of p53 overexpression-induced apoptosis in hepatoma cells.

    PubMed

    Liu, Kai; Lin, Dongdong; Ouyang, Yabo; Pang, Lijun; Guo, Xianghua; Wang, Shanshan; Zang, Yunjin; Chen, Dexi

    2017-03-01

    Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.

  18. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  19. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.

    PubMed

    Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D

    2008-11-01

    Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.

  20. A Synergistic Role for IL-1β and TNFα in Monocyte Derived IFNγ Inducing Activity

    PubMed Central

    Raices, Raquel M.; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D.

    2009-01-01

    Although much is known about classic IFNγ inducers, little is known about the IFNγ inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNγ production by KG-1 cells. Unexpectedly, monocyte-derived IFNγ inducing activity was detected, but it was completely inhibited by IL-1β, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNγ inducing activity of IL-1β, suggesting that IL-1β requires a cofactor to induce IFNγ production in KG-1 cells. Because TNFα is known to synergize with IL-1β for various gene products, it was studied as the putative IL-1β synergizing factor. Although recombinant TNFα (rTNFα) alone had no IFNγ inducing activity, neutralization of TNFα in the monocyte conditioned media inhibited the IFNγ inducing activity. Furthermore, rTNFα restored the IFNγ inducing activity of the size-fractionated IL-1β. Finally, rTNFα synergized with rIL-1β, as well as with rIL-1α and rIL-18, for KG-1 IFNγ release. These studies demonstrate a synergistic role between TNFα and IL-1 family members in the induction of IFNγ production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18. PMID:18805021

  1. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis

    SciTech Connect

    Fu Ping; Arcasoy, Murat O. . E-mail: arcas001@mc.duke.edu

    2007-03-09

    The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3{beta}, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3{beta}, we investigated whether GSK-3{beta} inhibition is cardioprotective. We found that GSK-3{beta} inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3{beta} inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.

  2. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  3. Progesterone prevents radiation-induced apoptosis in breast cancer cells.

    PubMed

    Vares, Guillaume; Ory, Katherine; Lectard, Bruno; Levalois, Céline; Altmeyer-Morel, Sandrine; Chevillard, Sylvie; Lebeau, Jérôme

    2004-06-03

    Sex steroid hormones play an essential role in the control of homeostasis in the mammary gland. Although the involvement of progesterone in cellular proliferation and differentiation is well established, its exact role in the control of cell death still remains unclear. As dysregulation of the apoptotic process plays an important role in the pathogenesis of breast cancer, we investigated the regulation of apoptosis by progesterone in various breast cancer cell lines. Our results show that progesterone treatment protects against radiation-induced apoptosis. This prevention appears to be mediated by the progesterone receptor and is unrelated to p53 status. There is also no correlation with the intrinsic hormonal effect on cell proliferation, as the presence of cells in a particular phase of the cell cycle. Surprisingly, progesterone partly allows bypassing of the irradiation-induced growth arrest in G(2)/M in PgR+ cells, leading to an increase in cell proliferation after irradiation. One consequence of this effect is a higher rate of chromosome damage in these proliferating progesterone-treated cells compared to what is observed in untreated irradiated cells. We propose that progesterone, by inhibiting apoptosis and promoting the proliferation of cells with DNA damage, potentially facilitates the emergence of genetic mutations that may play a role in malignant transformation.

  4. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  5. Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro.

    PubMed

    Doroodgar, Masoud; Delavari, Mahdi; Doroodgar, Moein; Abbasi, Ali; Taherian, Ali Akbar; Doroodgar, Abbas

    2016-02-01

    Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.

  6. Bisphenol A-induced apoptosis of cultured rat Sertoli cells.

    PubMed

    Iida, Hiroshi; Maehara, Kazue; Doiguchi, Masamichi; Mōri, Takayuki; Yamada, Fumio

    2003-01-01

    Bisphenol A (BPA) was examined for its effects on cultured Sertoli cells established from 18-day-old rat testes. We demonstrated that exposure of cultured Sertoli cells to BPA decreased the cell viability in a dose- and a time-dependent manner and that exposure to BPA brought about morphologic changes of the cells, such as membrane blebs, cell rounding, cytoskeletal collapse, and chromatin condensation or fragmentation, all of which conform to the morphologic criteria for apoptosis. Immunocytochemistry showed that active caspase-3, a major execution caspase, was expressed in round Sertoli cells positively labeled by the TUNEL method. Co-localization of active caspase-3 and aggregated actin fragments was also observed in the round Sertoli cells. Theses results suggest that BPA induces cell death of Sertoli cells by promoting apoptosis. Apoptosis-inducing cell death was observed in cells exposed to 150-200 microM BPA, while BPA at <100 microM had only slight cytotoxic effects on the cells.

  7. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  8. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis.

    PubMed

    Sharma, Monika; Manoharlal, Raman; Negi, Arvind Singh; Prasad, Rajendra

    2010-08-01

    We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.

  9. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress

    PubMed Central

    Lan, Xiqian; Lederman, Rivka; Eng, Judith M.; Shoshtari, Seyedeh Shadafarin Marashi; Saleem, Moin A.; Malhotra, Ashwani; Singhal, Pravin C.

    2016-01-01

    Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides

  10. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  11. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

    PubMed Central

    ZHAO, ZHONG-QUAN; YU, ZHONG-YANG; LI, JIE; OUYANG, XUE-NONG

    2016-01-01

    Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the effects of gefitinib on lung cancer cells and the mechanism of such, the present study analyzed the effect of gefitinib on the autophagy, apoptosis and proliferation of the A549 and A549-gefitinib-resistant (GR) cell lines GR. The regulation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway was also investigated. Acridine orange staining revealed that gefitinib induced autophagy of A549 cells but not A549-GR cells. In addition, gefitinib promoted apoptosis and inhibited proliferation of A549 cells but not A549-GR cells. Furthermore, western blot analysis demonstrated that gefitinib treatment led to the downregulation of PI3K, AKT, pAKT, mTOR and phosphorylated-mTOR protein expression in A549 cells but not A549-GR cells. LY294002 blocked the PI3K/AKT/mTOR pathway and induced autophagy and apoptosis of A549 cells, however, no synergistic effect was observed following combined treatment with gefitinib and LY294002. In conclusion, the results of the present study indicate that gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway, which leads to lung cancer cell death. PMID:27347100

  12. Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells.

    PubMed

    Kim, Byeong Mo; Maeng, Kyungah; Lee, Kee-Ho; Hong, Sung Hee

    2011-01-28

    The present study was performed to investigate the possible combined use of the Cox-2 inhibitor niflumic acid and the PPARγ ligand ciglitazone and to elucidate the mechanisms underlying enhanced apoptosis by this combination treatment in human lung cancer cells. Combined niflumic acid-ciglitazone treatment synergistically induced apoptotic cell death, activated caspase-9, caspase-3, and induced caspase-3-mediated PARP cleavage. The combination treatment also triggered apoptosis through caspase-8/Bid/Bax activation, and the inhibition of caspase-8 suppressed caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and concomitant apoptosis. In addition, combined niflumic acid-ciglitazone treatment significantly induced ER stress responses, and suppression of CHOP expression significantly attenuated the combined niflumic acid-ciglitazone treatment-induced activation of caspase-8 and caspase-3, and the subsequent apoptotic cell death, indicating a role of ER stress in caspase-8 activation and apoptosis. Interestingly, the pro-apoptotic effects of combined niflumic acid-ciglitazone treatment were realized through Cox-2- and PPARγ-independent mechanisms. Taken together, these results suggest that sequential ER stress and caspase-8 activation are critical in combined niflumic acid-ciglitazone treatment-induced apoptosis in human lung cancer cells.

  13. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  14. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  15. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    PubMed Central

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  16. Interferon-γ promotes double-stranded RNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells.

    PubMed

    Gan, Huachen; Hao, Qin; Idell, Steven; Tang, Hua

    2016-12-01

    Viral respiratory tract infections are the most common illness in humans. Infection of the respiratory viruses results in accumulation of viral replicative double-stranded RNA (dsRNA), which is one of the important components of infecting viruses for the induction of lung epithelial cell apoptosis and innate immune response, including the production of interferon (IFN). In the present study, we have investigated the regulation of dsRNA-induced airway epithelial cell apoptosis by IFN. We found that transcription factor Runx3 was strongly induced by type-II IFNγ, slightly by type-III IFNλ, but essentially not by type-I IFNα in airway epithelial cells. IFNγ-induced expression of Runx3 was predominantly mediated by JAK-STAT1 pathway and partially by NF-κB pathway. Interestingly, Runx3 can be synergistically induced by IFNγ with a synthetic analog of viral dsRNA polyinosinic-polycytidylic acid [poly(I:C)] or tumor necrosis factor-α (TNFα) through both JAK-STAT1 and NF-κB pathways. We further found that dsRNA poly(I:C)-induced apoptosis of airway epithelial cells was mediated by dsRNA receptor toll-like receptor 3 (TLR3) and was markedly augmented by IFNγ through the enhanced expression of TLR3 and subsequent activation of both extrinsic and intrinsic apoptosis pathways. Last, we demonstrated that upregulation of Runx3 by IFNγ promoted TLR3 expression, thus amplifying the dsRNA-induced apoptosis in airway epithelial cells. These novel findings indicate that IFNγ promotes dsRNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Findings from our study may provide new insights into the regulation of airway epithelial cell apoptosis by IFNγ during viral respiratory tract infection.

  17. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus

    PubMed Central

    Craciunescu, Corneliu N.; Wu, Renan; Zeisel, Steven H.

    2006-01-01

    Diethanolamine (DEA) is present in many consumer products such as shampoo. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline, and we previously reported that dietary choline deficiency during pregnancy reduces neurogenesis and increases apoptosis in the hippocampus of fetal rats and mice. Therefore, DEA could also alter brain development. Timed-pregnant C57BL/6 mice were dosed dermally from gestation day 7 through 17 with DEA at 0, 20, 80, 160, 320, and 640 mg/kg body/day. At doses of DEA > 80 mg/kg body/day, we observed decreased litter size. In fetuses (embryonic day 17) collected from dams treated dermally with 80 mg/kg body/day DEA, we observed decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone of the hippocampus [to 56±14% (SE) histone 3 (H3) phosphorylation as compared to controls; P < 0.01]. We also observed increased apoptosis in fetal hippocampus (to 170±10% of control measured using TUNEL and to 178±7% of control measured using activated caspase 3; P < 0.01). Thus, maternal exposure to DEA reduces the number of neural progenitor cells in hippocampus by two mechanisms, and this could permanently alter memory function in offspring of mothers exposed to this common ingredient of shampoos and soaps.—Craciunescu, C. N., Wu, R., Zeisel, S. H. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. PMID:16873886

  18. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy

    PubMed Central

    Ma, Dan-Dan; Yang, Wan-Xi

    2016-01-01

    Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells. PMID:27056889

  19. Ticlopidine induced colitis: a histopathological study including apoptosis.

    PubMed Central

    Berrebi, D; Sautet, A; Flejou, J F; Dauge, M C; Peuchmaur, M; Potet, F

    1998-01-01

    AIMS: To describe ticlopidine related microscopic colitis and to assess the occurrence of apoptosis in the colon epithelium. METHODS: A series of colorectal biopsy samples from nine patients with ticlopidine related chronic diarrhoea were analysed. Biopsies were also taken from five of these patients between two and four months after ticlopidine withdrawal. The number of apoptotic cells in the crypts/mm2 (apoptotic index) was calculated using in situ labelling by terminal deoxyribonucleotidyl transferase (TdT) mediated dUTP-biotin nick end labelling (TUNEL). All specimens were matched to normal colorectal specimens from a control group of comparable age and sex distribution. RESULTS: Histological examination of the colon biopsy specimens taken from all nine patients with ticlopidine related chronic diarrhoea showed characteristic features of microscopic colitis. The histology returned to normal when ticlopidine was withdrawn. Apoptotic cells were rarely found in controls, and the mean apoptotic index was 0.53. The apoptotic index was significantly higher (16.53) in ticlopidine related colitis, but decreased dramatically to control value when ticlopidine was withdrawn. CONCLUSION: Microscopic colitis can be induced by ticlopidine and is accompanied by an increase in epithelial apoptosis. Hence, increased apoptosis might be related to drug injury or might be part of microscopic colitis. Images PMID:9659239

  20. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    PubMed

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  1. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans.

    PubMed

    Lam, Minh; Jou, Paul C; Lattif, Ali A; Lee, Yoojin; Malbasa, Christi L; Mukherjee, Pranab K; Oleinick, Nancy L; Ghannoum, Mahmoud A; Cooper, Kevin D; Baron, Elma D

    2011-01-01

    The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast-like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μM Pc 4 followed by light at 2.0 J cm(-2) reduced cell survival by 4 logs. XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay revealed that Pc 4-PDT impaired fungal metabolic activity, which was confirmed using the FUN-1 (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4-PDT. These data indicate that Pc 4-PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.

  2. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272

  3. The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

    PubMed Central

    Lee, Chang-Hoon; Lee, Kyoung-Hee; Jang, An-Hee

    2017-01-01

    Background Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions. PMID:28119751

  4. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    PubMed

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  5. Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation.

    PubMed

    Chen, Lei; Meng, Yue; Sun, Qi; Zhang, Zhongyu; Guo, Xiaoqing; Sheng, Xiaotong; Tai, Guihua; Cheng, Hairong; Zhou, Yifa

    2016-08-11

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. However, acquired resistance of cancer cells to TRAIL is a roadblock. Agents that can either potentiate the effect of TRAIL or overcome resistance to TRAIL are urgently needed. This article reports that ginsenoside compound K (CK) potentiates TRAIL-induced apoptosis in HCT116 colon cancer cells and sensitizes TRAIL-resistant colon cancer HT-29 cells to TRAIL. On a cellular mechanistic level, CK downregulated cell survival proteins including Mcl-1, Bcl-2, surviving, X-linked inhibitor of apoptosis protein and Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein, upregulated cell pro-apoptotic proteins including Bax, tBid and cytochrome c, and induced the cell surface expression of TRAIL death receptor DR5. Reduction of DR5 levels by siRNAs significantly decreases CK- and TRAIL-mediated apoptosis. Importantly, our results indicate, for the first time, that DR5 upregulation is mediated by autophagy, as blockade of CK-induced autophagy by 3-MA, LY294002 or Atg7 siRNAs substantially decreases DR5 upregulation and reduces the synergistic effect. Furthermore, CK-stimulated autophagy is mediated by the reactive oxygen species-c-Jun NH2-terminal kinase pathway. Moreover, we found that p53 and the C/EBP homologous (CHOP) protein is also required for DR5 upregulation but not related with autophagy. Our findings contribute significantly to the understanding of the mechanism accounted for the synergistic anticancer activity of CK and TRAIL, and showed a novel mechanism related with DR5 upregulation.

  6. Tris (dibenzylideneacetone) dipalladium: a small-molecule palladium complex is effective in inducing apoptosis in chronic lymphocytic leukemia B-cells.

    PubMed

    Kay, Neil E; Sassoon, Traci; Secreto, Charla; Sinha, Sutapa; Shanafelt, Tait D; Ghosh, Asish K; Arbiser, Jack L

    2016-10-01

    Here we tested impact of Tris (dibenzylideneacetone) dipalladium (Tris-DBA) on chronic lymphocytic leukemia (CLL) B-cell survival. Indeed, treatment of CLL B-cells with Tris-DBA induced apoptosis in a dose-dependent manner irrespective of IgVH mutational status. Further analyses suggest that Tris-DBA-induced apoptosis involves reduced expression of the anti-apoptotic proteins Bcl-xL, and XIAP with an upregulation of the pro-apoptotic protein BIM in CLL B-cells. Our findings also indicate that Tris-DBA targets the ribosomal protein (rp)-S6, an essential component of the Akt/mTOR signaling axis in CLL B-cells. Of interest, CLL bone marrow stromal cells were unable to protect the leukemic B cells from Tris-DBA-induced apoptosis in an in vitro co-culture system. Finally, co-administration of Tris-DBA and the purine nucleoside analog fludarabine (F-ara-A) augmented CLL B-cell apoptosis levels in vitro showing synergistic effects. In total, Tris-DBA is effective at inducing apoptosis in CLL B-cells even in the presence of stromal cells likely by targeting directly the signal mediator, rpS6.

  7. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line.

    PubMed

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as "mundu" belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.

  8. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    PubMed Central

    Abu Bakar, Mohd Fadzelly; Ahmad, Nor Ezani; Suleiman, Monica; Rahmat, Asmah; Isha, Azizul

    2015-01-01

    Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell. PMID:26557713

  9. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Ge, Kun; Duan, Jianlei; Chen, Shizhu; Zhang, Ran; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao

    2014-11-01

    Cerium oxide nanoparticles (nanoceria) have been widely used in industries and biomedical fields due to its unique properties. Previous biodistribution studies of nanoceria in vivo have shown that they are accumulated in the bone of mice after intravenous administration, about 20 % of the total intake, however, the potential effect and the mechanism of nanoceria on bone metabolism are not well-understood. Our results showed that both 25 and 50 nm nanceria decreased the damage of cell viability induced by H2O2 in a dose-dependent manner. The apoptosis ratio of pre-incubated group with nanoceria was lower than the H2O2 group. The cellular uptake studies indicated that there was a dose-dependent accumulation of both two size nanoparticles in bone marrow stromal cells. Nanoceria could be uptaken by cells due to the synergistic effect of multiple endocytosis mechanisms, and then evenly distributed in the cytoplasm without entering the nucleus. Our results suggest that nanoceria could reduce intracellular ROS level induced by H2O2 in a dose-dependent manner, moreover, maintain the normal function of mitochondria, suggesting nanoceria may have potent applications for preventing or treating osteoporosis.

  10. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    PubMed Central

    2012-01-01

    Background The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. Methods We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. Results TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Conclusions Our data suggest possible future intra

  11. Apoptosis in immunocytes induced by several types of pesticides.

    PubMed

    Fukuyama, Tomoki; Tajima, Yukari; Ueda, Hideo; Hayashi, Koichi; Shutoh, Yasufumi; Harada, Takanori; Kosaka, Tadashi

    2010-03-01

    Several types of pesticides, such as organophosphates and organochlorines, can induce thymocyte apoptosis, resulting in thymic atrophy and predisposing the highly sensitive fetal immune system to loss of tolerance to self-antigens and subsequent increased risk for autoimmune disease and allergies. In the studies here, mouse primary thymocytes and a human acute T-cell leukemia cell line (J45.01) were employed to examine potential thymocyte apoptosis induced by several types of chemicals, including several commonly-used pesticides. Thymocytes and J45.01 cells were treated for 4 or 8 hr with varying doses of metamidophos, parathion, PNMC, or methoxychlor; dexamethasone was used as a positive control. Apoptosis, cell viability, the proportion of Annexin-V+ cells, the activities of caspases 3/7, 8, and 9, and the levels of DNA fragmentation in both the J45.01 cells and thymocytes were then examined. The results here show that with both cell types, there was an increase in the proportion of annexin-V+ cells and levels of DNA fragmentation following exposure to parathion, PNMC, methoxychlor, or dexamethasone (positive control); however, the levels of sensitivity appeared to differ between the cell types. Furthermore, caspase-7 and -8 activities also differed between the J45.01 cells and thymocytes when treated with PNMC, methoxychlor, or dexamethasone. A more precise characterization of these inter-cellular differences is the logical next step in our studies of the effects of these (and other) pesticides on immune cell integrity. These specific types of follow-on mechanistic experiments are currently underway in our laboratories.

  12. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    PubMed Central

    Natarajan, Sathish Kumar; Becker, Donald F

    2012-01-01

    Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted. PMID:22593641

  13. Human Immunodeficiency Virus Type 1 Vpr Induces Apoptosis through Caspase Activation

    PubMed Central

    Stewart, Sheila A.; Poon, Betty; Song, Joo Y.; Chen, Irvin S. Y.

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G2/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration. PMID:10708425

  14. Aloe-emodin-induced apoptosis in human gastric carcinoma cells.

    PubMed

    Chen, Sheng-Hsuan; Lin, Kai-Yuan; Chang, Chun-Chao; Fang, Chia-Lang; Lin, Chih-Ping

    2007-11-01

    The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma.

  15. Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues.

    PubMed

    Xu, Li-Hui; Mu, Fang-Fang; Zhao, Jian-Hong; He, Qiang; Cao, Cui-Li; Yang, Hui; Liu, Qi; Liu, Xue-Hui; Sun, Su-Ju

    2015-01-01

    Acute and chronic lead (Pb) exposure might cause hypertension and cardiovascular diseases. The purpose of this study was to evaluate the effects of early acute exposure to Pb on the cellular morphology, apoptosis, and proliferation in rats and to elucidate the early mechanisms involved in the development of Pb-induced hypertension. Very young Sprague-Dawley rats were allowed to drink 1% Pb acetate for 12 and 40 days. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA) decreased in the tissues of the abdominal and thoracic aortas and increased in the cardiac tissue after 12 and 40 days of Pb exposure, respectively. Bax was upregulated and Bcl-2 was downregulated in vascular and cardiac tissues after 40 days of Pb exposure. In addition, an increase in caspase-3 activity was observed after 40 days of exposure to Pb. In terms of morphology, we found that the internal elastic lamina (IEL) of aorta lost the original curve and the diameter of cardiac cell was enlarged after 40 days. Furthermore, the exposure led to a marked increase in acetylated histone H3 levels in the aortas and cardiac tissue after 12 and 40 days, than that in the control group. These findings indicate that Pb might increase the level of histone acetylation and induce apoptosis in vascular and cardiac tissues. However, the mechanism involved need to be further investigated.

  16. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  17. The Paradox of Oestradiol-Induced Breast Cancer Cell Growth and Apoptosis

    PubMed Central

    Maximov, Philipp Y.; Lewis-Wambi, Joan S.; Jordan, V. Craig

    2009-01-01

    High dose oestrogen therapy was used as a treatment for postmenopausal patients with breast cancer from the 1950s until the introduction of the safer antioestrogen, tamoxifen in the 1970s. The anti-tumour mechanism of high dose oestrogen therapy remained unknown. There was no enthusiasm to study these signal transduction pathways as oestrogen therapy has almost completely been eliminated from the treatment paradigm. Current use of tamoxifen and the aromatase inhibitors seek to create oestrogen deprivation that prevents the growth of oestrogen stimulated oestrogen receptor (ER) positive breast cancer cells. However, acquired resistance to antihormonal therapy does occur, but it is through investigation of laboratory models that a vulnerability of the cancer cell has been discovered and is being investigated to provide new opportunities in therapy with the potential for discovering new cancer-specific apoptotic drugs. Laboratory models of resistance to raloxifene and tamoxifen, the selective oestrogen receptor modulators (SERMs) and aromatase inhibitors demonstrate an evolution of drug resistance so that after many years of oestrogen deprivation, the ER positive cancer cell reconfigures the survival signal transduction pathways so oestrogen now becomes an apoptotic trigger rather than a survival signal. Current efforts are evaluating the mechanisms of oestrogen-induced apoptosis and how this new biology of oestrogen action can be amplified and enhanced, thereby increasing the value of this therapeutic opportunity for the treatment of breast cancer. Several synergistic approaches to therapeutic enhancement are being advanced which involve drug combinations to impair survival signaling with the use of specific agents and to impair bcl-2 that protects the cancer cell from apoptosis. We highlight the historical understanding of oestrogen’s role in cell survival and death and specifically illustrate the progress that has been made in the last five years to understand

  18. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  19. Daily variations in colchicine-induced apoptosis in duodenal crypts.

    PubMed

    Norma, V González; Badrán, Amado F; Barbeito, Claudio G

    2005-01-01

    Apoptotic cell death can be induced by several agents, among them colchicine, a microtubule disrupting-drug that affects continuously renewing cell populations, such as the intestinal crypt enterocytes. The objectives of this investigation were (1) to confirm in vivo colchicines-inductive effect and (2) to determine the existence of 24 h variations in the crypt enterocytes apoptotic indices. The study was done on C3H/S male adult mice housed under standardized conditions. Starting at midnight until the end of a circadian period, subgroups of mice were sacrificed after having been injected with colchicine or saline i.p. 4h beforehand. Duodenal samples were processed for hematoxylin-eosin staining and TUNEL technique. In order to score the number of apoptosis, the longitudinal sections of the crypts were divided into three regions comprised, respectively, of tiers 1-4, 5-12, and 13-20, proceeding from the bottom to the top of the crypt. Values of each lot were expressed as mean +/- SEM. A highly significant statistical difference in apoptotic indices was found for colchicine-treated animals. The 24 h curve for colchicine-induced apoptosis displayed qualitative and quantitative differences compared to other inducer agents. Highest apoptotic indices were found in the deepest crypt regions. Daily variations were observed in all the crypt sectors of the colchicine-treated animals and in tiers 5-12 of the saline controls. The present work demonstrates that the colchicine cytotoxicity due to its apoptotic-inducing effect depends on the dosing time during the 24 h in this mouse strain.

  20. Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines.

    PubMed

    Larsen, Karen Colbjørn; Spencer, Alexandra J; Goodman, Anna L; Gilchrist, Ashley; Furze, Julie; Rollier, Christine S; Kiss-Toth, Endre; Gilbert, Sarah C; Bregu, Migena; Soilleux, Elizabeth J; Hill, Adrian V S; Wyllie, David H

    2009-09-18

    Improving vaccine immunogenicity remains a major challenge in the fight against developing country diseases like malaria and AIDS. We describe a novel strategy to identify new DNA vaccine adjuvants. We have screened components of the Toll-like receptor signalling pathways for their ability to activate pro-inflammatory target genes in transient transfection assays and assessed in vivo adjuvant activity by expressing the activators from the DNA backbone of vaccines. We find that a robust increase in the immune response necessitates co-expression of two activators. Accordingly, the combination of tak1 and tram elicits synergistic reporter activation in transient transfection assays. In a mouse model this combination, but not the individual molecules, induced approximately twofold increases in CD8+ T-cell immune responses. These results indicate that optimal immunogenicity may require activation of distinct innate immune signalling pathways. Thus this strategy offers a novel route to the discovery of a new generation of adjuvants.

  1. The Effect of Selenium on the Cd-Induced Apoptosis via NO-Mediated Mitochondrial Apoptosis Pathway in Chicken Liver.

    PubMed

    Zhang, Runxiang; Yi, Ran; Bi, Yanju; Xing, Lu; Bao, Jun; Li, Jianhong

    2017-01-06

    Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.

  2. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts.

    PubMed

    Chang, Y C; Hu, C C; Tseng, T H; Tai, K W; Lii, C K; Chou, M Y

    2001-09-01

    Areca quid chewing has been linked to oral submucous fibrosis and oral cancer. Arecoline, a major areca nut alkaloid, is considered to be the most important etiologic factor in the areca nut. In order to elucidate the pathobiological effects of arecoline, cytotoxicity assays, cellular glutathione S-transferase (GST) activity and lipid peroxidation assay were employed to investigate cultured human buccal mucosal fibroblasts. To date, there is a large proportion of areca quid chewers who are also smokers. Furthermore, nicotine, the major product of cigarette smoking, was added to test how it modulated the cytotoxicity of arecoline. At a concentration higher than 50 microg/ml, arecoline was shown to be cytotoxic to human buccal fibroblasts in a dose-dependent manner by the alamar blue dye colorimetric assay (P<0.05). In addition, arecoline significantly decreased GST activity in a dose-dependent manner (P<0.05). At concentrations of 100 microg/ml and 400 microg/ml, arecoline reduced GST activity about 21% and 46%, respectively, during a 24 h incubation period. However, arecoline at any test dose did not increase lipid peroxidation in the present human buccal fibroblast test system. The addition of extracellular nicotine acted synergistically on the arecoline-induced cytotoxicity. Arecoline at a concentration of 50 microg/ml caused about 30% of cell death over the 24 h incubation period. However, 2.5 mM nicotine enhanced the cytotoxic response and caused about 50% of cell death on 50 microg/ml arecoline-induced cytotoxicity. Taken together, arecoline may render human buccal mucosal fibroblasts more vulnerable to other reactive agents in cigarettes via GST reduction. The compounds of tobacco products may act synergistically in the pathogenesis of oral mucosal lesions in areca quid chewers. The data presented here may partly explain why patients who combined the habits of areca quid chewing and cigarette smoking are at greater risk of contracting oral cancer.

  3. Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+).

    PubMed

    Erl, W; Weber, C; Hansson, G K

    2000-06-01

    Pyrrolidine dithiocarbamate (PDTC) has been found to induce or inhibit apoptosis in different cell types. Here we show that PDTC dose-dependently reduced the viability of rat smooth muscle cells (rSMC), human fibroblasts, and endothelial cells at low but not at high cell density. Endothelial cells were least sensitive, fibroblasts showed a medium sensitivity, and rSMC showed a high sensitivity to PDTC-mediated cell death. An early reduction in the mitochondrial membrane potential indicated a rapid onset of apoptosis in rSMC. Apoptosis was further confirmed by annexin V staining and DNA fragmentation analysis. Gel shift analysis demonstrated increased nuclear factor (NF)-kappaB activity in high-density rSMC compared with low-density cells. NF-kappaB has recently been shown to regulate the induction of anti-apoptotic proteins. Although PDTC is widely used as an inhibitor for NF-kappaB and a radical scavenger, our data show that PDTC rather enhanced NF-kappaB activity and, alone or in combination with menadione, induced oxygen radical generation. Notably, PDTC failed to reduce rSMC viability in medium without Cu(2+) or Zn(2+), and addition of Cu(2+) or Zn(2+) resulted in a dose-dependent increase in PDTC-induced cell death. Addition of both Cu(2+) and Zn(2+) showed synergistic effects. Our results indicate that the induction of apoptosis by PDTC requires Cu(2+) and Zn(2+) and is dependent on cell type and density. Such differential effects may have implications for studies of PDTC as an anti-atherosclerotic or immunomodulatory drug.

  4. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.

    PubMed

    Li, Yang; Liu, Xiaokang; Jiang, Dan; Lin, Yingjia; Wang, Yushi; Li, Qing; Liu, Linlin; Jin, Ying-Hua

    2016-09-01

    Betulin, an abundant natural compound, significantly inhibited the cell viability of advanced human gastric cancer SGC7901 cells. Mechanism study demonstrated that betulin induced apoptosis through mitochondrial Bax and Bak accumulation-mediated intrinsic apoptosis pathway. Downregulation of the anti-apoptosis proteins Bcl-2 and XIAP was involved during betulin-induced cell apoptosis. Reactive oxygen species (ROS) was generated in cells after betulin treatment in a time- and dose-dependent manner. Addition of antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated betulin-induced ROS generation as well as Bcl-2 and XIAP downregulation. The mitochondrial accumulation of Bax and Bak, as well as caspase activity, was also remarkably inhibited by NAC treatment, indicating that ROS are important signaling intermediates that lead to betulin-induced apoptosis by modulating multiple apoptosis-regulating proteins in SGC7901 cells.

  5. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase

    PubMed Central

    Yuan, Zhi-Min; Huang, Yinyin; Ishiko, Takatoshi; Kharbanda, Surender; Weichselbaum, Ralph; Kufe, Donald

    1997-01-01

    Activation of the c-Abl protein tyrosine kinase by certain DNA-damaging agents contributes to down-regulation of Cdk2 and G1 arrest by a p53-dependent mechanism. The present work investigates the potential role of c-Abl in apoptosis induced by DNA damage. Transient transfection studies with wild-type, but not kinase-inactive, c-Abl demonstrate induction of apoptosis. Cells that stably express inactive c-Abl exhibit resistance to ionizing radiation-induced loss of clonogenic survival and apoptosis. Cells null for c-abl are also impaired in the apoptotic response to ionizing radiation. We further show that cells deficient in p53 undergo apoptosis in response to expression of c-Abl and exhibit decreases in radiation-induced apoptosis when expressing inactive c-Abl. These findings suggest that c-Abl kinase regulates DNA damage-induced apoptosis. PMID:9037071

  6. [X-ray irradiation induces apoptosis of mouse GC1 sperm cells via nuclear translocation of apoptosis-inducing factor].

    PubMed

    Yang, Huiying; Ding, Jingbin; Wang, Zhijun; Ding, Juan; Xia, Xinshe; Zhao, Wei

    2017-03-01

    Objective To study the effect of X-ray irradiation on the localization of apoptosis inducing factor (AIF) in mouse GC1 sperm cells. Methods After GC1 cells were treated with 0, 3, 6 and 9 Gy X irradiation, BrdU incorporation assay was performed to detect the proliferation of GC1 cells. Forty-eight hours after irradiation, the nuclear condensation was observed by DAPI staining. The subcellular localization of AIF was showed using the immunofluorescence staining, both in the whole cell extracts and in nuclear extracts, and the expression levels of AIF were detected using Western blot analysis. Results With the increase of X-ray irradiation dose, the proliferation of GC1 cells significantly decreased, and the activity of cells was weakened. After 6 Gy irradiation, in nuclear extracts, but not in the whole cell extracts, the protein AIF was upregulated significantly. It meant the nuclear translocation of protein AIF. Conclusion X-ray irradiation induces the apoptosis of mouse GC1 sperm cells, meanwhile, the nuclear translocation of AIF occurs.

  7. Deficiency of the Bax gene attenuates denervation-induced apoptosis

    PubMed Central

    Siu, P. M.; Alway, S. E.

    2015-01-01

    Apoptosis has been implicated in mediating denervation-induced muscle wasting. In this study we determined the effect of interference of apoptosis on muscle wasting during denervation by using mice genetically deficient in pro-apoptotic Bax. After denervation, muscle wasting was evident in both wild-type and Bax−/− muscles but reduction of muscle weight was attenuated in Bax−/− mice. Apoptotic DNA fragmentation increased in wild-type denervated muscles whereas there was no statistical increase in DNA fragmentation in denervated muscles from Bax−/− mice. Mitochondrial AIF and Smac/DIABLO releases and Bcl-2, p53 and HSP27 increased whereas XIAP and MnSOD decreased to a similar extent in muscles from wild-type and Bax−/− mice following denervation. Mitochondrial cytochrome c release was elevated in denervated muscles from wild-type mice but the increase was suppressed in muscles from Bax−/− mice. Increases in caspase-3 and -9 activities and oxidative stress markers H2O2, MDA/4-HAE and nitrotyrosine were all evident in denervated muscles from wild-type mice but these changes were absent in muscles from Bax−/− mice. Moreover, ARC increased exclusively in denervated Bax−/− muscle. Our data indicate that under conditions of denervation, pro-apoptotic signalling is suppressed and muscle wasting is attenuated when the Bax gene is lacking. These findings suggest that interventions targeting apoptosis may be valuable in ameliorating denervation-associated pathologic muscle wasting in certain neuromuscular disorders that involve partial or full denervation. PMID:16763784

  8. Prolactin Induces Apoptosis of Lactotropes in Female Rodents

    PubMed Central

    Ferraris, Jimena; Zárate, Sandra; Jaita, Gabriela; Boutillon, Florence; Bernadet, Marie; Auffret, Julien; Seilicovich, Adriana; Binart, Nadine; Pisera, Daniel

    2014-01-01

    Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL) surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR), we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes), suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO) in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1–9-G129R-hPRL), providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i) the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii) partial or total deficiencies in PRLR signaling in the anterior pituitary may result

  9. Gambogic acid potentiates the chemosensitivity of colorectal cancer cells to 5-fluorouracil by inhibiting proliferation and inducing apoptosis

    PubMed Central

    Wei, Jianchang; Yang, Ping; Li, Wanglin; He, Feng; Zeng, Shanqi; Zhang, Tong; Zhong, Junbin; Huang, Di; Chen, Zhuanpeng; Wang, Chengxing; Chen, Huacui; Hu, He; Cao, Jie

    2017-01-01

    Chemotherapy using 5-fluorouracil (5-FU) for colorectal cancer (CRC) has low specificity and response rates, leading to severe side effects. Gambogic acid (GA), a traditional Chinese medicine, has multi-targeted anticancer effects, including growth inhibition and apoptosis induction. However, it is unclear whether a combination of 5-FU and GA has synergistic anticancer effects in CRC cells. In this study, SW480 and HCT116 human CRC cells and human intestinal epithelial cells (IECs) were treated with different concentrations of 5-FU, GA or 5-FU+GA. A Cell Counting kit-8 assay was conducted to quantify cell proliferation. The combination index (CI) was calculated and the median-effect principle was applied to analyze the interaction between 5-FU and GA. Flow cytometry was used to determine the percentage of cells undergoing apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were applied to measure P53, survivin and thymidylate synthase (TS) mRNA and protein levels. It was found that 5-FU+GA more pronouncedly inhibited cell growth and induced apoptosis, compared with either monotherapy. CI values <1 indicated the synergistic effects of the drugs. 5-FU+GA further decreased P53, survivin and TS mRNA and protein levels in the two CRC cell lines compared with single drugs, whereas increased P53 protein levels were observed in HCT116 cells. Moreover, 5-FU+GA did not increase cytotoxicity to IECs. These results demonstrate that GA enhances the anticancer effects of 5-FU on CRC cells. Combined treatment with 5-FU and GA is effective and safe for CRC cells, and may become a promising chemotherapy treatment. PMID:28352348

  10. The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

    PubMed Central

    Han, Min Ho; Park, Cheol; Kwon, Taek Kyu; Kim, Gi-Young; Kim, Wun-Jae; Hong, Sang Hoon; Yoo, Young Hyun; Choi, Yung Hyun

    2015-01-01

    Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-FLIPL-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways. PMID:25593641

  11. Oxidative Stress and Cell Apoptosis in Caprine Liver Induced by Molybdenum and Cadmium in Combination.

    PubMed

    Yang, Fan; Zhang, Caiying; Zhuang, Yu; Gu, Xiaolong; Xiao, Qingyang; Guo, Xiaoquan; Hu, Guoliang; Cao, Huabin

    2016-09-01

    To investigate the effects of co-exposure to molybdenum (Mo) and cadmium (Cd) on oxidative stress and cell apoptosis in caprine livers, 36 Boer goats were randomly divided into four groups with nine goats in each group. Three groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mg Cd kg(-1)·BW) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1)·BW, 30 mg Mo kg(-1)·BW, 45 mg Mo kg(-1)·BW), while the control group received deionized water. Liver tissues on days 0, 25, and 50 were subjected to determine antioxidant activity indexes and the messenger RNA (mRNA) expression levels of ceruloplasmin (CP), cysteinyl aspartate-specific proteinase-3 (caspase-3), second mitochondria-derived activator of caspases (Smac), and cytochrome-C (Cyt-C) genes. The results showed that significant reductions were observed in total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) activities (P < 0.05), while activities or contents of malondialdehyde (MDA), nitric oxide (NO), and nitric oxide synthase (NOS) were increased (P < 0.05). The mRNA expression levels of CP, caspase-3, Smac, and Cyt-C genes were upregulated (P < 0.05). In addition, histopathological lesions showed different degrees of vacuolar degeneration and edematous and mitochondrial swelling. The results suggest that co-exposure to Mo and Cd could induce oxidative stress and cell apoptosis possibly associated with mitochondrial intrinsic pathway in goat liver and show possible synergistic effects between the two elements.

  12. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  13. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    PubMed Central

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  14. Autophagy Protects from Raddeanin A-Induced Apoptosis in SGC-7901 Human Gastric Cancer Cells

    PubMed Central

    Liu, Shen-lin; Fang, Liang-hua; Zhou, Jin-yong; Wu, Jian; Xi, Song-yang; Chen, Yan; Zhang, Ying-ying; Xu, Song

    2016-01-01

    Raddeanin A (RA) is an extractive from Anemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA. PMID:27974905

  15. Interaction between various resistance modifiers and apoptosis inducer 12H-benzo[alpha]phenothiazine.

    PubMed

    Mucsi, Ilona; Varga, Andreas; Kawase, Masami; Motohashi, Noboru; Molnar, Joseph

    2002-01-01

    The effect of some resistance modifiers on apoptosis induction by a benzo[alpha]phenothiazine derivative was studied on the L5178Y mouse lymphoma cells (parent) and its multidrug resistant (MDR) subline. For evaluation of apoptosis the cells were stained with FITC-labelled annexin V and propidium iodide and the results were analysed by flow cytometry. 12H-benzo[alpha]phenothiazine [M627] induced apoptosis both in the parent cells and in the MDR cells. The apoptosis induction by [M627] was not affected significantly by post- or pre-treatment with resistance modifiers, while in the cells treated by (+/-)-verapamil before and after apoptosis induction with [M627], the apoptosis was somewhat higher. The resistance modifier compounds alone also induced apoptosis and it was slightly higher in the parent cells than its MDR1/A gene-transformed subline.

  16. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    SciTech Connect

    Geel, Tessa M.; Meiss, Gregor; Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de; Zaremba, Mindaugas; Silanskas, Arunas; Kokkinidis, Michael; Ruiters, Marcel H.; McLaughlin, Pamela M.; Rots, Marianne G.

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  17. Evidence that FTY720 induces rat thymocyte apoptosis.

    PubMed

    Isoyama, Naohito; Takai, Kimio; Tsuchida, Masahiro; Matsumura, Masafumi; Naito, Katsusuke

    2006-04-01

    FTY720, a novel immunomodulator with the potential to improve immunosuppressive therapy after organ transplantation, is currently under clinical investigation. FTY720 drastically decreases blood lymphocytes, especially T cells, accelerating lymphocyte homing to secondary lymphoid organs. However, its immunosuppressive effects remain unknown. We investigated these effects in rat thymocytes. Rats were intramuscularly injected with 10mg/kg/day FTY720 or saline for 7days. Thymuses were removed on days 0, 1, 3, 5, 7 and 14 after treatment. Three-color analysis was performed with a flow cytofluorometer. Apoptotic nuclei in the tissue sections were identified by TUNEL. Genomic DNA was then extracted and samples were electrophoresed on 2.0% agarose gel. FTY720 reduced the total number of thymocytes and, with time, significantly reduced the percentage of CD4+8+ TCRalphabeta(negative/low) thymocytes. Light microscopy of thymuses of FTY720-treated rats revealed obvious reductions in the size of the cortical region. TUNEL analysis showed that FTY720 induced thymocyte apoptosis in the cortical region. Furthermore, DNA fragmentation was observed in thymocytes treated with FTY720, indicating thymocyte apoptosis. FTY720 reduced the number of CD4+8+ thymocytes before TCRalphabeta expression resulting in impaired thymocyte differentiation and maturation. This might be an immunosuppressive effect of FTY720.

  18. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  19. Porcine JAB1 significantly enhances apoptosis induced by staurosporine

    PubMed Central

    Jiang, P; Wang, J; Kang, Z; Li, D; Zhang, D

    2013-01-01

    c-Jun activation domain-binding protein-1 (JAB1), also known as the subunit 5 of the COP9 signalosome, is a multifunctional protein that regulates cell proliferation, apoptosis and oncogenesis by interacting with and subsequently degrading a large number of proteins. Although human JAB1 (hJAB1) has been studied for a long time, studies on porcine JAB1 (pJAB1) have never been reported. In the present study, we cloned and characterized the pJAB1 gene. The genomic structure of the pJAB1 gene was determined. The open-reading frame of pJAB1 encoded 334 amino acids. The deduced amino acid sequence was highly similar to homologs in other species. Furthermore, the tertiary structure analysis and phylogenetic analysis indicated that JAB1 was highly conservative among species. pJAB1 may interact with several proteins according to protein–protein interactions analysis. In addition, pJAB1 was found to be universally expressed in porcine tissues. Subcellular localization analysis showed that GFP–pJAB1 fusion protein distributed specifically in the cytoplasm. Flow cytometric analysis proved that pJAB1 significantly enhanced apoptosis induced by staurosporine, which at least partially depended on the activation of caspase-9 and caspase-3. This study is useful for understanding the function of pJAB1 and offers a potential molecular model for the investigation of diseases related to hJAB1. PMID:24091666

  20. Distinct patterns of cleavage and translocation of cell cycle control proteins in CD95-induced and p53-induced apoptosis.

    PubMed Central

    Park, Weon Seo; Jung, Kyeong Cheon; Chung, Doo Hyun; Nam, Woo-Dong; Choi, Won Jin; Bae, Youngmee

    2003-01-01

    Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction (R) point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD95 cannot be the sole factor resulting in apoptosis. In addition, unlike p53-induced apoptosis, the relationship between CD95-mediated apoptosis and the cell cycle is not clearly understood. It would therefore be worth investigating whether CD95-mediated cell death is pertinent with p53-induced apoptosis in view of cell cycle related molecules. In this report, biochemical analysis showed that etoposide-induced apoptosis caused the induction and the nuclear translocation of effector molecules involved in G1 cell cycle checkpoint. However, there was no such translocation in the case of CD95-mediated death. Thus, although both types of apoptosis involved caspase activation, the cell cycle related proteins responded differently. This argues against the idea that p53-induced apoptosis occurs through the induction of CD95/CD95L expression. PMID:12923319

  1. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  2. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  3. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    PubMed Central

    Koshy, P; Henderson, N; Logan, C; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases. PMID:12117676

  4. Evodiamine Induces Apoptosis and Enhances TRAIL-Induced Apoptosis in Human Bladder Cancer Cells through mTOR/S6K1-Mediated Downregulation of Mcl-1

    PubMed Central

    Zhang, Tao; Qu, Shanna; Shi, Qi; He, Dalin; Jin, Xunbo

    2014-01-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, has been considered as a new strategy for anti-cancer therapy. In this study, we demonstrated that evodiamine, a quinolone alkaloid isolated from the fruit of Evodia fructus, induced apoptosis and enhanced TRAIL-induced apoptosis in human bladder cancer cells. To elucidate the underlying mechanism, we found that evodiamine significantly reduced the protein levels of Mcl-1 in 253J and T24 bladder cancer cells, and overexpression of this molecule attenuated the apoptosis induced by evodiamine alone, or in combination with TRAIL. Further experiments revealed that evodiamine did not affect the mRNA level, proteasomal degradation and protein stability of Mcl-1. On the other hand, evodiamine inhibited the mTOR/S6K1 pathway, which usually regulates protein translation; moreover, knockdown of S6K1 with small interfering RNA (siRNA) effectively reduced Mcl-1 levels, indicating evodiamine downregulates c-FLIP through inhibition of mTOR/S6K1 pathway. Taken together, our results indicate that evodiamine induces apoptosis and enhances TRAIL-induced apoptosis possibly through mTOR/S6K1-mediated downregulation of Mcl-1; furthermore, these findings provide a rationale for the combined application of evodiamine with TRAIL in the treatment of bladder cancer. PMID:24566141

  5. Role of p53 in cdk Inhibitor VMY-1-103-induced Apoptosis in Prostate Cancer

    DTIC Science & Technology

    2013-11-01

    JA, Uren A. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011...induced apoptosis in prostate cancer PRINCIPAL INVESTIGATOR: Lymor Ringer...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of p53 in cdk inhibitor VMY-1-103-induced apoptosis in prostate cancer 5b. GRANT NUMBER

  6. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    PubMed

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  7. Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508.

    PubMed

    Zhong, Ming; Carney, Darrell H; Ryaby, James T; Schwartz, Zvi; Boyan, Barbara D

    2009-01-01

    Growth plate chondrocytes are susceptible to apoptosis. Terminally differentiated chondrocytes are deleted via apoptosis, which primes the growth plate to vascular invasion and subsequent bone formation. Whether less differentiated resting zone chondrocytes are subject to the same mechanism that governs the apoptotic pathway of more differentiated growth zone chondrocytes is not known. In our current study, we demonstrated that inorganic phosphate, a key inducer of growth plate chondrocyte apoptosis, also causes apoptosis in resting zone chondrocytes, via a pathway similar to the one in growth zone chondrocytes. Our results demonstrated that the conditions that cause growth plate chondrocyte apoptosis lie in the external environment, instead of the differences in differentiation state.

  8. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Chen, Junxiong; Wang, Chenliang; Lan, Wenjian; Huang, Chunying; Lin, Mengmeng; Wang, Zhongyang; Liang, Wanling; Iwamoto, Aikichi; Yang, Xiangling; Liu, Huanliang

    2015-01-01

    The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases. PMID:26445050

  9. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  10. Ultrastructural lesions induced by neptunium-237: apoptosis or necrosis?

    PubMed

    Pusset, D; Fromm, M; Poncy, J L; Kantelip, B; Galle, P; Chambaudet, A; Baud, M; Boulahdour, H

    2002-07-01

    In this study, we are concerned with the 237 isotope of neptunium (237Np), which is a by-product of uranium in nuclear reactors. To study ultrastructural lesions induced by this element, a group of rats were injected with a solution of 237Np-nitrate once a day for 14 weeks. Lesions observed in liver and kidney are described using electron microscopy. Ultrastructural alterations of cellular membranes and intracellular organelles demonstrated the existence of neptunium toxicity. This toxicity was characterized by various lesions, such as cytoplasmic clarification, disappearance of mitochondrial cristae, swollen mitochondria, abnormal condensation of nuclear chromatin, and nuclear fragmentations. This study demonstrated the probable induction of apoptosis by neptunium both in liver and kidneys.

  11. Promises of apoptosis-inducing peptides in cancer therapeutics.

    PubMed

    Barras, David; Widmann, Christian

    2011-08-01

    Until recently, most research efforts aimed at developing anti-cancer tools were focusing on small molecules. Alternative compounds are now being increasingly assessed for their potential anti-cancer properties, including peptides and their derivatives. One earlier limitation to the use of peptides was their limited capacity to cross membranes but this limitation was alleviated with the characterization of cell-permeable sequences. Additionally, means are designed to target peptides to their malignant targets. Most anti-cancer peptidic compounds induce apoptosis of tumor cells by modulating the activity of Bcl-2 family members that control the release of death factors from the mitochondria or by inhibiting negative regulators of caspases, the proteases that mediate the apoptotic response in cells. Some of these peptides have been shown to inhibit the growth of tumors in mouse models. Hopefully, pro-apoptotic anti-tumor peptides will soon be tested for their efficacy in patients with cancers.

  12. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro.

    PubMed

    Zhang, Jianying; Zhang, Hangjun; Chen, Yingxu

    2006-08-01

    Microcystins including leucine-arginine l-amino acid (MCLR) and arginine-arginine l-amino acid (MCRR) can inhibit several serine/threonine protein phosphatases. In this study, we focused on the efficient biomarker for analyzing toxic cyanobacteria blooms using in vitro apoptosis bioassay. We explored the existence of sensitive apoptosis induced by MCLR and MCRR on isolated lymphocytes of the crucian carp (Carassius auratus) at a low exposure level. Apoptosis was detected in vitro and was clearly distinguished by condensation of nuclear chromatin and formation of apoptotic bodies, after 2 h exposure at 1, 5, 10 nM MCLR and MCRR, respectively. Agarose gel electrophoresis further revealed DNA fragmentation (DNA ladder) caused by apoptosis. We found that MCLR and MCRR can induce lymphocyte apoptosis in a dose- and time-dependent manner with flow cytometry analysis. Our study provides the first evidence that microcystins can induce fish lymphocytes apoptosis and may impair fish immune function.

  13. Simple chemicals can induce maturation and apoptosis of dendritic cells

    PubMed Central

    Manome, H; Aiba, S; Tagami, H

    1999-01-01

    As is well known in the case of Langerhans cells, dendritic cells (DCs) play a crucial role in the initiation of immunity to simple chemicals such as noted in the contact hypersensitivity. Because DCs are scattered in non‐lymphoid organs as immature cells, they must be activated to initiate primary antigen‐specific immune reactions. Therefore, we hypothesized that some simple chemicals must affect the function of DCs. In this paper, we first demonstrated that human monocyte‐derived DCs responded to such simple chemicals as 2,4‐dinitrochlorobenzene (DNCB), 2,4,6‐trinitrochlorobenzene (TNCB), 2,4‐dinitrofluorobenzene (DNFB), NiCl2, MnCl2, CoCl2, SnCl2, and CdSO4 by augmenting their expression of CD86 or human leucocyte antigen‐DR (HLA‐DR), down‐regulating c‐Fms expression or increasing their production of tumour necrosis factor‐α (TNF‐α). In addition, the DCs stimulated with the chemicals demonstrated increased allogeneic T‐cell stimulatory function. Next, we found that, among these chemicals, only NiCl2 and CoCl2 induced apoptosis in them. Finally, we examined the effects of these chemicals on CD86 expression by three different macrophage subsets and DCs induced from the cultures of human peripheral blood monocytes in the presence of macrophage colony‐stimulating factor (M‐CSF), M‐CSF + interleukin‐4 (IL‐4), granulocyte–macrophage colony‐stimulating factor (GM‐CSF), and GM‐CSF + IL‐4, respectively. Among them, only DCs dramatically augmented their expression of CD86. These observations have revealed unique characteristics of DCs, which convert chemical stimuli to augmentation of their antigen presenting function, although their responses to different chemicals were not necessarily uniform in the phenotypic changes, cytokine production or in the induction of apoptosis. PMID:10594678

  14. RGD-FasL Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Liu, Zhongchen; Wang, Juan; Yin, Ping; Qiu, Jinhua; Liu, Ruizhen; Li, Wenzhu; Fan, Xin; Cheng, Xiaofeng; Chen, Caixia; Zhang, Jiakai; Zhuang, Guohong

    2009-01-01

    Despite impressive results obtained in animal models, the clinical use of Fas ligand (FasL) as an anticancer drug is limited by severe toxicity. Systemic toxicity of death ligands may be prevented by using genes encoding membrane-bound death ligands and by targeted transgene expression through either targeted transduction or targeted transcription. Selective induction of tumor cell death is a promising anticancer strategy. A fusion protein is created by fusing the extracellular domain of Fas ligand (FasL) to the peptide arginine-glycine-aspartic acid (RGD) that selectively targets avβ3-integrins on tumor endothelial cells. The purpose of this study is to evaluate the effects of RGD-FasL on tumor growth and survival in a murine hepatocellular carcinoma (HCC) tumor model. Treatment with RGD-FasL displaying an obvious suppressive effect on the HCC tumor model as compared to that with FasL (p < 0.05) and resulted in a more additive effect on tumor growth delay in this model. RGD-FasL treatment significantly enhanced mouse survival and caused no toxic effect, such as weight loss, organ failure, or other treatment-related toxicities. Apoptosis was detected by flow cytometric analysis and TUNEL assays; those results also showed that RGD-FasL is a more potent inducer of cell apoptosis for H22 and H9101 cell lines than FasL (p < 0.05). In conclusion, RGD-FasL appears to be a low-toxicity selective inducer of tumor cell death, which merits further investigation in preclinical and clinical studies. Furthermore, this approach offers a versatile technology for complexing target ligands with therapeutic recombinant proteins. To distinguish the anti-tumor effects of FasL in vivo, tumor and liver tissues were harvested to examine for evidence of necrotic cells, tumor cells, or apoptotic cells by Hematoxylin and eosin (H&E) staining. PMID:19728930

  15. Somatostatin protects photoreceptor cells against high glucose–induced apoptosis

    PubMed Central

    Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M.

    2016-01-01

    Purpose Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. Methods A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Results Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). Conclusions This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation. PMID:28050125

  16. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  17. Regulation of isocyanate-induced apoptosis, oxidative stress, and inflammation in cultured human neutrophils: isocyanate-induced neutrophils apoptosis.

    PubMed

    Mishra, P K; Khan, S; Bhargava, A; Panwar, H; Banerjee, S; Jain, S K; Maudar, K K

    2010-06-01

    Implications of environmental toxins on the regulation of neutrophil function are being significantly appraised. Such effects can be varied and markedly different depending on the type and extent of chemical exposure, which results in direct damage to the immune system. Isocyanates with functional group (-NCO), are considered as highly reactive molecules with diverse industrial applications. However, patho-physiological implications resulting from their occupational and accidental exposures have not been well delineated. The present study was carried out to assess the immunotoxic response of isocyanates and their mode of action at a molecular level on cultured human neutrophils isolated from healthy human volunteers. Studies were conducted to evaluate both dose- and time-dependent (n = 3) response using N-succinimidyl N-methylcarbamate, a chemical entity that mimics the effects of methyl isocyanate in vitro. Measure of apoptosis through annexin-V-FITC/PI assay, active caspase-3, apoptotic DNA ladder assay and mitochondrial depolarization; induction of oxidative stress by CM-H(2)DCFDA and formation of 8'-hydroxy-2'-deoxyguanosine; and levels of antioxidant defense system enzyme glutathione reductase, multiplex cytometric bead array analysis to quantify the secreted cytokine levels (interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, interferon-gamma, tumor necrosis factor, and interleukin-12p70) parameters were evaluated. Our results demonstrate that isocyanates induce neutrophil apoptosis via activation of mitochondrial-mediated pathway along with reactive oxygen species production; depletion in antioxidant defense states; and elevated pro-inflammatory cytokine response.

  18. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  19. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy.

    PubMed

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-03-13

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.

  20. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    SciTech Connect

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-20

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae

  1. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis.

    PubMed

    Panayiotidis, Mihalis I; Franco, Rodrigo; Bortner, Carl D; Cidlowski, John A

    2010-07-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

  2. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  3. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  4. Hypothesis for synergistic toxicity of organophosphorus poisoning-induced cholinergic crisis and anaphylactoid reactions

    SciTech Connect

    Cowan, F.M.; Shih, T.M.; Lenz, D.E.; Madsen, J.M.; Broomfield, C.A.

    1996-08-01

    The neurotoxicity of organophosphorus (OP) compounds Involves the Inhibition of acetylchollnesterase (AChE), causing accumulation of acetyicholine (ACh) at synapses. However, cholinergic crisis may not be the sole mechanism of OP toxicity. Adverse drug reactions caused by synergistic toxicity between drugs with distinct pharmacological mechanisms are a common problem. Likewise, the multiple pharmacological activities of a single molecule might also contribute to either toxicity or efficacy. For example, certain OP compounds (e.g. soman) exhibit anti-AChE activity and also act as secretagogues by inducing mast cell degranulation with associated autacoid release and anaphylactoid reactions. Anaphylactoid shock can produce a lethal syndrome with symptoms of respiratory failure and circulatory collapse similar to the physiological sequelae observed for OP poisoning. Moreover, the major classes of drugs used as antidotes for OP intoxication can affect anaphylaxis. Acetylcholine can act as an agonist of autacoid release, and autacoids such as histamine can augment soman-Induced bronchial spasm. In concert with the demonstrably critical role of cholinergic crisis In OP toxicity, the precepts of neuroimmunology indicate that secondary adverse reactions encompassing anaphylactold reactions may complicate OP toxicity.

  5. Fatigue-induced changes in synergistic muscle force do not match tendon elongation.

    PubMed

    Mitsukawa, Naotoshi; Sugisaki, Norihide; Miyamoto, Naokazu; Yanai, Toshimasa; Kanehisa, Hiroaki; Fukunaga, Tetsuo; Kawakami, Yasuo

    2010-05-28

    This study aimed to investigate whether fatigue-induced changes in synergistic muscle forces match their tendon elongation. The medial gastrocnemius muscle (MG) was fatigued by repeated electrical stimulation (1 min x 5 times: interval 30 s, intensity: 20-30% of maximal voluntary plantar flexion torque) applied at the muscle belly under a partial occlusion of blood vessels. Before and after the MG fatigue task, ramp isometric contractions were performed voluntarily, during which tendon elongations were determined by ultrasonography, along with recordings of the surface EMG activities of MG, the soleus (SOL) and the lateral gastrocnemius (LG) muscles. The tendon elongation of MG and SOL in post-fatigue ramp was similar, although evoked MG forces dropped nearly to zero. In addition, for a given torque output, the tendon elongation of SOL significantly decreased while that of LG did not, although the activation levels of both muscles had increased. Results suggest that the fatigue-induced changes in force of the triceps surae muscles do not match their tendon elongation. These results imply that the tendons of the triceps surae muscles are mechanically coupled even after selective fatigue of a single muscle.

  6. RIP-1/c-FLIPL Induce Hepatic Cancer Cell Apoptosis Through Regulating Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Sun, Jichun; Yu, Xiao; Wang, Changfa; Yu, Can; Li, Zhiqiang; Nie, Wanpin; Xu, Xundi; Miao, Xiongying; Jin, Xiaoxin

    2017-01-01

    Background Almost all hepatic cancer cells have resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. c-FLIPL and RIP-1 are apoptotic negative regulatory factors. This study investigated the role of c-FLIPL and RIP-1 in hepatic cancer cell resistance to TRAIL-induced apoptosis. Material/Methods HepG2 cells were treated by TRAIL, RIP-1 siRNA, and/or BY11-7082. Cell viability was detected by MTT assay. Cell apoptosis was tested by flow cytometry. DISC component proteins, RIP-1, and p-p65 were measured by Western blot. Caspase-8 and caspase-3 were determined by spectrophotometry. Results Single TRAIL treatment showed no significant impact on cell proliferation and apoptosis. HepG2 cells expressed high levels of RIP1 and c-FLIPL, while a high concentration of TRAIL upregulated RIP-1 and c-FLIPL expression but not DR4 and DR5. Single TRAIL treatment did not obviously activate caspase-8 and caspase-3. RIP-1 or c-FLIPL siRNA markedly induced cell apoptosis and enhanced caspase-8 and caspase-3 activities. Combined transfection obviously increased apoptotic cells. TRAIL markedly upregulated RIP-1 expression and enhanced p-p65 protein. Downregulating RIP-1 and/or BAY11-7082 significantly reduced NF-κB transcriptional activity, blocked cells in G0/G1 phase, weakened proliferation, elevated caspase-8 and caspase-3 activities, and promoted cell apoptosis. Conclusions TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. High expression of RIP1 and c-FLIPL is an important reason for TRAIL resistance. Downregulation of RIP1 and c-FLIPL can relieve caspase-8 suppression, activate caspase-3, and promote cell apoptosis. TRAIL mediates apoptosis resistance through upregulating RIP-1 expression, enhancing NF-κB transcriptional activity, and weakening caspase activity. PMID:28270653

  7. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    PubMed

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  8. Quercetin and pioglitazone synergistically reverse endothelial dysfunction in isolated aorta from fructose-streptozotocin (F-STZ)-induced diabetic rats.

    PubMed

    Kunasegaran, Thubasni; Mustafa, Mohd Rais; Achike, Francis I; Murugan, Dharmani Devi

    2017-03-15

    Pioglitazone is an anti-diabetic drug with potential to cause adverse effects following prolonged use. This study, therefore, investigated the effects of combination treatment of a subliminal concentration of pioglitazone and quercetin, a potent antioxidant, on vascular reactivity of aorta isolated from fructose-streptozotocin (F-STZ)-induced diabetic rats. Relaxation to acetylcholine and sodium nitroprusside, and contraction to phenylephrine were tested in organ bath chambers following pre-incubation with vehicle (DMSO; 0.05%), quercetin (10-7 M), pioglitazone (10-7 M), or their combination (P+Q; 10-7 M each drug). Subliminal concentration of quercetin or pioglitazone did not alter the acetylcholine- induced relaxation nor the phenylephrine-induced contraction in both normal rat and diabetic F-STZ induced tissues. However, P+Q combination synergistically improved the impaired acetylcholine-induced relaxation and decreased the elevated phenylephrine-induced contraction in aortic rings from diabetic, but not in the normal rats. Neither mono nor combination treatment altered sodium nitroprusside-induced relaxation. The combination also synergistically decreased superoxide anion and increased nitric oxide production compared to the individual treatments in aorta from diabetic rats. Overall, these data demonstrated a synergistic effect, in which, a combination (P+Q; 10-7 M each drug) caused a significantly greater effect than 10-6 M of either agent in improving endothelial function of isolated diabetic aorta. In conclusion, a combination of subliminal concentrations of pioglitazone and quercetin is able to decrease oxidative stress and provide synergistic vascular protection in type 2 diabetes mellitus and thus the possibility of using quercetin as a supplement to pioglitazone in the treatment of diabetes with the goal of reducing pioglitazone toxicity.

  9. Laser-induced synergistic effects around absorbing nanoclusters in live cells

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Letfullin, Renat R.; Galitovskay, Elena

    2005-04-01

    Background and Objective: The application of nanotechnology for laser thermal-based killing of abnormal cells (e.g. cancer cells) targeted with absorbing nanoparticles (e.g. gold solid nanospheres, nanoshells, or rod) is becoming an extensive area of research. We develop an approach to enhance the efficiency of selective nanophotothermolysis of cancer cells through laser-induced synergistic effects around gold nanoparticles aggregated in nanoclusters on cell membrane. Study Design/Materials and Methods: A concept of selective target damages by laser-induced synergistic interaction of optical, thermal, and acoustic fields around clustered nanoparticles is presented with focus on overlapping bubbles from nanoparticles aggregated on cell's membrane. The experimental verification of this concept in vitro was performed by the use a tunable laser pulses (420-570 nm, 8-12 ns, 0.1-300 μJ, laser flux of 0.1-10 J/cm2) for irradiation of MDA-MB-231 breast cancer cells targeted with primary antibodies to which selecttively 40-nm gold nanoparticles were attached by the means of secondary antibodies. The photothermal, electron and atomic force microscopes in combination with viability test (annexin -V-Propidium iodide) were employed to study the nanoparticle's spatial organization, the dynamics of microbubble formations around the particle's clusters, and cells damage. Results: An aggregation of nanoparticles on cell membrane was observed with simultaneous increase bubble formation phenomena, and red-shifted absorption due to plasmon-plasmon resonances into nanoclusters. It led to a significant enhancement, at least two orders of magnitude, of the efficiency of selectively killing cancer cells with nanosecond laser pulses. Conclusion: Described approach allows using relatively small nanoparticles which would be easier delivery to target site with further creation of nanoclusters with larger sizes which provide more profound thermal and related phenomena leading to more

  10. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    PubMed

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  11. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells.

    PubMed

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS.

  12. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells

    PubMed Central

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS. PMID:28392757

  13. Calmodulin inhibition contributes to sensitize TRAIL-induced apoptosis in human lung cancer H1299 cells.

    PubMed

    Hwang, Mi-kyung; Min, Yong Ki; Kim, Seong Hwan

    2009-12-01

    Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) preferentially triggers apoptosis in tumor cells versus normal cells. However, TRAIL alone is not effective in treating TRAIL-resistant tumors. We evaluated the effect of 180 enzyme inhibitors on TRAIL-induced apoptosis in human lung cancer H1299 cells, and found fluphenazine-N-2-chloroethane (a calmodulin (CaM) antagonist) sensitized TRAIL-induced apoptosis. Interestingly, in the presence of TRAIL, it increased caspase-8 binding to the Fas-associated death domain (FADD), but decreased binding of FADD-like interleukin-1beta-converting enzyme inhibitory proteins (FLIPs). Additionally, its combination with TRAIL inhibited Akt phosphorylation. These results were consistently observed in cells treated with CaM siRNA. We suggested the blockade of CaM could sensitize lung cancer cells to TRAIL-induced apoptosis in at least 2 ways: (i) it can activate death-inducing signaling complex mediated apoptosis by inhibiting TRAIL-induced binding of FLIP and TRAIL-enhanced binding of caspase-8 to FADD; (ii) it can inhibit Akt phosphorylation, consequently leading to decreased expression of anti-apoptotic molecules such as FLIP and members of the inhibitor of apoptosis protein family. This study suggests the combination of CaM antagonists with TRAIL may have the therapeutic potential to overcome the resistance of lung cancers to apoptosis.

  14. induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    PubMed

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  15. Apoptosis-inducing activity of high molecular weight fractions of tea extracts.

    PubMed

    Hayakawa, S; Kimura, T; Saeki, K; Koyama, Y; Aoyagi, Y; Noro, T; Nakamura, Y; Isemura, M

    2001-02-01

    High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.

  16. Ginger (Zingiber officinale) induces apoptosis in Trichomonas vaginalis in vitro

    PubMed Central

    Arbabi, Mohsen; Delavari, Mahdi; Fakhrieh Kashan, Zohre; Taghizadeh, Mohsen; Hooshyar, Hossein

    2016-01-01

    Background: Trichomoniasis is the most common sexually transmitted protozoan diseases in the worldwide. Metronidazole is the choice drug for trichomoniasis treatment, however, metronidazole resistant Trichomonas vaginalis (T.vaginalis) has been reported. Natural products are the source of most new drugs, and Zingiber officinale (Ginger) is widely used ingredient in the traditional medicine. Objective: The aim of the present study was to determine the effect of different concentrations of the ginger ethanol extract on the growth of T.vaginalis trophozoites in vitro. Materials and Methods: In this experimental study, 970 women who were attend in Kashan health centers were examined for T. vaginalis. Of them, 23 samples were infected with T.vaginalis. Three T. vaginalis isolates were cultured in a TYI-S-33 medium. The effect of ginger ethanol extracts and its toxicity in different concentrations (25, 50, 100, 200, 400, 800 µg/ml) on mouse macrophages were measured in triplicate exam by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The effect of ginger on apoptosis induction was determined by Flow cytometry. Results: The IC50 of ginger and metronidazole were 93.8 and 0.0326 µg/ml, respectively. 12, 24 and 48 hr after adding different concentrations of extract on mouse macrophages, fatality rates in maximum dose (800 µg/ml) were 0.19, 0.26 and 0.31 respectively. Flow cytometry results showed the apoptosis rate following treatment with different concentrations of the extract after 48 hr were 17, 28.5, 42.1, 58.8, 76.3 and 100% respectively, while in the control group was 2.9%. Conclusion: Ginger ethanol extract induces programmed death in T. vaginalis. It is recommended that due to the known teratogenic effect of metronidazole, ginger can be considered as an alternative drug for metronidazole. PMID:27981254

  17. Inhibition of protein geranylgeranylation induces apoptosis in synovial fibroblasts.

    PubMed

    Connor, Alison M; Berger, Stuart; Narendran, Aru; Keystone, Edward C

    2006-01-01

    Statins, competitive inhibitors of hydroxymethylglutaryl-CoA reductase, have recently been shown to have a therapeutic effect in rheumatoid arthritis (RA). In RA, synovial fibroblasts in the synovial lining, are believed to be particularly important in the pathogenesis of disease because they recruit leukocytes into the synovium and secrete angiogenesis-promoting molecules and proteases that degrade extracellular matrix. In this study, we show a marked reduction in RA synovial fibroblast survival through the induction of apoptosis when the cells were cultured with statins. Simvastatin was more effective in RA synovial fibroblasts than atorvastatin, and both statins were more potent on tumor necrosis factor-alpha-induced cells. In contrast, in osteoarthritis synovial fibroblasts, neither the statin nor the activation state of the cell contributed to the efficacy of apoptosis induction. Viability of statin-treated cells could be rescued by geranylgeraniol but not by farnesol, suggesting a requirement for a geranylgeranylated protein for synovial fibroblast survival. Phase partitioning experiments confirmed that in the presence of statin, geranylgeranylated proteins are redistributed to the cytoplasm. siRNA experiments demonstrated a role for Rac1 in synovial fibroblast survival. Western blotting showed that the activated phosphorylated form of Akt, a protein previously implicated in RA synovial fibroblast survival, was decreased by about 75%. The results presented in this study lend further support to the importance of elevated pAkt levels to RA synovial fibroblast survival and suggest that statins might have a beneficial role in reducing the aberrant pAkt levels in patients with RA. The results may also partly explain the therapeutic effect of atorvastatin in patients with RA.

  18. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  19. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    PubMed

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  20. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis

    PubMed Central

    Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-01-01

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers. PMID:27472460

  1. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  2. Curcumin enhances temsirolimus-induced apoptosis in human renal carcinoma cells through upregulation of YAP/p53

    PubMed Central

    Xu, Shan; Yang, Zheng; Fan, Yizeng; Guan, Bing; Jia, Jing; Gao, Yang; Wang, Ke; Wu, Kaijie; Wang, Xinyang; Zheng, Pengsheng; He, Dalin; Guo, Peng

    2016-01-01

    Curcumin has frequently been used as a therapeutic agent in the treatment of various types of disease and is known to enhance the drug sensitivity of cells. In the present study, the combined effect of curcumin and temsirolimus treatment on apoptosis in human renal cell carcinoma (RCC) cells was investigated. Temsirolimus is an inhibitor of the mechanistic target of rapamycin signaling pathway and used in the first-line treatment of metastatic RCC. It was demonstrated that curcumin combined with temsirolimus markedly induced apoptosis in RCC cells, however this effect was not observed following curcumin or temsirolimus treatment alone. Co-treatment with temsirolimus and curcumin led to the activation of cleaved poly ADP-ribose polymerase and caspase 3, upregulation of p53 expression and nuclear translocation, and downregulation of B-cell lymphoma 2 protein expression. Furthermore, curcumin treatment was demonstrated to increase Yes-associated protein (YAP) expression in a time-dependent manner, which was concurrent with the curcumin-induced expression pattern of p53 after 2 h. In addition, knockdown of YAP by small interfering RNA caused the attenuation of curcumin-induced increased p53 expression in RCC cells. In conclusion, the present results indicate that combined curcumin and temsirolimus treatment has a synergistic effect on apoptosis in human RCC cells, through the activation of p53. Mechanistically, YAP is essential in the induction of p53 expression by curcumin. Furthermore, the results suggest that pre-treatment or co-treatment of cells with low concentration curcumin enhances the response to targeted drugs, and this presents a potentially novel and efficient strategy to overcome drug resistance in human RCC. PMID:28105206

  3. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    PubMed

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

  4. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    PubMed Central

    QiNan, Wu; XiaGuang, Gan; XiaoTian, Lei; WuQuan, Deng; Ling, Zhang; Bing, Chen

    2016-01-01

    Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes. PMID:27340675

  5. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer.

    PubMed

    Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay

    2014-05-01

    Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70-Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

  6. Synergistic protective effect of N-acetylcysteine and taurine against cisplatin-induced nephrotoxicity in rats

    PubMed Central

    Abdel-Wahab, Wessam M; Moussa, Farouzia I; Saad, Najwa A

    2017-01-01

    Cisplatin (cis-diaminedichloroplatinum II; CDDP) is an effective anticancer drug, but it has limitations because of its nephrotoxicity. This study investigates the protective effect of N-acetylcysteine (NAC) and taurine (TAU), both individually and in combination, against CDDP nephrotoxicity in rats. For this purpose, 48 male rats were assigned into eight groups (n=6) as follows: 1) control group, 2) NAC group, 3) TAU group, 4) NAC–TAU group, 5) CDDP group, 6) CDDP–NAC group, 7) CDDP–TAU group, and 8) CDDP–NAC–TAU group. Cisplatin was administered as a single intraperitoneal injection at a concentration of 6 mg/kg. Three days after CDDP administration, NAC (50 mg/kg) and/or TAU (50 mg/kg) were administered three times weekly for four consecutive weeks. Kidney function markers in serum, urinary glucose and protein, as well as oxidant and antioxidant parameters in renal tissue were assessed. Administration of CDDP significantly elevated urinary glucose and protein, as well as serum creatinine, urea, and uric acid. Moreover, CDDP enhanced lipid peroxidation and suppressed the major enzymatic antioxidants in the kidney tissue. Treatment with NAC or TAU protected against the alterations in the serum, urine, and renal tissue when used individually along with CDDP. Furthermore, a combined therapy of both was more effective in ameliorating CDDP-induced nephrotoxicity, which points out to their synergistic effect. PMID:28356716

  7. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    PubMed Central

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition. PMID:27079666

  8. Synergistic interaction between ankle and knee during hopping revealed through induced acceleration analysis.

    PubMed

    João, Filipa; Veloso, António; Cabral, Sílvia; Moniz-Pereira, Vera; Kepple, Thomas

    2014-02-01

    The forces produced by the muscles can deliver energy to a target segment they are not attached to, by transferring this energy throughout the other segments in the chain. This is a synergistic way of functioning, which allows muscles to accelerate or decelerate segments in order to reach the target one. The purpose of this study was to characterize the contribution of each lower extremity joint to the vertical acceleration of the body's center of mass during a hopping exercise. To accomplish this, an induced acceleration analysis was performed using a model with eight segments. The results indicate that the strategies produced during a hopping exercise rely on the synergy between the knee and ankle joints, with most of the vertical acceleration being produced by the knee extensors, while the ankle plantar flexors act as stabilizers of the foot. This synergy between the ankle and the knee is perhaps a mechanism that allows the transfer of power from the knee muscles to the ground, and we believe that in this particular task the net action of the foot and ankle moments is to produce a stable foot with little overall acceleration.

  9. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis.

    PubMed Central

    Coughlin, C M; Salhany, K E; Wysocka, M; Aruga, E; Kurzawa, H; Chang, A E; Hunter, C A; Fox, J C; Trinchieri, G; Lee, W M

    1998-01-01

    The antitumor effect and mechanisms activated by murine IL-12 and IL-18, cytokines that induce IFN-gamma production, were studied using engineered SCK murine mammary carcinoma cells. In syngeneic A/J mice, SCK cells expressing mIL-12 or mIL-18 were less tumorigenic and formed tumors more slowly than control cells. Neither SCK.12 nor SCK.18 cells protected significantly against tumorigenesis by distant SCK cells. However, inoculation of the two cell types together synergistically protected 70% of mice from concurrently injected distant SCK cells and 30% of mice from SCK cells established 3 d earlier. Antibody neutralization studies revealed that the antitumor effects of secreted mIL-12 and mIL-18 required IFN-gamma. Interestingly, half the survivors of SCK.12 and/or SCK.18 cells developed protective immunity suggesting that anti-SCK immunity is unlikely to be responsible for protection. Instead, angiogenesis inhibition, assayed by Matrigel implants, appeared to be a property of both SCK.12 and SCK.18 cells and the two cell types together produced significantly greater systemic inhibition of angiogenesis. This suggests that inhibition of tumor angiogenesis is an important part of the systemic antitumor effect produced by mIL-12 and mIL-18. PMID:9502787

  10. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  11. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  12. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions.

  13. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    PubMed Central

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression. PMID:27446381

  14. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-03-01

    The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes

  15. The Mitochondria-Mediate Apoptosis of Lepidopteran Cells Induced by Azadirachtin

    PubMed Central

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis. PMID:23516491

  16. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    PubMed

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  17. Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC).

    PubMed

    Zhang, Bao-Yi; Wang, Yan-Ming; Gong, Hai; Zhao, Hui; Lv, Xiao-Yan; Yuan, Guang-Hui; Han, Shao-Rong

    2015-01-01

    The development of novel antitumor drugs for the treatment of non-small cell lung carcinoma NSCLC is imperative in order to improve the efficacy of lung cancer therapy and prognosis. In the current study, we demonstrated the antitumor activity of isorhamnetin and its combinations with cisplatin and carboplatin against A-549 lung cancer cells. In order to assess the anticancer enhancing effect of isorhamnetin on cisplatin and carboplatin, A-549 cells were treated with isorhamnetin, cisplatin, carboplatin and their combinations and cell viability, cell apoptosis, cell cycle arrest as well as loss of mitochondrial membrane potential were evaluated by MTT assay, flow cytometry, confocal microscopy and fluorescence microscopy. The effect of the drugs on cancer cell migration, microtubule depolymerization as well activation of caspases was also studied. The results revealed that, as compared to single drug treatment, the combination of isorhamnetin with cisplatin and carboplatin resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Combination of isorhamnetin with cisplatin and carboplatin resulted in more potent apoptosis induction as revealed by fluorescence microscopy using AO/PI double staining. Isorhamnetin and its combinations also triggered microtubule distortion and depolymerization. The combination of isorhamnetin with cisplatin and carboplatin increased the number of cells in G2/M phase dramatically as compared to single drug treatment. Moreover, isorhamnetin and its combinations with known anticancer drugs induced disruption of the mitochondrial membrane potential as well as activation of caspases 3, 9 and poly-(ADP-ribose) polymerase in A-549 cells. Isorhamnetin as well as its combinations with cisplatin and carboplatin resulted in inhibition of cancer cell migration significantly. Results of the current study suggest that isorhamnetin combinations with cisplatin and carboplatin might be a potential clinical chemotherapeutic

  18. Synergistic Interaction of Dietary Cholesterol and Dietary Fat in Inducing Experimental Steatohepatitis

    PubMed Central

    Savard, Christopher; Tartaglione, Erica V.; Kuver, Rahul; Haigh, W. Geoffrey; Farrell, Geoffrey C.; Subramanian, Savitha; Chait, Alan; Yeh, Matthew M.; Quinn, LeBris S.; Ioannou, George N.

    2017-01-01

    The majority of patients with nonalcoholic fatty liver disease (NAFLD) have “simple steatosis,” which is defined by hepatic steatosis in the absence of substantial inflammation or fibrosis and is considered to be benign. However, 10%–30% of patients with NAFLD progress to fibrosing nonalcoholic steatohepatitis (NASH), which is characterized by varying degrees of hepatic inflammation and fibrosis, in addition to hepatic steatosis, and can lead to cirrhosis. The cause(s) of progression to fibrosing steatohepatitis are unclear. We aimed to test the relative contributions of dietary fat and dietary cholesterol and their interaction on the development of NASH. We assigned C57BL/6J mice to four diets for 30 weeks: control (4% fat and 0% cholesterol); high cholesterol (HC; 4% fat and 1% cholesterol); high fat (HF; 15% fat and 0% cholesterol); and high fat, high cholesterol (HFHC; 15% fat and 1% cholesterol). The HF and HC diets led to increased hepatic fat deposition with little inflammation and no fibrosis (i.e., simple hepatic steatosis). However, the HFHC diet led to significantly more profound hepatic steatosis, substantial inflammation, and perisinusoidal fibrosis (i.e., steatohepatitis), associated with adipose tissue inflammation and a reduction in plasma adiponectin levels. In addition, the HFHC diet led to other features of human NASH, including hypercholesterolemia and obesity. Hepatic and metabolic effects induced by dietary fat and cholesterol together were more than twice as great as the sum of the separate effects of each dietary component alone, demonstrating significant positive interaction. Conclusion Dietary fat and dietary cholesterol interact synergistically to induce the metabolic and hepatic features of NASH, whereas neither factor alone is sufficient to cause NASH in mice. PMID:22508243

  19. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis.

    PubMed Central

    Herr, I; Wilhelm, D; Böhler, T; Angel, P; Debatin, K M

    1997-01-01

    We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis. PMID:9321399

  20. Grape seed proanthocyanidin extract protects lymphocytes against histone-induced apoptosis

    PubMed Central

    Chang, Ping; Mo, Bing; Cauvi, David M.; Yu, Ying; Guo, Zhenhui; Zhou, Jian; Huang, Qiong; Yan, Qitao; Chen, Guiming

    2017-01-01

    Apoptosis of lymphocytes is associated with immunosuppression and poor prognosis in sepsis. Our previous report showed that histones, nuclear proteins released from damaged or dying cells in sepsis, can mediate lymphocyte apoptosis via mitochondria damage. Grape seed proanthocyanidin extract (GSPE), a natural substance with protective properties against oxidative stress, plays a vital role in cell and mitochondria protection. We thus hypothesized that GSPE may play a protective role in histone-induced lymphocyte apoptosis through its anti-oxidative properties. In this study, we investigated the protective efficacy of GSPE on lymphocyte apoptosis induced by extracellular histones, a main contributor of death in sepsis. Human blood lymphocytes were treated with 50 μg/ml histones, 2 μg/ml GSPE, or a combination of both. A total of 100 μM N-acetylcysteine (NAC), a reactive oxygen species (ROS) inhibitor, was used as a positive control for GSPE. Apoptosis, intracellular ROS levels, mitochondrial membrane potential, Bcl-2 expression, and caspase-3 cleavage were measured. Our data clearly indicate that GSPE significantly inhibited lymphocyte apoptosis, generation of ROS, the loss of mitochondrial membrane potential, the decrease in Bcl-2 expression, and caspase-3 activation induced by extracellular histones. In conclusion, we show that GSPE has a protective effect on lymphocyte apoptosis induced by extracellular histones. This study suggests GSPE as a potential therapeutic agent that could help reduce lymphocyte apoptosis, and thus the state of immunosuppression was observed in septic patients. PMID:28344907

  1. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  2. Positive Feedback Cycle of TNFα Promotes Staphylococcal Enterotoxin B-Induced THP-1 Cell Apoptosis

    PubMed Central

    Zhang, Xiaopeng; Shang, Weilong; Yuan, Jizhen; Hu, Zhen; Peng, Huagang; Zhu, Junmin; Hu, Qiwen; Yang, Yi; Liu, Hui; Jiang, Bei; Wang, Yinan; Li, Shu; Hu, Xiaomei; Rao, Xiancai

    2016-01-01

    Staphylococcal enterotoxin B (SEB) has been demonstrated to be of importance in Staphylococcus aureus related diseases, such as atopic dermatitis (AD). Dysregulated apoptosis in AD is remarkable, and SEB can induce apoptosis of various cell types. However, the mechanisms by which SEB induces apoptosis and influences disease processes remain unclear. In this study, the recombinant SEB-induced THP-1 monocyte apoptosis was demonstrated in the absence of preliminary cell activation in a time- and dose-dependent manner. SEB could up-regulate the expression of tumor necrosis factor alpha (TNFα) in THP-1 cells and induce apoptosis via an extrinsic pathway. TNFα could in turn increase the expression of HLA-DRa, the SEB receptor on the cell surface. As a result, a positive feedback cycle of TNFα was established. TNFα expression and SEB-induced apoptosis were decreased by knocking down the expression of either HLA-DRa or TNFR1. Therefore, the feedback cycle of TNFα is crucial for SEB functions. This work provides insights into the mechanisms of SEB-induced monocyte apoptosis and emphasizes the major role of TNFα in future related studies. PMID:27709104

  3. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  4. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway.

    PubMed

    Kondoh, Masuo; Suzuki, Ikue; Sato, Masao; Nagashima, Fumihiro; Simizu, Siro; Harada, Motoki; Fujii, Makiko; Osada, Hiroyuki; Asakawa, Yoshinori; Watanabe, Yoshiteru

    2004-10-01

    Defects in apoptosis signaling pathways contribute to tumorigenesis and drug resistance, and these defects are often a cause of failure of chemotherapy. Thus, a major goal in chemotherapy is to find cytotoxic agents that restore the ability of tumor cells to undergo apoptosis. We previously found that an Ent-kaurene diterpene, Ent-11alpha-hydroxy-16-kauren-15-one (KD), induced apoptosis in human promyelocytic leukemia HL-60 cells. Here, we found that caspase-8, an apoptotic factor, is involved in KD-induced apoptosis. Although treatment of HL-60 cells with KD resulted in the activation of caspase-8 and -9, a caspase-8-specific inhibitor but not a caspase-9-specific inhibitor attenuated KD-induced apoptosis. Expression of a catalytically inactive caspase-8 partly attenuated KD-induced apoptosis. Treatment with KD led to a time-dependent cleavage of Bid, a substrate of caspase-8, as well as to the proteolytic processing of procaspase-8, indicating that KD treatment induces apoptosis through a caspase-8-dependent pathway. Moreover, overexpression of the drug resistance factor Bcl-2, which is frequently overexpressed in many tumors, failed to confer resistance to KD-induced cytotoxicity. Thus, KD may be a promising experimental cytotoxic agent that possibly points to new strategies to overcome a drug resistance.

  5. Carbamate pesticide-induced apoptosis and necrosis in human natural killer cells.

    PubMed

    Li, Q; Kobayashi, M; Kawada, T

    2014-01-01

    We previously found that ziram, a carbamate fungicide, significantly induced apoptosis and necrosis in human NK-92MI, a natural killer cell line. To investigate whether other carbamate pesticides also induce apoptosis and necrosis in human natural killer cell, we conducted further experiments with NK-92CI, a human natural killer cell line using a more sensitive assay. NK-92CI cells were treated with ziram, thiram, maneb or carbaryl at 0.031-40 microM for 2-24 h in the present study. Apoptosis and necrosis were determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspases 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that ziram and thiram also induced apoptosis and necrosis in a time- and dose-dependent manner; however, maneb and carbaryl induced apoptosis and necrosis only at higher doses in NK-92CI cells. The strength of the apoptosis-inducing effect differed among the pesticides, and the order was as follows: thiram > ziram greater than maneb greater than carbaryl. NK-92CI was more sensitive to ziram than NK-92MI. Moreover, ziram and thiram significantly increased the intracellular level of active caspase 3 in NK-92CI and caspase inhibitor significantly inhibited the apoptosis. Ziram and thiram significantly caused mitochondrial cytochrome-c release in NK-92CI. These findings indicate that carbamate pesticides can induce apoptosis in natural killer cells, and the apoptosis is mediated by both the caspase-cascade and mitochondrial cytochrome-c pathways.

  6. Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.

    PubMed

    Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M

    2016-10-01

    During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.

  7. Effects of parabens on apoptosis induced by serum-free medium.

    PubMed

    Egawa, Mari; Aoki, Kentaro; Sun, Yongkun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2012-01-01

    Alkyl esters of p-hydroxybenzoic acids (parabens), an endocrine disrupter, are used as preservatives in cosmetics and foods. In this study, to understand the relationship between parabens and differentiation in infants, the effects of parabens on apoptosis induced by serum deprivation in PC12 cells were investigated. In addition, apoptosis-related factors were assayed. As results, a tendency toward enhancement of apoptosis was observed in the cells cultured in the serum-free medium with methylparaben, and this tendency was suggested to be related to the contents of BAD, a pro-apoptotic protein. Butylparaben did not show any tendency to enhance apoptosis.

  8. Experimental study on apoptosis induced by semiconductor laser to hair removal and armpit odor treatment

    NASA Astrophysics Data System (ADS)

    Shi, Hongmin; Yan, Min; Zhang, Meijue

    2005-07-01

    Objective: To observe and explore the effects and mechanism of apoptosis on canine induced by Laser. Try to find a new approach to treat of armpit odor with no traumatism. Method: We used different power of semiconductor Laser to irradiate the black hair canine to observe and evaluate the tissue effects with electroscope, flow cytometry and Tunel technique at different period of time after irradiation. Result: The apoptosis has been observed within the hair follicle cells and apocrine gland cells after irradiation. After repeat irradiation in low power level, more apoptosis has been observed. Conclusion: Apoptosis exists in hair follicle cells and apocrine gland cells after Laser irradiation.

  9. On The Protection by The Combination of CeO2 Nanoparticles and Sodium Selenite on Human Lymphocytes against Chlorpyrifos-Induced Apoptosis In Vitro

    PubMed Central

    Pedram, Sahar; Mohammadirad, Azadeh; Rezvanfar, Mohammad Amin; Navaei-Nigjeh, Mona; Baeeri, Maryam; Abdollahi, Mohammad

    2015-01-01

    Objective Chlorpyrifos (CP) as an organophosphorus pesticide is thought to induce oxidative stress in human cells via producing reactive oxygen species (ROS) that leads to the presence of pathologic conditions due to apoptosis along with acetylcholinesterase (AChE) inhibition.This study aimed to evaluate the apoptotic effects of CP and to assess the protective potential of CeO2nanoparticle (CNP) and sodium selenite (SSe) by measuring cascades of apoptosis, oxidative stress, inflammation, and AChE inhibition in human isolated lymphocytes. Materials and Methods In the present experimental study, we examined the anti-oxidative and AChE activating potential of CNP and SSe in CP-treated human lymphocytes. Therefore, the lymphocytes were isolated and exposed to CP, CP+CNP, CP+SSe, and CP+CNP+SSe after a three-day incubation. Then tumor necrosis factor-alpha (TNF-α) release, myeloperoxidase (MPO) activity, thiobarbituric acid-reactive substances (TBARS) levels as inflammatory/oxidative stress indices along with AChE activity were assessed. In addition, the apoptotic process was measured by flow cytometry. Results Results showed a significant reduction in the mortality rate, TNF-α, MPO activity, TBARS, and apoptosis rate in cells treated with CNP, SSe and their combination. Interestingly, both CNP and SSe were able to activate AChE which is inhibited by CP. The results supported the synergistic effect of CNP/SSe combination in the prevention of apoptosis along with oxidative stress and inflammatory cascade. Conclusion CP induces apoptosis in isolated human lymphocytes via oxidative stress and inflammatory mediators. CP firstly produces ROS, which leads to membrane phospholipid damage. The beneficial effects of CNP and SSe in reduction of CP-induced apoptosis and restoring AChE inhibition relate to their anti-oxidative potentials. PMID:26199915

  10. Novel fluorescence molecular imaging of chemotherapy-induced intestinal apoptosis

    NASA Astrophysics Data System (ADS)

    Levin, Galit; Shirvan, Anat; Grimberg, Hagit; Reshef, Ayelet; Yogev-Falach, Merav; Cohen, Avi; Ziv, Ilan

    2009-09-01

    Chemotherapy-induced enteropathy (CIE) is one of the most serious complications of anticancer therapy, and tools for its early detection and monitoring are highly needed. We report on a novel fluorescence method for detection of CIE, based on molecular imaging of the related apoptotic process. The method comprises systemic intravenous administration of the ApoSense fluorescent biomarker (N,N'-didansyl-L-cystine DDC) in vivo and subsequent fluorescence imaging of the intestinal mucosa. In the reported proof-of-concept studies, mice were treated with either taxol+cyclophosphamide or doxil. DDC was administered in vivo at various time points after drug administration, and tracer uptake by ileum tissue was subsequently evaluated by ex vivo fluorescent microscopy. Chemotherapy caused marked and selective uptake of DDC in ileal epithelial cells, in correlation with other hallmarks of apoptosis (i.e., DNA fragmentation and Annexin-V binding). Induction of DDC uptake occurred early after chemotherapy, and its temporal profile was parallel to that of the apoptotic process, as assessed histologically. DDC may therefore serve as a useful tool for detection of CIE. Future potential integration of this method with fluorescent endoscopic techniques, or development of radio-labeled derivatives of DDC for emission tomography, may advance early diagnosis and monitoring of this severe adverse effect of chemotherapy.

  11. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    PubMed Central

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-01-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation. PMID:27775086

  12. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-10-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.

  13. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition.

    PubMed

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-10-24

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.

  14. Omega-3 Polyunsaturated Fatty Acids Enhance Cisplatin Efficacy in Gastric Cancer Cells by Inducing Apoptosis via ADORA1.

    PubMed

    Sheng, Hong; Chen, Xuehua; Liu, Binya; Li, Pu; Cao, Weixin

    2016-01-01

    It has been suggested that administration of the omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can alter the toxicity and/or activity of several anticancer drugs in in vitro and in vivo studies. Here, we investigated the ability of ω-3 PUFAs to potentiate the antineoplastic activity of cisplatin (CDDP) in gastric cancer cells. The increase in CDDP-induced growth inhibition was measured by the IC50 values obtained when the cells were incubated with CDDP alone or with CDDP plus DHA or EPA. DHA and EPA enhanced the growth-inhibition activity of increasing concentrations of CDDP. The interactions between CDDP and DHA or EPA at the cellular level were assessed through the combination index (CI) method of Chou-Talalay. The results demonstrated synergism between CDDP and DHA or EPA in MKN45 cells. Cell cycle analysis showed that the combination treatment increased G0/G1 phase and S phase arrest, and significantly increased the number of apoptotic cells. According to our previous study, ω -3 PUFAs induce apoptosis of gastric cells via ADORA1, a subtype of adenosine receptor functionally related to cell death. The ADORA1 mRNA and protein expression was higher in the combination treatment than in the individual treatments. Notable, when GC cells were pretreated with DPCPX, a selective ADORA1 antagonist, the combination treatment effect on apoptosis was significantly reduced. Our results suggest that ω-3 PUFAs enhance the antineoplastic effects of CDDP in gastric cancer cells, and the synergistic effect between ω-3 PUFAs and CDDP is partly dependent on activating the ADORA1-mediated apoptosis pathway.

  15. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis.

    PubMed Central

    Mosser, D D; Caron, A W; Bourget, L; Denis-Larose, C; Massie, B

    1997-01-01

    Resistance to stress-induced apoptosis was examined in cells in which the expression of hsp70 was either constitutively elevated or inducible by a tetracycline-regulated transactivator. Heat-induced apoptosis was blocked in hsp70-expressing cells, and this was associated with reduced cleavage of the common death substrate protein poly(ADP-ribose) polymerase (PARP). Heat-induced cell death was correlated with the activation of the stress-activated protein kinase SAPK/JNK (c-Jun N-terminal kinase). Activation of SAPK/JNK was strongly inhibited in cells in which hsp70 was induced to a high level, indicating that hsp70 is able to block apoptosis by inhibiting signaling events upstream of SAPK/JNK activation. In contrast, SAPK/JNK activation was not inhibited by heat shock in cells with constitutively elevated levels of hsp70. Cells that constitutively overexpress hsp70 resist apoptosis induced by ceramide, a lipid signaling molecule that is generated by apoptosis-inducing treatments and is linked to SAPK/JNK activation. Similar to heat stress, resistance to ceramide-induced apoptosis occurs in spite of strong SAPK/JNK activation. Therefore, hsp70 is also able to inhibit apoptosis at some point downstream of SAPK/JNK activation. Since PARP cleavage is prevented in both cell lines, these results suggest that hsp70 is able to prevent the effector steps of apoptotic cell death. Processing of the CED-3-related protease caspase-3 (CPP32/Yama/apopain) is inhibited in hsp70-expressing cells; however, the activity of the mature enzyme is not affected by hsp70 in vitro. Caspase processing may represent a critical heat-sensitive target leading to cell death that is inhibited by the chaperoning function of hsp70. The inhibition of SAPK/JNK signaling and apoptotic protease effector steps by hsp70 likely contributes to the resistance to stress-induced apoptosis seen in transiently induced thermotolerance. PMID:9271409

  16. 14-3-3 Protects against stress-induced apoptosis

    PubMed Central

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  17. New Hypotheses and Opportunities in Endocrine Therapy: Amplification of Oestrogen-Induced Apoptosis

    PubMed Central

    Jordan, V. Craig; Lewis-Wambi, Joan S.; Patel, Roshani R.; Kim, Helen; Ariazi, Eric A.

    2010-01-01

    Aims To outline the progress being made in the understanding of acquired resistance to long term therapy with the selective oestrogen receptor modulators (SERMs, tamoxifen and raloxifene) and aromatase inhibitors. The question to be addressed is how we can amplify the new biology of oestrogen-induced apoptosis to create more complete responses in exhaustively antihormone treated metastatic breast cancer. Methods and Results Three questions are posed and addressed. 1.) Do we know how oestrogen works? 2.) Can we improve adjuvant antihormonal therapy? 3.) Can we enhance oestrogen-induced apoptosis? The new player in oestrogen action is GPR30 and there are new drugs specific for this target to trigger apoptosis. Similarly, anti-angiogenic drugs can be integrated into adjuvant antihormone therapy or to enhance oestrogen-induced apoptosis in Phase II antihormone resistant breast cancer. The goal is to reduce the development of acquired antihormone resistance or undermine the ability of breast cancer cells to undergo apoptosis with oestrogen respectively. Finally, drugs to reduce the synthesis of glutathione, a subcellular molecule compound associated with drug resistance, can enhance oestradiol-induced apoptosis. Conclusions We propose an integrated approach for the rapid testing of agents to blunt survival pathways and amplify oestrogen-induced apoptosis and tumour regression in Phase II resistant metastatic breast cancer. This Pharma platform will provide rapid clinical results to predict efficacy in large scale clinical trials. PMID:19914527

  18. Cocaine Enhances HIV-1–Induced CD4+ T-Cell Apoptosis

    PubMed Central

    Pandhare, Jui; Addai, Amma B.; Mantri, Chinmay K.; Hager, Cynthia; Smith, Rita M.; Barnett, Louis; Villalta, Fernando; Kalams, Spyros A.; Dash, Chandravanu

    2015-01-01

    Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1–associated CD4+ T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4+ T cells from HIV-1–negative and HIV-1–positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4+ T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4+ T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4+ T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4+ T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1–infected drug abusers. PMID:24486327

  19. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    PubMed

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  20. c-Met Inhibitor Synergizes with Tumor Necrosis Factor–Related Apoptosis-Induced Ligand to Induce Papillary Thyroid Carcinoma Cell Death

    PubMed Central

    Bu, Rong; Uddin, Shahab; Ahmed, Maqbool; Hussain, Azhar R; Alsobhi, Saif; Amin, Tarek; Al-Nuaim, Abdurahman; Al-Dayel, Fouad; Abubaker, Jehad; Bavi, Prashant; Al-Kuraya, Khawla S

    2012-01-01

    The Met receptor tyrosine kinase is overexpressed and/or activated in variety of human malignancies. Previously we have shown that c-Met is overexpressed in Middle Eastern papillary thyroid carcinoma (PTC) and significantly associated with an aggressive phenotype, but its role has not been fully elucidated in PTC. The aim of this study was to determine the functional link between the c-Met/AKT signaling pathway and death receptor 5 (DR5) in a large cohort of PTC in a tissue microarray format followed by functional studies using PTC cell lines and nude mice. Our data showed that high expressions of p-Met and DR5 were significantly associated with an aggressive phenotype of PTC and correlated with BRAF mutation. Treatment of PTC cell lines with PHA665752, an inhibitor of c-Met tyrosine kinase, inhibited cell proliferation and induced apoptosis via the mitochondrial pathway in PTC cell lines. PHA665752 treatment or expression of c-Met small interfering (si)RNA resulted in dephosphorylation of c-Met, AKT and its downstream effector molecules. Furthermore, PHA665752 treatment upregulated DR5 expression via generation of reactive oxygen species in PTC cell lines, and synergistically potentiated death receptor–induced apoptosis with tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). Finally, cotreatment with PHA665752 and TRAIL caused more pronounced effects on PTC xenograft tumor growth in nude mice. Our data suggest that the c-Met/AKT pathway may be a potential target for therapeutic intervention for treatment of PTC refractory to conventionally therapeutic modalities. PMID:22113498

  1. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro.

    PubMed

    Zhang, Yajie; Zhou, Xiaoming; Xu, Lipeng; Wang, Lulu; Liu, Jinling; Ye, Jing; Qiu, Pengxin; Liu, Qinghua

    2016-11-18

    Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.

  2. Inhibition of COX-2/PGE2 cascade ameliorates cisplatin-induced mesangial cell apoptosis

    PubMed Central

    Yu, Xiaowen; Yang, Yunwen; Yuan, Hui; Wu, Meng; Li, Shuzhen; Gong, Wei; Yu, Jing; Xia, Weiwei; Zhang, Yue; Ding, Guixia; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2017-01-01

    Cisplatin is one of the most potent cytotoxic drug for the treatment of many types of cancer. However, the side effects on normal tissues, particularly on the kidney, greatly limited its use in clinic. Emerging evidence demonstrated that cisplatin could directly cause mesangial cell apoptosis, while the potential mechanism is still elusive. Here we examined the contribution of COX-2 in cisplatin-induced mesangial cell apoptosis. Firstly, we found cisplatin induced cell apoptosis in mesangial cells shown by increased number of apoptotic cells in parallel with the upregulation of Bax and the downregulation of Bcl-2. Interestingly, cisplatin-induced cell apoptosis was accompanied by an upregulation of COX-2 at both mRNA and protein levels in dose- and time-dependent manners. Importantly, inhibition of COX-2 via a specific COX-2 inhibitor celecoxib markedly blocked cisplatin-induced mesangial cell apoptosis as evidenced by the decreased number of apoptotic cells, blocked increments of cleaved caspase-3 and Bax, and reversed Bcl-2 downregulation. Meanwhile, cisplatin-induced PGE2 production was markedly blocked by the treatment of celecoxib. In conclusion, this study indicated that COX-2/PGE2 cascade activation mediated cisplatin-induced mesangial cell apoptosis. The findings not only offered new insights into the understanding of cisplatin nephrotoxicity but also provided the therapeutic potential by targeting COX-2/PGE2 cascade in treating cisplatin-induced kidney injury. PMID:28386348

  3. Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells

    SciTech Connect

    Ohtsubo, Hideki; Ichiki, Toshihiro Imayama, Ikuyo; Ono, Hiroki; Fukuyama, Kae; Hashiguchi, Yasuko; Sadoshima, Junichi; Sunagawa, Kenji

    2008-03-07

    Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting of propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.

  4. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  5. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress.

  6. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition

    PubMed Central

    Quoc Trung, Ly; Espinoza, J. Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling. PMID:23372833

  7. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus.

    PubMed

    Wang, Xiaoyun; Wang, Youzhi; Zhou, Yuguang; Wei, Xinli

    2014-01-01

    Farnesol (FOH) is known to induce apoptosis in some fungi and mammalian cells. We treated Aspergillus flavus, one of the leading causes of human invasive aspergillosis and a key producer of the most potent naturally occurring hepatocarcinogenic compounds, with FOH to assess its effect on the viability of the fungus. FOH strongly inhibited germination and growth of A. flavus and induced markers for apoptosis including nuclear condensation, phosphatidylserine (PS) externalization, DNA fragmentation and intracellular reactive oxygen species (ROS) generation, metacaspase activation and abnormal cellular ultrastructure. Moreover, FOH-induced apoptosis in A. flavus was inhibited by the broad-spectrum caspase inhibitor Z-VAD-fmk and partially inhibited by the ROS scavenger l-proline, which suggests that FOH induces apoptosis in A. flavus via a mechanism involving metacaspase activation and ROS production.

  8. Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers.

    PubMed

    Li, Linlin; Wong, Yum-Shing; Chen, Tianfeng; Fan, Cundong; Zheng, Wenjie

    2012-01-28

    A series of ruthenium complexes containing bis-benzimidazole derivatives have been synthesized and identified as able to target mitochondria and induce caspase-dependent apoptosis in cancer cells through superoxide overproduction.

  9. Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells.

    PubMed

    Banerjee, Abhijit G; Gopalakrishnan, Velliyur K; Vishwanatha, Jamboor K

    2007-11-01

    Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs.

  10. Selective apoptosis-inducing activity of crinum-type Amaryllidaceae alkaloids.

    PubMed

    McNulty, James; Nair, Jerald J; Codina, Carles; Bastida, Jaume; Pandey, Siyaram; Gerasimoff, Jenny; Griffin, Carly

    2007-04-01

    The selective apoptosis-inducing activity of Amaryllidaceae alkaloids belonging to the crinane-type is reported. A mini-library of natural and synthetic crinane alkaloids was assembled. Biological screening indicated crinamine 4 and haemanthamine 9 to be potent inducers of apoptosis in tumour cells at micromolar concentrations. Structure-activity relationships demonstrated the requirement for both an alpha-C2 bridge and a free hydroxyl at the C-11 position as pharmacophoric requirements for this activity.

  11. Hochu‑ekki‑to (Bu‑zhong‑yi‑qi‑tang), a herbal medicine, enhances cisplatin‑induced apoptosis in HeLa cells.

    PubMed

    Sato, Tetsuo; Kita, Kazuko; Sato, Chihomi; Kaneda, Atsushi

    2015-10-01

    Hochu‑ekki‑to (HET), a Kampō herbal medicine composed of ten medicinal plants, is traditionally used to improve the general state of patients with malignant diseases such as cancer. Recent studies showed that HET had an anti‑cancer effect against several cancer cell lines in vitro by inducing apoptosis. However, high doses of HET may have cytotoxic effects attributed to saponins or detergent‑like compounds. Therefore, the present study used low doses of HET (50 µg/ml), which did not affect cell viability, to evaluate its synergistic anti‑cancer effects with cisplatin. HeLa cells were cultured for 24 h with 50 µg/ml HET, followed by cisplatin treatment for 24 h at various concentrations. Subsequently, the sensitivity of the cells to cisplatin was assessed using a colony survival and a crystal violet cell viability assay. Furthermore, cisplatin‑induced apoptosis was analyzed by flow cytometry. Proteins associated with cell viability and apoptosis, including phosphorylated (p‑)Akt, p53, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and active caspase‑3 were analyzed by immunoblotting. The present study revealed that cell survival was decreased and apoptosis was increased in HeLa cells pre‑treated with HET prior to cisplatin treatment compared with HET‑untreated cells. Furthermore, protein expression of p53 and active caspase‑3 was increased, while the expression of p‑Akt as well as the Bcl‑2/Bax ratio, an index of survival activity in cells, were decreased in the HET‑pre‑treated cells compared with those in HET‑untreated cells following incubation with cisplatin. In conclusion, the present study indicated that HET enhanced cisplatin‑induced apoptosis of HeLa cells and that the administration of HET may therefore be clinically beneficial alongside apoptosis‑inducing chemotherapy.

  12. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    SciTech Connect

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  13. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  14. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis.

    PubMed

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-04-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.

  15. Hyperthermia Induces Apoptosis of 786-O Cells through Suppressing Ku80 Expression

    PubMed Central

    Qi, Defeng; Hu, Yuan; Li, Jinhui; Peng, Tao; Su, Jialin; He, Yun; Ji, Weidong

    2015-01-01

    Hyperthermia as an anticancer method has been paid increasing attention in recent years. Several studies have shown that hyperthermia can kill tumor cells by inducing apoptosis. However, the underlying molecular mechanisms of hyperthermia-induced apoptosis are largely unknown. To investigate the effects and molecular mechanism of hyperthermia on the apoptosis in renal carcinoma 786-O cells, we firstly examined apoptosis and Ku expression in 786-O cell line treated with heat exposure (42°C for 0-4 h). The results showed that hyperthermia induced apoptosis of 786-O cells, and suppressed significantly Ku80 expression, but not Ku70 expression. Next, we knock-down Ku80 in 786-O cells, generating stable cell line 786-O-shKu80, and detected apoptosis, cell survival and cell cycle distribution. Our data showed higher apoptotic rate and lower surviving fraction in the stable cell line 786-O-shKu80 compared with those in control cells, exposed to the same heat stress (42°C for 0-4 h). Moreover, the results also showed suppression of Ku80 led to G2/M phase arrest in the stable cell line 786-O-shKu80 following heat treatment. Together, these findings indicate that Ku80 may play an important role in hyperthermia-induced apoptosis and heat-sensitivity of renal carcinoma cells through influencing the cell cycle distribution. PMID:25902193

  16. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  17. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal

  18. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    DTIC Science & Technology

    2011-01-31

    innate and adaptive immune system to respond to infection (5, 6). However, recent studies have indicated that a functional CD8+ T cell-mediated immune...apoptotic pathway (s) nor the systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that...pathway (s) nor the systemic implications of lymphocyte apoptosis in EBOV infection are known. In this study , we show data suggesting that EBOV

  19. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    PubMed

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  20. Different pathways to apoptosis induced by tetraphenylporphine derivatives and light in V79 cells

    NASA Astrophysics Data System (ADS)

    Noodt, Barbara B.; Berg, Kristian; Stokke, Trond; Peng, Qian; Nesland, Jahn M.

    1997-12-01

    Photodynamic therapy (PDT)-induced kinetics of apoptosis were studied in V79 cells using several differently localized photosensitizing dyes, mostly tetraphenylporphine derivatives. Apoptotic fractions were quantified by flow cytometry after staining the samples by the terminal deoxynucleotidyl transferase (TdT)-assay. Methylene blue derivative (MBD), a new dye for PDT, and 5-aminolevulinic acid (ALA)-induced protoporphyrin IX that are both localized in mitochondria, induced apoptosis rapidly within hours after PDT. With MBD it was shown that rapid apoptosis was induced only with dye concentration above a certain threshold. With a lower dye concentration apoptosis was delayed more than one day and was induced due to inhibition of oxidative phosphorylation. After PDT with two membrane localized dyes, tetra(3- hydroxyphenyl)porphyrin (3THPP) and Photofrin, maximal induction of apoptosis took about 12 h. With two lysosomal localized sulfonated meso-tetraphenylporphines (TPPS2a and TPPS4) no apoptosis was induced until more than 12 h after PDT. The results are discussed in relation to evidence in the literature on the nature of possible pathways involved.

  1. Thimerosal induces apoptosis and G2/M phase arrest in human leukemia cells.

    PubMed

    Woo, Kyung Jin; Lee, Tae-Jin; Bae, Jae Hoon; Jang, Byeong-Churl; Song, Dae-Kyu; Cho, Jae-We; Suh, Seong-Il; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-09-01

    Thimerosal is an organomercury compound with sulfhydryl-reactive properties. The ability of thimerosal to act as a sulfhydryl group is related to the presence of mercury. Due to its antibacterial effect, thimerosal is widely used as preservatives and has been reported to cause chemically mediated side effects. In the present study, we showed that the molecular mechanism of thimerosal induced apoptosis in U937 cells. Thimerosal was shown to be responsible for the inhibition of U937 cells growth by inducing apoptosis. Treatment with 2.5-5 microM thimerosal but not thiosalicylic acid (structural analog of thimerosal devoid of mercury) for 12 h produced apoptosis, G(2)/M phase arrest, and DNA fragmentation in a dose-dependent manner. Treatment with caspase inhibitor significantly reduced thimerosal-induced caspase 3 activation. In addition, thimerosal-induced apoptosis was attenuated by antioxidant Mn (III) meso-tetrakis (4-benzoic acid) porphyrin (Mn-TBAP). These data indicate that the cytotoxic effect of thimerosal on U937 cells is attributable to the induced apoptosis and that thimerosal-induced apoptosis is mediated by reactive oxygen species generation and caspase-3 activation.

  2. Role of asymmetric dimethylarginine in homocysteine-induced apoptosis of vascular smooth muscle cells.

    PubMed

    Yuan, Qiong; Jiang, De-Jian; Chen, Qing-Quan; Wang, Shan; Xin, Hong-Ya; Deng, Han-Wu; Li, Yuan-Jian

    2007-05-18

    Homocysteine (Hcy) could induce apoptosis of vascular smooth muscle cells (VSMC). Asymmetric dimethylarginine (ADMA) has been thought as a novel risk factor for cardiovascular diseases. We hypothesized that ADMA mediates homocysteine-induced apoptosis of VSMC. In this experiment the level of ADMA in the medium measured by high-performance liquid chromatography (HPLC) was elevated when the apoptosis of T/G HA-VSMC was induced by Hcy which was detected by Hoechst33342 staining or flow cytometry (FCM) with Annecin V+Propidium Iodide (PI). Exogenous ADMA induced the apoptosis of VSMC. At the same time, ADMA elevated the level of intracellular reactive oxidative species (ROS) determined by fluorescent ROS detection kit. The activation of JNK and p38MAPK contributed to ADMA-induced apoptosis of VSMC. The present results suggest that endogenous ADMA is involved in apoptosis of VSMC induced by Hcy, and the effects of ADMA is related to elevation of intracellular ROS and activation of JNK/p38MAPK signaling pathways.

  3. Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells.

    PubMed

    Kim, Hyeon Jun; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Lee, Kyu Yeol; Yoo, Young Hyun; Kim, Jong-Min

    2013-06-01

    Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. Although paclitaxel (PCX) has been considered one of the most important cancer chemotherapeutic drugs, the current protocols for OS treatment do not incorporate this agent. Therefore, the purpose of this study was to evaluate the induction of cell death in OS cells after exposure to PCX, to identify the cell death mechanism(s) activated by PCX and to investigate whether autophagy is associated with PCX-induced apoptosis. The results of the present study confirmed that exposure to low PCX concentrations can induce apoptotic cell death in Saos-2 cells; furthermore, caspase-3 activation, PARP degradation and XIAP downregulation were observed in combination with PCX-induced apoptosis. The potential involvement of mitochondrial events (intrinsic apoptotic pathway) in PCX-induced apoptosis in OS cells was verified by the alteration (depolarization) of mitochondrial membrane potential. In addition, pretreatment with 3-methyladenine (3-MA), a specific inhibitor of autophagy, significantly increased PCX-induced apoptotic cell death in Saos-2 cells. The augmentation of PCX-induced apoptosis by 3-MA was accompanied by increase in the cytochrome c release from the mitochondria, caspase-3 activity and XIAP downregulation, which suggests that inhibiting autophagy further stimulates the PCX-induced mitochondrion-related (intrinsic) apoptotic pathway by provoking caspase-3 activation. Thus, autophagy observed during PCX-induced apoptosis in Saos-2 OS cells represents the role of cytoprotection in cellular homeostatic processes. In conclusion, the results of this study revealed that PCX exposure effectively induces OS cell death by apoptosis associated with the mitochondrial-mediated caspase-dependent pathway. PCX can increase autophagic activity and suppressing autophagy enhances PCX-induced apoptosis in OS cells. Therefore, it is suggested that combination treatment involving low

  4. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  5. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  6. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    PubMed

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  7. A radiation-induced acute apoptosis involving TP53 and BAX precedes the delayed apoptosis and neoplastic transformation of CGL1 human hybrid cells.

    PubMed

    Mendonca, Marc S; Mayhugh, Brendan M; McDowell, Berry; Chin-Sinex, Helen; Smith, Martin L; Dynlacht, Joseph R; Spandau, Dan F; Lewis, Davina A

    2005-06-01

    Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.

  8. Wogonin, a plant flavone, potentiates etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Suzuki, Chie; Ohno, Masataka; Ohashi, Toshinori; Miyauchi, Azusa; Tanimoto, Eriko; Maeda, Kaori; Hirano, Hiroyuki; Yokoi, Toshio; Sugahara, Chiyoko

    2007-01-01

    Etoposide, a podophylotoxin anticancer agent, induces apoptotic cell death in normal and cancer cells. Etoposide-induced apoptosis plays a role in not only anticancer effect but also adverse reaction, such as myelosuppression. Since we have found that wogonin, a flavone found in Scutellaria baicalensis Georgi, prevents thymocyte apoptosis induced by various compounds including etoposide, we examined the effect of this flavone on etoposide-induced apoptosis in cancer cells. Although 100 muM wogonin itself significantly increased DNA fragmentation in HL-60 cells, this change was not observed in Jurkat cells. On the other hand, this flavone significantly potentiated etoposide-induced apoptosis in Jurkat and HL-60 cells. Similarly, wogonin accelerated etoposide-induced cell death in lung cancer cells. Since wogonin had no effect on the action of other anticancer agents, such as 5-FU and cisplatin, this flavone seems to accelerate only etoposide-induced apoptotic cell death in cancer cells. These results suggest that the modification of etoposide-induced apoptosis by wogonin may be available to reduce the adverse reaction of this agent.

  9. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  10. Autophagy may protect MC3T3-E1 cells from fluoride-induced apoptosis.

    PubMed

    Wei, Min; Duan, Dongmei; Liu, Yujie; Wang, Zhigang; Li, Zhongli

    2014-06-01

    Fluoride is an essential trace element for all mammalian species; however, excess fluoride intake is known to be toxic to cells in animals and humans. The toxicity of fluoride is mainly exerted via induction of apoptosis. Autophagy is induced by numerous cytotoxic stimuli; however, it is often unclear whether, under specific conditions, autophagy has a pro‑survival or a pro‑apoptotic role. To answer this critical question, the present study assessed autophagy and apoptosis simultaneously in single cells. It was demonstrated that fluoride was able to inhibit cell proliferation and induce apoptosis and autophagy, whereas autophagy appeared to be protective. Further analysis revealed that MAPK/JNK‑dependent autophagy may be protective in fluoride‑induced apoptosis. It is anticipated that the presented single‑cell approach may be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its effect on cell fate and its association with other cellular pathways.

  11. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    PubMed

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  12. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis

    PubMed Central

    Jia, Yong; Yuan, Hua; Shan, Shouqin; Xu, Gang; Yu, Jie; Zhao, Chenguang; Mou, Xiang

    2016-01-01

    Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma. PMID:27895790

  13. Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway.

    PubMed

    Zhang, Hai-Tao; Wu, Jun; Wen, Min; Su, Li-Juan; Luo, Hui

    2012-01-01

    This study has investigated whether galangin, a flavonol derived from Alpinia officinarum Hance and used as food additives in southern China, induces apoptosis in hepatocellular carcinoma cells (HCCs) by activation of the caspase-8 and Bid pathway. The apoptosis of HCCs was evaluated by in situ uptake of propidium iodide and Hoechst 33258. Protein expressions were detected by Western blotting. Caspase-8 activity was measured using colorimetric method. To confirm the galangin-induced apoptotic pathway, inhibition of caspase-8 activity by Z-IETD-FMK, knockdown of Bid expression with siRNA, and overexpression of Bcl-2 in cells were carried out, respectively. The results show that galangin has significantly induced apoptosis in HCC lines. The caspase-8 is activated, and the cleavage of Bid results in the increase in tBid. The galangin-induced apoptosis is attenuated by Z-IETD-FMK, Bid siRNA, and Bcl-2 overexpression, respectively. However, Bcl-2 fails to suppress caspase-8 activation and the cleavage of Bid. This study has demonstrated that galangin induces apoptosis in HCCs by activating caspase 8/t-Bid mitochondrial pathway. Although Bcl-2 overexpression attenuates galangin-mediated apoptosis of HCCs, it is not mediated by the inhibition of tBid generation and caspase-8 activation.

  14. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling.

    PubMed

    Rojas, M; García, L F; Nigou, J; Puzo, G; Olivier, M

    2000-07-01

    Mycobacterium tuberculosis-induced macrophage apoptosis can be inhibited by mannosylated lipoarabinomannan (ManLAM), although it induces tumor necrosis factor (TNF)-alpha and NO production, which participate in apoptosis induction. ManLAM also modulates Ca(+2)-dependent intracellular events, and Ca(+2) participates in apoptosis in different systems. Ca(+2) was assessed for involvement in M. tuberculosis-induced macrophage apoptosis and for modulation by ManLAM. The role of Ca(+2) was supported by the blockade of apoptosis by cAMP inhibitors and the Ca(+2) chelator, BAPTA/AM. These agents also inhibited caspase-1 activation and cAMP-responsive element-binding protein translocation without affecting TNF-alpha production. Infection of macrophages with M. tuberculosis induced an influx of Ca(+2) that was prevented by ManLAM. Similarly, M. tuberculosis infection-altered mitochondrial permeability transition was prevented by ManLAM and BAPTA/AM. Finally, ManLAM and BAPTA/AM reversed the effects of M. tuberculosis on p53 and Bcl-2 expression. ManLAM counteracts the alterations of calcium-dependent intracellular events that occur during M. tuberculosis-induced macrophage apoptosis.

  15. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells.

    PubMed

    Kim, Do Yeon; Park, Min Woo; Yuan, Hai Dan; Lee, Hyo Jung; Kim, Sung Hoon; Chung, Sung Hyun

    2009-11-25

    Although compound K (CK), an intestinal metabolite of ginseng protopanaxadiol saponins, has been known to induce apoptosis in various cancer cells, association of AMP-activated protein kinase (AMPK) with apoptosis in HT-29 colon cancer cells remains unclear. We hypothesized that CK may exert an anticancer activity through modulating the AMPK pathway in HT-29 cells. CK-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic factors (cytochrome c and apoptosis-inducing factor) from mitochondria, and cleavage of caspase-9, caspase-3, caspase-8, Bid, and PARP proteins. This apoptotic effect of CK on colon cancer cells was found to be initiated by AMPK activation, and AMPK was activated through phosphorylation by Ca2+/calmodulin-activated protein kinase-IV (CAMK-IV). Treatment of HT-29 cells with compound C (AMPK inhibitor) or siRNA for AMPK completely abolished the CK-induced apoptosis. STO-609, CAMKs inhibitor, also attenuated CK-induced AMPK activation and apoptosis. In conclusion, the present study demonstrates that CK-mediated cell death of HT-29 colon cancer cells is regulated by CAMK-IV/AMPK pathways, and these findings provide a molecular basis for the anticancer effect of CK.

  16. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    PubMed

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  17. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway.

    PubMed

    Wang, Xichun; Xu, Wei; Fan, Mengxue; Meng, Tingting; Chen, Xiaofang; Jiang, Yunjing; Zhu, Dianfeng; Hu, Wenjuan; Gong, Jiajie; Feng, Shibin; Wu, Jinjie; Li, Yu

    2016-04-01

    Deoxynivalenol (DON) has broad toxicity in animals and humans. In this study the impact of DON treatment on apoptotic pathways in PC12 cells was determined. The effects of DON were evaluated on (i) typical indicators of apoptosis, including cellular morphology, cell activity, lactate dehydrogenase (LDH) release, and apoptosis ratio in PC12 cells, and on (ii) the expression of key genes and proteins related to apoptosis, including Bcl-2, Bax, Bid, cytochrome C (Cyt C), apoptosis inducing factor (AIF), cleaved-Caspase9, and cleaved-Caspase3. DON treatment inhibited proliferation of PC12 cells, induced significant morphological changes and apoptosis, promoted the release of Cyt C and AIF from the mitochondria, and increased the activities of cleaved-Caspase9 and cleaved-Caspase3. Bcl-2 expression decreased with increasing DON concentrations, in contrast to Bax and Bid, which were increased with increasing DON concentration. These data demonstrate that DON induces apoptosis in PC12 cells through the mitochondrial apoptosis pathway.

  18. TRIB3 [corrected] is implicated in glucotoxicity- and endoplasmic reticulum-stress-induced [corrected] beta-cell apoptosis.

    PubMed

    Qian, Bo; Wang, Haiyan; Men, Xiuli; Zhang, Wenjian; Cai, Hanqing; Xu, Shiqing; Xu, Yaping; Ye, Liya; Wollheim, Claes B; Lou, Jinning

    2008-12-01

    We found that TRIB3, [corrected] an endogenous inhibitor of Akt (PKB), is expressed in pancreatic beta-cells. The TRIB3 [corrected] expression is significantly increased in islets isolated from hyperglycemic Goto-Kakizaki rats compared with normal glycemic controls. In vitro high glucose treatment also resulted in increased TRIB3 [corrected] expression in rat INS1 cells. To investigate the role of TRIB3 [corrected] in the regulation of beta-cell function, we established an INS1 stable cell line allowing inducible expression of TRIB3. [corrected] We demonstrated that overexpression of TRIB3 [corrected] mimicked the glucotoxic effects on insulin secretion and cell growth in INS1 cells. Moreover, induction of TRIB3 [corrected] also synergistically enhanced high-glucose-elicited apoptosis in INS1 cells, whereas siRNA knock-down of TRIB3 [corrected] showed the opposite effects. We also confirmed that the DeltaPsim of mitochondria was decreased, caspase-3 activity was up-regulated and reactive oxygen species content was increased in TRIB3 [corrected] overexpressing beta cells in high glucose condition. Most interestingly, the oestrogen receptor (ER) stress inducer, thapsigargin, mimicked the high glucose effects on up-regulation of TRIB3 [corrected] and generation of apoptosis in cultured INS1 cells. These effects were specifically prevented by siRNA knock down of TRIB3. [corrected] We therefore conclude that TRIB3 [corrected] is implicated in glucotoxicity- and ER stress-induced beta-cell failure.TRIB3 [corrected] could be a potential pharmacological target for prevention and treatment of type 2 diabetes.

  19. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.

    PubMed Central

    Wu, M; Lee, H; Bellas, R E; Schauer, S L; Arsura, M; Katz, D; FitzGerald, M J; Rothstein, T L; Sherr, D H; Sonenshein, G E

    1996-01-01

    Apoptosis of the WEHI 231 immature B cell lymphoma line following membrane interaction with an antibody against the surface IgM chains (anti-IgM) is preceded by dramatic changes in Nuclear Factor-kappaB (NF-kappaB)/ Rel binding activities. An early transient increase in NF-kappaB/Rel binding is followed by a significant decrease in intensity below basal levels. Here we have explored the role of these changes in Rel-related factors in B cell apoptosis. Treatment of WEH1 231 cells with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a protease inhibitor which prevents degradation of the inhibitor of NF-kappaB (IkappaB)-alpha, or with low doses of pyrrolidinedithiocarbamate (PDTC) selectively inhibited NF-kappaB/Rel factor binding and induced apoptosis. Bcl-XL expression protected WEHI 231 cells from apoptosis induced by these agents. Microinjection of WEHI 231 cells with either IkappaB-alpha-GST protein or a c-Rel affinity-purified antibody induced apoptosis. Ectopic c-Rel expression ablated apoptosis induced by TPCK or anti-IgM. Treatment of BALENLM 17 and A20 B lymphoma cells or normal murine splenic B lymphocytes with either TPCK or PDTC also resulted in apoptosis. These findings indicate that the drop in NF-kappaB/Rel binding following anti-IgM treatment activates apoptosis of WEHI 231 cells; furthermore, they implicate the NF-kappaB/Rel family in control of apoptosis of normal and transformed B cells. Images PMID:8887559

  20. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5.

    PubMed

    Carter, Bing Z; Mak, Duncan H; Schober, Wendy D; Dietrich, Martin F; Pinilla, Clemencia; Vassilev, Lyubomir T; Reed, John C; Andreeff, Michael

    2008-04-01

    Acute myeloid leukemia (AML) cells are relatively resistant to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL). We previously reported that triptolide, a potent anticancer agent from a Chinese herb, decreases XIAP in leukemic cells. We evaluated the combination of triptolide and TRAIL and found synergistic promotion of apoptosis in AML cells. XIAP-overexpressing U937 cells (U937XIAP) were more resistant to TRAIL than U937neo cells, and inhibition of XIAP with the small-molecule inhibitor 1396-11 enhanced TRAIL-induced apoptosis, implying XIAP as a resistance factor in AML. Furthermore, triptolide increased DR5 levels in OCI-AML3, while the DR5 increase was blunted in p53-knockdown OCI-AML3 and p53-mutated U937 cells, confirming a role for p53 in the regulation of DR5. In support of this finding, disruption of MDM2-p53 binding with subsequent increase in p53 levels by nutlin3a increased DR5 levels and sensitized OCI-AML3 cells to TRAIL. The combination of 1396-11 plus nutlin3a plus TRAIL was more effective than either the 1396-11 and TRAIL or nutlin3a and TRAIL combinations in OCI-AML3 cells, further supporting the role of triptolide as a sensitizer to TRAIL-induced apoptosis in part by independent modulation of XIAP expression and p53 signaling. Thus, the combination of triptolide and TRAIL may provide a novel strategy for treating AML by overcoming critical mechanisms of apoptosis resistance.

  1. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  2. Elastase induced lung epithelial cell apoptosis and emphysema through placenta growth factor

    PubMed Central

    Hou, H-H; Cheng, S-L; Liu, H-T; Yang, F-Z; Wang, H-C; Yu, C-J

    2013-01-01

    Chronic pulmonary obstructive disease (COPD) is the fourth leading cause of death worldwide, however, the pathogenic factors and mechanisms are not fully understood. Pulmonary emphysema is one of the major components of COPD and is thought to result from oxidative stress, chronic inflammation, protease–antiprotease imbalance and lung epithelial (LE) cell apoptosis. In our previous studies, COPD patients were noted to have higher levels of placenta growth factor (PlGF) in serum and bronchoalveolar lavage fluid than controls. In addition, transgenic mice overexpressing PlGF developed pulmonary emphysema and exposure to PlGF in LE cells induced apoptosis. Furthermore, intratracheal instillation of porcine pancreatic elastase (PPE) on to PlGF wild type mice induced emphysema, but not in PlGF knockout mice. Therefore, we hypothesized that PPE generates pulmonary emphysema through the upregulation of PlGF expression in LE cells. The elevation of PlGF then leads to LE cell apoptosis. In the present study, we investigated whether PPE induces PlGF expression, whether PlGF induces apoptosis and whether the downstream mechanisms of PlGF are related to LE cell apoptosis. We found that PPE increased PlGF secretion and expression both in vivo and in vitro. Moreover, PlGF-induced LE cell apoptosis and PPE-induced emphysema in the mice were mediated by c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways. Given these findings, we suggest that the increase in PlGF and PlGF-induced JNK and p38 MAPK pathways contribute to PPE-induced LE cell apoptosis and emphysema. Regulatory control of PlGF and agents against its downstream signals may be potential therapeutic targets for COPD. PMID:24008737

  3. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    PubMed Central

    Yang, Chunguang; Ma, Xueyou; Wang, Zhihua; Zeng, Xing; Hu, Zhiquan; Ye, Zhangqun; Shen, Guanxin

    2017-01-01

    Background Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties. Materials and methods CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot. Results Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin. Conclusion Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties. PMID:28243065

  4. Essential role for cathepsin D in bleomycin-induced apoptosis of alveolar epithelial cells.

    PubMed

    Li, Xiaopeng; Rayford, Heather; Shu, Ruijie; Zhuang, Jiaju; Uhal, Bruce D

    2004-07-01

    Our earlier studies showed that bleomycin-induced apoptosis of type II alveolar epithelial cells (AECs) requires the autocrine synthesis and proteolytic processing of angiotensinogen into ANG II and that inhibitors of ANG-converting enzyme (ACEis) block bleomycin-induced apoptosis (Li X, Zhang H, Soledad-Conrad V, Zhuang J, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 284: L501-L507, 2003). Given the documented role of cathepsin D (CatD) in apoptosis of other cell types, we hypothesized that CatD might be the AEC enzyme responsible for the conversion of angiotensinogen into ANG I, the substrate for ACE. Primary cultures of rat type II AECs challenged with bleomycin in vitro showed upregulation and secretion of CatD enzymatic activity and immunoreactive protein but no increases in CatD mRNA. The aspartyl protease inhibitor pepstatin A, which completely blocked CatD enzymatic activity, inhibited bleomycin-induced nuclear fragmentation by 76% and reduced bleomycin-induced caspase-3 activation by 47%. Antisense oligonucleotides against CatD mRNA reduced CatD-immunoreactive protein and inhibited bleomycin-induced nuclear fragmentation by 48%. A purified fragment of angiotensinogen (F1-14) containing the CatD and ACE cleavage sites, when applied to unchallenged AEC in vitro, yielded mature ANG II peptide and induced apoptosis. The apoptosis induced by F1-14 was inhibited 96% by pepstatin A and 77% by neutralizing antibodies specific for CatD (both P < 0.001). These data indicate a critical role for CatD in bleomycin-induced apoptosis of cultured AEC and suggest that the role(s) of CatD in AEC apoptosis include the conversion of newly synthesized angiotensinogen to ANG II.

  5. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  6. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.

    PubMed

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

    2006-01-01

    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  7. Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells

    PubMed Central

    Kim, Jung Lim; Kim, Bo Ram; Na, Yoo Jin; Jo, Min Jee; Jeong, Yoon A.; Lee, Suk-Young; Lee, Sun Il; Lee, Yong Yook; Oh, Sang Cheul

    2016-01-01

    Metformin is an anti-diabetic drug with a promising anti-cancer potential. In this study, we show that subtoxic doses of metformin effectively sensitize human colorectal cancer (CRC) cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which induces apoptosis. Metformin alone did not induce apoptosis, but significantly potentiated TRAIL-induced apoptosis in CRC cells. CRC cells treated with metformin and TRAIL showed activation of the intrinsic and extrinsic pathways of caspase activation. We attempted to elucidate the underlying mechanism, and found that metformin significantly reduced the protein levels of myeloid cell leukemia 1 (Mcl-1) in CRC cells and, the overexpression of Mcl-1 inhibited cell death induced by metformin and/or TRAIL. Further experiments revealed that metformin did not affect mRNA levels, but increased proteasomal degradation and protein stability of Mcl-1. Knockdown of Mule triggered a significant decrease of Mcl-1 polyubiquitination. Metformin caused the dissociation of Noxa from Mcl-1, which allowed the binding of the BH3-containing ubiquitin ligase Mule followed by Mcl-1ubiquitination and degradation. The metformin-induced degradation of Mcl-1 required E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Our study is the first report indicating that metformin enhances TRAIL-induced apoptosis through Noxa and favors the interaction between Mcl-1 and Mule, which consequently affects Mcl-1 ubiquitination. PMID:27517746

  8. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  9. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  10. Enhancement of docetaxel-induced cytotoxicity and apoptosis by all-trans retinoic acid (ATRA) through downregulation of survivin (BIRC5), MCL-1 and LTbeta-R in hormone- and drug resistant prostate cancer cell line, DU-145

    PubMed Central

    Kucukzeybek, Yuksel; Gul, Mustafa K; Cengiz, Ercument; Erten, Cigdem; Karaca, Burcak; Gorumlu, Gurbuz; Atmaca, Harika; Uzunoglu, Selim; Karabulut, Bulent; Sanli, Ulus A; Uslu, Ruchan

    2008-01-01

    Background The management of hormone-refractory prostate cancer (HRPC) still remains as an important challenge of daily oncology practice. Docetaxel has proved to be a first line treatment choice. All-trans retinoic acid (ATRA) could potently inhibit the growth of prostate cancer cells in vitro and its combination with various anticancer agents results in increased cytotoxicity. Based on these data, our aim was to examine the synergistic/additive cytotoxic and apoptotic effects of combination of docetaxel and ATRA, in hormone- and drug refractory human DU-145 prostate cancer cells. Furthermore, we have searched for the underlying mechanisms of apoptosis by demonstrating apoptosis-related genes. Methods XTT cell proliferation assay was used for showing cytotoxicity. For verifying apoptosis, both DNA Fragmentation by ELISA assay and caspase 3/7 activity measurement were used. For detecting the mechanism of apoptosis induced by docetaxel-ATRA combination, OligoGeArray® which consists of 112 apoptosis related genes was used. Results Our results revealed that docetaxel and ATRA were synergistically cytotoxic and apoptotic in DU-145 cells, in a dose- and time dependent manner. It was also shown by our studies that apoptosis was induced in DU-145 prostate carcinoma cells with significant cytotoxicity, no matter which agent applied first. We have found out that docetaxel-ATRA combination significantly downregulates survivin (BIRC5), myeloid cell leukemia-1 (MCL-1) and lymphotoxin β-receptor (LTβR) genes, which all three have pivotal roles in regulation of apoptosis and cell cycle progression. Conclusion In conclusion, we strongly suggest that docetaxel and ATRA combination is a good candidate for this challenging era of daily oncologic practice. Also, the combination of docetaxel and ATRA might allow a reduction in docetaxel doses and by this way may diminish docetaxel adverse effects while maintaining the therapeutic effect in patients with HRPC. PMID:18789152

  11. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence.

    PubMed

    Marchal, Juan Antonio; Carrasco, Esther; Ramirez, Alberto; Jiménez, Gema; Olmedo, Carmen; Peran, Macarena; Agil, Ahmad; Conejo-García, Ana; Cruz-López, Olga; Campos, Joaquin María; García, María Ángel

    2013-01-01

    Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50) values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR) is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα) cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to significantly reduce IFNα/bozepinib-induced cell death. Finally, we observed that a minor population of caspase 3-deficient MCF-7 cells persisted during long-term treatment with lower doses of bozepinib and the bozepinib/IFNα combination. Curiously, this population showed β-galactosidase activity and a percentage of cells arrested in S phase, that was more evident in cells treated with the bozepinib/IFNα combination than in cells treated with bozepinib or IFNα alone. Considering the resistance of some cancer cells to conventional chemotherapy, combinations enhancing the diversity of the cell death outcome might succeed in delivering more effective and less toxic chemotherapy.

  12. Infection-induced bystander-apoptosis of monocytes is TNF-alpha-mediated.

    PubMed

    Dreschers, Stephan; Gille, Christian; Haas, Martin; Grosse-Ophoff, Julia; Schneider, Marion; Leiber, Anja; Bühring, Hans-Jörg; Orlikowsky, Thorsten W

    2013-01-01

    Phagocytosis induced cell death (PICD) is crucial for controlling phagocyte effector cells, such as monocytes, at sites of infection, and essentially contributes to termination of inflammation. Here we tested the hypothesis, that during PICD bystander apoptosis of non-phagocyting monocytes occurs, that apoptosis induction is mediated via tumor necrosis factor-alpha (TNF-α and that TNF-α secretion and -signalling is causal. Monocytes were infected with Escherichia coli (E. coli), expressing green fluorescent protein (GFP), or a pH-sensitive Eos-fluorescent protein (EOS-FP). Monocyte phenotype, phagocytic activity, apoptosis, TNF-receptor (TNFR)-1, -2-expression and TNF-α production were analyzed. Apoptosis occured in phagocyting and non-phagocyting, bystander monocytes. Bacterial transport to the phagolysosome was no prerequisite for apoptosis induction, and desensitized monocytes from PICD, as confirmed by EOS-FP expressing E. coli. Co-cultivation with non-infected carboxyfluorescein-succinimidyl-ester- (CFSE-) labelled monocytes resulted in significant apoptotic cell death of non-infected bystander monocytes. This process required protein de-novo synthesis and still occurred in a diminished way in the absence of cell-cell contact. E. coli induced a robust TNF-α production, leading to TNF-mediated apoptosis in monocytes. Neutralization with an anti-TNF-α antibody reduced monocyte bystander apoptosis significantly. In contrast to TNFR2, the pro-apoptotic TNFR1 was down-regulated on the monocyte surface, internalized 30 min. p.i. and led to apoptosis predominantly in monocytes without phagocyting bacteria by themselves. Our results suggest, that apoptosis of bystander monocytes occurs after infection with E. coli via internalization of TNFR1, and indicate a relevant role for TNF-α. Modifying monocyte apoptosis in sepsis may be a future therapeutic option.

  13. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay; Singhal, Sharad S

    2014-05-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.

  14. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Su, Jialin; Li, Wenyan; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-10-30

    Considerable evidence is accumulating to suggest that in vivo formation of free radicals in the brain, such as peroxynitrite (ONOO-), and programmed cell death (i.e. apoptosis) play important roles in neurodegeneration and stroke. However, it is not known whether ONOO- can induce apoptosis in cerebral vascular smooth muscle cells (CVSMCs). The present study was designed to determine whether or not canine CVSMCs undergo apoptosis following treatment with ONOO-. Direct exposure of canine CVSMCs to ONOO- induced apoptosis in a concentration-dependent manner, as confirmed by means of fluorescence staining, TdT-mediated dUTP nick-end labeling and comet assays. Peroxynitrite treatment resulted in an elevation of [Ca2+]i in the CVSMCs. Peroxynitrite-induced apoptosis may thus be brought about by activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis need to be further investigated, the present findings could be used to suggest that ONOO- formation in the brain may play important roles in neurodegenerative processes and strokes via detrimental actions on cerebral microvessels and blood flow.

  15. The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1

    PubMed Central

    Chi, Xiaofeng; Li, Xiaochong; Jiang, Min; Fang, Jing; Cui, Hengmin; Lai, Weimin; Zhou, Yi; Zhou, Shan

    2016-01-01

    Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers. PMID:26933817

  16. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  17. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species.

    PubMed

    Risso-de Faverney, C; Devaux, A; Lafaurie, M; Girard, J P; Bailly, B; Rahmani, R

    2001-06-01

    Cadmium poses a serious environmental threat in aquatic ecosystems but the mechanisms of its toxicity remain unclear. The purpose of this work was first to determine whether cadmium induced apoptosis in trout hepatocytes, second to determine whether or not reactive oxygen species (ROS) were involved in cadmium-induced apoptosis and genotoxicity. Hepatocytes exposed to increasing cadmium concentrations (in the range of 1-10 microM) showed a molecular hallmark of apoptosis which is the fragmentation of the nuclear DNA into oligonucleosomal-length fragments, resulting from an activation of endogenous endonucleases and recognized as a 'DNA ladder' on conventional agarose gel electrophoresis. Exposure of hepatocytes to cadmium led clearly to the DEVD-dependent protease activation, acting upstream from the endonucleases and considered as central mediators of apoptosis. DNA strand breaks in cadmium-treated trout hepatocytes was assessed using the comet assay, a rapid and sensitive single-cell gel electrophoresis technique used to detect DNA primary damage in individual cells. Simultaneous treatment of trout hepatocytes with cadmium and the nitroxide radical TEMPO used as a ROS scavenger, reduced significantly DNA fragmentation, DEVD-related protease activity and DNA strand breaks formation. These results lead to a working hypothesis that cadmium-induced apoptosis and DNA strand breaks in trout hepatocytes are partially triggered by the generation of ROS. Additional studies are required for proposing a mechanistic model of cadmium-induced apoptosis and genotoxicity in trout liver cells, in underlying the balance between DNA damage and cellular defence systems in fish.

  18. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro.

    PubMed

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  19. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion.

    PubMed

    Calleros, Laura; Lasa, Marina; Rodríguez-Alvarez, Francisco J; Toro, María J; Chiloeches, Antonio

    2006-07-01

    Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

  20. Stimulation through CD50 preferentially induces apoptosis of TCR1+ human peripheral blood lymphocytes.

    PubMed

    López-Briones, S; Portales-Pérez, D P; Baranda, L; de la Fuente, H; Rosenstein, Y; González-Amaro, R

    1998-01-01

    Apoptosis has an important role in several key immunological phenomena such as regulation of the immune response, and deletion of auto-reactive cells. This phenomenon is induced following the interaction of several cell membrane receptors with their respective ligands or after cell activation. We have studied the possible effect of signaling through CD50/ICAM-3 and CD69/AIM on apoptosis of peripheral blood lymphocytes. Apoptosis was assessed by both flow cytometry analysis (content of cell DNA and binding to annexin V), and detection of DNA fragmentation by agarose gel electrophoresis. We found that a stimulatory anti-CD50 mAb was able to induce a small but significant degree of apoptosis in resting peripheral blood mononuclear cells from most donors; this effect was dose-dependent and was evident as early as at 12 h, with a maximal induction at 48 h. Studies with T and non-T cells showed that only the former cell population was sensitive to the induction of apoptosis through CD50. Further experiments revealed that the anti-ICAM-3 mAb preferentially induced apoptosis of TCR gamma delta-bearing cells. In addition, we found a significant increase in Cai2+ in PBMC stimulated with an anti-CD50 mAb, suggesting the involvement of this signaling pathway in the induction of apoptosis through this adhesion receptor. In contrast, under our experimental conditions, stimulation through CD69 did not have any effect on the induction of apoptosis on either cultured T lymphoblasts or PMA-stimulated PBMC. Our findings suggest that the interaction of CD50 with its natural ligand LFA-1 results in the induction of apoptosis in a significant fraction of resting PBMC. This phenomenon may be involved in immune regulation, lymphocyte turnover and peripheral deletion of auto-reactive cells.

  1. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  2. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes.

    PubMed

    Chen, H; Tian, M; Jin, L; Jia, H; Jin, Y

    2015-01-22

    PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.

  3. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    PubMed Central

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  4. Bisphenol A diglycidyl ether-induced apoptosis involves Bax/Bid-dependent mitochondrial release of apoptosis-inducing factor (AIF), cytochrome c and Smac/DIABLO

    PubMed Central

    Fehlberg, Sebastian; Gregel, Cornelia M; Göke, Alexandra; Göke, Rüdiger

    2003-01-01

    Bisphenol A diglycidyl ether (BADGE) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, which is able to induce apoptosis in tumor cells independently of PPAR-γ in caspase-dependent and -independent manners. Additionally, BADGE promotes TRAIL-induced apoptosis. We report that BADGE activates via Bax and caspases-2 and -8 both the intrinsic and extrinsic apoptotic pathways using Bid as a shunt. BADGE stimulates the mitochondrial release of apoptosis-inducing factor (AIF), cytochrome c and second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). The release of cytochrome c could not be blocked by inhibitors of caspases-3, -8 and -9 indicating that BADGE acts upstream of caspases-3 and -9 and does not involve caspase-8 to release cytochrome c. While the caspase-independent apoptotic effect might be mediated by AIF, the sensitizing effect of BADGE against other apoptotic substances is most likely mediated by the X-linked inhibitor of apoptosis inhibitor Smac/DIABLO. Our data suggest that BADGE or BADGE derivatives could represent promising substances for the treatment of neoplasms improving the antitumoral activity of TRAIL. PMID:12788809

  5. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells

    PubMed Central

    Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Xia, Huimin; Wang, Hanzhong; Zhu, Bing

    2016-01-01

    Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se) is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI)-modified Se nanoparticles (Se@PEI@siRNA) have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP)-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more sensitive to Se@PEI@siRNA. Moreover, Se@PEI@siRNA exhibited enhanced cytotoxic effects on cancer cells and triggered intracellular reactive oxygen species, and the signaling pathways of p53 and AKT were activated to advance cell apoptosis. Taken together, this study provides a strategy for the design of an anticancer nanosystem as a carrier of HSP70 siRNA to achieve synergistic cancer therapy

  6. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    PubMed Central

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1α administration also induced robust and prolonged HIF-1α production in rat hippocampus. Single rAAV-HIF-1α administration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer's disease rat model established by intracerebroventricular injection of aggregated amyloid-beta protein (25–35). Our in vitro and in vivo findings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurodegenerative diseases using gene therapy. PMID:25206774

  7. Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons.

    PubMed

    Tian, Xue-Fei; Pu, Xiao-Ping

    2005-02-10

    In our study we investigated the neuroprotective effects of phenylethanoid glycosides (PhGs) from Cistanches salsa on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced apoptosis in cerebellar granule neurons (CGNs). CGNs were treated with 100 microM MPP(+) for 24h to induce apoptosis, simultaneously CGNs were incubated with PhGs at 10, 20 and 40 microg/ml, respectively. In addition CGNs were pretreated with PhGs at 20 microg/ml for 6, 12, 24 h, respectively, and then treated with 100 microM MPP(+) for 24 h. 3-(4,5-Dimethylthiazol-2-ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the treatment of CGNs with PhGs inhibited the decrease of cell viability induced by MPP(+). The activation of caspase-3 and caspase-8 was induced by MPP(+) in apoptosis. The caspase-3 and caspase-8 fluorogenic assays showed that the treatments of CGNs with PhGs efficiently suppressed the activation of caspase-3 and caspase-8 induced by MPP(+). It is concluded that PhGs can prevent the MPP(+)-induced apoptosis in CGNs and exert its anti-apoptosis effect by inhibiting caspase-3 and caspase-8 activities.

  8. Angiotensin protects cortical neurons from hypoxic-induced apoptosis via the angiotensin type 2 receptor.

    PubMed

    Grammatopoulos, Tom; Morris, Katherine; Ferguson, Paul; Weyhenmeyer, James

    2002-03-28

    The effects of angiotensin on mouse cortical neuronal cultures exposed to chemical-induced hypoxia was investigated. Cultures exposed to 10 mM sodium azide for 5 min showed a 17% increase in apoptosis when assayed 24 h postinsult. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 blocked sodium azide-induced cell death suggesting that the NMDA receptor contributes to the mediated cell death. Pretreatment of cultured neurons with angiotensin decreased sodium azide-induced apoptosis by 94%. When the AT(1) receptor was blocked by its receptor antagonist, losartan, angiotensin activation of the AT(2) receptor completely inhibited sodium azide-induced apoptosis. Pretreatment of neurons with the AT(2) receptor antagonist PD123319 resulted in angiotensin reducing sodium azide-induced apoptosis by 48%. These results demonstrate that angiotensin can significantly attenuate sodium azide-induced apoptosis primarily through activation of the AT(2) receptor and suggests that angiotensin may have a protective role in neurons undergoing ischemic injury.

  9. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-02

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  10. Radiation-induced apoptosis in human lymphocytes: Potential as a biological dosimeter

    SciTech Connect

    Boreham, D.R.; Gale, K.L.; Maves, S.R.; Walker, J.A.; Morrison, D.P.

    1996-11-01

    We have tested the possibility of using apoptosis (programmed cell death) in human peripheral blood lymphocytes as a short-term biological dosimeter. Lymphocytes isolated from whole blood were irradiated in culture with 250 kVp x-rays or {sup 60}Co gamma rays. Two assays were used to measure apoptosis in lymphocytes after irradiation: in situ terminal deoxynucleotidyl transferase assay and fluorescence analysis of DNA unwinding assay. Similar qualitative and quantitative results were produced by the assays, supporting the notion that the fluorescence analysis of DNA unwinding assay measured DNA fragmentation associated with apoptosis. Induction of apoptosis in lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes from individual donors had reproducible dose responses. There was, however, variation between donors. X-ray and gamma-ray exposures induced similar levels of apoptosis at similar doses. The induction kinetics of apoptosis in vitro indicate a maximum is reached about 72 h after irradiation. In conclusion, the in vitro experimental evidence indicates that radiation-induced apoptosis in human lymphocytes has the kinetics, sensitivity, and reproductibility to be a potential biological dosimeter. 29 refs., 5 figs.

  11. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL.

    PubMed

    Rosati, Emanuela; Sabatini, Rita; Rampino, Giuliana; De Falco, Filomena; Di Ianni, Mauro; Falzetti, Franca; Fettucciari, Katia; Bartoli, Andrea; Screpanti, Isabella; Marconi, Pierfrancesco

    2010-10-14

    A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 and involving caspase-8 and -3, plays an important role in spontaneous B-CLL cell apoptosis. ER stress-induced apoptosis in B-CLL cells also involves CHOP/GADD153 up-regulation, increased JNK1/2 phosphorylation, and caspase-8-mediated cleavage of Bap31 to Bap20, known to propagate apoptotic signals from ER to mitochondria. In ex vivo B-CLL cells, some apoptotic events associated with mitochondrial pathway also occur, including mitochondrial cytochrome c release and caspase-9 processing. However, pharmacologic inhibition studies show that caspase-9 plays a minor role in B-CLL cell apoptosis. ER stress also triggers survival signals in B-CLL cells by increasing BiP/GRP78 expression. Manipulating ER signaling by siRNA down-regulation of BiP/GRP78 or treating B-CLL cells with 2 well-known ER stress-inducers, tunicamycin and thapsigargin, increases their apoptosis. Overall, our findings show that ER triggers an essential pathway for B-CLL cell apoptosis and suggest that genetic and pharmacologic manipulation of ER signaling could represent an important therapeutic strategy.

  12. Chinese herbal medicine Yougui Pill reduces exogenous glucocorticoid-induced apoptosis in anterior pituitary cells

    PubMed Central

    Ji, Yong-zhi; Geng, Long; Zhou, Hong-bo; Wei, Hua-chen; Chen, Hong-duo

    2016-01-01

    Long-term glucocorticoid use may result in sustained suppression of one or more secreted components from the hypothalamo-pituitary-adrenal axis, and often results in apoptosis. Yougui Pill (YGP), a 10-component traditional Chinese herbal medicine, has been shown to be clinically effective for glucocorticoid-induced suppression of the hypothalamo-pituitary-adrenal axis. However, the pharmacological and molecular mechanisms remain unclear. We hypothesized that YGP would exert an anti-apoptosis effect on dexamethasone-treated anterior pituitary cells. In vivo experiments showed that YGP significantly reduced the number of apoptotic cells, down-regulated mRNA expression of cytochrome c, caspase-3, and caspase-9, and up-regulated mRNA expression of Bcl-2. These findings suggest that YGP reduced glucocorticoid-induced apoptosis in rat anterior pituitary cells by regulating the mitochondria-mediated apoptosis pathway. PMID:28197193

  13. Baicalin inhibits colistin sulfate-induced apoptosis of PC12 cells.

    PubMed

    Jiang, Hong; Lv, Pengfei; Li, Jichang; Wang, Hongjun; Zhou, Tiezhong; Liu, Yingzi; Lin, Wei

    2013-10-05

    Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress co-listin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PC12 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 μg/mL), and exposed to 125 μg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhi-bited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.

  14. Recessive mutations in a common pathway block thymocyte apoptosis induced by multiple signals

    PubMed Central

    1994-01-01

    The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls genes necessary to initiate glucocorticoid-induced thymocyte apoptosis. We have performed a genetic analysis of thymocyte cell death by isolating and characterizing a panel of GR+ dexamethasone- resistant mutants of the murine WEHI7.2 thymocyte cell line. These apoptosis-defective (Apt-) mutants were used to identify previously unknown early steps in the apoptotic pathway. The Apt- mutants contain nonglucocorticoid receptor, recessive mutations in genes that represent multiple complementation groups. These mutations block apoptosis induced by dexamethasone, gamma irradiation, and c-AMP treatment before the point where Bcl-2 exerts its protective effect. We propose that different signals share a common apoptotic pathway, and that the induction of apoptosis involves multiple precommitment steps that can be blocked by recessive mutations. PMID:7798323

  15. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis.

    PubMed

    Qiao, Meng; Wang, Yaqi; Xu, Xiaoen; Lu, Jing; Dong, Yongli; Tao, Wufan; Stein, Janet; Stein, Gary S; Iglehart, James D; Shi, Qian; Pardee, Arthur B

    2010-05-28

    PHLPP1 and PHLPP2 phosphatases exert their tumor-suppressing functions by dephosphorylation and inactivation of Akt in several breast cancer and glioblastoma cells. However, Akt, or other known targets of PHLPPs that include PKC and ERK, may not fully elucidate the physiological role of the multifunctional phosphatases, especially their powerful apoptosis induction function. Here, we show that PHLPPs induce apoptosis in cancer cells independent of the known targets of PHLPPs. We identified Mst1 as a binding partner that interacts with PHLPPs both in vivo and in vitro. PHLPPs dephosphorylate Mst1 on the T387 inhibitory site, which activate Mst1 and its downstream effectors p38 and JNK to induce apoptosis. The same T387 site can be phosphorylated by Akt. Thus, PHLPP, Akt, and Mst1 constitute an autoinhibitory triangle that controls the fine balance of apoptosis and proliferation that is cell type and context dependent.

  16. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  17. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae.

  18. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.

    PubMed

    Lim, Seul Ki; Kim, Jong Chun; Moon, Chang Jong; Kim, Gye Yeop; Han, Ho Jae; Park, Soo Hyun

    2010-05-27

    Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.

  19. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    PubMed

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  20. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma

    PubMed Central

    Prasad, Vivek; Kimlinger, Teresa; Painuly, Utkarsh; Mukhopadhyay, Bedabrata; Haug, Jessica; Bi, Lintao; Rajkumar, S. Vincent; Kumar, Shaji

    2016-01-01

    Bcl2 and IAP families are anti-apoptotic proteins deregulated in multiple myeloma (MM) cells. Pharmacological inhibition of each of these families has shown significant activity only in subgroups of MM patients. Here, we have examined a broad-spectrum Bcl2 family inhibitor Obatoclax (OBX) in combination with a Smac mimetic LCL161 in MM cell lines and patient cells. LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines. The cytotoxicity was mediated through inhibition of the IAPs, activation of caspases and up regulation of the pro-apoptotic proteins Bid, Bim, Puma and Noxa by the drug combination. In addition, we observed that OBX caused ER stress and activated the Unfolded Protein Response (UPR) leading to drug resistance. LCL161, however inhibited spliced Xbp-1, a pro-survival factor. In addition, we observed that OBX increased GRP78 localization to the cell surface, which then induced PI3K dependent Akt activation and resistance to cell death. LCL161 was able to block OBX induced Akt activation contributing to synergistic cell death. Our results support clinical evaluation of this combination strategy in relapsed refractory MM patients. PMID:27494845

  1. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response.

    PubMed

    Kamp, David W; Liu, Gang; Cheresh, Paul; Kim, Seok-Jo; Mueller, Amanda; Lam, Anna P; Trejo, Humberto; Williams, David; Tulasiram, Sandhya; Baker, Margaret; Ridge, Karen; Chandel, Navdeep S; Beri, Rohinee

    2013-12-01

    Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.

  2. Sorafenib inhibition of Mcl-1 accelerates ATRA induced apoptosis in differentiation responsive AML cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2015-01-01

    Purpose All trans retinoic acid (ATRA) is successful in treating acute promyelocytic leukemia (APL) by inducing terminal differentiation-mediated cell death, but it has limited activity in non-APL acute myeloid leukemia (AML). We aim to improve ATRA therapy of AML by enhancing apoptosis through repression of the anti-apoptotic proteins Bcl-2 and Mcl-1. Experimental Design APL and AML cell lines, as well as primary AML samples, were used to explore the mechanisms regulating differentiation and apoptosis during ATRA treatment. Stable transfection and gene silencing with siRNA were used to identify the key factors that inhibit apoptosis during induction of differentiation and drugs that accelerate apoptosis. Results In differentiation responsive AML cells, ATRA treatment induces long-lasting repression of Bcl-2 while first up-modulating and then reducing the Mcl-1 level. The Mcl-1 level appears to serve as a gatekeeper between differentiation and apoptosis. During differentiation induction, activation of MEK/ERK and PI3K/Akt pathways by ATRA leads to activation of p90RSK and inactivation of glycogen synthase kinase 3β (GSK3β), which increase Mcl-1 levels by increasing its translation and stability. Sorafenib blocks ATRA-induced Mcl-1 increase by reversing p90RSK activation and GSK3β inactivation, maintains the repressed Bcl-2 level, and enhances ATRA induced apoptosis in non-APL AML cell lines and in primary AML cells. Conclusion Inhibition of Mcl-1 is required for apoptosis induction in ATRA differentiation responsive AML cells. ATRA and Sorafenib can be developed as a novel drug combination therapy for AML patients because this drug combination augments apoptosis by inhibiting Bcl-2 and Mcl-1. PMID:26459180

  3. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  4. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways.

    PubMed

    Lu, Jun; Xu, Shi Yuan; Zhang, Qing Guo; Xu, Rui; Lei, Hong Yi

    2011-04-25

    Mitochondria and the p38 mitogen-activated protein kinase (MAPK) pathways play important roles in apoptosis. Although the effect of bupivacaine on apoptosis is known, it remains unclear whether bupivacaine induces apoptosis via mitochondrial depolarization and the p38 MAPK activity. In this study, SH-SY5Y cells were pretreated respectively with 50μM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 10μM 4-(4-Fluorophenyl)-2-[4-(methylsulfinyl)phenyl]-5-(4-pyridyl)-1H-imidazole (SB203580), and 50μM DIDS plus 10μM SB203580 30min prior to the treatment with either 1mM bupivacaine or an equivalent amount of medium. The cell viability, mitochondrial membrane potential, phospho-p38 MAPK (p-p38 MAPK) and cell apoptosis were investigated with MTT assay, western blots, Hoechst 33258 staining and flow cytometry assay. In addition, the roles of chloridion (Cl(-)) channel and reactive oxygen species were studied to explore the molecular mechanism of bupivacaine-induced mitochondrial injury. Pretreatment with DIDS could attenuate reactive oxygen species production, the phosphorylation of p38MAPK, dissipation of mitochondrial membrane potential and apoptosis of SH-SY5Y cells induced by bupivacaine. Pretreatment with SB203580 could attenuate apoptosis, but could not attenuate reactive oxygen species production, or dissipation of mitochondrial membrane potential induced by bupivacaine. These findings indicate that the mitochondrial anion channel and p38 MAPK pathway are implicated in bupicavaine-induced apoptosis. Bupivacaine-induced reactive oxygen species production results in an alteration in the permeability of the mitochondrial membranes and Cl(-) influx into mitochondria, which seems to be responsible for mitochondrial depolarization and the p38 MAPK activation.

  5. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  6. Crimean-Congo Hemorrhagic Fever Virus-Infected Hepatocytes Induce ER-Stress and Apoptosis Crosstalk

    PubMed Central

    Rodrigues, Raquel; Paranhos-Baccalà, Gláucia; Vernet, Guy; Peyrefitte, Christophe N.

    2012-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed tick-borne member of the Nairovirus genus (Bunyaviridae) with a high mortality rate in humans. CCHFV induces a severe disease in infected patients that includes, among other symptoms, massive liver necrosis and failure. The interaction between liver cells and CCHFV is therefore important for understanding the pathogenesis of this disease. Here, we described the in vitro CCHFV-infection and -replication in the hepatocyte cell line, Huh7, and the induced cellular and molecular response modulation. We found that CCHFV was able to infect and replicate to high titres and to induce a cytopathic effect (CPE). We also observed by flow cytometry and real time quantitative RT-PCR evidence of apoptosis, with the participation of the mitochondrial pathway. On the other hand, we showed that the replication of CCHFV in hepatocytes was able to interfere with the death receptor pathway of apoptosis. Furthermore, we found in CCHFV-infected cells the over-expression of PUMA, Noxa and CHOP suggesting the crosstalk between the ER-stress and mitochondrial apoptosis. By ELISA, we observed an increase of IL-8 in response to viral replication; however apoptosis was shown to be independent from IL-8 secretion. When we compared the induced cellular response between CCHFV and DUGV, a mild or non-pathogenic Nairovirus for humans, we found that the most striking difference was the absence of CPE and apoptosis. Despite the XBP1 splicing and PERK gene expression induced by DUGV, no ER-stress and apoptosis crosstalk was observed. Overall, these results suggest that CCHFV is able to induce ER-stress, activate inflammatory mediators and modulate both mitochondrial and death receptor pathways of apoptosis in hepatocyte cells, which may, in part, explain the role of the liver in the pathogenesis of CCHFV. PMID:22238639

  7. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  8. Nitrous oxide plus isoflurane induces apoptosis and increases β-amyloid protein levels

    PubMed Central

    Zhen, Yu; Dong, Yuanlin; Wu, Xu; Xu, Zhipeng; Lu, Yan; Zhang, Yiying; Norton, David; Tian, Ming; Li, Shuren; Xie, Zhongcong

    2009-01-01

    Background Some anesthetics have been suggested to induce neurotoxicity including promotion of Alzheimer’s disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. Here, we set out to assess effects of nitrous oxide and/or isoflurane on apoptosis and β-amyloid (Aβ) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for six hours. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Aβ levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for six hours induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for six hours induced caspase-3 activation and apoptosis, and increased levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Aβ generation was reduced by a broad caspase inhibitor Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by γ-secretase inhibitor L-685,458, but potentiated by exogenously added Aβ. Conclusion These results suggest that common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Aβ levels. The generated Aβ may further potentiate apoptosis to form another round of apoptosis and Aβ generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed. PMID:19741497

  9. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  10. Synergistic cytotoxicity induced by α-solanine and α-chaconine.

    PubMed

    Yamashoji, Shiro; Matsuda, Takako

    2013-11-15

    α-Solanine and α-chaconine are well-known potato toxins, but the mechanism of the synergistic cytotoxic effect of these alkaloids has been little clarified. This study confirmed their synergistic cytotoxic effects on C6 rat glioma cells by three different cell viability tests, namely WST-1 (water-soluble tetrazolium) assay sensitive to intracellular NADH concentration, menadione-catalysed chemiluminescent assay depending on both NAD(P)H concentration and NAD(P)H:quinone reductase activity, and LDH (lactate dehydrogenase) assay sensitive to the release of LDH from damaged cells. The maximum cytotoxic effect was observed at a ratio of 1:1 between α-solanine and α-chaconine at micromolar concentrations. The cytotoxic effects of these alkaloids were observed immediately after incubation and were constant after 30min, suggesting that rapid damage of plasma membrane causes the lethal disorder of metabolism.

  11. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  12. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review.

    PubMed

    Cadet, Jean Lud; Jayanthi, Subramaniam; Deng, Xiaolin

    2005-11-01

    The abuse of the illicit drug methamphetamine (METH) is a major concern because it can cause terminal degeneration and neuronal cell death in the brain. METH-induced cell death occurs via processes that resemble apoptosis. In the present review, we discuss the role of various apoptotic events in the causation of METH-induced neuronal apoptosis in vitro and in vivo. Studies using comprehensive approaches to gene expression profiling have allowed for the identification of several genes that are up-regulated or down-regulated after an apoptosis-inducing dose of the drug. Further experiments have also documented the fact that the drug can cause demise of striatal enkephalinergic neurons by cross-talks between mitochondria-, endoplasmic reticulum- and receptor-mediated apoptotic events. These neuropathological observations have also been reported in models of drug-induced neuroplastic alterations used to mimic drug addiction (Nestler, 2001).

  13. Exopolysaccharide from Trichoderma pseudokoningii induces the apoptosis of MCF-7 cells through an intrinsic mitochondrial pathway.

    PubMed

    Wang, Guodong; Liu, Chunyan; Liu, Jun; Liu, Bo; Li, Ping; Qin, Guozheng; Xu, Yanghui; Chen, Ke; Liu, Huixia; Chen, Kaoshan

    2016-01-20

    In this study, we reported the anticancer efficacy of exopolysaccharide (EPS) derived from Trichoderma pseudokoningii, on human breast cancer MCF-7 cells. Our results showed that EPS inhibited the proliferation of MCF-7 cells and induced lactic dehydrogenase release by inducing apoptosis and cell arrest at S phase. Further study revealed that EPS-induced apoptosis of MCF-7 cells was associated with alteration of nuclear morphology, disruption of mitochondrial membrane potential and accumulation of intracellular reactive oxygen species. Sequentially, EPS increased the activation of caspase-9 and caspase-3 in a dose-dependent manner; however, caspase-8 remained intact. Western blot analysis revealed that EPS increased the ratio of Bax/Bcl-2 and promoted the release of cytochrome c into the cytoplasm. Taken together, these findings provided evidence that EPS induced the apoptosis of MCF-7 cells through an intrinsic mitochondrial apoptotic pathway and that EPS may therefore be considered as an effective adjuvant agent against human breast cancer.

  14. XPB Induces C1D Expression to Counteract UV-Induced Apoptosis

    PubMed Central

    Li, Guang; Liu, Juhong; Abu-Asab, Mones; Masabumi, Shibuya; Maru, Yoshiro

    2010-01-01

    Although C1D has been shown to be involved in DNA double-strand breaks repair, how C1D expression was induced and the mechanism(s) by which C1D facilitates DNA repair in mammalian cells remain poorly understood. We and others have previously shown that expression of XPB protein efficiently compensated the UV-irradiation sensitive phenotype of 27-1 cells which lacks functional XPB. To further explore XPB-regulated genes that could be involved in UV-induced DNA repair, Differential Display analysis of mRNA level from CHO-9, 27-1 and 27-1 complemented with wild-type XPB were performed and C1D gene was identified as one of the major genes whose expression was significantly up-regulated by restoring XPB function. We found that XPB is essential to induce C1D transcription after UV-irradiation. The increase of C1D expression effectively compensates the UV-induced proteolysis of C1D and thus maintains cellular C1D level to cope with DNA damage inflicted by UV-irradiation. We further showed that although insufficient to rescue 27-1 cells from UV-induced apoptosis by itself, C1D facilitates XPB DNA repair through direct interaction with XPB. Our findings provided direct evidence that C1D is associated with DNA repair complex and may promote repair of UV-induced DNA damage. PMID:20530579

  15. Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.

    PubMed

    Sylvester, Paul W; Shah, Sumit

    2005-01-01

    Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol-induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally

  16. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.

    PubMed

    Liu, Yi; Zhang, Weihe; Cao, Yanyan; Liu, Yan; Bergmeier, Stephen; Chen, Xiaozhuo

    2010-12-08

    Cancer cells depend heavily on glucose as both energy and biosynthesis sources and are found to upregulate glucose transport and switch their main energy supply pathway from oxidative phosphorylation to glycolysis. These molecular and metabolic changes also provide targets for cancer treatment. Here we report that novel small molecules inhibited basal glucose transport and cell proliferation, and induced apoptosis in lung and breast cancer cells without affecting much their normal cell counterparts. Cancer cells survived the compound treatment lost their capability to proliferate. Mechanistic study indicates that the cancer cell inhibition by the test compounds has a component of apoptosis and the induced apoptosis was p53-independent and caspase 3-dependent, similar to those resulted from glucose deprivation. Compound treatment also led to cell cycle arrest in G1/S phase. The inhibition of cancer cell growth was partially relieved when additional glucose was supplied to cells, suggesting that the inhibition was due to, at least in part, the inhibition of basal glucose transport. When used in combination, the test compounds demonstrated synergistic effects with anticancer drugs cisplatin or paclitaxel in inhibition of cancer cell growth. All these results suggest that these glucose transport inhibitors mimic glucose deprivation and work through inhibiting basal glucose transport. These inhibitors have the potential to complement and replace traditional glucose deprivation, which cannot be used in animals, as new tools to study the effects of glucose transport and metabolism on cancer and normal cells.

  17. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells.

    PubMed

    Yang, Lu; Wu, Dingfang; Luo, Kewang; Wu, Shihua; Wu, Ping

    2009-04-18

    Despite recent significant advances in the treatment of human carcinoma (HCC), the results of chemotherapy to date remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment of carcinoma, and resistance to the actions of 5-FU is a major obstacle to successful chemotherapy. More effective treatment strategies may involve combinations of agents with activity against HCC. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone isolated from Andrographis paniculata, has been shown to suppress the growth of HCC cells and trigger apoptosis in vitro. To assess the suitability of ANDRO as a chemotherapeutic agent in HCC, its cytotoxic effects have been evaluated both as a single agent and in combination with 5-FU. ANDRO potentiates the cytotoxic effect of 5-FU in HCC cell line SMMC-7721 through apoptosis. ANDRO alone induces SMMC-7721 apoptosis with p53 expression, Bax conformation and caspase-3,8,9 activation. Surprisingly, the addition of ANDRO to 5-FU induces synergistic apoptosis, which could be corroborated to the increased caspase-8, p53 activity and the significant changes of Bax conformation in these cells, resulting in increased losses of mitochondrial membrane potential, increased release of cytochrome c, and activation of caspase-9 and caspase-3. Suppression of caspase-8 with the specific inhibitor z-IETD-fmk abrogates largely ANDRO/5-FU biological activity by preventing mitochondrial membrane potential disappearance, caspase-3,9 activation and subsequent apoptosis. The results suggest that ANDRO may be effective in combination with 5-FU for the treatment of HCC cells SMMC-7721.

  18. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.

    PubMed

    Li, J; Liu, S; Li, W; Hu, S; Xiong, J; Shu, X; Hu, Q; Zheng, Q; Song, Z

    2012-08-01

    Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.

  19. Cocaine induces apoptosis in cerebral vascular muscle cells: potential roles in strokes and brain damage.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella T; Altura, Burton M

    2003-12-15

    Cocaine abuse is known to induce different types of brain-microvascular damage and many adverse cerebrovascular effects, including cerebral vasculitis, intracranial hemorrhage, cerebral infarction and stroke. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. Whether cocaine can cause brain-microvascular pathology and vascular toxicity by inducing apoptosis of cerebral vascular smooth muscle cells is not known. This study, using several different methods to discern apoptosis, was designed to investigate if primary cultured canine cerebral vascular smooth muscle cells can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6)-10(-3) M) for 12-24 h, the death rates of cerebral vascular smooth muscle cells increased in a concentration-dependent manner compared with controls. Morphological analysis of cerebral vascular smooth muscle cells using confocal fluoresence microscopy showed that the percentage of apoptotic cerebral vascular smooth muscle cells increased after cocaine (10(-6)-10(-3) M) treatment in a concentration-dependent manner. TUNEL assays also showed positive results for cerebral vascular smooth muscle cells treated with cocaine. These results clearly demonstrate that cerebral vascular smooth muscle cells can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in brain-microvascular damage, cerebral vascular toxicity and strokes.

  20. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis.

    PubMed

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors.

  1. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells.

    PubMed

    Jin, Un-Ho; Song, Kwon-Ho; Motomura, Muneo; Suzuki, Ikukatsu; Gu, Yeun-Hwa; Kang, Yun-Jeong; Moon, Tae-Chul; Kim, Cheorl-Ho

    2008-03-01

    Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 microg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2 alpha and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells.

  2. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis

    PubMed Central

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors. PMID:27648301

  3. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  4. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    PubMed

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  5. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein.

    PubMed

    Pongrakhananon, Varisa; Luanpitpong, Sudjit; Stueckle, Todd A; Wang, Liying; Nimmannit, Ubonthip; Rojanasakul, Yon

    2015-02-01

    Chronic exposure to single-walled carbon nanotubes (SWCNT) has been reported to induce apoptosis resistance of human lung epithelial cells. As resistance to apoptosis is a foundation of neoplastic transformation and cancer development, we evaluated the apoptosis resistance characteristic of the exposed lung cells to understand the pathogenesis mechanism. Passage control and SWCNT-transformed human lung epithelial cells were treated with known inducers of apoptosis via the intrinsic (antimycin A and CDDP) or extrinsic (FasL and TNF-α) pathway and analyzed for apoptosis by DNA fragmentation, annexin-V expression, and caspase activation assays. Whole-genome microarray was performed to aid the analysis of apoptotic gene signaling network. The SWCNT-transformed cells exhibited defective death receptor pathway in association with cellular FLICE-inhibitory protein (c-FLIP) overexpression. Knockdown or chemical inhibition of c-FLIP abrogated the apoptosis resistance of SWCNT-transformed cells. Whole-genome expression signature analysis confirmed these findings. This study is the first to demonstrate carbon nanotube-induced defective death receptor pathway and the role of c-FLIP in the process.

  6. Apoptosis of human gastric carcinoma cells induced by Euphorbia esula latex

    PubMed Central

    Fu, Zhao-Ying; Han, Xiao-Dong; Wang, Ai-Hong; Liu, Xiao-Bin

    2016-01-01

    AIM: To investigate the effect of Euphorbia esula (E. esula) extract in inhibiting proliferation and inducing apoptosis in SGC-7901 cells. METHODS: E. esula extract at different concentrations was used to inhibit proliferation and induce apoptosis of human gastric carcinoma SGC-7901 cells. Inhibition of proliferation was detected with thiazolyl blue assay, and apoptosis was detected with fluorescence microscopy, transmission electron microscopy, and flow cytometry. The mechanisms were studied by measurement of caspase-3 and caspase-8 activities and Bax and Bcl2 mRNA expression. RESULTS: The thiazolyl blue assay showed that SGC-7901 cell viability and proliferation were inhibited significantly by E. esula extract in a time- and concentration-dependent manner. Fluorescence microscopy revealed that the cell nuclei showed the characteristic changes of apoptosis, such as uneven staining and chromatin marginalization. Some key features of apoptosis were also observed under transmission electron microscopy, which included cellular shrinkage and the foaming or bubbling phenomenon. When the cells were analyzed by flow cytometry, a sub-G1 peak could be seen clearly. Spectrophotometric assay of caspase-3 and caspase-8 activities in the treated cells showed an approximately two-fold increase. Reverse transcription polymerase chain reaction showed that Bax mRNA expression was upregulated, while Bcl2 mRNA expression was downregulated. CONCLUSION: E. esula extract inhibited proliferation and induced apoptosis in SGC-7901 cells, in a caspase-dependent manner, involving upregulation of Bax and downregulation of Bcl2. PMID:27053848

  7. [Apoptosis-inducing properties of ent-kaurene-type diterpenoids from the liverwort Jungermannia truncata].

    PubMed

    Nagashima, Fumihiro; Kondoh, Masuo; Kawase, Masaki; Simizu, Siro; Osada, Hiroyuki; Fujii, Makiko; Watanabe, Yoshiteru; Sato, Masao; Asakawa, Yoshinori

    2003-04-01

    Ent-11alpha-hydroxy-16-kauren-15-one (1) induced apoptosis in a human leukemia cell line (HL-60 cells), however, the apoptosis-inducing properties of 1 and its related compounds remain to be proved. We examined the involvement of caspases, a family of cysteine aspartic proteases, which play a central role in induction of apoptosis, in apoptosis induced by the compounds in HL-60 cells. Treatment of the cells with compounds 1, 2 and 3 with the enone group at C-15/C-16 caused DNA fragmentation, a sign of induction of apoptosis, and proteolysis of poly(ADP-ribose) polymerase (PARP), a hallmark of caspase activation. Z-Asp-CH2-DCB, abroad spectrum inhibitor of caspases, abolished the appearance of DNA fragmentation and also significantly attenuated the cytotoxic effects. These data suggest that induction of apoptosis by 1 and some of its related compounds are dependent on caspases activation and might be partly involved in the cytotoxicity in HL-60 cells.

  8. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling

    PubMed Central

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-01-01

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. PMID:26412745

  9. The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    PubMed Central

    Alirol, Emilie; James, Dominic; Huber, Denise; Marchetto, Andrea; Vergani, Lodovica

    2006-01-01

    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca2+-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis. PMID:16914522

  10. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis

    PubMed Central

    Liu, Lian; Lao, Wei; Ji, Qing-Shan; Yang, Zhi-Hao; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2015-01-01

    AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction (RT-PCR) technique. RSULTS LBP significantly reduced the H2O2-induced ARPE-19 cells' apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSION LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP. PMID:25709900

  11. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways

    PubMed Central

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs. PMID:26425111

  12. Reactive oxygen species modulate Zn(2+)-induced apoptosis in cancer cells.

    PubMed

    Provinciali, Mauro; Donnini, Alessia; Argentati, Katy; Di Stasio, Grazia; Bartozzi, Beatrice; Bernardini, Giovanni

    2002-03-01

    Some recent evidence has suggested a protective role of zinc against cancer. The mechanism by which zinc exerts this action has not been defined and, in particular, it has not been clarified whether zinc may directly act on cancer cells and the molecular mechanisms involved in this effect. In this study, we examined the in vitro effect of zinc on the apoptosis of mouse TS/A mammary adenocarcinoma cells, studying the zinc-dependent modulation of the intracellular levels of reactive oxygen species (ROS) and of p53 and Fas/Fas ligand pathways. We showed that zinc concentrations ranging from 33.7 to 75 muM Zn(2+) induced apoptosis in mammary cancer cells. The apoptosis was associated with an increased production of intracellular ROS, and of p53 and Fas/Fas ligand mRNA and protein. Zn(2+) induced a faint metallothionein response in TS/A cells in comparison with mouse lymphocytes. The treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and Fas ligand protein induced by zinc. The data demonstrate that zinc exerts a direct action on mammary cancer cells inducing ROS-mediated apoptosis and that the effect may be mediated by the ROS-dependent induction of p53 and Fas/Fas ligand.

  13. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress.

    PubMed

    Zhang, Chao; Wang, Chendan; Ren, Jianbo; Guo, Xiangjie; Yun, Keming

    2016-10-24

    Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca(2+) release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca(2+) release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca(2+) overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca(2+) release and ER stress.

  14. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mazurier, Frédéric; Cario-André, Muriel; Pain, Catherine; Ged, Cécile; Taïeb, Alain; de Verneuil, Hubert

    2006-06-30

    UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.

  15. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells.

    PubMed

    Cecchinato, Valentina; Chiaramonte, Raffaella; Nizzardo, Monica; Cristofaro, Brunella; Basile, Andrea; Sherbet, Gajanan V; Comi, Paola

    2007-12-03

    Resveratrol (RES) is a natural occurring phytoalexin that has been shown to have chemopreventive activity. Resveratrol acts both by suppressing cell proliferation and inducing apoptosis in a variety of cancer cell lines. In this study, we show that RES induces apoptosis in MOLT-4 acute lymphoblastic leukaemia cells by modulating three different pathways that regulate cells survival and cell death. We show for the first time that RES inhibits the survival signalling pathways Notch and their down stream effector and modulates the operation of interacting signalling systems. It induces an increase in the levels of the pro-apoptotic proteins p53, its effector p21waf and Bax. We also show that RES inhibits the PI3K/Akt pathway and activates Gsk-3beta. The data presented here demonstrate unequivocally that RES induces apoptosis by inhibiting the Notch pathway and markedly influencing the operation of the interacting apoptosis pathways mediated by p53 and PI3K/Akt. These data support findings from other laboratories that have suggested the use of RES as a chemopreventive agent. Here, we have identified potential signalling pathways influenced by RES and this could lead to the identification of the targets of RES-induced apoptosis and growth control.

  16. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  17. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  18. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  19. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    SciTech Connect

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  20. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    SciTech Connect

    Jaruchotikamol, Atika; Jarukamjorn, Kanokwan Sirisangtrakul, Wanna; Sakuma, Tsutomu; Kawasaki, Yuki; Nemoto, Nobuo

    2007-10-15

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.

  1. Effects of cerebrolysin administration on oxidative stress-induced apoptosis in lymphocytes from CADASIL patients.

    PubMed

    Formichi, Patrizia; Radi, Elena; Battisti, Carla; Di Maio, Giuseppe; Dotti, Maria Teresa; Muresanu, Dafin; Federico, Antonio

    2013-04-01

    Cerebrolysin (Cere) is a peptidergic nootropic drug with neurotrophic properties which has been used to treat dementia and sequelae of stroke. Use of Cere prevents nuclear structural changes typical of apoptosis and significantly reduces the number of apoptotic cells after several apoptotic stimuli. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary disease caused by mutations of the Notch3 gene encoding the Notch3 protein. Notch3 is involved in the regulation of apoptosis, modulating Fas-Ligand (Fas-L)- induced apoptosis. The aim of this study was to evaluate the in vitro protective effects of Cere against oxidative stress-induced apoptosis in cells from CADASIL patients. We used peripheral blood lymphocytes (PBLs) from 15 CADASIL patients (age range 34-70 years); 2-deoxy-D-ribose (dRib), a highly reducing sugar, was used as paradigm pro-apoptotic stimulus. Apoptosis was analyzed by flow cytometry and fluorescence microscopy. Administration of Cere to PBLs from CADASIL patients cultured under standard conditions had no effect on the percentage of apoptotic cells. Administration of Cere to PBLs cultured with dRib caused a significant decrease in apoptosis after 48 h of culture in only 5 patients, whereas in the other 10 patients, Cere treatment was not associated with any significant difference in the percentage of apoptosis. This result showed a protective effect of Cere against oxidative stress-induced apoptosis only in 30 % of the CADASIL patients, suggesting that the Notch3 gene probably does not influence the anti-apoptotic properties of Cere in vitro.

  2. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells

    PubMed Central

    Li, Yang; Li, Jinhui; Huang, Hui; Yang, Mingfeng; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen; Fu, Xiaoli

    2016-01-01

    The present study aimed to investigate the toxicity of microcystin-LR (MC-LR) and to explore the mechanism of MC-LR-induced apoptosis in human bronchial epithelial (HBE) cells. HBE cells were treated with MC-LR (1, 10, 20, 30 and 40 µg/ml) alone or with MC-LR (0, 2.5, 5 and 10 µg/ml) and Z-VAD-FMK (0, 10, 20, 40, 60, 80, 100, 120 and 140 µM), which is a caspase inhibitor, for 24 and 48 h. Cell viability was assessed via an MTT assay and the half maximal effective concentration of MC-LR was determined. The optimal concentration of Z-VAD-FMK was established as 50 µm, which was then used in the subsequent experiments. MC-LR significantly inhibited cell viability and induced apoptosis of HBE cells in a dose-dependent manner, as detected by an Annexin V/propidium iodide assay. MC-LR induced cell apoptosis, excess reactive oxygen species production and mitochondrial membrane potential collapse, upregulated Bax expression and downregulated B-cell lymphoma-2 expression in HBE cells. Moreover, western blot analysis demonstrated that MC-LR increased the activity levels of caspase-3 and caspase-9 and induced cytochrome c release into the cytoplasm, suggesting that MC-LR-induced apoptosis is associated with the mitochondrial pathway. Furthermore, pretreatment with Z-VAD-FMK reduced MC-LR-induced apoptosis by blocking caspase activation in HBE cells. Therefore, the results of the present study suggested that MC-LR is capable of significantly inhibiting the viability of HBE cells by inducing apoptosis in a mitochondria-dependent manner. The present study provides a foundation for further understanding the mechanism underlying the toxicity of MC-LR in the respiratory system. PMID:27446254

  3. ARL6IP1 mediates cisplatin-induced apoptosis in CaSki cervical cancer cells.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Wang, Jiajia; Li, Guancheng

    2010-05-01

    Cisplatin has been shown to induce apoptosis in various types of cancer cells. Despite the great efficacy at treating certain kinds of cancers, cisplatin introduced into clinical use shows side effects and the acquisition or presence of resistance to the drug. Thus, it is important that we further understand the anti-cancer mechanism of cisplatin with the goal of enhancing its efficacy. ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1) is an apoptotic regulator. We studied cisplatin-induced apoptosis with suppression of ARL6IP1 expression in CaSki cervical cancer cells. Exogenous expression of ARL6IP1 suppressed cisplatin-induced apoptosis in CaSki cells, and siRNA-induced silencing of ARL6IP1 triggered apoptosis in CaSki cells even in the absence of other apoptotic stimuli. Cisplatin treatment induced caspase-3, -9, p53, Bax, NF-kappaB and MAPK expression, and suppressed Bcl-2 and Bcl-xl expression, whereas cells transfected with pcDNA3.1-ARL6IP1 showed lower levels of cisplatin-induced caspase-3, -9, p53, Bax, NF-kappaB and MAPK up-regulation and higher levels of cisplatin-suppressed Bcl-2 and Bcl-xl down-regulation. These novel findings collectively suggest that ARL6IP1 may play a key role in cisplatin-induced apoptosis in CaSki cervical cancer cells by regulating the expression of apoptosis-associated proteins such as caspase-3, -9, p53, NF-kappaB, MAPK, Bcl-2, Bcl-xl, and Bax.

  4. Bisphosphonates induce apoptosis in human breast cancer cell lines

    PubMed Central

    Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

    2000-01-01

    Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

  5. Early Dexamethasone Treatment Induces Placental Apoptosis in Sheep

    PubMed Central

    Meng, Wenbin; Shang, Hongkai; Li, Shaofu; Sloboda, Deborah M.; Ehrlich, Loreen; Lange, Karolin; Xu, Huaisheng; Henrich, Wolfgang; Dudenhausen, Joachim W.; Plagemann, Andreas; Newnham, John P.; Challis, John R. G.

    2015-01-01

    Glucocorticoid treatment given in late pregnancy in sheep resulted in altered placental development and function. An imbalance of placental survival and apoptotic factors resulting in an increased rate of apoptosis may be involved. We have now investigated the effects of dexamethasone (DEX) in early pregnancy on binucleate cells (BNCs), placental apoptosis, and fetal sex as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 105) were randomized to control (n = 56, 2 mL saline/ewe) or DEX treatment (n = 49, intramuscular injections of 0.14 mg/kg ewe weight per 12 hours over 48 hours) at 40 to 41 days of gestation (dG). Placentomes were collected at 50, 100, 125, and 140 dG. At 100 dG, DEX in females reduced BNC numbers, placental antiapoptotic (proliferating cell nuclear antigen), and increased proapoptotic factors (Bax, p53), associated with a temporarily decrease in fetal growth. At 125 dG, BNC numbers and apoptotic markers were restored to normal. In males, ovine placental lactogen-protein levels after DEX were increased at 50 dG, but at 100 and 140 dG significantly decreased compared to controls. In contrast to females, these changes were independent of altered BNC numbers or apoptotic markers. Early DEX was associated with sex-specific, transient alterations in BNC numbers, which may contribute to changes in placental and fetal development. Furthermore, in females, altered placental apoptosis markers may be involved. PMID:25063551

  6. Depletion of Paraspeckle Protein 1 Enhances Methyl Methanesulfonate-Induced Apoptosis through Mitotic Catastrophe