Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity
Shabalina, Svetlana A.; Spiridonov, Nikolay A.; Kashina, Anna
2013-01-01
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions. PMID:23293005
Canale, Aneth S; Venev, Sergey V; Whitfield, Troy W; Caffrey, Daniel R; Marasco, Wayne A; Schiffer, Celia A; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Zeldovich, Konstantin B; Wang, Jennifer P; Bolon, Daniel N A
2018-04-13
The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses. Copyright © 2018. Published by Elsevier Ltd.
7 CFR 29.3020 - Elements of quality.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Elements of quality. 29.3020 Section 29.3020... Type 93) § 29.3020 Elements of quality. Elements of quality and the degrees used in the specifications... selected to describe the degrees of each element. Some of the words are almost synonymous in their meaning...
7 CFR 29.3020 - Elements of quality.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Elements of quality. 29.3020 Section 29.3020... Type 93) § 29.3020 Elements of quality. Elements of quality and the degrees used in the specifications... selected to describe the degrees of each element. Some of the words are almost synonymous in their meaning...
7 CFR 29.3020 - Elements of quality.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Elements of quality. 29.3020 Section 29.3020... Type 93) § 29.3020 Elements of quality. Elements of quality and the degrees used in the specifications... selected to describe the degrees of each element. Some of the words are almost synonymous in their meaning...
7 CFR 29.3020 - Elements of quality.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Elements of quality. 29.3020 Section 29.3020... Type 93) § 29.3020 Elements of quality. Elements of quality and the degrees used in the specifications... selected to describe the degrees of each element. Some of the words are almost synonymous in their meaning...
7 CFR 29.3020 - Elements of quality.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Elements of quality. 29.3020 Section 29.3020... Type 93) § 29.3020 Elements of quality. Elements of quality and the degrees used in the specifications... selected to describe the degrees of each element. Some of the words are almost synonymous in their meaning...
Zhao, Meixia; Du, Jianchang; Lin, Feng; Tong, Chaobo; Yu, Jingyin; Huang, Shunmou; Wang, Xiaowu; Liu, Shengyi; Ma, Jianxin
2013-10-01
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution. © 2013 Purdue University The Plant Journal © 2013 John Wiley & Sons Ltd.
Translational control of Nrf2 within the open reading frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Leal, Oscar, E-mail: operez@temple.edu; Barrero, Carlos A.; Merali, Salim, E-mail: smerali@temple.edu
2013-07-19
Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stressmore » conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state.« less
Barber-Zucker, Shiran; Uebe, René; Davidov, Geula; Navon, Yotam; Sherf, Dror; Chill, Jordan H.; Kass, Itamar; Bitton, Ronit; Schüler, Dirk; Zarivach, Raz
2016-01-01
Cation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria. To investigate the structure-function relationship of CDF cytoplasmic domains, we characterized a MamM M250P mutation that is synonymous with the disease-related mutation L349P of the human CDF protein ZnT-10. Our results show that the M250P exchange in MamM causes severe structural changes in its CTD resulting in abnormal reduced function. Our in vivo, in vitro and in silico studies indicate that the CTD fold is critical for CDF proteins’ proper function and support the previously suggested role of the CDF cytoplasmic domain as a CDF regulatory element. Based on our results, we also suggest a mechanism for the effects of the ZnT-10 L349P mutation in human. PMID:27550551
40 CFR 373.3 - Content of notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COMMUNITY RIGHT-TO-KNOW PROGRAMS REPORTING HAZARDOUS SUBSTANCE ACTIVITY WHEN SELLING OR TRANSFERRING FEDERAL... information: (a) The name of the hazardous substance; the Chemical Abstracts Services Registry Number (CASRN) where applicable; the regulatory synonym for the hazardous substance, as listed in 40 CFR 302.4, where...
Regions of extreme synonymous codon selection in mammalian genes
Schattner, Peter; Diekhans, Mark
2006-01-01
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911
ERIC Educational Resources Information Center
Laumann, Daniel
2017-01-01
Magnetism and its various applications are essential for our daily life and for many technological developments. The term "magnetism" is almost always used as a synonym for ferromagnetism. However, the magnetic properties of the elements of the periodic table indicate that the vast majority of elements are not ferromagnetic, but rather,…
ERIC Educational Resources Information Center
Serre, Robert
This English-French dictionary on solar energy is intended for translators and purports to contain all the elements necessary for doing quality translations. Each entry contains the following elements: (1) the basic English word with its synonyms and equivalents; (2) the definition in English and reference to its source; and (3) sentences or…
Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes
2013-01-01
Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems. PMID:24148294
Guo, Liyuan; Wang, Jing
2018-01-04
Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Transcription factor trapping by RNA in gene regulatory elements.
Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A
2015-11-20
Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.
Characterization of noncoding regulatory DNA in the human genome.
Elkon, Ran; Agami, Reuven
2017-08-08
Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.
Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme
2010-12-01
The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gazestani, Vahid H; Salavati, Reza
2015-01-01
Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.
2018-01-01
Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525
The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes
Li, Jia; Su, Yingjuan; Wang, Ting
2018-01-01
The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates. PMID:29731764
Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.
Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana
2016-08-01
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.
Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir
2017-08-01
Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Using Enquiry-Based Learning Methods to Teach "Finnegans Wake" to Undergraduates
ERIC Educational Resources Information Center
Manista, Frank C.; Gillespie, Michael Patrick
2011-01-01
Many readers dismiss James Joyce's final novel as impossible to wade through, with its multilingual puns, songs, jokes, portmanteau words, allusions, scientific references, myths and legends. Given the kinetic elements of any reading experience, features particularly evident in "Finnegans Wake", reading inevitably becomes synonymous with…
Operational Art and Intelligence: What is the Relationship?
1997-05-22
operational art began with the even application of military science and art . Science is knowledge, and art is the creative application of knowledge. In this...intelligence, like operational art, evenly applies science and art . Science , or raw data collection, is synonymous with the gathering of quantitative elements in
Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.
2013-01-01
Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007
Work-Life Programs and Organizational Culture: The Essence of Workplace Community
ERIC Educational Resources Information Center
Chalofsky, Neal; Griffin, Mary Gayle
2005-01-01
HRD can have a humanistic impact on organizations through influence on the values embedded in the organization culture. One approach is through work-life policies and programs, which have become synonymous with humane, employee-friendly organizations. This paper will address the elements of a humane organizational culture, based on research of the…
N-3 polyunsaturated fatty acid regulation of hepatic gene transcription
Jump, Donald B.
2009-01-01
Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914
A HLA class I cis-regulatory element whose activity can be modulated by hormones.
Sim, B C; Hui, K M
1994-12-01
To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.
ERIC Educational Resources Information Center
Rayfield, Robin; Meabon, David; Ughrin, Tina
2004-01-01
In the academy, when scholarly productivity is considered, many words come to mind such as: research, journal articles, books and chapters in books, experiments and conference presentations among others. The literature often uses the term research as a synonym for scholarly productivity. A review of related literature revealed that tenure policies…
Uncovering drug-responsive regulatory elements
Luizon, Marcelo R; Ahituv, Nadav
2015-01-01
Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224
Levy, Nitzan; Tatomer, Dierdre; Herber, Candice B.; Zhao, Xiaoyue; Tang, Hui; Sargeant, Toby; Ball, Lonnele J.; Summers, Jonathan; Speed, Terence P.; Leitman, Dale C.
2008-01-01
Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E2) and selective estrogen receptor modulators. To obtain a greater understanding of how E2 and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERα. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (<10 kb). Only 11% of the elements contained a classical estrogen response element; 23% of the elements did not have any known response elements, including one derived from the naked cuticle homolog gene, which was associated with the recruitment of p160 coactivators. Transfection studies found that 80% of the 173 elements were regulated by E2, raloxifene, or tamoxifen with ERα or ERβ. Tamoxifen was more effective than raloxifene at activating the elements with ERα, whereas raloxifene was superior with ERβ. Our findings demonstrate that E2, tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERα and ERβ. PMID:17962382
Biswas, Ambarish; Brown, Chris M
2014-06-08
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.
Dinan, Adam M; Atkins, John F; Firth, Andrew E
2017-10-16
Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. This article was reviewed by Laurence Hurst and Eugene Koonin.
Five new synonyms in Epimedium (Berberidaceae) from China.
Zhang, Yanjun; Dang, Haishan; Li, Shengyu; Li, Jianqiang; Wang, Ying
2015-01-01
Five new synonyms in Chinese Epimedium are designated in the present paper. Epimediumchlorandrum is treated as a synonym of Epimediumacuminatum; Epimediumrhizomatosum as a synonym of Epimediummembranaceum; Epimediumbrachyrrhizum as a synonym of Epimediumleptorrhizum; Epimediumdewuense as a synonym of Epimediumdolichostemon; and Epimediumsagittatumvar.oblongifoliolatum as a synonym of Epimediumborealiguizhouense.
Deciphering the transcriptional cis-regulatory code.
Yáñez-Cuna, J Omar; Kvon, Evgeny Z; Stark, Alexander
2013-01-01
Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterization of new regulatory elements within the Drosophila bithorax complex.
Pérez-Lluch, Sílvia; Cuartero, Sergi; Azorín, Fernando; Espinàs, M Lluïsa
2008-12-01
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.
Bucsenez, M; Rüping, B; Behrens, S; Twyman, R M; Noll, G A; Prüfer, D
2012-09-01
The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
RUCAM in Drug and Herb Induced Liver Injury: The Update
Danan, Gaby; Teschke, Rolf
2015-01-01
RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI). Historical background and the original work confirm the use of RUCAM as single term for future cases, dismissing now the term CIOMS for reasons of simplicity and clarity. RUCAM represents a structured, standardized, validated, and hepatotoxicity specific diagnostic approach that attributes scores to individual key items, providing final quantitative gradings of causality for each suspect drug/herb in a case report. Experts from Europe and the United States had previously established in consensus meetings the first criteria of RUCAM to meet the requirements of clinicians and practitioners in care for their patients with suspected DILI and HILI. RUCAM was completed by additional criteria and validated, assisting to establish the timely diagnosis with a high degree of certainty. In many countries and for more than two decades, physicians, regulatory agencies, case report authors, and pharmaceutical companies successfully applied RUCAM for suspected DILI and HILI. Their practical experience, emerging new data on DILI and HILI characteristics, and few ambiguous questions in domains such alcohol use and exclusions of non-drug causes led to the present update of RUCAM. The aim was to reduce interobserver and intraobserver variability, to provide accurately defined, objective core elements, and to simplify the handling of the items. We now present the update of the well accepted original RUCAM scale and recommend its use for clinical, regulatory, publication, and expert purposes to validly establish causality in cases of suspected DILI and HILI, facilitating a straightforward application and an internationally harmonized approach of causality assessment as a common basic tool. PMID:26712744
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-10-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-01-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637
Five new synonyms in Epimedium (Berberidaceae) from China
Zhang, Yanjun; Dang, Haishan; Li, Shengyu; Li, Jianqiang; Wang, Ying
2015-01-01
Abstract Five new synonyms in Chinese Epimedium are designated in the present paper. Epimedium chlorandrum is treated as a synonym of Epimedium acuminatum; Epimedium rhizomatosum as a synonym of Epimedium membranaceum; Epimedium brachyrrhizum as a synonym of Epimedium leptorrhizum; Epimedium dewuense as a synonym of Epimedium dolichostemon; and Epimedium sagittatum var. oblongifoliolatum as a synonym of Epimedium borealiguizhouense. PMID:25987882
Regulatory activities of transposable elements: from conflicts to benefits
Chuong, Edward B.; Elde, Nels C.; Feschotte, Cédric
2017-01-01
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor binding sites and non-coding RNAs. A wealth of recent studies reinvigorates the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalyzed the evolution of gene regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic impact of regulatory activities encoded by TEs in health and disease. PMID:27867194
ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy
Ottesen, Eric W.
2017-01-01
Abstract Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols. PMID:28400976
Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd
2013-01-01
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. PMID:24224019
Sylvester, Steven P.; Soreng, Robert J.; Peterson, Paul M.; Sylvester, Mitsy D.P.V.
2016-01-01
Abstract We provide an updated checklist and key to the 30 Poa species with open panicles from Peru which includes previously circumscribed Dissanthelium and Aphanelytrum species, new taxon records, and three undescribed species. Poa compressa, Poa grisebachii, and Poa leioclada are recorded from Peru for the first time. A number of species are placed in synonymy: Poa carazensis, Poa ferreyrae and Poa tovarii are synonymized under the name Poa fibrifera; Poa adusta (tentatively) and Poa pilgeri are synonymized under Poa candamoana; Poa superata is synonymized under Poa grisebachii; and Poa paramoensis is synonymized under Poa huancavelicae. Included within this treatment are three new species, Poa ramoniana, Poa tayacajaensis and Poa urubambensis, which are described and illustrated. Poa ramoniana, found growing near lakes in high elevation Puna grasslands of Junín, is similar to a small form of Poa glaberrima, but differs in having rhizomes and growing to only 5 cm tall. Poa tayacajaensis, found from shrublands on Andean slopes of Huancavelica and Huánuco, bears similarities to Poa aequatoriensis but differs in having shorter lemmas which are pubescent between the veins, densely scabrous sheaths with smooth, glabrous throats, and shorter ligules. Poa urubambensis, a common element of the undisturbed Polylepis forest understory of the Cordillera Urubamba, Cusco, is distinct from all other members of open-panicled Poa’s by having glabrous lemmas with a smooth and glabrous callus, and notably small anthers. The type material for the name Poa adusta is discussed and a lectotype is selected. PMID:27489489
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2005-02-01
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo
2016-05-01
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.
2011-01-01
The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106
An internal regulatory element controls troponin I gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yutzey, K.E.; Kline, R.L.; Konieczmy, S.F.
1989-04-01
During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein genemore » has not been identified. In contrast to the results of these earlier studies, the authors have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.« less
An internal regulatory element controls troponin I gene expression.
Yutzey, K E; Kline, R L; Konieczny, S F
1989-01-01
During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene. Images PMID:2725509
Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis
2005-06-13
Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A totalmore » of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.« less
Loots, Gabriela G
2008-01-01
Despite remarkable recent advances in genomics that have enabled us to identify most of the genes in the human genome, comparable efforts to define transcriptional cis-regulatory elements that control gene expression are lagging behind. The difficulty of this task stems from two equally important problems: our knowledge of how regulatory elements are encoded in genomes remains elementary, and there is a vast genomic search space for regulatory elements, since most of mammalian genomes are noncoding. Comparative genomic approaches are having a remarkable impact on the study of transcriptional regulation in eukaryotes and currently represent the most efficient and reliable methods of predicting noncoding sequences likely to control the patterns of gene expression. By subjecting eukaryotic genomic sequences to computational comparisons and subsequent experimentation, we are inching our way toward a more comprehensive catalog of common regulatory motifs that lie behind fundamental biological processes. We are still far from comprehending how the transcriptional regulatory code is encrypted in the human genome and providing an initial global view of regulatory gene networks, but collectively, the continued development of comparative and experimental approaches will rapidly expand our knowledge of the transcriptional regulome.
Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William
2017-05-01
Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p < 0.0001). Sterol regulatory element binding protein-1 gene expression was positively correlated with body mass index (r = 0.017, p = 0.921) and waist-hip ratio (r = 0.023, p = 0.544) in polycystic ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element binding protein-1 gene correlated with endometrial gene expression (p < 0.05). Sterol regulatory element binding protein-1 gene expression is significantly increased in the endometrium of women with polycystic ovary syndrome and women with endometrial cancer compared with controls and positively correlates with serum triglyceride in both polycystic ovary syndrome and endometrial cancer. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
Ronsseray, S.; Lehmann, M.; Nouaud, D.; Anxolabehere, D.
1996-01-01
Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is site-dependent and could involve the structure of the chromatin. PMID:8844154
Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells
Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail
2017-01-01
Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981
Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P
2015-12-01
Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.
2011-01-01
Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses. PMID:21349196
ERIC Educational Resources Information Center
Humfrey, Christine
2011-01-01
Internationalisation is a key element in the evolving role and function of the UK higher education (HE) sector. Its perceived benefits are promoted widely and sought assiduously. It has come to be believed by many practitioners that internationalisation and the quest for quality and status in HE are synonymous. In the current phase of…
The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries
2013-01-07
devices use lithium-ion batteries comprised of a graphite anode and metal oxide cathode . Lithium, being the third-lightest element, is already synonymous...support shuttling lithium ions (battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...ability of electro-deposit lithium non-dendritically. When lithium is electrodeposited , as during battery charging, it tends to form needle-like
Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells
Leddin, Mathias; Perrod, Chiara; Hoogenkamp, Maarten; Ghani, Saeed; Assi, Salam; Heinz, Sven; Wilson, Nicola K.; Follows, George; Schönheit, Jörg; Vockentanz, Lena; Mosammam, Ali M.; Chen, Wei; Tenen, Daniel G.; Westhead, David R.; Göttgens, Berthold
2011-01-01
The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type–specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements. PMID:21239694
Chappell, James; Jensen, Kirsten; Freemont, Paul S.
2013-01-01
A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936
Qiu, Zhengkun; Li, Ren; Zhang, Shuaibin; Wang, Ketao; Xu, Meng; Li, Jiayang; Du, Yongchen; Yu, Hong; Cui, Xia
2016-08-01
Development and ripening of tomato fruit are precisely controlled by transcriptional regulation, which depends on the orchestrated accessibility of regulatory proteins to promoters and other cis-regulatory DNA elements. This accessibility and its effect on gene expression play a major role in defining the developmental process. To understand the regulatory mechanism and functional elements modulating morphological and anatomical changes during fruit development, we generated genome-wide high-resolution maps of DNase I hypersensitive sites (DHSs) from the fruit tissues of the tomato cultivar "Moneymaker" at 20 days post anthesis as well as break stage. By exploring variation of DHSs across fruit development stages, we pinpointed the most likely hypersensitive sites related to development-specific genes. By detecting binding motifs on DHSs of these development-specific genes or genes in the ascorbic acid biosynthetic pathway, we revealed the common regulatory elements contributing to coordinating gene transcription of plant ripening and specialized metabolic pathways. Our results contribute to a better understanding of the regulatory dynamics of genes involved in tomato fruit development and ripening. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Synonym Success--Thanks to the Thesaurus
ERIC Educational Resources Information Center
Mountain, Lee
2007-01-01
After a class of ninth graders discovered the helpfulness of the thesaurus in such synonym activities as Synonym Tic-Tac-Toe and Cross-Synonym Puzzles, they started using the thesaurus to locate "the exactly right word" while drafting compositions. They also enriched their oral vocabularies during these activities by discussing synonyms from the…
Evans, Perry; Avey, Stefan; Kong, Yong; Krauthammer, Michael
2013-09-01
A common goal of tumor sequencing projects is finding genes whose mutations are selected for during tumor development. This is accomplished by choosing genes that have more non-synonymous mutations than expected from an estimated background mutation frequency. While this background frequency is unknown, it can be estimated using both the observed synonymous mutation frequency and the non-synonymous to synonymous mutation ratio. The synonymous mutation frequency can be determined across all genes or in a gene-specific manner. This choice introduces an interesting trade-off. A gene-specific frequency adjusts for an underlying mutation bias, but is difficult to estimate given missing synonymous mutation counts. Using a genome-wide synonymous frequency is more robust, but is less suited for adjusting biases. Studying four evaluation criteria for identifying genes with high non-synonymous mutation burden (reflecting preferential selection of expressed genes, genes with mutations in conserved bases, genes with many protein interactions, and genes that show loss of heterozygosity), we find that the gene-specific synonymous frequency is superior in the gene expression and protein interaction tests. In conclusion, the use of the gene-specific synonymous mutation frequency is well suited for assessing a gene's non-synonymous mutation burden.
Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R
1988-01-01
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343
Yue, Jia-Xing; Kozmikova, Iryna; Ono, Hiroki; Nossa, Carlos W.; Kozmik, Zbynek; Putnam, Nicholas H.; Yu, Jr-Kai; Holland, Linda Z.
2016-01-01
Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120–160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates. PMID:27412606
Xu, Xuming; Zhang, Samuel Shao-Min; Barnstable, Colin J; Tombran-Tink, Joyce
2006-01-01
Background Pigment epithelium derived factor (PEDF), a member of the serpin family, regulates cell proliferation, promotes survival of neurons, and blocks growth of new blood vessels in mammals. Defining the molecular phylogeny of PEDF by bioinformatic analysis is one approach to understanding the link between its gene structure and its function in these biological processes. Results From a comprehensive search of available DNA databases we identified a single PEDF gene in all vertebrate species examined. These included four mammalian and six non-mammalian vertebrate species in which PEDF had not previously been described. A five gene cluster around PEDF was found in an approximate 100 kb region in mammals, birds, and amphibians. In ray-finned fish these genes are scattered over three chromosomes although only one PEDF gene was consistently found. The PEDF gene is absent in invertebrates including Drosophila melanogaster (D. melanogaster), Caenorhabditis elegans (C. elegans), and sea squirt (C. intestinalis). The PEDF gene is transcribed in all vertebrate phyla, suggesting it is biologically active throughout vertebrate evolution. The multiple actions of PEDF are likely conserved in evolution since it has the same gene structure across phyla, although the size of the gene ranges from 48.3 kb in X. tropicalis to 2.9 kb in fugu, with human PEDF at a size of 15.6 kb. A strong similarity in the proximal 200 bp of the PEDF promoter in mammals suggests the existence of a possible regulatory region across phyla. Using a non-synonymous/synonymous substitution rate ratio we show that mammalian and fish PEDFs have similar ratios of <0.13, reflecting a strong purifying selection of PEDF gene. A large number of repetitive transposable elements of the SINE and LINE class were found with random distribution in both the promoter and introns of mammalian PEDF. Conclusion The PEDF gene first appears in vertebrates and our studies suggest that the regulation and biological actions of this gene are preserved across vertebrates. This comprehensive analysis of the PEDF gene across phyla provides new information that will aid further characterization of common functional motifs of this serpin in biological processes. PMID:17020603
Decoding the role of regulatory element polymorphisms in complex disease.
Vockley, Christopher M; Barrera, Alejandro; Reddy, Timothy E
2017-04-01
Genetic variation in gene regulatory elements contributes to diverse human diseases, ranging from rare and severe developmental defects to common and complex diseases such as obesity and diabetes. Early examples of regulatory mechanisms of human diseases involve large chromosomal rearrangements that change the regulatory connections within the genome. Single nucleotide variants in regulatory elements can also contribute to disease, potentially via demonstrated associations with changes in transcription factor binding, enhancer activity, post-translational histone modifications, long-range enhancer-promoter interactions, or RNA polymerase recruitment. Establishing causality between non-coding genetic variants, gene regulation, and disease has recently become more feasible with advances in genome-editing and epigenome-editing technologies. As establishing causal regulatory mechanisms of diseases becomes routine, functional annotation of target genes is likely to emerge as a major bottleneck for translation into patient benefits. In this review, we discuss the history and recent advances in understanding the regulatory mechanisms of human disease, and new challenges likely to be encountered once establishing those mechanisms becomes rote. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria
Lowe, Craig B.; Clarke, Julia A.; Baker, Allan J.; Haussler, David; Edwards, Scott V.
2015-01-01
The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. PMID:25415961
Synonyms for some species of Mexican anoles (Squamata: Dactyloidae).
De Oca, Adrián Nieto Montes; Poe, Steven; Scarpetta, Simon; Gray, Levi; Lieb, Carl S
2013-01-01
We studied type material and freshly collected topotypical specimens to assess the taxonomic status of five names associated with species of Mexican Anolis. We find A. schmidti to be a junior synonym of A. nebulosus, A. breedlovei to be a junior synonym of A. cuprinus, A. polyrhachis to be a junior synonym of A. rubiginosus, A. simmonsi to be a junior synonym of A. nebuloides, and A. adleri to be a junior synonym of A. liogaster.
Genome-wide colonization of gene regulatory elements by G4 DNA motifs
Du, Zhuo; Zhao, Yiqiang; Li, Ning
2009-01-01
G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure. PMID:19759215
Jin, Erqing; Wong, Lynn; Jiao, Yun; Engel, Jake; Holdridge, Benjamin; Xu, Peng
2017-12-01
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans -activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans -activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.
Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT
Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong
2006-01-01
Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417
2013-01-01
Background Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons. Findings We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene. Conclusions Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons. PMID:23915680
Leveraging Paraphrase Labels to Extract Synonyms from Twitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Maria A.; Bell, Eric B.; Xia, Fei
2015-05-18
We present an approach for automatically learning synonyms from a paraphrase corpus of tweets. This work shows improvement on the task of paraphrase detection when we substitute our extracted synonyms into the training set. The synonyms are learned by using chunks from a shallow parse to create candidate synonyms and their context windows, and the synonyms are incorporated into a paraphrase detection system that uses machine translation metrics as features for a classifier. We demonstrate a 2.29% improvement in F1 when we train and test on the paraphrase training set, providing better coverage than previous systems, which shows the potentialmore » power of synonyms that are representative of a specific topic.« less
ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.
Ottesen, Eric W
2017-01-01
Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 ( SMN1 ) gene. SMN2 , a nearly identical copy of SMN1 , cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza ™ (synonyms: Nusinersen, IONIS-SMN RX , ISIS-SMN RX ), an antisense drug based on ISS-N1 target. Spinraza ™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza ™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza ™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.
Computational methods in sequence and structure prediction
NASA Astrophysics Data System (ADS)
Lang, Caiyi
This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed a software package which is capable of designing novel protein structures at the atomic resolution. This software package allows us to perform protein structure design with a flexible backbone. The backbone flexibility includes loop region relaxation as well as a secondary structure collective mode relaxation scheme. (Abstract shortened by UMI.)
Feather development genes and associated regulatory innovation predate the origin of Dinosauria.
Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott V
2015-01-01
The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.
2003-06-01
OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less
Lambert, L.L.; Wardlaw, B.R.; Henderson, C.M.
2007-01-01
Multielement definitions are presented here for Mesogondolella and Jinogondolella based on species that bracket the basal Guadalupian (Middle Permian Series) GSSP. Distinctive apparatus characters that appear with the first Jinogondolella include several details of P2 element dimorphism and process bifurcation in S3 elements. The sequential expression of these multielement characters is traced through M. idahoensis, M. lamberti, and J. nankingensis. The resulting multielement definition of Jinogondolella serves to distinguish it from all other closely related genera. Mesogondolella lamberti is recognized as a distinct species, and J. serrata is formally designated a junior synonym of J. nankingensis. ?? 2007 Nanjing Institute of Geology and Palaeontology, CAS.
Synonymous ABCA3 Variants Do Not Increase Risk for Neonatal Respiratory Distress Syndrome
Wambach, Jennifer A.; Wegner, Daniel J.; Heins, Hillary B.; Druley, Todd E.; Mitra, Robi D.; Hamvas, Aaron; Cole, F. Sessions
2014-01-01
Objective To determine whether synonymous variants in the adenosine triphosphate-binding cassette A3 transporter (ABCA3) gene increase the risk for neonatal respiratory distress syndrome (RDS) in term and late preterm infants of European and African descent. Study design Using next-generation pooled sequencing of race-stratified DNA samples from infants of European and African descent at $34 weeks gestation with and without RDS (n = 503), we scanned all exons of ABCA3, validated each synonymous variant with an independent genotyping platform, and evaluated race-stratified disease risk associated with common synonymous variants and collapsed frequencies of rare synonymous variants. Results The synonymous ABCA3 variant frequency spectrum differs between infants of European descent and those of African descent. Using in silico prediction programs and statistical strategies, we found no potentially disruptive synonymous ABCA3 variants or evidence of selection pressure. Individual common synonymous variants and collapsed frequencies of rare synonymous variants did not increase disease risk in term and late-preterm infants of European or African descent. Conclusion In contrast to rare, nonsynonymous ABCA3 mutations, synonymous ABCA3 variants do not increase the risk for neonatal RDS among term and late-preterm infants of European or African descent. PMID:24657120
Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong
2015-01-01
The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants.
2015-01-01
Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Conclusions Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants. PMID:26110593
Exploring the read-write genome: mobile DNA and mammalian adaptation.
Shapiro, James A
2017-02-01
The read-write genome idea predicts that mobile DNA elements will act in evolution to generate adaptive changes in organismal DNA. This prediction was examined in the context of mammalian adaptations involving regulatory non-coding RNAs, viviparous reproduction, early embryonic and stem cell development, the nervous system, and innate immunity. The evidence shows that mobile elements have played specific and sometimes major roles in mammalian adaptive evolution by generating regulatory sites in the DNA and providing interaction motifs in non-coding RNA. Endogenous retroviruses and retrotransposons have been the predominant mobile elements in mammalian adaptive evolution, with the notable exception of bats, where DNA transposons are the major agents of RW genome inscriptions. A few examples of independent but convergent exaptation of mobile DNA elements for similar regulatory rewiring functions are noted.
Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.
2012-01-01
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590
The identification of cis-regulatory elements: A review from a machine learning perspective.
Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W
2015-12-01
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Semantic Relationships between Contextual Synonyms
ERIC Educational Resources Information Center
Zeng, Xian-mo
2007-01-01
Contextual synonym is a linguistic phenomenon often applied but rarely discussed. This paper is to discuss the semantic relationships between contextual synonyms and the requirements under which words can be used as contextual synonyms between each other. The three basic relationships are embedment, intersection and non-coherence. The requirements…
Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian
2010-01-01
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649
Transterm: a database to aid the analysis of regulatory sequences in mRNAs
Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.
2009-01-01
Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623
Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John
2017-09-08
Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.
Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.
2007-01-01
DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
The Importance of Species Name Synonyms in Literature Searches.
Guala, Gerald F
2016-01-01
The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.
The importance of species name synonyms in literature searches
Guala, Gerald
2016-01-01
The synonyms of biological species names are shown to be an important component in comprehensive searches of electronic scientific literature databases but they are not well leveraged within the major literature databases examined. For accepted or valid species names in the Integrated Taxonomic Information System (ITIS) which have synonyms in the system, and which are found in citations within PLoS, PMC, PubMed or Scopus, both the percentage of species for which citations will not be found if synonyms are not used, and the percentage increase in number of citations found by including synonyms are very often substantial. However, there is no correlation between the number of synonyms per species and the magnitude of the effect. Further, the number of citations found does not generally increase proportionally to the number of synonyms available. Users looking for literature on specific species across all of the resources investigated here are often missing large numbers of citations if they are not manually augmenting their searches with synonyms. Of course, missing citations can have serious consequences by effectively hiding critical information. Literature searches should include synonym relationships and a new web service in ITIS, with examples of how to apply it to this issue, was developed as a result of this study, and is here announced, to aide in this.
Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules
Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789
Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.
Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.
Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.
Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H
2017-03-01
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.
Regulatory principles governing Salmonella and Yersinia virulence
Erhardt, Marc; Dersch, Petra
2015-01-01
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883
Giresi, Paul G.; Lieb, Jason D.
2009-01-01
The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047
Huber, M C; Bosch, F X; Sippel, A E; Bonifer, C
1994-01-01
The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion. Images PMID:7937145
McBride, David J.; Buckle, Adam; van Heyningen, Veronica; Kleinjan, Dirk A.
2011-01-01
The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6Sey/Sey mice. PMID:22220192
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.
Mikkelsen, Michael D; Thomashow, Michael F
2009-10-01
The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.
Pristine nonmare rocks and the nature of the lunar crust
NASA Technical Reports Server (NTRS)
Warren, P. H.; Wasson, J. T.
1977-01-01
It is shown that the interdisciplinary study of the nonmare lunar rocks based on trace element, major element, and isotopic data plus petrographic evidence can succeed in amassing a large suite of demonstrably pristine rocks, and that the relative numbers of these rocks are not in accord with statistics amassed on soil fragments and glasses. The term 'pristine' is taken to mean rocks with primary compositions (albeit not necessarily textures) produced by lunar endogenous igneous processes. Melt rocks and crystalline matrix breccias produced by impact processes are excluded. A petrographic synonym for pristine would be 'unremelted, monomict'. It is found that anorthositic norites and noritic anorthosites were rare as primary nonmare rocks. Mechanical mixing appears to have been the dominant petrogenetic process on the highlands.
Parallel evolution of chordate cis-regulatory code for development.
Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg
2013-11-01
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.
Rationalizing context-dependent performance of dynamic RNA regulatory devices.
Kent, Ross; Halliwell, Samantha; Young, Kate; Swainston, Neil; Dixon, Neil
2018-06-21
The ability of RNA to sense, regulate and store information is an attractive attribute for a variety of functional applications including the development of regulatory control devices for synthetic biology. RNA folding and function is known to be highly context sensitive, which limits the modularity and reuse of RNA regulatory devices to control different heterologous sequences and genes. We explored the cause and effect of sequence context sensitivity for translational ON riboswitches located in the 5' UTR, by constructing and screening a library of N-terminal synonymous codon variants. By altering the N-terminal codon usage we were able to obtain RNA devices with a broad range of functional performance properties (ON, OFF, fold-change). Linear regression and calculated metrics were used to rationalize the major determining features leading to optimal riboswitch performance, and to identify multiple interactions between the explanatory metrics. Finally, partial least squared (PLS) analysis was employed in order to understand the metrics and their respective effect on performance. This PLS model was shown to provide good explanation of our library. This study provides a novel multi-variant analysis framework by which to rationalize the codon context performance of allosteric RNA-devices. The framework will also serve as a platform for future riboswitch context engineering endeavors.
The 3’-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells
Kučerová-Levisohn, Martina; Knirr, Stefan; Mejia, Rosa I.; Ortiz, Benjamin D.
2015-01-01
Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive. PMID:26177549
Song, Jiangning; Wang, Minglei; Burrage, Kevin
2006-07-21
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
Cis-regulatory RNA elements that regulate specialized ribosome activity.
Xue, Shifeng; Barna, Maria
2015-01-01
Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.
Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M
2015-04-01
We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.
Identification of germline transcriptional regulatory elements in Aedes aegypti.
Akbari, Omar S; Papathanos, Philippos A; Sandler, Jeremy E; Kennedy, Katie; Hay, Bruce A
2014-02-04
The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.
Identification of germline transcriptional regulatory elements in Aedes aegypti
NASA Astrophysics Data System (ADS)
Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.
2014-02-01
The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.
Strong Purifying Selection at Synonymous Sites in D. melanogaster
Lawrie, David S.; Messer, Philipp W.; Hershberg, Ruth; Petrov, Dmitri A.
2013-01-01
Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated. PMID:23737754
Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals
2011-01-01
Background Matrix extracellular phosphoglycoprotein (MEPE) belongs to a family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs) that play a key role in skeleton development, particularly in mineralization, phosphate regulation and osteogenesis. MEPE associated disorders cause various physiological effects, such as loss of bone mass, tumors and disruption of renal function (hypophosphatemia). The study of this developmental gene from an evolutionary perspective could provide valuable insights on the adaptive diversification of morphological phenotypes in vertebrates. Results Here we studied the adaptive evolution of the MEPE gene in 26 Eutherian mammals and three birds. The comparative genomic analyses revealed a high degree of evolutionary conservation of some coding and non-coding regions of the MEPE gene across mammals indicating a possible regulatory or functional role likely related with mineralization and/or phosphate regulation. However, the majority of the coding region had a fast evolutionary rate, particularly within the largest exon (1467 bp). Rodentia and Scandentia had distinct substitution rates with an increased accumulation of both synonymous and non-synonymous mutations compared with other mammalian lineages. Characteristics of the gene (e.g. biochemical, evolutionary rate, and intronic conservation) differed greatly among lineages of the eight mammalian orders. We identified 20 sites with significant positive selection signatures (codon and protein level) outside the main regulatory motifs (dentonin and ASARM) suggestive of an adaptive role. Conversely, we find three sites under selection in the signal peptide and one in the ASARM motif that were supported by at least one selection model. The MEPE protein tends to accumulate amino acids promoting disorder and potential phosphorylation targets. Conclusion MEPE shows a high number of selection signatures, revealing the crucial role of positive selection in the evolution of this SIBLING member. The selection signatures were found mainly outside the functional motifs, reinforcing the idea that other regions outside the dentonin and the ASARM might be crucial for the function of the protein and future studies should be undertaken to understand its importance. PMID:22103247
Karambataki, Maria; Malousi, Andigoni; Tzimagiorgis, Georgios; Haitoglou, Constantinos; Fragou, Aikaterini; Georgiou, Elisavet; Papadopoulou, Foteini; Krassas, Gerasimos E.; Kouidou, Sofia
2017-01-01
Coding synonymous single nucleotide polymorphisms (SNPs) have attracted little attention until recently. However, such SNPs located in epigenetic, CpG sites modifying exonic splicing enhancers (ESEs) can be informative with regards to the recently verified association of intragenic methylation and splicing. The present study describes the association of type 2 diabetes (T2D) with the exonic, synonymous, epigenetic SNPs, rs3749166 in calpain 10 (CAPN10) glucose transporter (GLUT4) translocator and rs5404 in solute carrier family 2, member 2 (SLC2A2), also termed GLUT2, which, according to prior bioinformatic analysis, strongly modify the splicing potential of glucose transport-associated genes. Previous association studies reveal that only rs5404 exhibits a strong negative T2D association, while data on the CAPN10 polymorphism are contradictory. In the present study DNA from blood samples of 99 Greek non-diabetic control subjects and 71 T2D patients was analyzed. In addition, relevant publicly available cases (40) resulting from examination of 110 Personal Genome Project data files were analyzed. The frequency of the rs3749166 A allele, was similar in the patients and non-diabetic control subjects. However, AG heterozygotes were more frequent among patients (73.24% for Greek patients and 54.55% for corresponding non-diabetic control subjects; P=0.0262; total cases, 52.99 and 75.00%, respectively; P=0.0039). The rs5404 T allele was only observed in CT heterozygotes (Greek non-diabetic control subjects, 39.39% and Greek patients, 22.54%; P=0.0205; total cases, 34.69 and 21.28%, respectively; P=0.0258). Notably, only one genotype, heterozygous AG/CC, was T2D-associated (Greek non-diabetic control subjects, 29.29% and Greek patients, 56.33%; P=0.004; total cases, 32.84 and 56.58%, respectively; P=0.0008). Furthermore, AG/CC was strongly associated with very high (≥8.5%) glycosylated plasma hemoglobin levels among patients (P=0.0002 for all cases). These results reveal the complex heterozygotic SNP association with T2D, and indicate possible synergies of these epigenetic, splicing-regulatory, synonymous SNPs, which modify the splicing potential of two alternative glucose transport-associated genes. PMID:28357066
Dos Reis, Mario
2015-04-01
First principles of population genetics are used to obtain formulae relating the non-synonymous to synonymous substitution rate ratio to the selection coefficients acting at codon sites in protein-coding genes. Two theoretical cases are discussed and two examples from real data (a chloroplast gene and a virus polymerase) are given. The formulae give much insight into the dynamics of non-synonymous substitutions and may inform the development of methods to detect adaptive evolution. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Küpper, Clemens; Burke, Terry; Lank, David B.
2015-01-01
Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species. PMID:25534935
Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.
Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad
2018-02-01
The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.
Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang
2013-10-15
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.
Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya
2015-01-01
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg
2009-01-01
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110
A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.
Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang
2018-04-15
The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular performance, providing a new useful strategy in genetic engineering of C. acetobutylicum Since CcpA is widespread in Gram-positive bacteria, including pathogens, this dual- cre -based CcpA autoregulation would be valuable for increasing our understanding of CcpA-based global regulation in bacteria. Copyright © 2018 American Society for Microbiology.
41 CFR 102-2.140 - What elements of plain language appear in the FMR?
Code of Federal Regulations, 2011 CFR
2011-01-01
... language appear in the FMR? 102-2.140 Section 102-2.140 Public Contracts and Property Management Federal... MANAGEMENT REGULATION SYSTEM Plain Language Regulatory Style § 102-2.140 What elements of plain language appear in the FMR? The FMR is written in a “plain language” regulatory style. This style is easy to read...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.
1987-11-01
To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less
Chen, Siyu; Li, Ke; Cao, Wenqing; Wang, Jia; Zhao, Tong; Huan, Qing; Yang, Yu-Fei; Wu, Shaohuan; Qian, Wenfeng
2017-01-01
Abstract Codon usage bias (CUB) refers to the observation that synonymous codons are not used equally frequently in a genome. CUB is stronger in more highly expressed genes, a phenomenon commonly explained by stronger natural selection on translational accuracy and/or efficiency among these genes. Nevertheless, this phenomenon could also occur if CUB regulates gene expression at the mRNA level, a hypothesis that has not been tested until recently. Here, we attempt to quantify the impact of synonymous mutations on mRNA level in yeast using 3,556 synonymous variants of a heterologous gene encoding green fluorescent protein (GFP) and 523 synonymous variants of an endogenous gene TDH3. We found that mRNA level was positively correlated with CUB among these synonymous variants, demonstrating a direct role of CUB in regulating transcript concentration, likely via regulating mRNA degradation rate, as our additional experiments suggested. More importantly, we quantified the effects of individual synonymous mutations on mRNA level and found them dependent on 1) CUB and 2) mRNA secondary structure, both in proximal sequence contexts. Our study reveals the pleiotropic effects of synonymous codon usage and provides an additional explanation for the well-known correlation between CUB and gene expression level. PMID:28961875
Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav
2013-07-18
Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.
Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio
2008-10-27
Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.
Inheritance-mode specific pathogenicity prioritization (ISPP) for human protein coding genes.
Hsu, Jacob Shujui; Kwan, Johnny S H; Pan, Zhicheng; Garcia-Barcelo, Maria-Mercè; Sham, Pak Chung; Li, Miaoxin
2016-10-15
Exome sequencing studies have facilitated the detection of causal genetic variants in yet-unsolved Mendelian diseases. However, the identification of disease causal genes among a list of candidates in an exome sequencing study is still not fully settled, and it is often difficult to prioritize candidate genes for follow-up studies. The inheritance mode provides crucial information for understanding Mendelian diseases, but none of the existing gene prioritization tools fully utilize this information. We examined the characteristics of Mendelian disease genes under different inheritance modes. The results suggest that Mendelian disease genes with autosomal dominant (AD) inheritance mode are more haploinsufficiency and de novo mutation sensitive, whereas those autosomal recessive (AR) genes have significantly more non-synonymous variants and regulatory transcript isoforms. In addition, the X-linked (XL) Mendelian disease genes have fewer non-synonymous and synonymous variants. As a result, we derived a new scoring system for prioritizing candidate genes for Mendelian diseases according to the inheritance mode. Our scoring system assigned to each annotated protein-coding gene (N = 18 859) three pathogenic scores according to the inheritance mode (AD, AR and XL). This inheritance mode-specific framework achieved higher accuracy (area under curve = 0.84) in XL mode. The inheritance-mode specific pathogenicity prioritization (ISPP) outperformed other well-known methods including Haploinsufficiency, Recessive, Network centrality, Genic Intolerance, Gene Damage Index and Gene Constraint scores. This systematic study suggests that genes manifesting disease inheritance modes tend to have unique characteristics. ISPP is included in KGGSeq v1.0 (http://grass.cgs.hku.hk/limx/kggseq/), and source code is available from (https://github.com/jacobhsu35/ISPP.git). mxli@hku.hkSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia
2013-01-01
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as ‘Olfactores conserved non-coding elements’. PMID:23393190
Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis.
Kuwabara, Tomoko; Hsieh, Jenny; Muotri, Alysson; Yeo, Gene; Warashina, Masaki; Lie, Dieter Chichung; Moore, Lynne; Nakashima, Kinichi; Asashima, Makoto; Gage, Fred H
2009-09-01
In adult hippocampus, new neurons are continuously generated from neural stem cells (NSCs), but the molecular mechanisms regulating adult neurogenesis remain elusive. We found that Wnt signaling, together with the removal of Sox2, triggered the expression of NeuroD1 in mice. This transcriptional regulatory mechanism was dependent on a DNA element containing overlapping Sox2 and T-cell factor/lymphoid enhancer factor (TCF/LEF)-binding sites (Sox/LEF) in the promoter. Notably, Sox/LEF sites were also found in long interspersed nuclear element 1 (LINE-1) elements, consistent with their critical roles in the transition of NSCs to proliferating neuronal progenitors. Our results describe a previously unknown Wnt-mediated regulatory mechanism that simultaneously coordinates activation of NeuroD1 and LINE-1, which is important for adult neurogenesis and survival of neuronal progenitors. Moreover, the discovery that LINE-1 retro-elements embedded in the mammalian genome can function as bi-directional promoters suggests that Sox/LEF regulatory sites may represent a general mechanism, at least in part, for relaying environmental signals to other nearby loci to promote adult hippocampal neurogenesis.
The Integrated Library System (ILS): User Manual.
1981-07-01
high-frequency words which in themselves carry little meaning, e.g., the words "and,", "for," or "Mr." and are therefore not useful as searching...children boysbratsgirls,kids,tots boys brats,males girls females The synonyms displayed for children are: boys.bzats,qrls,kids,tots. The synonyms...displayed for boys are: brats.childrenboys. The synonyms displayed for girls are: children,females. The synonyms displayed for kids are: children. The
Piecewise synonyms for enhanced UMLS source terminology integration.
Huang, Kuo-Chuan; Geller, James; Halper, Michael; Cimino, James J
2007-10-11
The UMLS contains more than 100 source vocabularies and is growing via the integration of others. When integrating a new source, the source terms already in the UMLS must first be found. The easiest approach to this is simple string matching. However, string matching usually does not find all concepts that should be found. A new methodology, based on the notion of piecewise synonyms, for enhancing the process of concept discovery in the UMLS is presented. This methodology is supported by first creating a general synonym dictionary based on the UMLS. Each multi-word source term is decomposed into its component words, allowing for the generation of separate synonyms for each word from the general synonym dictionary. The recombination of these synonyms into new terms creates an expanded pool of matching candidates for terms from the source. The methodology is demonstrated with respect to an existing UMLS source. It shows a 34% improvement over simple string matching.
Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene.
Dale, Rodney M; Topczewski, Jacek
2011-09-15
Zebrafish (Danio rerio) is an excellent model organism for the study of vertebrate development including skeletogenesis. Studies of mammalian cartilage formation were greatly advanced through the use of a cartilage specific regulatory element of the Collagen type II alpha 1 (Col2a1) gene. In an effort to isolate such an element in zebrafish, we compared the expression of two col2a1 homologues and found that expression of col2a1b, a previously uncharacterized zebrafish homologue, only partially overlaps with col2a1a. We focused our analysis on col2a1a, as it is expressed in both the stacked chondrocytes and the perichondrium. By comparing the genomic sequence surrounding the predicted transcriptional start site of col2a1a among several species of teleosts we identified a small highly conserved sequence (R2) located 1.7 kb upstream of the presumptive transcriptional initiation site. Interestingly, neither the sequence nor location of this element is conserved between teleost and mammalian Col2a1. We generated transient and stable transgenic lines with just the R2 element or the entire 1.7 kb fragment 5' of the transcriptional initiation site. The identified regulatory elements enable the tracking of cellular development in various tissues by driving robust reporter expression in craniofacial cartilage, ear, notochord, floor plate, hypochord and fins in a pattern similar to the expression of endogenous col2a1a. Using a reporter gene driven by the R2 regulatory element, we analyzed the morphogenesis of the notochord sheath cells as they withdraw from the stack of initially uniform cells and encase the inflating vacuolated notochord cells. Finally, we show that like endogenous col2a1a, craniofacial expression of these reporter constructs depends on Sox9a transcription factor activity. At the same time, notochord expression is maintained after Sox9a knockdown, suggesting that other factors can activate expression through the identified regulatory element in this tissue. Copyright © 2011 Elsevier Inc. All rights reserved.
Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene
Dale, Rodney M.; Topczewski, Jacek
2011-01-01
Zebrafish (Danio rerio) is an excellent model organism for the study of vertebrate development including skeletogenesis. Studies of mammalian cartilage formation were greatly advanced through the use of a cartilage specific regulatory element of the Collagen type II alpha 1 (Col2a1) gene. In an effort to isolate such an element in zebrafish, we compared the expression of two col2a1 homologues and found that expression of col2a1b, a previously uncharacterized zebrafish homologue, only partially overlaps with col2a1a. We focused our analysis on col2a1a, as it is expressed in both the stacked chondrocytes and the perichondrium. By comparing the genomic sequence surrounding the predicted transcriptional start site of col2a1a among several species of teleosts we identified a small highly conserved sequence (R2) located 1.7 kb upstream of the presumptive transcriptional initiation site. Interestingly, neither the sequence nor location of this element is conserved between teleost and mammalian Col2a1. We generated transient and stable transgenic lines with just the R2 element or the entire 1.7 kb fragment 5’ of the transcriptional initiation site. The identified regulatory elements enable the tracking of cellular development in various tissues by driving robust reporter expression in craniofacial cartilage, ear, notochord, floor plate, hypochord and fins in a pattern similar to the expression of endogenous col2a1a. Using a reporter gene driven by the R2 regulatory element, we analyzed the morphogenesis of the notochord sheath cells as they withdraw from the stack of initially uniform cells and encase the inflating vacuolated notochord cells. Finally, we show that like endogenous col2a1a, craniofacial expression of these reporter constructs depends on Sox9a transcription factor activity. At the same time, notochord expression is maintained after Sox9a knockdown, suggesting that other factors can activate expression through the identified regulatory element in this tissue. PMID:21723274
Zhang, Monica; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Furey, Terrence S.; Crawford, Gregory E.; Yan, Hai; He, Yiping
2014-01-01
Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes. PMID:25198066
Modular arrangement of regulatory RNA elements.
Roßmanith, Johanna; Narberhaus, Franz
2017-03-04
Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.
Investigating the transcriptional control of cardiovascular development
Kathiriya, Irfan S.; Nora, Elphege P.; Bruneau, Benoit G.
2015-01-01
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors (TFs) choreograph gene expression at each stage of differentiation by interacting with co-factors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac TFs, cis-regulatory elements and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program. PMID:25677518
Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity
Thakurela, Sudhir; Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Vijay K.
2015-01-01
Gene regulation in mammals involves a complex interplay between promoters and distal regulatory elements that function in concert to drive precise spatiotemporal gene expression programs. However, the dynamics of the distal gene regulatory landscape and its function in the transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here, we performed a combinatorial analysis of genome-wide data sets for chromatin accessibility (FAIRE-seq) and the enhancer mark H3K27ac, revealing the highly dynamic nature of distal gene regulation during neurogenesis, which gets progressively restricted to distinct genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further find that the distal accessible and active regions serve as target sites for distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. Mature neurons respond to a sustained activity of NMDA receptors by epigenetic reprogramming at a large number of distal regulatory regions as well as dramatic reorganization of super-enhancers. Such massive remodeling of the distal regulatory landscape in turn results in a transcriptome that confers a transient loss of neuronal identity and gain of cellular plasticity. Furthermore, NMDA receptor activity also induces many novel prosurvival genes that function in neuroprotective pathways. Taken together, these findings reveal the dynamics of the distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity. PMID:26170447
Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny
Gaudry, Michael J.; Campbell, Kevin L.
2017-01-01
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade. PMID:28979209
Intrinsic limits to gene regulation by global crosstalk
Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper
2016-01-01
Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144
A checklist of Chinese crickets (Orthoptera: Gryllidea).
He, Zhu-Qing
2018-01-07
A checklist of Chinese crickets, including Taiwan, is offered. Presently 331 species or subspecies have been reported including true crickets, scale crickets, ant crickets and mole crickets belonging to 6 families, 16 subfamilies and 83 genera. Modicogryllus (Modicogryllus) maculatus (Shiraki, 1930) is moved to Comidoblemmus as C. maculatus (Shiraki, 1930) comb. nov. Velarifictorus (Velarifictorus) koshunensis (Shiraki, 1911) is moved to Turanogryllus as T. koshunensis (Shiraki, 1911) comb. nov. Qingryllus Chen Zheng, 1995 syn. is the junior synonym of Goniogryllus Chopard, 1936. Loxoblemmus angulatus Bey-Bienko, 1956 syn. is the junior synonym of Loxoblemmus appendicularis Shiraki, 1930. Cophogryllus kuhlgatzi Karny, 1908 syn. is the junior synonym of Teleogryllus (Brachyteleogryllus) occipitalis occipitalis (Serville, 1838). Velarifictorus (Velarifictorus) aspersus borealis Gorochov, 1985 syn. is the junior synonym of Velarifictorus (Velarifictorus) aspersus aspersus (Walker, 1869). Modicogryllus (Modicogryllus) latefasciatus (Chopard, 1933) syn. is the junior synonym of Velarifictorus (Velarifictorus) micado (Saussure, 1877). Velarifictorus (Velarifictorus) ornatus caudatus (Shiraki, 1930) syn. is the junior synonym of Velarifictorus (Velarifictorus) ornatus ornatus (Shiraki, 1911). Dianemobius nigrofasciatus (Matsumura, 1904) syn. is the junior synonym of Dianemobius fascipes (Walker, 1869). Polionemobius mikado (Shiraki, 1911) syn. is the junior synonym of Polionemobius taprobanensis (Walker, 1869). Vietacheta picea Gorochov, 1992, Oecanthus euryelytra Ichikawa, 2001, Oecanthus similator Ichikawa, 2001, Xabea levissima Gorochov, 1992, Pteronemobius (Pteronemobius) yezoensis (Shiraki, 1911), Metioche (Metioche) japonica (Ichikawa, 2001), Natula matsuurai Sugimoto, 2001 are the first records from China.
Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David
2001-01-01
Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681
Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin
2017-08-01
Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.
In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants
2014-01-01
Background High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na+ from the parenchyma cells to reduce Na+ concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. Results Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. Conclusion Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study. PMID:25279141
Florman, H M; First, N L
1988-08-01
The effects of accessory sex gland secretions on the zona pellucida-induced acrosome reaction of bovine spermatozoa were investigated. Soluble extracts of zonae pellucidae initiated exocytosis in ejaculated spermatozoa. This process had an ED50 of 20 ng/microliter zona pellucida protein and saturated at 50 ng/microliter (Florman and First, 1988. Dev. Biol. 128, 453-463). In epididymal sperm this dose-response relationship was shifted toward greater agonist concentrations by at least a factor of 10(3). Reconstitution of high potency agonist response was achieved in vitro by incubation of epididymal sperm with bovine seminal plasma. Reconstitution was dependent on the seminal plasma protein concentration. The ED50 of this process was 62 micrograms protein/10(8) sperm and saturation was observed with 124 micrograms protein/10(8) sperm. Agonist responses in reconstituted epididymal sperm and in ejaculated sperm were indistinguishable with regard to dependence on the zona pellucida protein concentration and the kinetics of induced acrosome reactions. Kinetic studies suggest that reconstitution is due to adsorption of regulatory factors from seminal plasma. In addition to the positive regulatory elements responsible for reconstituting activity, seminal plasma also contains negative regulatory elements which inhibit agonist response. These negative factors are inactivated during sperm capacitation, permitting the expression of positive regulators. Acting together, these regulatory elements could coordinate high affinity agonist response with the availability of eggs in vivo.
Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S
2005-07-15
A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.
Benner, Christopher; Hutt, Kasey R.; Stunnenberg, Rieka; Garcia-Bassets, Ivan
2013-01-01
Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription. PMID:24244184
The impact of transposable elements on mammalian development
Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.
2018-01-01
Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome
Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.
2014-01-01
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.
Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P
2014-07-22
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.
Chappell, James; Freemont, Paul
2013-01-01
The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.
Kumar, V; Wong, D T; Pasion, S G; Biswas, D K
1987-12-08
The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.
Manimaran, P; Raghurami Reddy, M; Bhaskar Rao, T; Mangrauthia, Satendra K; Sundaram, R M; Balachandran, S M
2015-12-01
Pollen-specific expression. Promoters comprise of various cis-regulatory elements which control development and physiology of plants by regulating gene expression. To understand the promoter specificity and also identification of functional cis-acting elements, progressive 5' deletion analysis of the promoter fragments is widely used. We have evaluated the activity of regulatory elements of 5' promoter deletion sequences of anther-specific gene OSIPP3, viz. OSIPP3-∆1 (1504 bp), OSIPP3-∆2 (968 bp), OSIPP3-∆3 (388 bp) and OSIPP3-∆4 (286 bp) through the expression of transgene GUS in rice. In silico analysis of 1504-bp sequence harboring different copy number of cis-acting regulatory elements such as POLLENLELAT52, GTGANTG10, enhancer element of LAT52 and LAT56 indicated that they were essential for high level of expression in pollen. Histochemical GUS analysis of the transgenic plants revealed that 1504- and 968-bp fragments directed GUS expression in roots and anthers, while the 388- and 286-bp fragments restricted the GUS expression to only pollen, of which 388 bp conferred strong GUS expression. Further, GUS staining analysis of different panicle development stages (P1-P6) confirmed that the GUS gene was preferentially expressed only at P6 stage (late pollen stage). The qRT-PCR analysis of GUS transcript revealed 23-fold higher expression of GUS transcript in OSIPP3-Δ1 followed by OSIPP3-Δ2 (eightfold) and OSIPP3-Δ3 (threefold) when compared to OSIPP3-Δ4. Based on our results, we proposed that among the two smaller fragments, the 388-bp upstream regulatory region could be considered as a promising candidate for pollen-specific expression of agronomically important transgenes in rice.
AFO Manure Management - Minnesota: Feedlot Registration
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?
Gazestani, Vahid H; Lu, Zhiquan; Salavati, Reza
2014-05-01
Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean
2010-11-01
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J
2012-10-01
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.
12 CFR 324.63 - Disclosures by FDIC-supervised institutions described in § 324.61.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., tier 2 capital, tier 1 and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios; (2) Total risk... risk-weighted assets; (3) Regulatory capital ratios during any transition periods, including a...
12 CFR 217.63 - Disclosures by Board-regulated institutions described in § 217.61.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios; (2) Total risk-weighted assets...; (3) Regulatory capital ratios during any transition periods, including a description of all the...
A cis-regulatory logic simulator.
Zeigler, Robert D; Gertz, Jason; Cohen, Barak A
2007-07-27
A major goal of computational studies of gene regulation is to accurately predict the expression of genes based on the cis-regulatory content of their promoters. The development of computational methods to decode the interactions among cis-regulatory elements has been slow, in part, because it is difficult to know, without extensive experimental validation, whether a particular method identifies the correct cis-regulatory interactions that underlie a given set of expression data. There is an urgent need for test expression data in which the interactions among cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets would facilitate the development and comparison of computational methods that predict gene expression patterns from promoter sequence. We developed a gene expression simulator which generates expression data using user-defined interactions between cis-regulatory sites. The simulator can incorporate additive, cooperative, competitive, and synergistic interactions between regulatory elements. Constraints on the spacing, distance, and orientation of regulatory elements and their interactions may also be defined and Gaussian noise can be added to the expression values. The simulator allows for a data transformation that simulates the sigmoid shape of expression levels from real promoters. We found good agreement between sets of simulated promoters and predicted regulatory modules from real expression data. We present several data sets that may be useful for testing new methodologies for predicting gene expression from promoter sequence. We developed a flexible gene expression simulator that rapidly generates large numbers of simulated promoters and their corresponding transcriptional output based on specified interactions between cis-regulatory sites. When appropriate rule sets are used, the data generated by our simulator faithfully reproduces experimentally derived data sets. We anticipate that using simulated gene expression data sets will facilitate the direct comparison of computational strategies to predict gene expression from promoter sequence. The source code is available online and as additional material. The test sets are available as additional material.
Egawa, Jun; Watanabe, Yuichiro; Shibuya, Masako; Endo, Taro; Sugimoto, Atsunori; Igeta, Hirofumi; Nunokawa, Ayako; Inoue, Emiko; Someya, Toshiyuki
2015-03-01
The oxytocin receptor (OXTR) is implicated in the pathophysiology of autism spectrum disorder (ASD). A recent study found a rare non-synonymous OXTR gene variation, rs35062132 (R376G), associated with ASD in a Japanese population. In order to investigate the association between rare non-synonymous OXTR variations and ASD, we resequenced OXTR and performed association analysis with ASD in a Japanese population. We resequenced the OXTR coding region in 213 ASD patients. Rare non-synonymous OXTR variations detected by resequencing were genotyped in 213 patients and 667 controls. We detected three rare non-synonymous variations: rs35062132 (R376G/C), rs151257822 (G334D), and g.8809426G>T (R150S). However, there was no significant association between these rare non-synonymous variations and ASD. Our present study does not support the contribution of rare non-synonymous OXTR variations to ASD susceptibility in the Japanese population. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Pina, Jamie; Massoudi, Barbara L; Chester, Kelley; Koyanagi, Mark
2018-06-07
Researchers and analysts have not completely examined word frequency analysis as an approach to creating a public health quality improvement taxonomy. To develop a taxonomy of public health quality improvement concepts for an online exchange of quality improvement work. We analyzed documents, conducted an expert review, and employed a user-centered design along with a faceted search approach to make online entries searchable for users. To provide the most targeted facets to users, we used word frequency to analyze 334 published public health quality improvement documents to find the most common clusters of word meanings. We then reviewed the highest-weighted concepts and categorized their relationships to quality improvement details in our taxonomy. Next, we mapped meanings to items in our taxonomy and presented them in order of their weighted percentages in the data. Using these methods, we developed and sorted concepts in the faceted search presentation so that online exchange users could access relevant search criteria. We reviewed 50 of the top synonym clusters and identified 12 categories for our taxonomy data. The final categories were as follows: Summary; Planning and Execution Details; Health Impact; Training and Preparation; Information About the Community; Information About the Health Department; Results; Quality Improvement (QI) Staff; Information; Accreditation Details; Collaborations; and Contact Information of the Submitter. Feedback about the elements in the taxonomy and presentation of elements in our search environment from users has been positive. When relevant data are available, the word frequency analysis method may be useful in other taxonomy development efforts for public health.
AFO Manure Management - Michigan: Manure Transfer Requirements
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B
2015-10-12
The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.
Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.
Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege
2012-01-01
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.
Pocock, Ginger M.; Zimdars, Laraine L.; Yuan, Ming; Eliceiri, Kevin W.; Ahlquist, Paul; Sherer, Nathan M.
2017-01-01
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include “burst” RNA nuclear export dynamics regulated by HIV-1’s Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element–specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. PMID:27903772
Deep conservation of cis-regulatory elements in metazoans
Maeso, Ignacio; Irimia, Manuel; Tena, Juan J.; Casares, Fernando; Gómez-Skarmeta, José Luis
2013-01-01
Despite the vast morphological variation observed across phyla, animals share multiple basic developmental processes orchestrated by a common ancestral gene toolkit. These genes interact with each other building complex gene regulatory networks (GRNs), which are encoded in the genome by cis-regulatory elements (CREs) that serve as computational units of the network. Although GRN subcircuits involved in ancient developmental processes are expected to be at least partially conserved, identification of CREs that are conserved across phyla has remained elusive. Here, we review recent studies that revealed such deeply conserved CREs do exist, discuss the difficulties associated with their identification and describe new approaches that will facilitate this search. PMID:24218633
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... Grant of Exclusive License: Modulation of Poliovirus Replicative Fitness by Deoptimization of Synonymous... Replicative Fitness by Deoptimization of Synonymous Codons''; PCT Application PCT/US05/036241, filed 10/7/ 2005, entitled ``Modulation of Poliovirus Replicative Fitness by Deoptimization of Synonymous Codons...
2009-01-01
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996
Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas
2009-10-12
Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Oti, Martin; Dutilh, Bas E.; Alonso, M. Eva; de la Calle-Mustienes, Elisa; Smeenk, Leonie; Rinne, Tuula; Parsaulian, Lilian; Bolat, Emine; Jurgelenaite, Rasa; Huynen, Martijn A.; Hoischen, Alexander; Veltman, Joris A.; Brunner, Han G.; Roscioli, Tony; Oates, Emily; Wilson, Meredith; Manzanares, Miguel; Gómez-Skarmeta, José Luis; Stunnenberg, Hendrik G.; Lohrum, Marion; van Bokhoven, Hans; Zhou, Huiqing
2010-01-01
Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes. PMID:20808887
AFO Manure Management - Nevada: CAFO Drainage Collection Requirements
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
AFO Manure Management - Virginia: Nutrient Management Inspector Qualifications
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
AFO Manure Management - California: Implementing TMDL Wasteload Allocations
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
Proposal to conserve the name Discula (Gnomoniaceae, Diaporthales) with a conserved type
USDA-ARS?s Scientific Manuscript database
The genus Discula was described by Saccardo (1884) based on the type D. platani as lectotypified by Höhnel (1915). Sogonov & al. (2007) determined that D. platani is a synonym of D. nervisequa, now considered a synonym of Apiognomonia errabunda. Recognizing that Discula and Apiognomonia are synonyms...
On the Nature of Synonyms: And This Little Piggie....
ERIC Educational Resources Information Center
Barnett, George A.
An experiment was conducted to investigate the nature of synonyms by using multidimensional scaling. The selected concept was "pig" and three of its synonyms--"hog,""boar," and "swine." These terms vary in their frequency of use in English, which makes it possible to explore a behaviorally based theory of…
The impact of transposable elements on mammalian development.
Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R
2016-11-15
Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.
An Autonomous BMP2 Regulatory Element in Mesenchymal Cells
Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.
2014-01-01
BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088
12 CFR 3.63 - Disclosures by national banks or Federal savings associations described in § 3.61.
Code of Federal Regulations, 2014 CFR
2014-01-01
... tier 1 capital, tier 2 capital, tier 1 and total capital ratios, including the regulatory capital elements and all the regulatory adjustments and deductions needed to calculate the numerator of such ratios... to calculate total risk-weighted assets; (3) Regulatory capital ratios during any transition periods...
The regulation of inflammation by interferons and their STATs.
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT.
Imai, S; Fujino, T; Nishibayashi, S; Manabe, T; Takano, T
1994-01-01
Dramatic changes occur in expression of the type I collagenase gene during the process of immortalization in simian virus 40 large T antigen-transformed human fibroblasts (S. Imai and T. Takano, Biochem. Biophys. Res. Commun. 189:148-153, 1992). From transient transfection assays, it was determined that these changes involved the functions of two immortalization-susceptible cis-acting elements, ISE1 and ISE2, located in a 100-bp region about 1.7 kb upstream. The profiles of binding of an activator, Proserpine, to the enhancer ISE1 were similar in the extracts of young, senescent preimmortalized and immortalized cells. ISE2 contained both negative and positive regulatory elements located adjacent to each other. The positive regulatory element consisted of a tandem array of putative Ets family- and AP-1-binding sites. An activator, Pluto, interacted with this positive regulatory element and had an AP-1-related component as a complex. The binding activity of Pluto was predominantly detected only in the extract from senescent preimmortalized cells. In contrast, a repressor, Orpheus, which bound to the ATG-rich negative regulatory element of ISE2, was prominently detected in extracts from both young preimmortalized and immortalized cells and appeared to suppress transcription in an orientation-dependent manner. Thus, the interplay of Pluto and Orpheus was suggested to be crucial for regulation of the collagenase gene accompanying in vitro aging and immortalization. Proserpine seemed to interact with Pluto to mediate strong expression of the collagenase gene in cellular senescence. On the basis of these results, we propose a model for regulation of the collagenase gene during in vitro aging and immortalization. Images PMID:7935433
Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034
Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei
2015-01-01
LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444
Glinsky, Gennadi V
2018-03-01
Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.
AFO Manure Management - Oregon: Plan Review and Public Notice of Substantial Changes
Compendium of State Approaches for Manure Management, Part A -- Example of program features for manure management that have a regulatory basis, such as permit provisions and other regulatory program elements.
Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job
2016-01-01
Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519
Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou
2011-11-01
Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.
ERIC Educational Resources Information Center
Schwartzburg, John A.
This vocabulary and synonym list for Hermann Hesse's "Siddhartha" (presently on the German Advanced Placement Program required reading list) is keyed to the Dunham and Wensinger edition published by the Macmillan Company. Selected German vocabulary found on each page of the text is briefly translated into English or clarified through the…
[Bacteriophage λ: electrostatic properties of the genome and its elements].
Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A
2015-01-01
Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.
Computational Approaches to Identify Promoters and cis-Regulatory Elements in Plant Genomes1
Rombauts, Stephane; Florquin, Kobe; Lescot, Magali; Marchal, Kathleen; Rouzé, Pierre; Van de Peer, Yves
2003-01-01
The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called “search by signal” methods) and the delineation of promoters by considering both sequence content and structural features (“search by content” methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5′-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of “putative” CpG and CpNpG islands in plants. PMID:12857799
Genome-Wide Discovery of Drug-Dependent Human Liver Regulatory Elements
Morrissey, Kari M.; Luizon, Marcelo R.; Hoffmann, Thomas J.; Sun, Xuefeng; Jones, Stacy L.; Force Aldred, Shelley; Ramamoorthy, Anuradha; Desta, Zeruesenay; Liu, Yunlong; Skaar, Todd C.; Trinklein, Nathan D.; Giacomini, Kathleen M.; Ahituv, Nadav
2014-01-01
Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements. PMID:25275310
Yakubu, Abdulmojeed; Salako, Adebowale E; De Donato, Marcos; Peters, Sunday O; Takeet, Michael I; Wheto, Mathew; Okpeku, Moses; Imumorin, Ikhide G
2017-02-01
Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P < 0.01) of non-synonymous substitutions than synonymous (dN/dS) in this locus is a reflection of adaptive evolution and positive selection. The phylogenetic trees revealed largely species-wise clustering in DRB gene. BsaHI, AluI, HaeIII, and SacII genotype frequencies were in Hardy-Weinberg equilibrium (P > 0.05), except AluI in RS goats and HaeIII in WAD goats (P < 0.05). The expected heterozygosity (H), which is a measure of gene diversity in the goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P < 0.05) was mainly on pulse rate and heat stress index, while there were varying interaction effects on heat tolerance. Variation at the DRB locus may prove to be important in possible selection and breeding for genetic resistance to heat stress in the tropics.
An ant colony optimization based algorithm for identifying gene regulatory elements.
Liu, Wei; Chen, Hanwu; Chen, Ling
2013-08-01
It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Screening of MITF and SOX10 Regulatory Regions in Waardenburg Syndrome Type 2
Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege
2012-01-01
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy. PMID:22848661
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...
Retroviruses facilitate the rapid evolution of the mammalian placenta
Chuong, Edward B.
2015-01-01
The mammalian placenta exhibits elevated expression of endogenous retroviruses (ERVs), but the evolutionary significance of this feature remains unclear. I propose that ERV-mediated regulatory evolution was, and continues to be, an important mechanism underlying the evolution of placenta development. Many recent studies have focused on the co-option of ERV-derived genes for specific functional adaptations in the placenta. However, the co-option of ERV-derived regulatory elements has the potential to co-opt entire gene regulatory networks, which, I argue, would facilitate relatively rapid developmental evolution of the placenta. I suggest a model in which an ancient retroviral infection led to the establishment of the ancestral placental developmental gene network through the co-option of ERV-derived regulatory elements. Consequently, placenta development would require elevated tolerance to ERV activity, which in turn would expose a continuous stream of novel ERV mutations that may have catalyzed the developmental diversification of the mammalian placenta. PMID:23873343
Naval-Sanchez, Marina; Nguyen, Quan; McWilliam, Sean; Porto-Neto, Laercio R; Tellam, Ross; Vuocolo, Tony; Reverter, Antonio; Perez-Enciso, Miguel; Brauning, Rudiger; Clarke, Shannon; McCulloch, Alan; Zamani, Wahid; Naderi, Saeid; Rezaei, Hamid Reza; Pompanon, Francois; Taberlet, Pierre; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Jhangiani, Shalini N; Cockett, Noelle; Daetwyler, Hans; Kijas, James
2018-02-28
Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chris Amemiya
2003-04-01
The goals of this project were to isolate, characterize, and sequence the Dlx3/Dlx7 bigene cluster from twelve different species of mammals. The Dlx3 and Dlx7 genes are known to encode homeobox transcription factors involved in patterning of structures in the vertebrate jaw as well as vertebrate limbs. Genomic sequences from the respective taxa will subsequently be compared in order to identify conserved non-coding sequences that are potential cis-regulatory elements. Based on the comparisons they will fashion transgenic mouse experiments to functionally test the strength of the potential cis-regulatory elements. A goal of the project is to attempt to identify thosemore » elements that may function in coordinately regulating both Dlx3 and Dlx7 functions.« less
Wang, Zhaoyun; Xia, Yeqiang; Lin, Siyuan; Wang, Yanru; Guo, Baohuan; Song, Xiaoning; Ding, Shaochen; Zheng, Liyu; Feng, Ruiying; Chen, Shulin; Bao, Yalin; Sheng, Cong; Zhang, Xin; Wu, Jianguo; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei
2018-05-18
Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more ROS accumulation and callose deposition, and up-regulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A WordNet-Based Near-Synonyms and Similar-Looking Word Learning System
ERIC Educational Resources Information Center
Sun, Koun-Tem; Huang, Yueh-Min; Liu, Ming-Chi
2011-01-01
Near-Synonyms and Similar-Looking (NSSL) words can create confusion for English as Foreign Language Learners as a result of a type of lexical error that often occurs when they confuse similar-looking words that are near synonyms to have the same meaning. Particularly, this may occur if the similar-looking words have the same translated meaning.…
Erixon, Per; Oxelman, Bengt
2008-01-01
Background Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. Methodology/Principle Findings We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family) and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family). Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying) selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. Conclusions/Significance We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the controversial issue of whether negative or positive selection is to be expected after gene duplications by providing evidence for the latter alternative. The observed increase in synonymous substitution rates in some of the lineages indicates that the detection of positive selection may be obscured under such circumstances. Future studies are required to explore the functional significance of the large inserted repeated amino acid motifs, as well as the possibility that synonymous substitution rates may be affected by positive selection. PMID:18167545
Bolbase: a comprehensive genomics database for Brassica oleracea.
Yu, Jingyin; Zhao, Meixia; Wang, Xiaowu; Tong, Chaobo; Huang, Shunmou; Tehrim, Sadia; Liu, Yumei; Hua, Wei; Liu, Shengyi
2013-09-30
Brassica oleracea is a morphologically diverse species in the family Brassicaceae and contains a group of nutrition-rich vegetable crops, including common heading cabbage, cauliflower, broccoli, kohlrabi, kale, Brussels sprouts. This diversity along with its phylogenetic membership in a group of three diploid and three tetraploid species, and the recent availability of genome sequences within Brassica provide an unprecedented opportunity to study intra- and inter-species divergence and evolution in this species and its close relatives. We have developed a comprehensive database, Bolbase, which provides access to the B. oleracea genome data and comparative genomics information. The whole genome of B. oleracea is available, including nine fully assembled chromosomes and 1,848 scaffolds, with 45,758 predicted genes, 13,382 transposable elements, and 3,581 non-coding RNAs. Comparative genomics information is available, including syntenic regions among B. oleracea, Brassica rapa and Arabidopsis thaliana, synonymous (Ks) and non-synonymous (Ka) substitution rates between orthologous gene pairs, gene families or clusters, and differences in quantity, category, and distribution of transposable elements on chromosomes. Bolbase provides useful search and data mining tools, including a keyword search, a local BLAST server, and a customized GBrowse tool, which can be used to extract annotations of genome components, identify similar sequences and visualize syntenic regions among species. Users can download all genomic data and explore comparative genomics in a highly visual setting. Bolbase is the first resource platform for the B. oleracea genome and for genomic comparisons with its relatives, and thus it will help the research community to better study the function and evolution of Brassica genomes as well as enhance molecular breeding research. This database will be updated regularly with new features, improvements to genome annotation, and new genomic sequences as they become available. Bolbase is freely available at http://ocri-genomics.org/bolbase.
76 FR 38213 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...
THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES
2012-01-01
Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271
Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework.
Maeso, Ignacio; Tena, Juan J
2016-09-01
Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function
Bali, Vedrana; Bebok, Zsuzsanna
2015-01-01
Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479
Some taxonomic and nomenclatural changes in American Mantodea (Insecta, Dictyoptera)--Part I.
Agudelo, Antonio A; Rivera, Julio
2015-03-20
Multiple nomenclatural problems persist in mantodean taxonomy. This constitutes an important challenge for praying mantis systematics, its forthcoming development and future consolidation. In this first contribution, we attempt solving a number of issues involving mostly Neotropical praying mantis species described by Brazilian entomologists Paulo S. Terra, Cândido F. de Mello-Leitão, Salvador de Toledo Piza Junior and Lauro J. Jantsch. We provide evidence to justify the following nomenclatural changes. In Acanthopidae, Acontiothespis travassosi Jantsch, 1986 is a new synonym of Raptrix perspicua (F. 1787). Changes in Thespidae are: Emboicy Terra, 1982 is a new synonym of Chloromiopteryx Giglio-Tos, 1915, E. mirim Terra, 1982 is transferred to Chloromiopteryx as C. mirim (Terra, 1982) (new combination); Musoniola plurilobata Mello-Leitão, 1937 is transferred to Chloromiopteryx as C. plurilobata (Mello-Leitão, 1937) (new combination); Metathespis modesta Piza, 1968 is removed from synonymy with Chloromiopteryx thalassina (Burmeister, 1838) and considered valid as C. modesta (Piza, 1968) (new combination and status revalidated); Metathespis precaria Piza, 1968 is removed from synonymy with Chloromiopteryx thalassina (Burmeister, 1838) and considered a new synonym of Miobantia rustica (Fabricius, 1781); Eumiopteryx magna Jantsch, 1991 is transferred to Anamiopteryx as A. magna (Jantsch, 1991) (new combination). For Mantidae/Amelinae, Tithrone corseuli Jantsch, 1986 and T. clauseni Jantsch, 1995 are new synonyms of Litaneutria minor (Scudder, 1872); in Mantidae/Photininae Coptopteryx gigliotosi Piza, 1960 (non Werner, 1925), its replacement name Coptopteryx ermannoi Jantsch & Corseuil, 1988 and Paraphotina precaria Piza, 1966 (the latter currently placed within Coptopteryx) are all new synonyms of Coptopteryx argentina (Burmeister, 1838), whereas Brachypteromantis bonariensis Piza 1960 (currently placed among Coptopteryx) is a new synonym of Coptopteryx gayi (Blanchard, 1851); Tithrone major Piza, 1962 is transferred to Orthoderella as O. major (Piza, 1962) (new combination); Orthoderella brasiliensis Roy & Stiewe, 2011 is a new synonym of Orthoderella major (Piza, 1962); Tithrone catharinensis Piza, 1962 is a new synonym of Photina vitrea (Burmeister, 1838); Margaromantis Piza, 1982, Rehniella Lombardo, 1999, Colombiella Koçak & Kemal, 2008 and Lombardoa Özdikmen, 2008 are all new synonyms of Photiomantis Piza, 1968 (status revalidated); Metriomantis planicephala Rehn 1916 is transferred to Photiomantis as P. planicephala (Rehn, 1916) (new combination) and Photiomantis silvai Piza, 1968 is considered a new synonym of Photiomantis planicephala (Rehn, 1916); Margaromantis nigrolineata Menezes & Bravo, 2015 is transferred to Photiomantis as P. nigrolineata (Menezes & Bravo, 2015) (new combination). In Mantidae/Vatinae, Uromantis amazonica Jantsch, 1985 and Uromantis paraensis Jantsch, 1985 (currently placed among Stagmomantis), are new synonyms of Chopardiella latipennis (Chopard, 1911), while Pseudovates hyalostigma Mello-Leitão, 1937 and Vates obscura Toledo Piza, 1983 are new synonyms of V. biplagiata Sjöstedt, 1930. Lectotypes are designated for Chloromiopteryx thalassina (Burmeister, 1838) and Orthoderella major (Piza, 1962). Finally, we provide supplementary information about the works of S. de T. Piza and L. J. Jantsch, and a necessary critical assessment of their taxonomic contributions to the Mantodea.
2010-01-01
Background Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. Results By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Conclusions Our assignment of functional roles to the identified cis-elements clearly demonstrates the importance of MYB cis-elements in the transcriptional regulation of two genes of the lignin-specific pathway and support the hypothesis that MYB elements serve as a common means for the coordinated regulation of genes in the entire lignin biosynthetic pathway. PMID:20584286
Cis-regulatory Elements and Human Evolution
Siepel, Adam
2014-01-01
Modification of gene regulation has long been considered an important force in human evolution, particularly through changes to cis-regulatory elements (CREs) that function in transcriptional regulation. For decades, however, the study of cis-regulatory evolution was severely limited by the available data. New data sets describing the locations of CREs and genetic variation within and between species have now made it possible to study CRE evolution much more directly on a genome-wide scale. Here, we review recent research on the evolution of CREs in humans based on large-scale genomic data sets. We consider inferences based on primate divergence, human polymorphism, and combinations of divergence and polymorphism. We then consider “new frontiers” in this field stemming from recent research on transcriptional regulation. PMID:25218861
Lactase non-persistence is directed by DNA variation-dependent epigenetic aging
Labrie, Viviane; Buske, Orion J; Oh, Edward; Jeremian, Richie; Ptak, Carolyn; Gasiūnas, Giedrius; Maleckas, Almantas; Petereit, Rūta; Žvirbliene, Aida; Adamonis, Kęstutis; Kriukienė, Edita; Koncevičius, Karolis; Gordevičius, Juozas; Nair, Akhil; Zhang, Aiping; Ebrahimi, Sasha; Oh, Gabriel; Šikšnys, Virginijus; Kupčinskas, Limas; Brudno, Michael; Petronis, Arturas
2016-01-01
Inability to digest lactose due to lactase non-persistence is a common trait in adult mammals, with the exception of certain human populations that exhibit lactase persistence. It is not clear how the lactase gene can be dramatically downregulated with age in most individuals, but remains active in some. We performed a comprehensive epigenetic study of the human and mouse intestine using chromosome-wide DNA modification profiling and targeted bisulfite sequencing. Epigenetically-controlled regulatory elements were found to account for the differences in lactase mRNA levels between individuals, intestinal cell types and species. The importance of these regulatory elements in modulating lactase mRNA levels was confirmed by CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, as lactase persistence- and non-persistence-DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors facilitate a gradual accumulation of epigenetic changes with age to affect phenotypic outcome. PMID:27159559
Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin
2015-03-24
Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.
Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg
2005-04-15
Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less
Functional autonomy of distant-acting human enhancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak
2009-02-19
Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elementsmore » tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates« less
The regulation of inflammation by interferons and their STATs
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT. PMID:24058799
Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C
1992-01-01
Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867
Wong, S W; Schaffer, P A
1991-05-01
Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.
Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.
2011-01-01
Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290
Oelze, I; Rittner, K; Sczakiel, G
1994-01-01
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357
Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job
2016-01-07
Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M
2017-02-01
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci.
Scemama, Jean-Luc; Hunter, Michael; McCallum, Jeff; Prince, Victoria; Stellwag, Edmund
2002-10-15
Hox gene expression is regulated by a complex array of cis-acting elements that control spatial and temporal gene expression in developing embryos. Here, we report the isolation of the striped bass Hoxb2a gene, comparison of its expression to the orthologous gene from zebrafish, and comparative genomic analysis of the upstream regulatory region to that of other vertebrates. Comparison of the Hoxb2a gene expression patterns from striped bass to zebrafish revealed similar expression patterns within rhombomeres 3, 4, and 5 of the hindbrain but a notable absence of expression in neural crest tissues of striped bass while neural crest expression is observed in zebrafish and common to other vertebrates. Comparative genomic analysis of the striped bass Hoxb2a-b3a intergenic region to those from zebrafish, pufferfish, human, and mouse demonstrated the presence of common Meis, Hox/Pbx, Krox-20, and Box 1 elements, which are necessary for rhombomere 3, 4, and 5 expression. Despite their common occurrence, the location and orientation of these transcription elements differed among the five species analyzed, such that Krox-20 and Box 1 elements are located 3' to the Meis, Hox/Pbx elements in striped bass, pufferfish, and human while they are located 5' of this r4 enhancer in zebrafish and mouse. Our results suggest that the plasticity exhibited in the organization of key regulatory elements responsible for rhombomere-specific Hoxb2a expression may reflect the effects of stabilizing selection in the evolution cis-acting elements. Copyright 2002 Wiley-Liss, Inc.
Automatically Expanding the Synonym Set of SNOMED CT using Wikipedia.
Schlegel, Daniel R; Crowner, Chris; Elkin, Peter L
2015-01-01
Clinical terminologies and ontologies are often used in natural language processing/understanding tasks as a method for semantically tagging text. One ontology commonly used for this task is SNOMED CT. Natural language is rich and varied: many different combinations of words may be used to express the same idea. It is therefore essential that ontologies and terminologies have a rich set of synonyms. One source of synonyms is Wikipedia. We examine methods for aligning concepts in SNOMED CT with articles in Wikipedia so that newly-found synonyms may be added to SNOMED CT. Our experiments show promising results and provide guidance to researchers who wish to use Wikipedia for similar tasks.
Redescriptions of Hypogastruridae and Onychiuridae (Collembola) described by David L. Wray.
Bernard, Ernest C
2015-02-12
Species of Hypogastruridae and Onychiuridae described by D. L. Wray were reexamined and redescribed where necessary from type material and other specimens. Mitchellania hermosa is redescribed and transferred to Ceratophysella. Hypogastrura ireneae is redescribed and H. gravesi is validated with additional material. Hypogastrura gami is synonymized with H. humi and H. utahensis is synonymized with H. promatro. A lectotype is designated for Schoettella (Knowltonella) idahoensis. Achorutes magnoliana is confirmed as a synonym of Schoettella glasgowi. Xenylla carolinensis is synonymized with Xenyllodes armatus Axelson (Odontellidae). Onychiurus mai is transferred to the genus Leeonychiurus and becomes L. mai, and O. magninus is transferred to Heteraphorura and becomes H. magnina. Additional details are given for Onychiurus wilchi.
Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca
2006-12-01
Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).
Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.
Jałoszyński, Paweł
2017-05-31
Status of subgenera established for Euconnus Thomson with three-segmented antennal club is clarified. Examination of the type species of Psomophus Casey, Spanioconnus Ganglbauer, Scydmaenites Croissandeau and Xestophus Casey led to the conclusion that differences in morphological structures between all these taxa are minor and represent character variability within one subgenus. Consequently, Spanioconnus is maintained as a junior synonym of Psomophus; Scydmaenites is synonymized with Psomophus; and Xestophus, already placed as a junior synonym of Psomophus by Franz and later resurrected by O'Keefe, is again synonymized with Psomophus. Based on small morphological differences (visible only in the antennal structure), it is suggested that in future Psomophus may be placed as a junior synonym of Euconnus s. str. An emended diagnosis of Psomophus is given, and lectotypes are designated for Euconnus callidus Casey, Euconnus kraatzi Reitter and Scydmaenus salinator LeConte.
Singh, Gajinder Pal; Sharma, Amit
2016-01-01
Resistance to frontline anti-malarial drugs, including artemisinin, has repeatedly arisen in South-East Asia, but the reasons for this are not understood. Here we test whether evolutionary constraints on Plasmodium falciparum strains from South-East Asia differ from African strains. We find a significantly higher ratio of non-synonymous to synonymous polymorphisms in P. falciparum from South-East Asia compared to Africa, suggesting differences in the selective constraints on P. falciparum genome in these geographical regions. Furthermore, South-East Asian strains showed a higher proportion of non-synonymous polymorphism at conserved positions, suggesting reduced negative selection. There was a lower rate of mixed infection by multiple genotypes in samples from South-East Asia compared to Africa. We propose that a lower mixed infection rate in South-East Asia reduces intra-host competition between the parasite clones, reducing the efficiency of natural selection. This might increase the probability of fixation of fitness-reducing mutations including drug resistant ones. PMID:27853513
[The ENCODE project and functional genomics studies].
Ding, Nan; Qu, Hongzhu; Fang, Xiangdong
2014-03-01
Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
Developmental gene regulatory network architecture across 500 million years of echinoderm evolution
NASA Technical Reports Server (NTRS)
Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.
2003-01-01
Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-02-24
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-01-01
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064
Are Synonymous Sites in Primates and Rodents Functionally Constrained?
Price, Nicholas; Graur, Dan
2016-01-01
It has been claimed that synonymous sites in mammals are under selective constraint. Furthermore, in many studies the selective constraint at such sites in primates was claimed to be more stringent than that in rodents. Given the larger effective population sizes in rodents than in primates, the theoretical expectation is that selection in rodents would be more effective than that in primates. To resolve this contradiction between expectations and observations, we used processed pseudogenes as a model for strict neutral evolution, and estimated selective constraint on synonymous sites using the rate of substitution at pseudosynonymous and pseudononsynonymous sites in pseudogenes as the neutral expectation. After controlling for the effects of GC content, our results were similar to those from previous studies, i.e., synonymous sites in primates exhibited evidence for higher selective constraint that those in rodents. Specifically, our results indicated that in primates up to 24% of synonymous sites could be under purifying selection, while in rodents synonymous sites evolved neutrally. To further control for shifts in GC content, we estimated selective constraint at fourfold degenerate sites using a maximum parsimony approach. This allowed us to estimate selective constraint using mutational patterns that cause a shift in GC content (GT ↔ TG, CT ↔ TC, GA ↔ AG, and CA ↔ AC) and ones that do not (AT ↔ TA and CG ↔ GC). Using this approach, we found that synonymous sites evolve neutrally in both primates and rodents. Apparent deviations from neutrality were caused by a higher rate of C → A and C → T mutations in pseudogenes. Such differences are most likely caused by the shift in GC content experienced by pseudogenes. We conclude that previous estimates according to which 20-40% of synonymous sites in primates were under selective constraint were most likely artifacts of the biased pattern of mutation.
DiRE: identifying distant regulatory elements of co-expressed genes
Gotea, Valer; Ovcharenko, Ivan
2008-01-01
Regulation of gene expression in eukaryotic genomes is established through a complex cooperative activity of proximal promoters and distant regulatory elements (REs) such as enhancers, repressors and silencers. We have developed a web server named DiRE, based on the Enhancer Identification (EI) method, for predicting distant regulatory elements in higher eukaryotic genomes, namely for determining their chromosomal location and functional characteristics. The server uses gene co-expression data, comparative genomics and profiles of transcription factor binding sites (TFBSs) to determine TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is its ability to detect REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs and it also scores the association of individual transcription factors (TFs) with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data. The DiRE web server is freely available at http://dire.dcode.org. PMID:18487623
Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.
Lo, W Y; Ting, L P
1994-01-01
Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237
Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas
2015-01-01
Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten
2016-12-01
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.
2016-01-01
SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798
77 FR 8072 - Semiannual Regulatory Flexibility Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... six months. ADDRESSES: Comments should be addressed to Jennifer J. Johnson, Secretary of the Board... Regulatory and Deregulatory Actions, which is coordinated by the Office of Management and Budget under... pledged; and certain other elements including a strategic analysis of the company's plans for maintaining...
Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H
2017-04-01
Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.
Woznica, Arielle; Haeussler, Maximilian; Starobinska, Ella; Jemmett, Jessica; Li, Younan; Mount, David; Davidson, Brad
2012-08-01
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification. Copyright © 2012 Elsevier Inc. All rights reserved.
Kimura-Yoshida, Chiharu; Yan, Kuo; Bormuth, Olga; Ding, Qiong; Nakanishi, Akiko; Sasaki, Takeshi; Hirakawa, Mika; Sumiyama, Kenta; Furuta, Yasuhide; Tarabykin, Victor; Matsuo, Isao; Okada, Norihiro
2016-01-01
Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution. PMID:27741242
Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd
2007-01-01
Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks. PMID:17672917
Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd
2007-08-01
In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.
Characterization of "cis"-regulatory elements ("c"RE) associated with mammary gland function
USDA-ARS?s Scientific Manuscript database
The Bos taurus genome assembly has propelled dairy science into a new era; still, most of the information encoded in the genome has not yet been decoded. The human Encyclopedia of DNA Elements (ENCODE) project has spearheaded the identification and annotation of functional genomic elements in the hu...
NASA Astrophysics Data System (ADS)
Omar, Aimi Farehah; Ismail, Ismanizan
2016-11-01
Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1
Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram
2016-01-01
Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and their relative substrate selectivities. PMID:27268960
Population genomics of the Arabidopsis thaliana flowering time gene network.
Flowers, Jonathan M; Hanzawa, Yoshie; Hall, Megan C; Moore, Richard C; Purugganan, Michael D
2009-11-01
The time to flowering is a key component of the life-history strategy of the model plant Arabidopsis thaliana that varies quantitatively among genotypes. A significant problem for evolutionary and ecological genetics is to understand how natural selection may operate on this ecologically significant trait. Here, we conduct a population genomic study of resequencing data from 52 genes in the flowering time network. McDonald-Kreitman tests of neutrality suggested a strong excess of amino acid polymorphism when pooling across loci. This excess of replacement polymorphism across the flowering time network and a skewed derived frequency spectrum toward rare alleles for both replacement and noncoding polymorphisms relative to synonymous changes is consistent with a large class of deleterious polymorphisms segregating in these genes. Assuming selective neutrality of synonymous changes, we estimate that approximately 30% of amino acid polymorphisms are deleterious. Evidence of adaptive substitution is less prominent in our analysis. The photoperiod regulatory gene, CO, and a gibberellic acid transcription factor, AtMYB33, show evidence of adaptive fixation of amino acid mutations. A test for extended haplotypes revealed no examples of flowering time alleles with haplotypes comparable in length to those associated with the null fri(Col) allele reported previously. This suggests that the FRI gene likely has a uniquely intense or recent history of selection among the flowering time genes considered here. Although there is some evidence for adaptive evolution in these life-history genes, it appears that slightly deleterious polymorphisms are a major component of natural molecular variation in the flowering time network of A. thaliana.
Aris-Brosou, Stéphane; Bielawski, Joseph P
2006-08-15
A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.
Evolution of Hsp70 Gene Expression: A Role for Changes in AT-Richness within Promoters
Ma, Ronghui; Zhang, Bo; Kang, Le
2011-01-01
In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways. PMID:21655251
De novo design of a synthetic riboswitch that regulates transcription termination
Wachsmuth, Manja; Findeiß, Sven; Weissheimer, Nadine; Stadler, Peter F.; Mörl, Mario
2013-01-01
Riboswitches are regulatory RNA elements typically located in the 5′-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic terminator or a ribosomal binding site for transcriptional or translational regulation, respectively. Ligand binding leads to structural rearrangements of the riboswitch and to presentation or masking of these regulatory elements. Based on this modular organization, riboswitches are an ideal target for constructing synthetic regulatory systems for gene expression. Although riboswitches for translational control have been designed successfully, attempts to construct synthetic elements regulating transcription have failed so far. Here, we present an in silico pipeline for the rational design of synthetic riboswitches that regulate gene expression at the transcriptional level. Using the well-characterized theophylline aptamer as sensor, we designed the actuator part as RNA sequences that can fold into functional intrinsic terminator structures. In the biochemical characterization, several of the designed constructs show ligand-dependent control of gene expression in Escherichia coli, demonstrating that it is possible to engineer riboswitches not only for translational but also for transcriptional regulation. PMID:23275562
A novel E2 box-GATA element modulates Cdc6 transcription during human cells polyploidization
Vilaboa, Nuria; Bermejo, Rodrigo; Martinez, Pilar; Bornstein, Rafael; Calés, Carmela
2004-01-01
Cdc6 is a key regulator of the strict alternation of S and M phases during the mitotic cell cycle. In mammalian and plant cells that physiologically become polyploid, cdc6 is transcriptionally and post-translationally regulated. We have recently reported that Cdc6 levels are maintained in megakaryoblastic HEL cells, but severely downregulated by ectopic expression of transcriptional repressor Drosophila melanogaster escargot. Here, we show that cdc6 promoter activity is upregulated during megakaryocytic differentiation of HEL endoreplicating cells, and that Escargot interferes with such activation. Transactivation experiments showed that a 1.7 kb region located at 2800 upstream cdc6 transcription initiation site behaved as a potent enhancer in endoreplicating cells only. This activity was mainly dependent on a novel cis-regulatory element composed by an E2 box overlapping a GATA motif. Ectopic Escargot could bind this regulatory element in vitro and endogenous GATA-1 and E2A formed specific complexes in megakaryoblastic cells as well as in primary megakaryocytes. Chromatin Immunoprecipitation analysis revealed that both transcription factors were occupying the E2 box/GATA site in vivo. Altogether, these data suggest that cdc6 expression could be actively maintained during megakaryocytic differentiation through transcriptional mechanisms involving specific cis- and trans-regulatory elements. PMID:15590906
Weischenfeldt, Joachim; Dubash, Taronish; Drainas, Alexandros P.; Mardin, Balca R.; Chen, Yuanyuan; Stütz, Adrian M.; Waszak, Sebastian M.; Bosco, Graziella; Halvorsen, Ann Rita; Raeder, Benjamin; Efthymiopoulos, Theocharis; Erkek, Serap; Siegl, Christine; Brenner, Hermann; Brustugun, Odd Terje; Dieter, Sebastian M.; Northcott, Paul A.; Petersen, Iver; Pfister, Stefan M.; Schneider, Martin; Solberg, Steinar K.; Thunissen, Erik; Weichert, Wilko; Zichner, Thomas; Thomas, Roman; Peifer, Martin; Helland, Aslaug; Ball, Claudia R.; Jechlinger, Martin; Sotillo, Rocio; Glimm, Hanno; Korbel, Jan O.
2018-01-01
Extensive prior research has focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearranging cis-regulatory elements remains unclear. Here, we present a framework for inferring cancer-related gene overexpression resulting from cis-regulatory element reorganization (e.g., enhancer hijacking), by integrating SCNAs, gene expression data, and information on chromatin interaction domains. Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer associates with recurrent deletions in cis, and present evidence supporting a tumor-promoting role. We additionally pursued cancer type-specific analyses, uncovering IGF2 as a target for enhancer hijacking in colorectal cancer. IGF2-containing tandem duplications result in the de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, which mediates high-level gene activation. Our framework enables systematic inference of cis-regulatory element rearrangements mediating dysregulation in cancer. PMID:27869826
Gene transfer strategies in animal transgenesis.
Montoliu, Lluís
2002-01-01
Position effects in animal transgenesis have prevented the reproducible success and limited the initial expectations of this technique in many biotechnological projects. Historically, several strategies have been devised to overcome such position effects, including the progressive addition of regulatory elements belonging to the same or to a heterologous expression domain. An expression domain is thought to contain all regulatory elements that are needed to specifically control the expression of a given gene in time and space. The lack of profound knowledge on the chromatin structure of expression domains of biotechnological interest, such as mammary gland-specific genes, explains why most standard expression vectors have failed to drive high-level, position-independent, and copy-number-dependent expression of transgenes in a reproducible manner. In contrast, the application of artificial chromosome-type constructs to animal transgenesis usually ensures optimal expression levels. YACs, BACs, and PACs have become crucial tools in animal transgenesis, allowing the inclusion of distant key regulatory sequences, previously unknown, that are characteristic for each expression domain. These elements contribute to insulating the artificial chromosome-type constructs from chromosomal position effects and are fundamental in order to guarantee the correct expression of transgenes.
Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.
2016-01-01
The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646
Pang, Chao; Hendriksen, Dennis; Dijkstra, Martijn; van der Velde, K Joeri; Kuiper, Joel; Hillege, Hans L; Swertz, Morris A
2015-01-01
Pooling data across biobanks is necessary to increase statistical power, reveal more subtle associations, and synergize the value of data sources. However, searching for desired data elements among the thousands of available elements and harmonizing differences in terminology, data collection, and structure, is arduous and time consuming. To speed up biobank data pooling we developed BiobankConnect, a system to semi-automatically match desired data elements to available elements by: (1) annotating the desired elements with ontology terms using BioPortal; (2) automatically expanding the query for these elements with synonyms and subclass information using OntoCAT; (3) automatically searching available elements for these expanded terms using Lucene lexical matching; and (4) shortlisting relevant matches sorted by matching score. We evaluated BiobankConnect using human curated matches from EU-BioSHaRE, searching for 32 desired data elements in 7461 available elements from six biobanks. We found 0.75 precision at rank 1 and 0.74 recall at rank 10 compared to a manually curated set of relevant matches. In addition, best matches chosen by BioSHaRE experts ranked first in 63.0% and in the top 10 in 98.4% of cases, indicating that our system has the potential to significantly reduce manual matching work. BiobankConnect provides an easy user interface to significantly speed up the biobank harmonization process. It may also prove useful for other forms of biomedical data integration. All the software can be downloaded as a MOLGENIS open source app from http://www.github.com/molgenis, with a demo available at http://www.biobankconnect.org. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Pang, Chao; Hendriksen, Dennis; Dijkstra, Martijn; van der Velde, K Joeri; Kuiper, Joel; Hillege, Hans L; Swertz, Morris A
2015-01-01
Objective Pooling data across biobanks is necessary to increase statistical power, reveal more subtle associations, and synergize the value of data sources. However, searching for desired data elements among the thousands of available elements and harmonizing differences in terminology, data collection, and structure, is arduous and time consuming. Materials and methods To speed up biobank data pooling we developed BiobankConnect, a system to semi-automatically match desired data elements to available elements by: (1) annotating the desired elements with ontology terms using BioPortal; (2) automatically expanding the query for these elements with synonyms and subclass information using OntoCAT; (3) automatically searching available elements for these expanded terms using Lucene lexical matching; and (4) shortlisting relevant matches sorted by matching score. Results We evaluated BiobankConnect using human curated matches from EU-BioSHaRE, searching for 32 desired data elements in 7461 available elements from six biobanks. We found 0.75 precision at rank 1 and 0.74 recall at rank 10 compared to a manually curated set of relevant matches. In addition, best matches chosen by BioSHaRE experts ranked first in 63.0% and in the top 10 in 98.4% of cases, indicating that our system has the potential to significantly reduce manual matching work. Conclusions BiobankConnect provides an easy user interface to significantly speed up the biobank harmonization process. It may also prove useful for other forms of biomedical data integration. All the software can be downloaded as a MOLGENIS open source app from http://www.github.com/molgenis, with a demo available at http://www.biobankconnect.org. PMID:25361575
PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge
2017-01-04
With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles.
Himeda, Charis L; Chen, Xiaolan; Hauschka, Stephen D
2011-01-01
Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.
Negi, Pooja; Rai, Archana N; Suprasanna, Penna
2016-01-01
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.
Slattery, Matthew; Ma, Lijia; Spokony, Rebecca F; Arthur, Robert K; Kheradpour, Pouya; Kundaje, Anshul; Nègre, Nicolas; Crofts, Alex; Ptashkin, Ryan; Zieba, Jennifer; Ostapenko, Alexander; Suchy, Sarah; Victorsen, Alec; Jameel, Nader; Grundstad, A Jason; Gao, Wenxuan; Moran, Jennifer R; Rehm, E Jay; Grossman, Robert L; Kellis, Manolis; White, Kevin P
2014-07-01
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development. © 2014 Slattery et al.; Published by Cold Spring Harbor Laboratory Press.
Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.
2014-01-01
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314
Equity Access Plans: A Regulatory and Educational State Response Model.
ERIC Educational Resources Information Center
DeLisle, James
1984-01-01
Introduces the basic notion of equity access plans as property-based solutions to the cash flow needs of elderly homeowners and then proposes a normative response model that states can adopt to help manage the risk exposures. The recommended model incorporates regulatory, information dissemination, and educational elements. (BH)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... circumstances where dissemination may mislead or confuse investors and other market participants. In addition... data elements are updated.\\12\\ In disseminated data, market participants will cross-reference the RDID... are rounded or truncated. The dissemination protocol to provide an RDID that market participants will...
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.
Four new synonyms and a new combination in Parnassia (Celastraceae).
Shu, Yumin; Zhang, Zhixiang
2017-01-01
Parnassia yunnanensis had been previously described based on mixed specimens containing materials partially belonging to Parnassia cacuminum , which makes the application of Parnassia yunnanensis ambiguous. Therefore, we lectotypified Parnassia yunnanensis and meanwhile synonymized Parnassia lanceolata var. oblongipetala under it. Parnassia yunnanensis var. longistipitata was found more similar to Parnassia cacuminum rather than Parnassia yunnanensis , thus a new combination, Parnassia cacuminum var. longistipitata comb. nov. was proposed. Furthermore, other three names ( Parnassia vevusta , Parnassia degeensis and Parnassia kangdingensis ) were reduced to synonyms of Parnassia cacuminum too.
1998-09-01
sunk An. trinkae as its junior synonym. Recent regional keys for identifying anopheline species have followed Peyton (1993) and regarded An. trinkae...as a synonym of An. dunhami ( Calderon-Falero 1994). In recent publications we also accepted Peyton’s (1993) use of An. dunhumi as a senior synonym...1995)) and a 1-S distance matrix was generated using the similarity option in the RAPDPLOT program 832 JOURNAL OF MEDICAL ENTOMOLOGY Vol. 35, no. 5
Gene expression systems in corynebacteria.
Srivastava, Preeti; Deb, J K
2005-04-01
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Revision of the ant genus Melophorus (Hymenoptera, Formicidae)
Heterick, Brian E.; Castalanelli, Mark; Shattuck, Steve O.
2017-01-01
Abstract The fauna of the purely Australian formicine ant genus Melophorus (Hymenoptera: Formicidae) is revised. This project involved integrated morphological and molecular taxonomy using one mitochondrial gene (COI) and four nuclear genes (AA, H3, LR and Wg). Seven major clades were identified and are here designated as the M. aeneovirens, M. anderseni, M. biroi, M. fulvihirtus, M. ludius, M. majeri and M. potteri species-groups. Within these clades, smaller complexes of similar species were also identified and designated species-complexes. The M. ludius species-group was identified purely on molecular grounds, as the morphology of its members is indistinguishable from typical members of the M. biroi species-complex within the M. biroi species-group. Most species-complexes sampled were also found to be monophyletic. Sequencing generally supported monophyly in taxa sampled but some species of the M. fieldi complex and M. biroi were not monophyletic and the implications arising from this are discussed in this monograph. Based on morphology, ninety-three species are recognized, 73 described as new. A further new species (here called 'Species K' [TERC Collection]) is noted in the taxonomic list, but is not described in this work. One species is removed from Melophorus: M. scipio Forel is here placed provisionally in Prolasius. Six species and five subspecies pass into synonymy. Of the full species, M. constans Santschi, M. iridescens (Emery) and M. insularis Wheeler are synonymized under M. aeneovirens (Lowne), M. pillipes Santschi is synonymized under M. turneri Forel, M. marius Forel is synonymized under M. biroi Forel, and M. omniparens Forel is synonymized under M. wheeleri Forel. Of the subspecies, M. iridescens fraudatrix and M. iridescens froggatti Forel are synonymized under M. aeneovirens (Lowne), M. turneri aesopus Forel and M. turneri candidus Santschi are synonymized under M. turneri Forel and M. fieldi propinqua Viehmeyer is synonymized under M. biroi. Camponotus cowlei Froggatt is reinstated as a junior synonym of Melophorus bagoti Lubbock. In addition, the subspecies M. fieldi major Forel, M. ludius sulla Forel and M. turneri perthensis Forel are raised to species. A key to workers of the genus is supplied. A lectotype is designated for M. curtus Forel, M. sulla, and M. turneri. PMID:29358897
E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China
Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man
2017-01-01
Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... allocates market data fees among Subscribers based on the data elements consumed, including top-of-book,\\3... apply to any Subscriber that accesses any data elements included in the TotalView entitlement, including the TotalView, OpenView, or Level 2 data elements. Professional Subscribers that access Depth-of-Book...
41 CFR 102-2.140 - What elements of plain language appear in the FMR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... MANAGEMENT REGULATION SYSTEM Plain Language Regulatory Style § 102-2.140 What elements of plain language... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What elements of plain language appear in the FMR? 102-2.140 Section 102-2.140 Public Contracts and Property Management Federal...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi
Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less
Regulation of expression of transgenes in developing fish.
Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B
1993-05-01
The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.
Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.
2007-01-01
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144
NASA Astrophysics Data System (ADS)
Basyuni, M.; Wati, R.; Sulistiyono, N.; Sumardi; Oku, H.; Baba, S.; Sagami, H.
2018-03-01
Molecular cloning of Kandelia candel KcMS gene has previously been cloned and encoded a multifunctional triterpene synthase. In this study, the KcMS gene promoter was cloned through Genome walking, sequenced, and analyzed. A 1,358 bp genomic DNA fragment of KcMS promoter was obtained. PLACE and PlantCARE analysis of the KcMS promoter revealed that there was some regulatory elements in response to environmental signals and involved in the regulation of gene expression. Results showed that four kinds of elements are regulated by hormone binding, namely 2 MeJA-responsiveness elements (CGTCA-motif and TGACG-motif), the ABRE (TACGTG) involved in abscisic acid responsiveness, gibberellin-related GARE-motif (AAACAGA), and the TGA-element (AACGAC) as an auxin-responsive element. Several elements in the KcMS have been shown in other plants to be responsive to abiotic stress. These motifs were MBS (CAACTG), TC-rich repeats, and eight light responsive elements. The KcMS promoter was also involved in the activation of defense genes in plants such as HSE (AAAAAATTC) and four circadian control elements (CAANNNNATC). The presence of multipotential regulatory motifs suggested that KcMS may be involved in regulation of plant tolerance to several types of stresses.
Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.
Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun
2015-12-11
As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.
Di Giacomo, Daniela; Gaildrat, Pascaline; Abuli, Anna; Abdat, Julie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra
2013-11-01
Exonic variants can alter pre-mRNA splicing either by changing splice sites or by modifying splicing regulatory elements. Often these effects are difficult to predict and are only detected by performing RNA analyses. Here, we analyzed, in a minigene assay, 26 variants identified in the exon 7 of BRCA2, a cancer predisposition gene. Our results revealed eight new exon skipping mutations in this exon: one directly altering the 5' splice site and seven affecting potential regulatory elements. This brings the number of splicing regulatory mutations detected in BRCA2 exon 7 to a total of 11, a remarkably high number considering the total number of variants reported in this exon (n = 36), all tested in our minigene assay. We then exploited this large set of splicing data to test the predictive value of splicing regulator hexamers' scores recently established by Ke et al. (). Comparisons of hexamer-based predictions with our experimental data revealed high sensitivity in detecting variants that increased exon skipping, an important feature for prescreening variants before RNA analysis. In conclusion, hexamer scores represent a promising tool for predicting the biological consequences of exonic variants and may have important applications for the interpretation of variants detected by high-throughput sequencing. © 2013 WILEY PERIODICALS, INC.
Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors.
Kim, Hee Ryung; Duc, Nguyen Minh; Chung, Ka Young
2018-03-01
G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as β-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.
Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin
2009-01-01
Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618
Regulatory T cells in the control of host-microorganism interactions (*).
Belkaid, Yasmine; Tarbell, Kristin
2009-01-01
Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.
Brown, Kerry K.; Reiss, Jacob A.; Crow, Kate; Ferguson, Heather L.; Kelly, Chantal; Fritzsch, Bernd; Morton, Cynthia C.
2010-01-01
Precisely regulated temporal and spatial patterns of gene expression are essential for proper human development. Cis-acting regulatory elements, some located at large distances from their corresponding genes, play a critical role in transcriptional control of key developmental genes and disruption of these regulatory elements can lead to disease. We report a three generation family with five affected members, all of whom have hearing loss, craniofacial defects, and a paracentric inversion of the long arm of chromosome 7, inv(7)(q21.3q35). High resolution mapping of the inversion showed that the 7q21.3 breakpoint is located 65 and 80 kb centromeric of DLX6 and DLX5, respectively. Further analysis revealed a 5115 bp deletion at the 7q21.3 breakpoint. While the breakpoint does not disrupt either DLX5 or DLX6, the syndrome present in the family is similar to that observed in Dlx5 knockout mice and includes a subset of the features observed in individuals with DLX5 and DLX6 deletions, implicating dysregulation of DLX5 and DLX6 in the family’s phenotype. Bioinformatic analysis indicates that the 5115 bp deletion at the 7q21.3 breakpoint could contain regulatory elements necessary for DLX5 and DLX6 expression. Using a transgenic mouse reporter assay, we show that the deleted sequence can drive expression in the ear and developing bones of E12.5 embryos. Consequently, the observed familial syndrome is likely caused by dysregulation of DLX5 and/or DLX6 in specific tissues due to deletion of an enhancer and possibly separation from other regulatory elements by the chromosomal inversion. PMID:19707792
75 FR 62893 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...
Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?
Wynn, Emily L; Christensen, Alan C
2015-10-01
Angiosperm mitochondrial genes appear to have very low mutation rates, while non-gene regions expand, diverge, and rearrange quickly. One possible explanation for this disparity is that synonymous substitutions in plant mitochondrial genes are not truly neutral and selection keeps their occurrence low. If this were true, the explanation for the disparity in mutation rates in genes and non-genes needs to consider selection as well as mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus leaving a pseudogene in the mitochondria. This provides an opportunity to compare neutral substitution rates in pseudogenes with synonymous substitution rates in the orthologs. Genes and pseudogenes of rps14 have been aligned among different species and the mutation rates have been calculated. Neutral substitution rates in pseudogenes and synonymous substitution rates in genes are significantly different, providing evidence that synonymous substitutions in plant mitochondrial genes are not completely neutral. The non-neutrality is not sufficient to completely explain the exceptionally low mutation rates in land plant mitochondrial genomes, but selective forces appear to play a small role.
Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes.
Chen, L; Yang, D Y; Liu, T F; Nong, X; Huang, X; Xie, Y; Fu, Y; Zheng, W P; Zhang, R H; Wu, X H; Gu, X B; Wang, S X; Peng, X R; Yang, G Y
2013-02-27
We analyzed synonymous codon usage patterns of the mitochondrial genomes of 43 parasitic platyhelminth species. The relative synonymous codon usage, the effective number of codons (NC) and the frequency of G+C at the third synonymously variable coding position were calculated. Correspondence analysis was used to determine the major variation trends shaping the codon usage patterns. Among the mitochondrial genomes of 19 trematode species, the GC content of third codon positions varied from 0.151 to 0.592, with a mean of 0.295 ± 0.116. In cestodes, the mean GC content of third codon positions was 0.254 ± 0.044. A comparison of the nucleotide composition at 4-fold synonymous sites revealed that, on average, there was a greater abundance of codons ending on U (51.9%) or A (22.7%) than on C (6.3%) or G (19.14%). Twenty-two codons, including UUU, UUA and UUG, were frequently used. In the NC-plot, most of points were distributed well below or around the expected NC curve. In addition to compositional constraints, the degree of hydrophobicity and the aromatic amino acids also influenced codon usage in the mitochondrial genomes of these 43 parasitic platyhelminth species.
Analysis of on-line clinical laboratory manuals and practical recommendations.
Beckwith, Bruce; Schwartz, Robert; Pantanowitz, Liron
2004-04-01
On-line clinical laboratory manuals are a valuable resource for medical professionals. To our knowledge, no recommendations currently exist for their content or design. To analyze publicly accessible on-line clinical laboratory manuals and to propose guidelines for their content. We conducted an Internet search for clinical laboratory manuals written in English with individual test listings. Four individual test listings in each manual were evaluated for 16 data elements, including sample requirements, test methodology, units of measure, reference range, and critical values. Web sites were also evaluated for supplementary information and search functions. We identified 48 on-line laboratory manuals, including 24 academic or community hospital laboratories and 24 commercial or reference laboratories. All manuals had search engines and/or test indices. No single manual contained all 16 data elements evaluated. An average of 8.9 (56%) elements were present (range, 4-14). Basic sample requirements (specimen and volume needed) were the elements most commonly present (98% of manuals). The frequency of the remaining data elements varied from 10% to 90%. On-line clinical laboratory manuals originate from both hospital and commercial laboratories. While most manuals were user-friendly and contained adequate specimen-collection information, other important elements, such as reference ranges, were frequently absent. To ensure that clinical laboratory manuals are of maximal utility, we propose the following 13 data elements be included in individual test listings: test name, synonyms, test description, test methodology, sample requirements, volume requirements, collection guidelines, transport guidelines, units of measure, reference range, critical values, test availability, and date of latest revision.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate Effectiveness of a Proposed Rule Change... Proprietary Trader Program (S501) Continuing Education Regulatory Element Session on the BOX Market LLC (``BOX'') options facility. While changes to the fee schedule pursuant to this proposal will be effective upon...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 70-143; NRC-2010-0379] Nuclear Fuel Services, Inc.; Environmental Assessment and Finding of No Significant Impact for Proposed Exemption From a Requirement To Measure the Uranium Element and Isotopic Content of Special Nuclear Material AGENCY: Nuclear Regulatory Commission. ACTION: Environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Change To Amend Rule 640, Continuing Education for Registered Persons and Adopt a Corresponding Fee... Substance of the Proposed Rule Change The Exchange proposes to amend Rule 640, Continuing Education for... 640. Continuing Education for Registered Persons (a) Regulatory Element (1) Requirements--No member...
Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs
Gaeta, Xavier; Le, Luat; Lin, Ying; Xie, Yuan; Lowry, William E.
2017-01-01
The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition. Less-well defined are modes of transcriptional regulation of the pri-miRNAs for let-7. let-7 pri-miRNAs are expressed in polycistronic fashion, in long transcripts newly annotated based on chromatin-associated RNA-sequencing. Upon differentiation, we found that some let-7 pri-miRNAs are regulated at the transcriptional level, while others appear to be constitutively transcribed. Using the Epigenetic Roadmap database, we further annotated regulatory elements of each polycistron identified putative promoters and enhancers. Probing these regulatory elements for transcription factor binding sites identified factors that regulate transcription of let-7 in both promoter and enhancer regions, and identified novel regulatory mechanisms for this important class of miRNAs. PMID:28052101
A system-level model for the microbial regulatory genome.
Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S
2014-07-15
Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Na, Hong; Huisman, Willem; Ellestad, Kristofor K.; Phillips, Tom R.; Power, Christopher
2010-01-01
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection. PMID:20570310
NASA Astrophysics Data System (ADS)
Laumann, Daniel
2017-03-01
Magnetism and its various applications are essential for our daily life and for many technological developments. The term magnetism is almost always used as a synonym for ferromagnetism. However, the magnetic properties of the elements of the periodic table indicate that the vast majority of elements are not ferromagnetic, but rather, diamagnetic or paramagnetic. Typically, only ferromagnetism is discussed in classrooms, which can create a distorted picture. This article supplies the further development of an experiment demonstrating the dia- and paramagnetic properties with an electronic balance and a neodymium magnet. It focuses on an investigation of ordinary materials that occur in pupils' everyday environment. The experiment is applicable both for a quantitative measurement of the magnetic (volume) susceptibility χV and can serve as a phenomenological approach to dia- and paramagnetism. Moreover, it encourages a discussion about typical beliefs regarding the nature of science, comparing the behavior of common objects in weak and in strong magnetic fields.
Discovery of functional non-coding conserved regions in the α-synuclein gene locus
Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt
2014-01-01
Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays. We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351
Identification of trans-acting factors regulating SamDC expression in Oryza sativa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in; Division of Plant Biology, Bose Institute, Kolkata; Roychoudhury, Aryadeep
2014-03-07
Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In ourmore » present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.« less
Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques
2008-01-01
This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.
Transposable elements and G-quadruplexes.
Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej
2015-09-01
A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.
Li, S; Zhang, P; Zhang, M; Fu, C; Yu, L
2013-01-01
Although the regulation of taxol biosynthesis at the transcriptional level remains unclear, 10-deacetylbaccatin III-10 β-O-acetyl transferase (DBAT) is a critical enzyme in the biosynthesis of taxol. The 1740 bp fragment 5'-flanking sequence of the dbat gene was cloned from Taxus chinensis cells. Important regulatory elements needed for activity of the dbat promoter were located by deletion analyses in T. chinensis cells. A novel WRKY transcription factor, TcWRKY1, was isolated with the yeast one-hybrid system from a T. chinensis cell cDNA library using the important regulatory elements as bait. The gene expression of TcWRKY1 in T. chinensis suspension cells was specifically induced by methyl jasmonate (MeJA). Biochemical analysis indicated that TcWRKY1 protein specifically interacts with the two W-box (TGAC) cis-elements among the important regulatory elements. Overexpression of TcWRKY1 enhanced dbat expression in T. chinensis suspension cells, and RNA interference (RNAi) reduced the level of transcripts of dbat. These results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor. This research also provides a potential candidate gene for engineering increased taxol accumulation in Taxus cell cultures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.
2005-01-01
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085
Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E
1998-06-01
Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.
Hemp, Claudia; Massa, Bruno
2017-12-07
The genus Arantia is reviewed, the distribution and distinguishing characters given. The three species of Goetia are assigned as subgenus to Arantia. Arantia gestri Griffini is transferred to this new subgenus and synonymized with G. dimidiata Bolívar. Other species synonymized are: A. accrana Karsch with A. rectifolia Brunner von Wattenwyl; A. gabunensis Brunner von Wattenwyl with A. regina Karsch; A. mammisignum Karsch and A. tigrina Bolívar with A. excelsior Karsch; A. ugandana Rehn is synonymized with A. fasciata (Walker). 6 species from Tropical Africa are newly described: A. (Arantia) quinquemaculata n. sp., A. (Arantia) ivoriana n. sp., A. (Euarantia) tanzanica n. sp., A. (Euarantia) tibiaspinosa n. sp., A. (Euarantia) bispinosa n. sp. and A. (Euarantia) griffinii n. sp. A key to the subgenera and species of Arantia is provided. The tribe Arantiini is synonymized with Holochlorini.
Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A
2015-07-01
Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald
2015-08-15
Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. © 2015. Published by The Company of Biologists Ltd.
Schmidt, Ellen M; Zhang, Ji; Zhou, Wei; Chen, Jin; Mohlke, Karen L; Chen, Y Eugene; Willer, Cristen J
2015-08-15
The majority of variation identified by genome wide association studies falls in non-coding genomic regions and is hypothesized to impact regulatory elements that modulate gene expression. Here we present a statistically rigorous software tool GREGOR (Genomic Regulatory Elements and Gwas Overlap algoRithm) for evaluating enrichment of any set of genetic variants with any set of regulatory features. Using variants from five phenotypes, we describe a data-driven approach to determine the tissue and cell types most relevant to a trait of interest and to identify the subset of regulatory features likely impacted by these variants. Last, we experimentally evaluate six predicted functional variants at six lipid-associated loci and demonstrate significant evidence for allele-specific impact on expression levels. GREGOR systematically evaluates enrichment of genetic variation with the vast collection of regulatory data available to explore novel biological mechanisms of disease and guide us toward the functional variant at trait-associated loci. GREGOR, including source code, documentation, examples, and executables, is available at http://genome.sph.umich.edu/wiki/GREGOR. cristen@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kaplan, Oktay I; Berber, Burak; Hekim, Nezih; Doluca, Osman
2016-11-02
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun
2018-02-01
The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the associations of CHLI protein function and the chlorophyll biosynthesis pathway but also has implications for cotton breeding.
Ma, AyeAye; Margolis, Mathew S.
2013-01-01
Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893
Primate-Specific Evolution of an LDLR Enhancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian-fei; Prabhakar, Shyam; Wang, Qianben
2006-06-28
Sequence changes in regulatory regions have often beeninvoked to explain phenotypic divergence among species, but molecularexamples of this have been difficult to obtain. In this study, weidentified an anthropoid primate specific sequence element thatcontributed to the regulatory evolution of the LDL receptor. Using acombination of close and distant species genomic sequence comparisonscoupled with in vivo and in vitro studies, we show that a functionalcholesterol-sensing sequence motif arose and was fixed within apre-existing enhancer in the common ancestor of anthropoid primates. Ourstudy demonstrates one molecular mechanism by which ancestral mammalianregulatory elements can evolve to perform new functions in the primatelineage leadingmore » to human.« less
Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y
2016-01-01
Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.
Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L.
Kim, Changsoo; Lemke, Cornelia; Paterson, Andrew H
2009-05-01
Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.
Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li
2018-05-01
H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.
Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.
2017-01-01
Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356
Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V
2016-01-01
In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.
Genetic evidence for conserved non-coding element function across species–the ears have it
Turner, Eric E.; Cox, Timothy C.
2014-01-01
Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.
Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A
2014-11-21
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.
Bolbase: a comprehensive genomics database for Brassica oleracea
2013-01-01
Background Brassica oleracea is a morphologically diverse species in the family Brassicaceae and contains a group of nutrition-rich vegetable crops, including common heading cabbage, cauliflower, broccoli, kohlrabi, kale, Brussels sprouts. This diversity along with its phylogenetic membership in a group of three diploid and three tetraploid species, and the recent availability of genome sequences within Brassica provide an unprecedented opportunity to study intra- and inter-species divergence and evolution in this species and its close relatives. Description We have developed a comprehensive database, Bolbase, which provides access to the B. oleracea genome data and comparative genomics information. The whole genome of B. oleracea is available, including nine fully assembled chromosomes and 1,848 scaffolds, with 45,758 predicted genes, 13,382 transposable elements, and 3,581 non-coding RNAs. Comparative genomics information is available, including syntenic regions among B. oleracea, Brassica rapa and Arabidopsis thaliana, synonymous (Ks) and non-synonymous (Ka) substitution rates between orthologous gene pairs, gene families or clusters, and differences in quantity, category, and distribution of transposable elements on chromosomes. Bolbase provides useful search and data mining tools, including a keyword search, a local BLAST server, and a customized GBrowse tool, which can be used to extract annotations of genome components, identify similar sequences and visualize syntenic regions among species. Users can download all genomic data and explore comparative genomics in a highly visual setting. Conclusions Bolbase is the first resource platform for the B. oleracea genome and for genomic comparisons with its relatives, and thus it will help the research community to better study the function and evolution of Brassica genomes as well as enhance molecular breeding research. This database will be updated regularly with new features, improvements to genome annotation, and new genomic sequences as they become available. Bolbase is freely available at http://ocri-genomics.org/bolbase. PMID:24079801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaynes, J.B.; Johnson, J.E.; Buskin, J.N.
1988-01-01
Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. The authors examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer.more » This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.« less
Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Angel; Heath, Karen E
2012-01-01
Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ~60% of Léri-Weill dyschondrosteosis (LWD) and ~5-15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ~286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.
Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Ángel; Heath, Karen E
2012-01-01
Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ∼60% of Léri-Weill dyschondrosteosis (LWD) and ∼5–15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ∼286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS. PMID:22071895
CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors
Corbo, Joseph C.; Lawrence, Karen A.; Karlstetter, Marcus; Myers, Connie A.; Abdelaziz, Musa; Dirkes, William; Weigelt, Karin; Seifert, Martin; Benes, Vladimir; Fritsche, Lars G.; Weber, Bernhard H.F.; Langmann, Thomas
2010-01-01
Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl−/− retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease. PMID:20693478
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68468; File No. SR-FINRA-2012-055] Self...-Element Continuing Education Program To Qualify To Engage in a Security Futures Business December 19, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act'')\\1\\ and Rule 19b-4 thereunder...
Population Genomics of Paramecium Species.
Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael
2017-05-01
Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Discovery of novel heart rate-associated loci using the Exome Chip
van den Berg, Marten E.; Warren, Helen R.; Cabrera, Claudia P.; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A.; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J.; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A.; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V.; Lyytikäinen, Leo-Pekka; Hall, Leanne M.; van Setten, Jessica; Trompet, Stella; Prins, Bram P.; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A.; Silva, Claudia T.; Alonso, Alvaro; Bis, Joshua C.; de Boer, Rudolf; de Haan, Hugoline G.; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F.; Doney, Alex S. F.; Ellinor, Patrick T.; Eppinga, Ruben N.; Felix, Stephan B.; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B.; Heckbert, Susan R.; Huang, Paul L.; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K.; Kolcic, Ivana; Launer, Lenore J.; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W.; Mangino, Massimo; Morris, Andrew D.; Mulas, Antonella; Murray, Alison D.; Nelson, Christopher P.; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J.; Poulter, Neil; Psaty, Bruce M.; Qi, Lihong; Raitakari, Olli T.; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F.; Soliman, Elsayed Z.; Spector, Timothy D.; Stanton, Alice V.; Stirrups, Kathleen E.; Taylor, Kent D.; Tobin, Martin D.; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W.; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M.; Zeggini, Eleftheria; Jukema, J. Wouter; Asselbergs, Folkert W.; Samani, Nilesh J.; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A.; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J.; Palmer, Colin N. A.; Sanna, Serena; Mook-Kanamori, Dennis O.; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I.; Dörr, Marcus; O'Donnell, Chris J.; Hayward, Caroline; Arking, Dan E.; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H.; Munroe, Patricia B.
2017-01-01
Abstract Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses. Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods. We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants. Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. PMID:28379579
Tatsuno, Ichiro; Okada, Ryo; Matsumoto, Masakado; Hata, Nanako; Matsui, Hideyuki; Zhang, Yan; Isaka, Masanori; Hasegawa, Tadao
2016-05-01
Streptococcus pyogenes is a causative agent of streptococcal toxic shock syndrome (STSS). Mutations in covR/S or rgg, negative regulators, can reportedly modulate the severity of infection in this pathogen. Recently, we showed that the regions encoding the SalR-SalK, a two-component regulatory system, were deleted in some emm 1-type isolates (named as 'novel-type'). In this study, the two novel 'STSS' isolates 10-85stss and 11-171stss were more virulent than the two novel 'non-STSS' isolates 11O-2non and 11T-3non when examined using a mouse model of invasive infection. Genome-sequencing experiments using the three strains 10-85stss , 11-171stss , and 11O-2non detected only one single nucleotide polymorphism that causes a non-synonymous mutation in fabT encoding a transcriptional regulator in strain 11O-2non . Loss of fabT reduced the high level of virulence observed in the STSS isolates to that in the non-STSS isolates, and introduction of an intact fabT compensated the lower virulence of 11O-2non , suggesting that the mutation in fabT, but not in covR/S or rgg, is involved in the differential virulence among the novel-type clinical isolates. This type of non-synonymous fabT mutation was also identified in 12 non-STSS isolates (including 11O-2non and 11T-3non ), and most of those 12 isolates showed impaired FabT function. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Discovery of novel heart rate-associated loci using the Exome Chip.
van den Berg, Marten E; Warren, Helen R; Cabrera, Claudia P; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V; Lyytikäinen, Leo-Pekka; Hall, Leanne M; van Setten, Jessica; Trompet, Stella; Prins, Bram P; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A; Silva, Claudia T; Alonso, Alvaro; Bis, Joshua C; de Boer, Rudolf; de Haan, Hugoline G; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F; Doney, Alex S F; Ellinor, Patrick T; Eppinga, Ruben N; Felix, Stephan B; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B; Heckbert, Susan R; Huang, Paul L; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K; Kolcic, Ivana; Launer, Lenore J; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W; Mangino, Massimo; Morris, Andrew D; Mulas, Antonella; Murray, Alison D; Nelson, Christopher P; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J; Poulter, Neil; Psaty, Bruce M; Qi, Lihong; Raitakari, Olli T; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F; Soliman, Elsayed Z; Spector, Timothy D; Stanton, Alice V; Stirrups, Kathleen E; Taylor, Kent D; Tobin, Martin D; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M; Zeggini, Eleftheria; Jukema, J Wouter; Asselbergs, Folkert W; Samani, Nilesh J; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J; Palmer, Colin N A; Sanna, Serena; Mook-Kanamori, Dennis O; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I; Dörr, Marcus; O'Donnell, Chris J; Hayward, Caroline; Arking, Dan E; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H; Munroe, Patricia B
2017-06-15
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. © The Author 2017. Published by Oxford University Press.
Martínez-García, Pedro J; Fresnedo-Ramírez, Jonathan; Parfitt, Dan E; Gradziel, Thomas M; Crisosto, Carlos H
2013-01-01
Single nucleotide polymorphisms (SNPs) are a fundamental source of genomic variation. Large SNP panels have been developed for Prunus species. Fruit quality traits are essential peach breeding program objectives since they determine consumer acceptance, fruit consumption, industry trends and cultivar adoption. For many cultivars, these traits are negatively impacted by cold storage, used to extend fruit market life. The major symptoms of chilling injury are lack of flavor, off flavor, mealiness, flesh browning, and flesh bleeding. A set of 1,109 SNPs was mapped previously and 67 were linked with these complex traits. The prediction of the effects associated with these SNPs on downstream products from the 'peach v1.0' genome sequence was carried out. A total of 2,163 effects were detected, 282 effects (non-synonymous, synonymous or stop codon gained) were located in exonic regions (13.04 %) and 294 placed in intronic regions (13.59 %). An extended list of genes and proteins that could be related to these traits was developed. Two SNP markers that explain a high percentage of the observed phenotypic variance, UCD_SNP_1084 and UCD_SNP_46, are associated with zinc finger (C3HC4-type RING finger) family protein and AOX1A (alternative oxidase 1a) protein groups, respectively. In addition, phenotypic variation suggests that the observed polymorphism for SNP UCD_SNP_1084 [A/G] mutation could be a candidate quantitative trait nucleotide affecting quantitative trait loci for mealiness. The interaction and expression of affected proteins could explain the variation observed in each individual and facilitate understanding of gene regulatory networks for fruit quality traits in peach.
Rim, Jong S; Kozak, Leslie P
2002-09-13
Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.
Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling
2017-11-02
Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.
USDA-ARS?s Scientific Manuscript database
To balance the demand for uptake of essential elements with their potential toxicity living cells have complex regulatory mechanisms. Here, we describe a genome-wide screen to identify genes that impact the elemental composition (‘ionome’) of yeast Saccharomyces cerevisiae. Using inductively coupled...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... appropriate limits for impurities, and emphasizes control of supply chains and risk assessments. It is... expectations for test requirements and regulatory filings, and a global policy for limiting elemental... written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... decisions. Data elements with respect to the SHORT subscription service that would be provided through the... information about technical data elements to support transmission and data-integrity processes between the... for making well-informed investment decisions. Broad access to the information collected by the SHORT...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... decisions. Data elements with respect to the SHORT subscription service that would be provided through the... information about technical data elements to support transmission and data-integrity processes between the... Securities and Exchange Commission (``Commission''), pursuant to Section 19(b)(1) of the Securities [[Page...
Leaf anthracnose, a new disease of swallow-worts from Russia
USDA-ARS?s Scientific Manuscript database
Black swallow-wort Vincetoxicum nigrum (L.) Moench (synonym=Cynanchum louiseae Kartesz & Gandhi) and pale swallow-wort Vincetoxicum rossicum (Kleopow) Borhidi (synonym=Cynanchum rossicum (Kleopow) Borhidi) are invasive plants belonging to the family Apocynaceae and are the targets of biological cont...
Identification of genetic elements in metabolism by high-throughput mouse phenotyping.
Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin
2018-01-18
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Altruistic functions for selfish DNA.
Faulkner, Geoffrey J; Carninci, Piero
2009-09-15
Mammalian genomes are comprised of 30-50% transposed elements (TEs). The vast majority of these TEs are truncated and mutated fragments of retrotransposons that are no longer capable of transposition. Although initially regarded as important factors in the evolution of gene regulatory networks, TEs are now commonly perceived as neutrally evolving and non-functional genomic elements. In a major development, recent works have strongly contradicted this "selfish DNA" or "junk DNA" dogma by demonstrating that TEs use a host of novel promoters to generate RNA on a massive scale across most eukaryotic cells. This transcription frequently functions to control the expression of protein-coding genes via alternative promoters, cis regulatory non protein-coding RNAs and the formation of double stranded short RNAs. If considered in sum, these findings challenge the designation of TEs as selfish and neutrally evolving genomic elements. Here, we will expand upon these themes and discuss challenges in establishing novel TE functions in vivo.
Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.
Hirsh, J; Morgan, B A; Scholnick, S B
1986-01-01
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170
Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements
Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.
2015-01-01
Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229
Dimitrieva, Slavica; Anisimova, Maria
2014-01-01
In protein-coding genes, synonymous mutations are often thought not to affect fitness and therefore are not subject to natural selection. Yet increasingly, cases of non-neutral evolution at certain synonymous sites were reported over the last decade. To evaluate the extent and the nature of site-specific selection on synonymous codons, we computed the site-to-site synonymous rate variation (SRV) and identified gene properties that make SRV more likely in a large database of protein-coding gene families and protein domains. To our knowledge, this is the first study that explores the determinants and patterns of the SRV in real data. We show that the SRV is widespread in the evolution of protein-coding sequences, putting in doubt the validity of the synonymous rate as a standard neutral proxy. While protein domains rarely undergo adaptive evolution, the SRV appears to play important role in optimizing the domain function at the level of DNA. In contrast, protein families are more likely to evolve by positive selection, but are less likely to exhibit SRV. Stronger SRV was detected in genes with stronger codon bias and tRNA reusage, those coding for proteins with larger number of interactions or forming larger number of structures, located in intracellular components and those involved in typically conserved complex processes and functions. Genes with extreme SRV show higher expression levels in nearly all tissues. This indicates that codon bias in a gene, which often correlates with gene expression, may often be a site-specific phenomenon regulating the speed of translation along the sequence, consistent with the co-translational folding hypothesis. Strikingly, genes with SRV were strongly overrepresented for metabolic pathways and those associated with several genetic diseases, particularly cancers and diabetes.
Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava
2016-01-01
Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712
Synonym set extraction from the biomedical literature by lexical pattern discovery.
McCrae, John; Collier, Nigel
2008-03-24
Although there are a large number of thesauri for the biomedical domain many of them lack coverage in terms and their variant forms. Automatic thesaurus construction based on patterns was first suggested by Hearst 1, but it is still not clear how to automatically construct such patterns for different semantic relations and domains. In particular it is not certain which patterns are useful for capturing synonymy. The assumption of extant resources such as parsers is also a limiting factor for many languages, so it is desirable to find patterns that do not use syntactical analysis. Finally to give a more consistent and applicable result it is desirable to use these patterns to form synonym sets in a sound way. We present a method that automatically generates regular expression patterns by expanding seed patterns in a heuristic search and then develops a feature vector based on the occurrence of term pairs in each developed pattern. This allows for a binary classifications of term pairs as synonymous or non-synonymous. We then model this result as a probability graph to find synonym sets, which is equivalent to the well-studied problem of finding an optimal set cover. We achieved 73.2% precision and 29.7% recall by our method, out-performing hand-made resources such as MeSH and Wikipedia. We conclude that automatic methods can play a practical role in developing new thesauri or expanding on existing ones, and this can be done with only a small amount of training data and no need for resources such as parsers. We also concluded that the accuracy can be improved by grouping into synonym sets.
Hasegawa, H; Syafruddin
1994-08-01
Cyclodontostomum purvisi Adams, 1933 (Nematoda: Strongyloidea: Chabertiidae) was collected from the ceca of Maxomys whiteheadi, Leopoldamys sabanus, and Niviventer cremoniventer of East Kalimantan and Eropeplus canus, Paruromys dominator, and Rattus hoffmanni (Rodentia: Muridae: Murinae) in South Sulawesi, Indonesia. Kalimantan and Sulawesi are new localities for this nematode, and each of the Sulawesian rats are new hosts. Presence of the external corona radiata consisting of 8 bifid elements was confirmed in Cyclodontostomum. Ancistronema coronatum Smales, 1992 is synonymized with C. purvisi. The cephalic end of Kalimantan specimens tilted dorsally more strongly than C. purvisi from Sulawesi. Cyclodontostomum purvisi seems to have a wide host range in the Murinae, being distributed widely in the area from India to Australia.
FARME DB: a functional antibiotic resistance element database
Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.
2017-01-01
Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins
Explaining the disease phenotype of intergenic SNP through predicted long range regulation
Chen, Jingqi; Tian, Weidong
2016-01-01
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978
Preclinical Development of Cell-Based Products: a European Regulatory Science Perspective.
McBlane, James W; Phul, Parvinder; Sharpe, Michaela
2018-06-25
This article describes preclinical development of cell-based medicinal products for European markets and discusses European regulatory mechanisms open to developers to aid successful product development. Cell-based medicinal products are diverse, including cells that are autologous or allogeneic, have been genetically modified, or not, or expanded ex vivo, and applied systemically or to an anatomical site different to that of their origin; comments applicable to one product may not be applicable to others, so bespoke development is needed, for all elements - quality, preclinical and clinical. After establishing how the product is produced, proof of potential for therapeutic efficacy, and then safety, of the product need to be determined. This includes understanding biodistribution, persistence and toxicity, including potential for malignant transformation. These elements need to be considered in the context of the intended clinical development. This article describes regulatory mechanisms available to developers to support product development that aim to resolve scientific issues prior to marketing authorization application, to enable patients to have faster access to the product than would otherwise be the case. Developers are encouraged to be aware of both the scientific issues and regulatory mechanisms to ensure patients can be supplied with these products.
Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.
2015-01-01
Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420
Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum
Ruan, Ruoxin; Wang, Mingshuang; Liu, Xin; Sun, Xuepeng; Chung, Kuang-Ren
2017-01-01
The sterol regulatory element binding proteins (SREBPs) are key regulators for sterol homeostasis in most fungi. In the citrus postharvest pathogen Penicillium digitatum, the SREBP homolog is required for fungicide resistance and regulation of CYP51 expression. In this study, we identified another SREBP transcription factor PdSreB in P. digitatum, and the biological functions of both SREBPs were characterized and compared. Inactivation of PdsreA, PdsreB or both genes in P. digitatum reduced ergosterol contents and increased sensitivities to sterol 14-α-demethylation inhibitors (DMIs) and cobalt chloride. Fungal strains impaired at PdsreA but not PdsreB increased sensitivity to tridemorph and an iron chelator 2,2’-dipyridyl. Virulence assays on citrus fruit revealed that fungal strains impaired at PdsreA, PdsreB or both induce maceration lesions similar to those induced by wild-type. However, ΔPdsreA, ΔPdsreB or the double mutant strain rarely produce aerial mycelia on infected citrus fruit peels. RNA-Seq analysis showed the broad regulatory functions of both SREBPs in biosynthesis, transmembrane transportation and stress responses. Our results provide new insights into the conserved and differentiated regulatory functions of SREBP homologs in plant pathogenic fungi. PMID:28467453
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
Synonymie und Interlinguistik (Synonymy and Interlinguistics).
ERIC Educational Resources Information Center
Szabo, Rita Brdar; Brdar, Mario
1993-01-01
Discusses the relationship between traditional synonym theory and two perspectives of interlinguistics: contrastive lexical analysis and languages in contact research. The goal and methods of each are described briefly, and a new synonym conceptualization is proposed that better fits synchronic dynamics than the traditional theory. Examples from…
Sanborn, Allen F; Heath, Maxine S
2017-03-15
The status of several North American cicada genera is reconsidered based on the recent erection of new genera and historical evidence. Megatibicen Sanborn & Heath, 2016 is shown to have priority over Megatibicen Lee, 2016 (which was changed by the author to Gigatibicen Lee, 2016 prior to formal publication). Ameritibicen Lee, 2016 is shown to be a junior synonym of Megatibicen Sanborn & Heath, 2016 and both Ameritibicen n. syn. and and Gigatibicen Lee, 2016 n. syn. are synonymized here to Megatibicen Sanborn & Heath. The species placed in Gigatibicen are returned to Megatibicen to become Megatibicen auletes (Germar, 1834) n. comb., Megatibicen resh (Haldeman, 1852) n. comb., and Megatibicen resonans (Walker, 1850) n. comb. while the species placed in Ameritibicen remain in Megatibicen due to the junior synonym status of Ameritibicen. The monospecific Paratibicen Lee, 2016 n. syn. is shown to be a junior synonym of Neotibicen Hill & Marshall, 2015 and its species is reassigned to Neotibicen to become Neotibicen similaris (Smith & Grossbeck, 1907) n. comb.
Widespread promoter-mediated coordination of transcription and mRNA degradation
2012-01-01
Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624
Henry, Kelli F.; Kawashima, Tomokazu; Goldberg, Robert B.
2015-03-22
Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean ( Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we usemore » site-directed mutagenesis experiments in transgenic tobacco globularstage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. Lastly, a homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Kelli F.; Kawashima, Tomokazu; Goldberg, Robert B.
Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean ( Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we usemore » site-directed mutagenesis experiments in transgenic tobacco globularstage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. Lastly, a homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.« less
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Henry, Kelli F; Kawashima, Tomokazu; Goldberg, Robert B
2015-06-01
Little is known about the molecular mechanisms by which the embryo proper and suspensor of plant embryos activate specific gene sets shortly after fertilization. We analyzed the upstream region of the Scarlet Runner Bean (Phaseolus coccineus) G564 gene in order to understand how genes are activated specifically in the suspensor during early embryo development. Previously, we showed that a 54-bp fragment of the G564 upstream region is sufficient for suspensor transcription and contains at least three required cis-regulatory sequences, including the 10-bp motif (5'-GAAAAGCGAA-3'), the 10 bp-like motif (5'-GAAAAACGAA-3'), and Region 2 motif (partial sequence 5'-TTGGT-3'). Here, we use site-directed mutagenesis experiments in transgenic tobacco globular-stage embryos to identify two additional cis-regulatory elements within the 54-bp cis-regulatory module that are required for G564 suspensor transcription: the Fifth motif (5'-GAGTTA-3') and a third 10-bp-related sequence (5'-GAAAACCACA-3'). Further deletion of the 54-bp fragment revealed that a 47-bp fragment containing the five motifs (the 10-bp, 10-bp-like, 10-bp-related, Region 2 and Fifth motifs) is sufficient for suspensor transcription, and represents a cis-regulatory module. A consensus sequence for each type of motif was determined by comparing motif sequences shown to activate suspensor transcription. Phylogenetic analyses suggest that the regulation of G564 is evolutionarily conserved. A homologous cis-regulatory module was found upstream of the G564 ortholog in the Common Bean (Phaseolus vulgaris), indicating that the regulation of G564 is evolutionarily conserved in closely related bean species.
Evidence of reduced recombination rate in human regulatory domains.
Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis
2017-10-20
Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R
2005-09-01
We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.
Long-Term Semantic Priming of Word Meaning
ERIC Educational Resources Information Center
Woltz, Dan J.
2010-01-01
Three experiments investigated facilitation in synonym decisions as a function of prior synonym decision trials that were either identical or semantically related. Experiment 1 demonstrated that semantically related prime trials produced less facilitation than identical prime trials, but facilitation from both persisted over 14 intervening trials.…
Database construction for PromoterCAD: synthetic promoter design for mammals and plants.
Nishikata, Koro; Cox, Robert Sidney; Shimoyama, Sayoko; Yoshida, Yuko; Matsui, Minami; Makita, Yuko; Toyoda, Tetsuro
2014-03-21
Synthetic promoters can control a gene's timing, location, and expression level. The PromoterCAD web server ( http://promotercad.org ) allows the design of synthetic promoters to control plant gene expression, by novel arrangement of cis-regulatory elements. Recently, we have expanded PromoterCAD's scope with additional plant and animal data: (1) PLACE (Plant Cis-acting Regulatory DNA Elements), including various sized sequence motifs; (2) PEDB (Mammalian Promoter/Enhancer Database), including gene expression data for mammalian tissues. The plant PromoterCAD data now contains 22 000 Arabidopsis thaliana genes, 2 200 000 microarray measurements in 20 growth conditions and 79 tissue organs and developmental stages, while the new mammalian PromoterCAD data contains 679 Mus musculus genes and 65 000 microarray measurements in 96 tissue organs and cell types ( http://promotercad.org/mammal/ ). This work presents step-by-step instructions for adding both regulatory motif and gene expression data to PromoterCAD, to illustrate how users can expand PromoterCAD functionality for their own applications and organisms.
TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes
González, Abel D.; Espinosa, Vladimir; Vasconcelos, Ana T.; Pérez-Rueda, Ernesto; Collado-Vides, Julio
2005-01-01
Experimental data on the Escherichia coli transcriptional regulatory system has been used in the past years to predict new regulatory elements (promoters, transcription factors (TFs), TFs' binding sites and operons) within its genome. As more genomes of gamma-proteobacteria are being sequenced, the prediction of these elements in a growing number of organisms has become more feasible, as a step towards the study of how different bacteria respond to environmental changes at the level of transcriptional regulation. In this work, we present TRACTOR_DB (TRAnscription FaCTORs' predicted binding sites in prokaryotic genomes), a relational database that contains computational predictions of new members of 74 regulons in 17 gamma-proteobacterial genomes. For these predictions we used a comparative genomics approach regarding which several proof-of-principle articles for large regulons have been published. TRACTOR_DB may be currently accessed at http://www.bioinfo.cu/Tractor_DB, http://www.tractor.lncc.br/ or at http://www.cifn.unam.mx/Computational_Genomics/tractorDB. Contact Email id is tractor@cifn.unam.mx. PMID:15608293
BET Bromodomain Inhibition Releases the Mediator Complex from Select cis-Regulatory Elements.
Bhagwat, Anand S; Roe, Jae-Seok; Mok, Beverly Y L; Hohmann, Anja F; Shi, Junwei; Vakoc, Christopher R
2016-04-19
The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.
2018-01-01
Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922
Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta
Whittle, C. A.; Sun, Y.; Johannesson, H.
2011-01-01
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862
Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella
2013-01-01
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.
de Souza, Flávio S.J.; Franchini, Lucía F.; Rubinstein, Marcelo
2013-01-01
Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted—or exapted—by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. PMID:23486611
Stiers, Pieter-Jan; van Gastel, Nick; Moermans, Karen; Stockmans, Ingrid; Carmeliet, Geert
2017-12-01
To improve bone healing or regeneration more insight in the fate and role of the different skeletal cell types is required. Mouse models for fate mapping and lineage tracing of skeletal cells, using stage-specific promoters, have advanced our understanding of bone development, a process that is largely recapitulated during bone repair. However, validation of these models is often only performed during development, whereas proof of the activity and specificity of the used promoters during the bone regenerative process is limited. Here, we show that the regulatory elements of the 6kb collagen type II promoter are not adequate to drive gene expression during bone repair. Similarly, the 2.3kb promoter of collagen type I lacks activity in adult mice, but the 3.2kb promoter is suitable. Furthermore, Cre-mediated fate mapping allows the visualization of progeny, but this label retention may hinder to distinguish these cells from ones with active expression of the marker at later time points. Together, our results show that the lineage-specific regulatory elements driving gene expression during bone development differ from those required later in life and during bone repair, and justify validation of lineage-specific cell tracing and gene silencing strategies during fracture healing and bone regenerative applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Inaba, Takehito; Nagano, Yukio; Sakakibara, Toshihiro; Sasaki, Yukiko
1999-01-01
The pra2 gene encodes a pea (Pisum sativum) small GTPase belonging to the YPT/rab family, and its expression is down-regulated by light, mediated by phytochrome. We have isolated and characterized a genomic clone of this gene and constructed a fusion DNA of its 5′-upstream region in front of the gene for firefly luciferase. Using this construct in a transient assay, we determined a pra2 cis-regulatory region sufficient to direct the light down-regulation of the luciferase reporter gene. Both 5′- and internal deletion analyses revealed that the 93-bp sequence between −734 and −642 from the transcriptional start site was important for phytochrome down-regulation. Gain-of-function analysis showed that this 93-bp region could confer light down-regulation when fused to the cauliflower mosaic virus 35S promoter. Furthermore, linker-scanning analysis showed that a 12-bp sequence within the 93-bp region mediated phytochrome down-regulation. Gel-retardation analysis showed the presence of a nuclear factor that was specifically bound to the 12-bp sequence in vitro. These results indicate that this element is a cis-regulatory element involved in phytochrome down-regulated expression. PMID:10364400
Sun, Gao-Fei; He, Shou-Pu; Du, Xiong-Ming
2013-10-01
Cotton genomic studies have boomed since the release of Gossypium raimondii draft genome. In this study, cis-regulatory element (CRE) in 1 kb length sequence upstream 5' UTR of annotated genes were selected and scanned in the Arabidopsis thaliana (At) and Gossypium raimondii (Gr) genomes, based on the database of PLACE (Plant cis-acting Regulatory DNA Elements). According to the definition of this study, 44 (12.3%) and 57 (15.5%) CREs presented "peak-like" distribution in the 1 kb selected sequences of both genomes, respectively. Thirty-four of them were peak-like distributed in both genomes, which could be further categorized into 4 types based on their core sequences. The coincidence of TATABOX peak position and their actual position ((-) -30 bp) indicated that the position of a common CRE was conservative in different genes, which suggested that the peak position of these CREs was their possible actual position of transcription factors. The position of a common CRE was also different between the two genomes due to stronger length variation of 5' UTR in Gr than At. Furthermore, most of the peak-like CREs were located in the region of -110 bp-0 bp, which suggested that concentrated distribution might be conductive to the interaction of transcription factors, and then regulate the gene expression in downstream.
Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella
2013-01-01
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling
Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987
Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel
2008-12-01
Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.
Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation
Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel
2016-01-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.
Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel
2016-09-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 79.56 - Fuel and fuel additive grouping system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... further testing under the provisions of Tier 3 or to support regulatory decisions affecting that fuel or... elements or classes of compounds other than those permitted in the base fuel for the respective fuel family... all of the following criteria: (1) Contain no elements other than carbon, hydrogen, oxygen, nitrogen...
USDA-ARS?s Scientific Manuscript database
A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...
Massive contribution of transposable elements to mammalian regulatory sequences.
Rayan, Nirmala Arul; Del Rosario, Ricardo C H; Prabhakar, Shyam
2016-09-01
Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of Regulatory Elements That Control PPARγ Expression in Adipocyte Progenitors
Chou, Wen-Ling; Galmozzi, Andrea; Partida, David; Kwan, Kevin; Yeung, Hui; Su, Andrew I.; Saez, Enrique
2013-01-01
Adipose tissue renewal and obesity-driven expansion of fat cell number are dependent on proliferation and differentiation of adipose progenitors that reside in the vasculature that develops in coordination with adipose depots. The transcriptional events that regulate commitment of progenitors to the adipose lineage are poorly understood. Because expression of the nuclear receptor PPARγ defines the adipose lineage, isolation of elements that control PPARγ expression in adipose precursors may lead to discovery of transcriptional regulators of early adipocyte determination. Here, we describe the identification and validation in transgenic mice of 5 highly conserved non-coding sequences from the PPARγ locus that can drive expression of a reporter gene in a manner that recapitulates the tissue-specific pattern of PPARγ expression. Surprisingly, these 5 elements appear to control PPARγ expression in adipocyte precursors that are associated with the vasculature of adipose depots, but not in mature adipocytes. Characterization of these five PPARγ regulatory sequences may enable isolation of the transcription factors that bind these cis elements and provide insight into the molecular regulation of adipose tissue expansion in normal and pathological states. PMID:24009687
Majoros, William H; Ohler, Uwe
2010-12-16
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu
2016-06-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.
Patel, Hardip; Forêt, Sylvain; Karlsen, Bård Ove; Jørgensen, Tor Erik; Hall-Spencer, Jason M
2018-01-01
Abstract Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors. PMID:29385567
Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer.
Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z; Kreitman, Martin
2014-01-01
Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.
Shi, Hongliang; Zhou, Hongzhang; Liang, Hongbin
2013-01-01
Abstract Ten genera of Physoderina from the Oriental Region are diagnosed and described, and twenty six species representing eight genera (Paraphaea Bates, Anchista Nietner, Metallanchista gen. n., Diamella nom. n., Allocota Motschulsky, Orionella Jedlička, Endynomena Chaudoir and Dasiosoma Britton (Oriental species only)) are revised. Keys to genera and species are provided, along with distribution maps, habitus images, photographs of the name-bearing types, and illustrations of male and female genitalia of available species. The female internal reproductive system is illustrated for fourteen species. Two genera, Anchista and Taicona, previously placed in Calleidina, are moved into Physoderina. One new genus is described: Metallanchista, gen. n. (type species Metallanchista laticollis, sp. n.). Two new generic synonyms are proposed: Taicona Bates, 1873, junior synonym of Allocota Motschulsky, 1859; Teradaia Habu, 1979a, junior synonym of Dasiosoma Britton, 1937. A new generic replacement name is proposed: Diamella, nom. n. for Diamella Jedlička, 1952 (junior homonym of Diamella Gude, 1913). The status of Paraphaea Bates, 1873 is resurrected from synonym of Anchista Nietner, 1856. Five new species are described: Paraphaea minor Shi & Liang, sp. n. (Hoa-Binh, Tonkin, Vietnam), Anchista pilosa Shi & Liang, sp. n. (Chikkangalur, Bangalore, India), Metallanchista laticollis Shi & Liang, sp. n. (PhaTo env., Chumphon prov., Thailand), Allocota bicolor Shi & Liang, sp. n. (Dengga to Mafengshan, Ruili, Yunnan, China), Dasiosoma quadraticolle Shi & Liang, sp. n. (Menglun Botanical Garden, Yunnan, China). Fourteen new combinations are proposed: Paraphaea binotata (Dejean, 1825), comb. n. from Anchista; Paraphaea formosana (Jedlička, 1946), comb. n. from Anchista; Paraphaea philippinensis (Jedlička, 1935b), comb. n. from Allocota; Metallanchista perlaeta (Kirschenhofer, 1994), comb. n. from Allocota; Physodera andrewesi (Jedlička, 1934), comb. n. from Allocota; Diamella cupreomicans (Oberthür, 1883), comb. n. from Physodera; Diamella arrowi (Jedlička, 1935a), comb. n. from Allocota; Allocota aurata (Bates, 1873), comb. n. from Taicona; Dasiosoma bellum (Habu, 1979a), comb. n. from Teradaia; Dasiosoma indicum (Kirschenhofer, 2011), comb. n. from Diamella; Dasiosoma maindroni (Tian & Deuve, 2001), comb. n. from Lachnoderma; Dasiosoma hirsutum (Bates, 1873), comb. n. from Lachnoderma; Orionella discoidalis (Bates, 1892), comb. n. from Anchista; Orionella kathmanduensis (Kirschenhofer, 1994), comb. n. from Lachnoderma. Five names are newly placed as junior synonyms: Paraphaea eurydera (Chaudoir, 1877), junior synonym of Paraphaea binotata (Dejean, 1825); Anchista glabra Chaudoir, 1877, and Anchista nepalensis Kirschenhofer, 1994, junior synonyms of Anchista fenestrata (Schmidt-Göbel, 1846); Allocota caerulea Andrewes, 1933, junior synonym of Allocota viridipennis Motschulsky, 1859; Allocota perroti (Jedlička, 1963), junior synonym of Allocota aurata (Bates, 1873). One new replacement name is proposed: Dasiosoma basilewskyi, nom. n. for Dasiosoma hirsutum Basilewsky, 1949 (secondary junior homonym of Dasiosoma hirsutum (Bates, 1892)). One species is downgraded to subspecies rank: Anchista fenestrata subpubescens Chaudoir, 1877, new rank. PMID:23794843
2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.
Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William
2013-01-01
Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.
Rossini, Michele; Vaz-de-Mello, Fernando Z.; Mann, Darren J.
2014-01-01
Abstract After examining syntypes of Onthophagus cervicornis Kirby, 1825, previously considered to be a synonym of the North American Onthophagus striatulus (Palisot de Beauvois, 1809), we confirm the true identity and new synonymy under South Asian Onthophagus dama (Fabricius, 1798). PMID:25061364
The Nym Family: Synonyms, Antonyms, Homonyms, Acronyms.
ERIC Educational Resources Information Center
Cummings, Melodie
Intended to help students improve their vocabulary and spelling skills, this booklet offers activities on synonyms, antonyms, homonyms (including homophones and homographs), and acronyms. It is suggested that the teacher present these types of words as members of the "Nym Family." Ideas for posters and books to be used as instructional…
Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K
2011-09-01
Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.
Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J
2004-01-01
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237
FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis
2012-01-01
Background FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506. PMID:23083511
An incoherent feedforward loop facilitates adaptive tuning of gene expression.
Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David
2018-04-05
We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.
Wilding, Craig S; Smith, Ian; Lynd, Amy; Yawson, Alexander Egyir; Weetman, David; Paine, Mark J I; Donnelly, Martin J
2012-09-01
Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.
Castellana, Stefano; Fusilli, Caterina; Mazzoccoli, Gianluigi; Biagini, Tommaso; Capocefalo, Daniele; Carella, Massimo; Vescovi, Angelo Luigi; Mazza, Tommaso
2017-06-01
24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.
Facial approximation-from facial reconstruction synonym to face prediction paradigm.
Stephan, Carl N
2015-05-01
Facial approximation was first proposed as a synonym for facial reconstruction in 1987 due to dissatisfaction with the connotations the latter label held. Since its debut, facial approximation's identity has morphed as anomalies in face prediction have accumulated. Now underpinned by differences in what problems are thought to count as legitimate, facial approximation can no longer be considered a synonym for, or subclass of, facial reconstruction. Instead, two competing paradigms of face prediction have emerged, namely: facial approximation and facial reconstruction. This paper shines a Kuhnian lens across the discipline of face prediction to comprehensively review these developments and outlines the distinguishing features between the two paradigms. © 2015 American Academy of Forensic Sciences.
De Oca, Adrián Nieto-Montes; Köhler, Gunther; Feria-Ortiz, Manuel
2014-05-05
For most of its history, the name Anolis boulengerianus Thominot, 1887 has been regarded as a junior synonym of Anolis nebulosus (Wiegmann, 1834) or Anolis nebuloides Bocourt, 1873. However, a comparison of the syntypes and additional topotypical specimens of A. boulengerianus with three topoparatypes and additional specimens of the species currently referred to as Anolis isthmicus Fitch, 1978 showed that these two names pertain to the same species. Because of the priority principle, A. isthmicus becomes a junior synonym of A. boulengerianus. We provide a redescription of the type series of A. boulengerianus and an updated diagnosis for this taxon relative to all other beta anoles.
Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.
2008-11-11
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.
2008-11-11
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K
2014-05-27
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter
2010-01-01
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028
The Regulatory Framework for Privacy and Security
NASA Astrophysics Data System (ADS)
Hiller, Janine S.
The internet enables the easy collection of massive amounts of personally identifiable information. Unregulated data collection causes distrust and conflicts with widely accepted principles of privacy. The regulatory framework in the United States for ensuring privacy and security in the online environment consists of federal, state, and self-regulatory elements. New laws have been passed to address technological and internet practices that conflict with privacy protecting policies. The United States and the European Union approaches to privacy differ significantly, and the global internet environment will likely cause regulators to face the challenge of balancing privacy interests with data collection for many years to come.
ERIC Educational Resources Information Center
Nilsen, Don L. F.
This paper attempts to dispel a number of misconceptions about the nature of meaning, namely that: (1) synonyms are words that have the same meanings, (2) antonyms are words that have opposite meanings, (3) homonyms are words that sound the same but have different spellings and meanings, (4) converses are antonyms rather than synonyms, (5)…
USDA-ARS?s Scientific Manuscript database
The Oriental genus Burumoseria Csiki is redescribed. A new species, Burumoseria yuae from Taiwan is described and illustrated. A key to Burumoseria species is provided. The Oriental and Australian genus Licyllus Jacoby 1885 is synonymized with Thrasychroma Jacoby 1885....
USDA-ARS?s Scientific Manuscript database
Parabaryconus Kozlov & Kononova n. syn. is treated as a junior synonym of Cremastobaeus Ashmead; Cremastobaeus artus (Kozlov & Kononova) n. comb. is transferred from Parabaryconus; Paridris macrurous Kozlov & Le n. syn. and P. taekuli Talamas & Masner n. syn. are treated as junior synonyms of P. bis...
USDA-ARS?s Scientific Manuscript database
Three Aphis species are involved in this study. Aphis floridanae Tissot, 1933 and A. nasturtii Kaltenbach, 1843 are currently treated as synonym, and A. impatientis Thomas, 1878 has a valid taxonomic status. Morphological and cytochrome oxidase 1 (Cox1) data show that Aphis floridanae is not synonym...
Ulitzka, Manfred R; Mound, Laurence A
2014-01-28
Urothrips kobroi sp. n. is described from Seychelles, and reasons are given for considering Biconothrips Stannard and Coxothrips Bournier as new synonyms of Urothrips Bagnall. This genus now includes nine species, distributed between Africa and Australia, and a key to these species is provided.
Pereira, Glauber B.; Meng, Fanxue; Kockara, Neriman T.; Yang, Baoli; Wight, Patricia A.
2012-01-01
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. While removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is nonfunctional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. PMID:23157328
Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F
2012-01-01
Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086
Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L
2017-07-18
Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.
Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA
NASA Astrophysics Data System (ADS)
Buzdin, Anton A.; Prassolov, Vladimir; Garazha, Andrew V.
2017-06-01
Endogenous retroviruses are mobile genetic elements hardly distinguishable from infectious, or “exogenous”, retroviruses at the time of insertion in the host DNA. Human endogenous retroviruses (HERVs) are not rare. They gave rise to multiple families of closely related mobile elements that occupy 8% of the human genome. Together, they shape genomic regulatory landscape by providing at least 320,000 human transcription factor binding sites (TFBS) located on 110,000 individual HERV elements. The HERVs host as many as 155,000 mapped DNaseI hypersensitivity sites, which denote loci active in the regulation of gene expression or chromatin structure. The contemporary view of the HERVs evolutionary dynamics suggests that at the early stages after insertion, the HERV is treated by the host cells as a foreign genetic element, and is likely to be suppressed by the targeted methylation and mutations. However, at the later stages, when significant number of mutations has been already accumulated and when the retroviral genes are broken, the regulatory potential of a HERV may be released and recruited to modify the genomic balance of transcription factor binding sites. This process goes together with further accumulation and selection of mutations, which reshape the regulatory landscape of the human DNA. However, developmental reprogramming, stress or pathological conditions like cancer, inflammation and infectious diseases, can remove the blocks limiting expression and HERV-mediated host gene regulation. This, in turn, can dramatically alter the gene expression equilibrium and shift it to a newer state, thus further amplifying instability and exacerbating the stressful situation.
Dong, S-S; Guo, Y; Zhu, D-L; Chen, X-F; Wu, X-M; Shen, H; Chen, X-D; Tan, L-J; Tian, Q; Deng, H-W; Yang, T-L
2016-07-01
With ENCODE epigenomic data and results from published genome-wide association studies (GWASs), we aimed to find regulatory signatures of obesity genes and discover novel susceptibility genes. Obesity genes were obtained from public GWAS databases and their promoters were annotated based on the regulatory element information. Significantly enriched or depleted epigenomic elements in the promoters of obesity genes were evaluated and all human genes were then prioritized according to the existence of the selected elements to predict new candidate genes. Top-ranked genes were subsequently applied to validate their associations with obesity-related traits in three independent in-house GWAS samples. We identified RAD21 and EZH2 as over-represented, and STAT2 (signal transducer and activator of transcription 2) and IRF3 (interferon regulatory transcription factor 3) as depleted transcription factors. Histone modification of H3K9me3 and chromatin state segmentation of 'poised promoter' and 'repressed' were over-represented. All genes were prioritized and we selected the top five genes for validation at the population level. Combining results from the three GWAS samples, rs7522101 in ESRRG (estrogen-related receptor-γ) remained significantly associated with body mass index after multiple testing corrections (P=7.25 × 10(-5)). It was also associated with β-cell function (P=1.99 × 10(-3)) and fasting glucose level (P<0.05) in the meta-analyses of glucose and insulin-related traits consortium (MAGIC) data set.Cnoclusions:In summary, we identified epigenomic characteristics for obesity genes and suggested ESRRG as a novel obesity-susceptibility gene.
Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.
Matsumoto, Tomotaka; John, Anoop; Baeza-Centurion, Pablo; Li, Boyang; Akashi, Hiroshi
2016-06-01
A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Acid-base homeostasis in the human system
NASA Technical Reports Server (NTRS)
White, R. J.
1974-01-01
Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.
Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi
2016-01-04
Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Explaining the disease phenotype of intergenic SNP through predicted long range regulation.
Chen, Jingqi; Tian, Weidong
2016-10-14
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.
Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav
2007-08-01
Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.
A liver enhancer in the fibrinogen gene cluster.
Fort, Alexandre; Fish, Richard J; Attanasio, Catia; Dosch, Roland; Visel, Axel; Neerman-Arbez, Marguerite
2011-01-06
The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.
Who owns Australia's water--elements of an effective regulatory model.
McKay, J
2003-01-01
This paper identifies and describes a number of global trends in regulatory theory and legal scholarship. It points out the huge level of complexity demanded by globalisation and the unfortunate complication of this is that there is legal indeterminacy. The legal indeterminacy springs from the desire to amend and alter existing models. That has been the thrust of the Council of Australian Governments changes to adapt and add huge amounts of complexity to a flawed system. This paper argues that an effective water regulatory model requires a fundamental re-examination of the concept of water ownership and a capturing by the State of the right to allocate rainfall. This foundation is effective and the way forward to deal with the key issues in this transition phase. The second key element to an effective regulatory model is the concept of performance-based assessment. This requires information and schemes to be set up to work out ways to monitor and evaluate the performance of the utility on selected criteria. For Australia at present there is a dire lack of agreed criteria on these key issues and these have the potential to pull apart the whole process. The key issues are indigenous rights, governance issues, public participation, alteration of pre-existing rights and incorporation of environmental requirements.
Huber, Bernhard A; Colmenares, Pío A; Ramirez, Martin J
2014-08-08
Between 1998 and 2011, the Venezuelan arachnologist Manuel Ángel González-Sponga (GS) published a series of taxonomic papers devoted to the Pholcidae of Venezuela. Of his 22 new genera, 20 were monotypic when described, suggesting a high percentage of synonyms. We studied his descriptions and as far as accessible his type specimens and propose the following new generic synonymies: Autana GS, 2011 = Mesabolivar GS, 1998; Ayomania GS, 2005 and Venezuela Koçak & Kemal, 2008 (new replacement names for Falconia GS, 2003) = Mecolaesthus Simon, 1893; Carbonaria GS, 2009 = Mecolaesthus Simon, 1893; Caruaya GS, 2011 = Mesabolivar GS, 1998; Coroia GS, 2005 = Artema Walckenaer, 1837; Maimire GS, 2009 = Mecolaesthus Simon, 1893; Moraia GS, 2011 = Mecolaesthus Simon, 1893; Nasuta GS, 2009 = Mecolaesthus Simon, 1893; Portena GS, 2011 = Metagonia Simon, 1893; Rioparaguanus GS, 2005 = Mesabolivar GS, 1998; Tonoro GS, 2009 = Litoporus Simon, 1893; Sanluisi GS, 2003 = Mecolaesthus Simon, 1893. Three of the type species are also specific synonyms: Autana autanensis GS, 2011 = Mesabolivar aurantiacus (Mello-Leitão, 1930); Coroia magna GS, 2005 = Artema atlanta Walckenaer, 1837; Tonoro multispinae GS, 2009 = Litoporus uncatus (Simon, 1893). Six species that González-Sponga described under Blechroscelis (a genus previously synonymized with Priscula Simon, 1893) are all synonyms of Mesabolivar eberhardi Huber, 2000 (B. acuoso GS, 2011; B. araguanus GS, 2011; B. blechroscelis GS, 2011; B. copeyensis GS, 2011; B. cordillerano GS, 2011; B. andinensis GS, 2011). In addition, and unrelated to González-Sponga's work, we synonymize the Central Asian monotypic genus Ceratopholcus Spassky, 1934 with Crossopriza Simon, 1893; we synonymize the Chinese species Pholcus acerosus Peng & Zhang, 2011 with Pholcus fragillimus Strand, 1907 and remove the Malaysian monotypic genus Mystes Bristowe, 1938, previously thought to be the only East Asian representative of the subfamily Ninetinae, to the family Filistatidae.
Zhang, Rui; Liu, Jialin; Huang, Yong; Wang, Miye; Shi, Qingke; Chen, Jun; Zeng, Zhi
2017-05-02
It has been shown that the entities in everyday clinical text are often expressed in a way that varies from how they are expressed in the nomenclature. Owing to lots of synonyms, abbreviations, medical jargons or even misspellings in the daily used physician notes in clinical information system (CIS), the terminology without enough synonyms may not be adequately suitable for the task of Chinese clinical term recognition. This paper demonstrates a validated system to retrieve the Chinese term of clinical finding (CTCF) from CIS and map them to the corresponding concepts of international clinical nomenclature, such as SNOMED CT. The system focuses on the SNOMED CT with Chinese synonyms enrichment (SCCSE). The literal similarity and the diagnosis-related similarity metrics were used for concept mapping. Two CTCF recognition methods, the rule- and terminology-based approach (RTBA) and the conditional random field machine learner (CRF), were adopted to identify the concepts in physician notes. The system was validated against the history of present illness annotated by clinical experts. The RTBA and CRF could be combined to predict new CTCFs besides SCCSE persistently. Around 59,000 CTCF candidates were accepted as valid and 39,000 of them occurred at least once in the history of present illness. 3,729 of them were accordant with the description in referenced Chinese clinical nomenclature, which could cross map to other international nomenclature such as SNOMED CT. With the hybrid similarity metrics, another 7,454 valid CTCFs (synonyms) were succeeded in concept mapping. For CTCF recognition in physician notes, a series of experiments were performed to find out the best CRF feature set, which gained an F-score of 0.887. The RTBA achieved a better F-score of 0.919 by the CTCF dictionary created in this research. This research demonstrated that it is feasible to help the SNOMED CT with Chinese synonyms enrichment based on physician notes in CIS. With continuous maintenance of SCCSE, the CTCFs could be precisely retrieved from free text, and the CTCFs arranged in semantic hierarchy of SNOMED CT could greatly improve the meaningful use of electronic health record in China. The methodology is also useful for clinical synonyms enrichment in other languages.
Glinsky, Gennadi V.
2016-01-01
Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290
Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.
Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C
2015-01-01
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
The impact of transposable elements in environmental adaptation.
Casacuberta, Elena; González, Josefa
2013-03-01
Transposable elements (TEs) play an important role in the responsive capacity of their hosts in the face of environmental challenges. The variety of mechanisms by which TEs influence the capacity of adaptation of the host is as large as the variety of TEs and host genomes. For example, TEs might directly affect the function of individual genes, provide a mechanism for rapidly acquiring new genetic material and disseminate regulatory elements that can lead to the creation of stress-inducible regulatory networks. In this review, we summarize recent examples that are part of an increasing body of evidence suggesting a significant role of TEs in the host response to an ever-changing environment, both in prokaryote and in eukaryote organisms. We argue that in the near future, the increasing availability of genome sequences and the development of new tools to discover and analyse TE insertions will further show the relevant role of TEs in environmental adaptation. © 2013 Blackwell Publishing Ltd.
The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.
Hernández-Vega, Amayra; Minguillón, Carolina
2011-08-01
Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.
The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-01-01
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-12-20
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.
Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R
1999-04-01
The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.
Giorgetti, Luca; Galupa, Rafael; Nora, Elphège P.; Piolot, Tristan; Lam, France; Dekker, Job; Tiana, Guido; Heard, Edith
2015-01-01
Summary A new level of chromosome organization, Topologically Associating Domains (TADs), was recently uncovered by chromosome-confirmation-capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model’s predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation. PMID:24813616
Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.
Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R
2016-01-01
Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.
Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse
Kortschak, R. Daniel
2018-01-01
The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks
Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu
2016-01-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171
Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus
Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting
2017-01-01
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-01-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230
Potential Military Chemical/Biological Agents and Compounds
2005-01-01
synonym: fowl plague) Bluetongue virus Fungi Foot and mouth disease virus Colletorichum coffeanum var Goat pox virus Cochiliobolus...Swine vesicular disease virus) Virus Rinderpest virus (synonym: Cattle plague Barley Yellow Dwarf Virus Sheep pox virus Teschen disease virus...2) Occurrence. Infection has been documented throughout the US, in Canada, western and central Mexico , Panama, Costa Rica, Colombia, Argentina
Effects of Synonym Generation on Incidental and Intentional L2 Vocabulary Learning during Reading
ERIC Educational Resources Information Center
Barcroft, Joe
2009-01-01
This study examined effects of synonym generation on second language (L2) vocabulary learning during reading in both incidental and intentional vocabulary learning contexts. Spanish-speaking adult learners of L2 English (N = 114) at low- and high-intermediate proficiency levels read an English passage containing 10 target words translated in the…
ERIC Educational Resources Information Center
Davault, Julius M., III.
2009-01-01
One of the problems associated with automatic thesaurus construction is with determining the semantic relationship between word pairs. Quasi-synonyms provide a type of equivalence relationship: words are similar only for purposes of information retrieval. Determining such relationships in a thesaurus is hard to achieve automatically. The term…
SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression
Cao, Kaixiang; Collings, Clayton K.; Marshall, Stacy A.; Morgan, Marc A.; Rendleman, Emily J.; Wang, Lu; Sze, Christie C.; Sun, Tianjiao; Bartom, Elizabeth T.; Shilatifard, Ali
2017-01-01
The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. PMID:28487406
De Clercq, Inge; Vermeirssen, Vanessa; Van Aken, Olivier; Vandepoele, Klaas; Murcha, Monika W.; Law, Simon R.; Inzé, Annelies; Ng, Sophia; Ivanova, Aneta; Rombaut, Debbie; van de Cotte, Brigitte; Jaspers, Pinja; Van de Peer, Yves; Kangasjärvi, Jaakko; Whelan, James; Van Breusegem, Frank
2013-01-01
Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain–containing NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana. PMID:24045019
Xu, Zheng; Zhang, Guosheng; Duan, Qing; Chai, Shengjie; Zhang, Baqun; Wu, Cong; Jin, Fulai; Yue, Feng; Li, Yun; Hu, Ming
2016-03-11
Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technologies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases. In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation. We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guiding post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView .
He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun
2017-08-23
The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.
Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.
2007-01-01
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511
Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel
2008-01-01
Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs–scs, scs’–scs’, 1A2–1A2 and Wari–Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5–Su(Hw), dCTCF–Su(Hw), or dCTCF–Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements. PMID:18987002
Schroeder, Mark D.; Greer, Christina; Gaul, Ulrike
2011-01-01
The generation of metameric body plans is a key process in development. In Drosophila segmentation, periodicity is established rapidly through the complex transcriptional regulation of the pair-rule genes. The ‘primary’ pair-rule genes generate their 7-stripe expression through stripe-specific cis-regulatory elements controlled by the preceding non-periodic maternal and gap gene patterns, whereas ‘secondary’ pair-rule genes are thought to rely on 7-stripe elements that read off the already periodic primary pair-rule patterns. Using a combination of computational and experimental approaches, we have conducted a comprehensive systems-level examination of the regulatory architecture underlying pair-rule stripe formation. We find that runt (run), fushi tarazu (ftz) and odd skipped (odd) establish most of their pattern through stripe-specific elements, arguing for a reclassification of ftz and odd as primary pair-rule genes. In the case of run, we observe long-range cis-regulation across multiple intervening genes. The 7-stripe elements of run, ftz and odd are active concurrently with the stripe-specific elements, indicating that maternal/gap-mediated control and pair-rule gene cross-regulation are closely integrated. Stripe-specific elements fall into three distinct classes based on their principal repressive gap factor input; stripe positions along the gap gradients correlate with the strength of predicted input. The prevalence of cis-elements that generate two stripes and their genomic organization suggest that single-stripe elements arose by splitting and subfunctionalization of ancestral dual-stripe elements. Overall, our study provides a greatly improved understanding of how periodic patterns are established in the Drosophila embryo. PMID:21693522
Sexual-orientation-related differences in verbal fluency.
Rahman, Qazi; Abrahams, Sharon; Wilson, Glenn D
2003-04-01
This study examined the performance of 60 heterosexual men, 60 gay men, 60 heterosexual women, and 60 lesbians on 3 tests of verbal fluency known to show gender differences: letter, category, and synonym fluency. Gay men and lesbians showed opposite-sex shifts in their profile of scores. For letter fluency, gay men outperformed all other groups; lesbians showed the lowest scores. For category fluency, gay men and heterosexual women jointly outperformed lesbians and heterosexual men. Finally, gay men outperformed all other groups on synonym fluency, whereas lesbians and heterosexual men performed similarly. A difference between heterosexual men and women was demonstrated on category and synonym fluency only. The findings implicate within-sex differences in the functioning of the prefrontal and temporal cortices.
Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P
2018-01-01
Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.
Transcriptional switches in the control of macronutrient metabolism.
Wise, Alan
2008-06-01
This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.
Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish
Kratochwil, Claudius F.; Geissler, Laura; Irisarri, Iker; Meyer, Axel
2015-01-01
Abstract Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits—suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317
Sauer, Ursula G; Wächter, Thomas; Hareng, Lars; Wareing, Britta; Langsch, Angelika; Zschunke, Matthias; Alvers, Michael R; Landsiedel, Robert
2014-06-01
The knowledge-based search engine Go3R, www.Go3R.org, has been developed to assist scientists from industry and regulatory authorities in collecting comprehensive toxicological information with a special focus on identifying available alternatives to animal testing. The semantic search paradigm of Go3R makes use of expert knowledge on 3Rs methods and regulatory toxicology, laid down in the ontology, a network of concepts, terms, and synonyms, to recognize the contents of documents. Search results are automatically sorted into a dynamic table of contents presented alongside the list of documents retrieved. This table of contents allows the user to quickly filter the set of documents by topics of interest. Documents containing hazard information are automatically assigned to a user interface following the endpoint-specific IUCLID5 categorization scheme required, e.g. for REACH registration dossiers. For this purpose, complex endpoint-specific search queries were compiled and integrated into the search engine (based upon a gold standard of 310 references that had been assigned manually to the different endpoint categories). Go3R sorts 87% of the references concordantly into the respective IUCLID5 categories. Currently, Go3R searches in the 22 million documents available in the PubMed and TOXNET databases. However, it can be customized to search in other databases including in-house databanks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh
2017-01-01
Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection. PMID:29036192
Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh; Chen, Tzong-Yueh
2017-01-01
Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.
Baumann, G; Geisse, S; Sullivan, M
1991-03-01
The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.
Architectural and functional commonalities between enhancers and promoters
Kim, Tae-Kyung; Shiekhattar, Ramin
2015-01-01
Summary With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components including histone modifications and associated binding factors and their functional contribution to transcription. This review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms. PMID:26317464
Dufour, Yann S.; Donohue, Timothy J.
2015-01-01
Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950
[Effects of functional interactions between nonhomologous insulators Wari and Su(Hw)].
Erokhin, M M; Georgiev, P G; Chetverina, D A
2010-01-01
Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.
Kyrchanova, Olga; Mogila, Vladic; Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel
2016-07-01
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.
Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel
2016-01-01
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. PMID:27428541
Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj
2014-01-01
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses. PMID:25409524
Shen, Zhong-Yang; Zheng, Wei-Ping; Deng, Yong-Lin; Song, Hong-Li
2012-10-01
To provide a basis for improved prevention and treatment of hepatitis B virus (HBV) re-infection after liver transplantation, variations in the S and P genes of HBV under immunosuppression in vitro and their association with patient prognosis were investigated. For the in vitro study, HepG2.2.15 hepatocellular carcinoma cells stably producing HBV particles were treated with the immunosuppressants methylprednisolone (MP) and tacrolimus (FK506) at doses found to be non-toxic by the methylthiazolyl tetrazolium (MTT) cell viability assay. MP dose-dependently inhibited HBV DNA expression in HepG2.2.15 cells, while FK506 did not, as determined by quantitative real-time PCR (qRT-PCR). By gene sequencing, both MP and FK506 were found to cause variations in HBV S, P, and S/P overlapping regions. MP- but not FK506-induced mutations were common in the glucocorticoid response element of the P region, while both immunosuppressants caused mutations outside the nucleoside analogue resistance sites. For the in vivo study, 14 patients with HBV-related end-stage liver disease re-infected after liver transplantation, and 20 cases without HBV re-infection as controls, were studied. Seventy-five percent of re-infected recipients showed multi-loci amino acid mutations at different sites besides lamivudine (LAM)-resistant loci in the P region, including in the glucocorticoid response element. Fifty percent of re-infected recipients had mutations in the "a" determinant region and flanking sequences. Re-infection was associated with negative serum hepatitis B immunoglobulin (HBIG), as measured by a microparticle capture enzyme immunoassay. Nucleotide mutations in the S region caused missense or synonymous mutations, which caused synonymous mutations in the overlapping P region. These results showed that effects of immunosuppressants on HBV genes in vitro were different from those in clinical recipients. Positive HBV DNA and gene mutations pre-transplantation were factors affecting re-infection post-transplantation. Multiple mutations found in the P and S genes suggest that the formation of quasispecies contributes to HBV re-infection after liver transplantation.
Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj
2014-01-01
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
Common themes and differences in SAM recognition among SAM riboswitches
Price, Ian R.; Grigg, Jason C.; Ke, Ailong
2014-01-01
The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-L-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. PMID:24863160
Vrancken, Bram; Suchard, Marc A; Lemey, Philippe
2017-07-01
Analyses of virus evolution in known transmission chains have the potential to elucidate the impact of transmission dynamics on the viral evolutionary rate and its difference within and between hosts. Lin et al. (2015, Journal of Virology , 89/7: 3512-22) recently investigated the evolutionary history of hepatitis B virus in a transmission chain and postulated that the 'colonization-adaptation-transmission' model can explain the differential impact of transmission on synonymous and non-synonymous substitution rates. Here, we revisit this dataset using a full probabilistic Bayesian phylogenetic framework that adequately accounts for the non-independence of sequence data when estimating evolutionary parameters. Examination of the transmission chain data under a flexible coalescent prior reveals a general inconsistency between the estimated timings and clustering patterns and the known transmission history, highlighting the need to incorporate host transmission information in the analysis. Using an explicit genealogical transmission chain model, we find strong support for a transmission-associated decrease of the overall evolutionary rate. However, in contrast to the initially reported larger transmission effect on non-synonymous substitution rate, we find a similar decrease in both non-synonymous and synonymous substitution rates that cannot be adequately explained by the colonization-adaptation-transmission model. An alternative explanation may involve a transmission/establishment advantage of hepatitis B virus variants that have accumulated fewer within-host substitutions, perhaps by spending more time in the covalently closed circular DNA state between each round of viral replication. More generally, this study illustrates that ignoring phylogenetic relationships can lead to misleading evolutionary estimates.
NASA Astrophysics Data System (ADS)
Liu, Chengzhang; Wang, Xia; Xiang, Jianhai; Li, Fuhua
2012-09-01
Pacific white shrimp has become a major aquaculture and fishery species worldwide. Although a large scale EST resource has been publicly available since 2008, the data have not yet been widely used for SNP discovery or transcriptome-wide assessment of selective pressure. In this study, a set of 155 411 expressed sequence tags (ESTs) from the NCBI database were computationally analyzed and 17 225 single nucleotide polymorphisms (SNPs) were predicted, including 9 546 transitions, 5 124 transversions and 2 481 indels. Among the 7 298 SNP substitutions located in functionally annotated contigs, 58.4% (4 262) are non-synonymous SNPs capable of introducing amino acid mutations. Two hundred and fifty nonsynonymous SNPs in genes associated with economic traits have been identified as candidates for markers in selective breeding. Diversity estimates among the synonymous nucleotides were on average 3.49 times greater than those in non-synonymous, suggesting negative selection. Distribution of non-synonymous to synonymous substitutions (Ka/Ks) ratio ranges from 0 to 4.01, (average 0.42, median 0.26), suggesting that the majority of the affected genes are under purifying selection. Enrichment analysis identified multiple gene ontology categories under positive or negative selection. Categories involved in innate immune response and male gamete generation are rich in positively selected genes, which is similar to reports in Drosophila and primates. This work is the first transcriptome-wide assessment of selective pressure in a Penaeid shrimp species. The functionally annotated SNPs provide a valuable resource of potential molecular markers for selective breeding.
L2 vs. L1 Use of Synonymy: An Empirical Study of Synonym Use/Acquisition
ERIC Educational Resources Information Center
Liu, Dilin; Zhong, Shouman
2016-01-01
Synonymy is important but difficult for language learners to grasp. Using a forced-choice question instrument, along with corpus data as reference, this study examines the use of four sets of synonyms by intermediate/advanced Chinese EFL/ESL learners and native English speakers. The data analyses reveal several key findings, including a general…
Ferris, Clifford D.; Schmidt, B. Christian
2011-01-01
Abstract Comparison of the types of Ixala klotsi (Sperry) and Pterospoda nigrescens (Hulst) shows that they are the same species, with Ixala klotsi a synonym of Pterospoda nigrescens. A lectotype of Selidosema nigrescens is designated, and the types of Selidosema nigrescens and Ixala klotsi are illustrated. Male and female habitus and genitalia of Pterospoda nigrescens are illustrated. PMID:22207792
USDA-ARS?s Scientific Manuscript database
The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...
Revision of the Plant Bug Genus Tytthus (Hemiptera, Heteroptera, Miridae, Phylinae)
Henry, Thomas J.
2012-01-01
Abstract The phyline plant bug genus Tytthus Fieber, previously containing 19 species, is revised. Isoproba Osborn and Drake, 1915, incorrectly placed in the subfamily Bryocorinae, tribe Dicyphini, is synonymized as a junior synonym of Tytthus Fieber, syn. n.; the only included species, Isoproba picea Osborn and Drake is transferred to Tytthus, comb. n., as the senior synonym of Tytthus hondurensis Carvalho, syn. n.; and Tytthus koreanus Josifov and Kerzhner, 1972 is synonymized with Tytthus chinensis (Stål 1860), syn. n.; and a lectotype for Tytthus parviceps is designated. The six new species Tytthus femoralis from Cuba, Ecuador, Guatemala, Jamaica, Mexico, and Peru,Tytthus fuscicornis from New Mexico (USA), Tytthus mexicanus from Mexico, Tytthus pallidus from Brazil and Panama, Tytthus uniformis from Arizona and New Mexico (USA), and Tytthus wheeleri from the eastern United States are described, bringing the total number of species for the genus to 24. A color adult habitus illustration of Tytthus wheeleri, color photographs for each species (except Tytthus juturnaiba Carvalho and Wallerstein), illustrations of male genitalia, scanning electron photomicrographs of selected structures of certain species, and an identification key are provided to facilitate species recognition. A phylogenetic analysis is offered to help infer relationships. PMID:23077429
Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.
Karniychuk, Uladzimir U
2016-09-02
Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-01-01
Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-03-01
Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.
The role of heterologous chloroplast sequence elements in transgene integration and expression.
Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry
2010-04-01
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.
Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry
2010-01-01
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101
Schartl, Manfred; Schories, Susanne; Wakamatsu, Yuko; Nagao, Yusuke; Hashimoto, Hisashi; Bertin, Chloé; Mourot, Brigitte; Schmidt, Cornelia; Wilhelm, Dagmar; Centanin, Lazaro; Guiguen, Yann; Herpin, Amaury
2018-01-29
Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.
Yamasu, K; Wilt, F H
1999-02-01
The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.
Poitevin, Eric
2016-01-01
The minerals and trace elements that account for about 4% of total human body mass serve as materials and regulators in numerous biological activities in body structure building. Infant formula and milk products are important sources of endogenic and added minerals and trace elements and hence, must comply with regulatory as well as nutritional and safety requirements. In addition, reliable analytical data are necessary to support product content and innovation, health claims, or declaration and specific safety issues. Adequate analytical platforms and methods must be implemented to demonstrate both the compliance and safety assessment of all declared and regulated minerals and trace elements, especially trace-element contaminant surveillance. The first part of this paper presents general information on the mineral composition of infant formula and milk products and their regulatory status. In the second part, a survey describes the main techniques and related current official methods determining minerals and trace elements in infant formula and milk products applied for by various international organizations (AOAC INTERNATIONAL, the International Organization for Standardization, the International Dairy Federation, and the European Committe for Standardization). The third part summarizes method officialization activities by Stakeholder Panels on Infant Formula and Adult Nutritionals and Stakeholder Panel on Strategic Food Analytical Methods. The final part covers a general discussion focusing on analytical gaps and future trends in inorganic analysis that have been applied for in infant formula and milk-based products.
Pereira, Glauber B; Meng, Fanxue; Kockara, Neriman T; Yang, Baoli; Wight, Patricia A
2013-02-01
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is non-functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. © 2012 International Society for Neurochemistry.
Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko
2013-10-01
The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.
Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen
2013-01-01
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946
Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A
2018-03-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Genome-wide inference of regulatory networks in Streptomyces coelicolor.
Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou
2010-10-18
The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.
Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.
2018-01-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.
Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb
2014-10-23
A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.
Negi, Pooja; Rai, Archana N.; Suprasanna, Penna
2016-01-01
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577
Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development.
Maconochie, M K; Nonchev, S; Manzanares, M; Marshall, H; Krumlauf, R
2001-05-15
During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates. Copyright 2001 Academic Press.
He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling
2017-01-01
How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A
2013-11-01
Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.
Wagstaff, Bradley J; Kroutter, Emily N; Derbes, Rebecca S; Belancio, Victoria P; Roy-Engel, Astrid M
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ~18 and ~40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time.
Wagstaff, Bradley J.; Kroutter, Emily N.; Derbes, Rebecca S.; Belancio, Victoria P.; Roy-Engel, Astrid M.
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ∼18 and ∼40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time. PMID:22918960
Naville, Magali; Gautheret, Daniel
2010-01-01
Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.
Defective control of pre–messenger RNA splicing in human disease
Shkreta, Lulzim
2016-01-01
Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853
Munde, Elly O; Raballah, Evans; Okeyo, Winnie A; Ong'echa, John M; Perkins, Douglas J; Ouma, Collins
2017-04-20
Improved understanding of the molecular mechanisms involved in pediatric severe malarial anemia (SMA) pathogenesis is a crucial step in the design of novel therapeutics. Identification of host genetic susceptibility factors in immune regulatory genes offers an important tool for deciphering malaria pathogenesis. The IL-23/IL-17 immune pathway is important for both immunity and erythropoiesis via its effects through IL-23 receptors (IL-23R). However, the impact of IL-23R variants on SMA has not been fully elucidated. Since variation within the coding region of IL-23R may influence the pathogenesis of SMA, the association between IL-23R rs1884444 (G/T), rs7530511 (C/T), and SMA (Hb < 6.0 g/dL) was examined in children (n = 369, aged 6-36 months) with P. falciparum malaria in a holoendemic P. falciparum transmission area. Logistic regression analysis, controlling for confounding factor of anemia, revealed that individual genotypes of IL-23R rs1884444 (G/T) [GT; OR = 1.34, 95% CI = 0.78-2.31, P = 0.304 and TT; OR = 2.02, 95% CI = 0.53-7.74, P = 0.286] and IL-23R rs7530511 (C/T) [CT; OR = 2.6, 95% CI = 0.59-11.86, P = 0.202 and TT; OR = 1.66, 95% CI = 0.84-3.27, P = 0.142] were not associated with susceptibility to SMA. However, carriage of IL-23R rs1884444T/rs7530511T (TT) haplotype, consisting of both mutant alleles, was associated with increased susceptibility to SMA (OR = 1.12, 95% CI = 1.07-4.19, P = 0.030). Results presented here demonstrate that a haplotype of non-synonymous IL-23R variants increase susceptibility to SMA in children of a holoendemic P. falciparum transmission area.
USDA-ARS?s Scientific Manuscript database
Oxycerina gen.n. of the Oriental Stratiomyinae including two new species, O. merzi sp.n. and O. sabaha sp.n., is described and compared with related genera of Stratiomyinae and Raphiocerinae. The monotypic genus Scapanocnema Enderlein, 1914 is considered to be a synonym of Odontomyia Meigen, 1803 a...
Synonym extraction and abbreviation expansion with ensembles of semantic spaces.
Henriksson, Aron; Moen, Hans; Skeppstedt, Maria; Daudaravičius, Vidas; Duneld, Martin
2014-02-05
Terminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. A combination of two distributional models - Random Indexing and Random Permutation - employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora - a corpus of clinical text and a corpus of medical journal articles - further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms. This study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models - with different model parameters - and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks.