Sample records for synoptic maps constructed

  1. SOHO EIT Carrington maps from synoptic full-disk data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Newmark, J. S.; Gurman, J. B.; Delaboudiniere, J. P.; Clette, F.; Gibson, S. E.

    1997-01-01

    The solar synoptic maps, obtained from observations carried out since May 1996 by the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), are presented. The maps were constructed for each Carrington rotation with the calibrated data. The off-limb maps at 1.05 and 1.10 solar radii were generated for three coronal lines using the standard applied to coronagraph synoptic maps. The maps reveal several aspects of the solar structure over the entire rotation and are used in the whole sun month modeling campaign. @txt extreme-ultraviolet imaging telescope

  2. Synoptic maps constructed from brightness observations of Thomson scattering by heliospheric electrons

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B.; Schwenn, R.

    1991-01-01

    Observations of the Thomson scattering brightness by electrons in the inner heliosphere provide a means of probing the heliospheric electron distributions. An extensive data base of Thomson scattering observations, stretching over many years, is available from the zodiacal light photometers on board the two Helios spacecraft. A survey of these data is in progress, presenting these scattering intensities in the form of synoptic maps for successive Carrington rotations. The Thomson scattering maps reflect conditions at typically several tenths of an astronomical unit from the sun. Some representative examples from the survey in comparison with other solar/heliospheric data, such as in situ observations of the Helios plasma experiment and synoptic maps constructed from magnetic field, H alpha and K-coronameter data are presented. The comparison will provide some information about the extension of solar surface features into the inner heliosphere.

  3. Synoptic maps of heliospheric Thomson scattering brightness from 1974-1985 as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1992-01-01

    We display the electron Thomson scattering intensity of the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps. The technique extrapolates the brightness information from each photometer sector near the Sun and constructs a latitude/longitude map at a given solar height. These data are unique in that they give a determination of heliospheric structures out of the ecliptic above the primary region of solar wind acceleration. The spatial extent of bright, co-rotating heliospheric structures is readily observed in the data north and south of the ecliptic plane where the Helios photometer coverage is most complete. Because the technique has been used on the complete Helios data set from 1974 to 1985, we observe the change in our synoptic maps with solar cycle. Bright structures are concentrated near the heliospheric equator at solar minimum, while at solar maximum bright structures are found at far higher heliographic latitudes. A comparison of these maps with other forms of synoptic data are shown for two available intervals.

  4. Marine Air Penetration: The Effect of Synoptic-scale Change on Regional Climate

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.

    2016-12-01

    Marine air penetration (MAP) around the California San Francisco Bay Delta region has a pronounced impact on local temperature and air quality, and is highly correlated with inland wind penetration and hence wind power generation. Observational MAP criteria are defined based on the 900hPa across-shore wind speed greater than or equal to 3m/s at the Oakland radiosonde station, and a surface temperature difference greater than or equal to 7 degrees Celsius between two California Irrigation Management Information System (CIMIS) stations at Fresno, CA and Lodi, CA. This choice reflects marine cooling of Lodi, and was found to be highly correlated with inland specific humidity and breeze front activity. The observational MAP criteria were tuned based on small biases from Climate Forecast System Reanalysis (CFSR) to selected MAP days from CFSR, to identify synoptic-scale indicators associated with MAP events. A multivariate logistic regression model was constructed based on the selected five synoptic indicators from CFSR and demonstrated good model performance. Two synoptic-scale patterns were identified and analyzed out of the 32 categories from the regression model, suggesting a strong influence from the off-shore trough and the inland thermal ridge on MAP events. Future projection of MAP events included the 21st century Coupled Model Intercomparison Project Phase 5 (CMIP5), and Variable resolution in the Community Earth System Model (VR-CESM). Both showed no statistically significant trend associated with MAP events through the end of this century under both Representative Concentration Pathways (RCP) 2.6 and RCP 8.5.

  5. The structure of the inner heliosphere from Pioneer Venus and IMP observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.

  6. Synoptic Sun during the first Whole Sun Month Campaign: August 10 to September 8, 1996

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Thompson, B. J.; Gibson, S. E.; Alexander, D.; Fludra, A.; Gopalswamy, N.; Hoeksema, J. T.; Lecinski, A.; Strachan, L.

    1999-05-01

    A large number of synoptic maps from a variety of instruments are used to show the general morphology of the Sun at the time of the First Whole Sun Month Campaign. The campaign was conducted from August 10 to September 8, 1996. The synoptic maps cover the period from Carrington rotation 1912/253° to Carrington rotation 1913/45°. The synoptic maps encompass both on-disk data and limb data from several heights in the solar atmosphere. The maps are used to illustrate which wavelengths and data sets show particular features, such as active regions and coronal holes. Of particular interest is the equatorial coronal hole known as the ``elephant's trunk,'' which is clearly evident in the synoptic maps of on-disk data. The elephant's trunk is similar in appearance to the Skylab-era, ``Boot of Italy,'' equatorial coronal hole. The general appearance of the limb maps is explained as well. The limb maps also show evidence for equatorial coronal holes.

  7. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  8. Automated Identification of Coronal Holes from Synoptic EUV Maps

    NASA Astrophysics Data System (ADS)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  9. Synoptic maps for the heliospheric Thomson scattering brightness as observed by the Helios photometers

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Schwenn, R.

    1991-01-01

    A method for displaying the electron Thomson scattering intensity in the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps is presented. The method is based on the assumption that the bulk of the scattering electrons along the line of sight is located near the point closest to the sun. Inner-heliospheric structures will generally be represented properly in these synoptic maps only if they are sufficiently long-lived (that is, a significant fraction of a solar rotation period). The examples of Helios synoptic maps discussed (from data in April 1976 and November 1978), indicate that it is possible to identify large-scale, long-lived density enhancements in the inner heliosphere. It is expected that the Helios synoptic maps will be particularly useful in the study of corotating structures (e.g., streamers), and the maps will be most reliable during periods when few transient featurs are present in the corona, i.e., during solar minimum.

  10. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanism in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.

    1995-01-01

    We proposed model-data intercomparison studies for UARS data. In the past three months, we have been working on constructing analysis tools to diagnose the UARS data. The 'Trajectory mapping' technique, which was developed by Morris (1994), is adaptable to generate synoptic maps of trace gas data from asynoptic observations. An in-house trajectory model (kinematic methods following Merrill et al., 1986 and Pickering et al., 1994) has been developed in AER under contract with NASA/ACMAP and the trajectory mapping tool has been applied to analyze UARS measurement.

  11. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III; Mayfield, E. B.

    1973-01-01

    The real-time solar monitoring information supplied to support SPARCS-equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and results of the synoptic study of solar active regions at 3.3-mm wavelength are presented. Forecasted flares in the 24-hour forecasts were 81% accurate, and those in the 28-day forecasts were 97% accurate. Synoptic radio maps at 3.3-mm wavelength are presented for twenty-three solar rotations in 1967 and 1968, as well as synoptic flare charts for the same period.

  12. What If We Had A Magnetograph at Lagrangian L5?

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Bertello, Luca; MacNeice, Peter; Petrie, Gordon

    2016-01-01

    Synoptic Carrington charts of magnetic field are routinely used as an input for modelings of solar wind and other aspects of space weather forecast. However, these maps are constructed using only the observations from the solar hemisphere facing Earth. The evolution of magnetic flux on the "farside" of the Sun, which may affect the topology of coronal field in the "nearside," is largely ignored. It is commonly accepted that placing a magnetograph in Lagrangian L5 point would improve the space weather forecast. However, the quantitative estimates of anticipated improvements have been lacking. We use longitudinal magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) to investigate how adding data from L5 point would affect the outcome of two major models used in space weather forecast.

  13. Sampling theory for asynoptic satellite observations. I Space-time spectra, resolution, and aliasing. II - Fast Fourier synoptic mapping

    NASA Technical Reports Server (NTRS)

    Salby, M. L.

    1982-01-01

    An evaluation of the information content of asynoptic data taken in the form of nadir sonde and limb scan observations is presented, and a one-to-one correspondence is established between the alias-free data and twice-daily synoptic maps. Attention is given to space and time limitations of sampling and the orbital geometry is discussed. The sampling pattern is demonstrated to determine unique space-time spectra at all wavenumbers and frequencies. Spectral resolution and aliasing are explored, while restrictions on sampling and information content are defined. It is noted that irregular sampling at high latitudes produces spurious contamination effects. An Asynoptic Sampling Theorem is thereby formulated, as is a Synoptic Retrieval Theorem, in the second part of the article. In the latter, a procedure is developed for retrieving the unique correspondence between the asymptotic data and the synoptic maps. Applications examples are provided using data from the Nimbus-6 satellite.

  14. Preserving a Unique Archive for Long-Term Solar Variability Studies

    NASA Astrophysics Data System (ADS)

    Webb, David F.; Hewins, Ian; McFadden, Robert; Emery, Barbara; Gibson, Sarah; Denig, William

    2016-05-01

    In 1964 (solar cycle 20) Patrick McIntosh began creating hand-drawn synoptic maps of solar activity, based on Hydrogen alpha (Hα) imaging measurements. These synoptic maps were unique because they traced the polarity inversion lines (PILs), connecting widely separated filaments, fibril patterns and plage corridors to reveal the large-scale organization of the solar magnetic field. He and his assistants later included coronal hole (CH) boundaries to the maps, usually from ground-based He-I 10830 images. They continued making these maps until 2010 (the start of solar cycle 24), yielding more than 40 years (~ 540 Carrington rotations) or nearly four complete solar cycles (SCs) of synoptic maps. The McIntosh collection of maps forms a unique and consistent set of global solar magnetic field data, and are unique tools for studying the structure and evolution of the large-scale solar fields and polarity boundaries, because: 1) they have excellent spatial resolution for defining polarity boundaries, 2) the organization of the fields into long-lived, coherent features is clear, and 3) the data are relatively homogeneous over four solar cycles. After digitization and archiving, these maps -- along with computer codes permitting efficient searches of the map arrays -- will be made publicly available at NOAA’s National Centers for Environmental Information (NCEI) in their final, searchable form. This poster is a progress report of the project so far and some suggested scientific applications.

  15. Non-Susceptible Landslide Areas in Italy and in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Alvioli, Massimiliano; Ardizzone, Francesca; Guzzetti, Fausto; Marchesini, Ivan; Rossi, Mauro

    2014-05-01

    Landslide susceptibility is the likelihood of a landslide occurring in a given area. Over the past three decades, researchers, and planning and environmental organisations have worked to assess landslide susceptibility at different geographical scales, and to produce maps portraying landslide susceptibility zonation. Little effort was made to determine where landslides are not expected, where susceptibility is null, or negligible. This is surprising because planners and decision makers are also interesting in knowing where landslides are not foreseen, or cannot occur in an area. We propose a method for the definition of non-susceptible landslide areas, at the synoptic scale. We applied the method in Italy and to the territory surrounding the Mediterranean Sea and we produced two synoptic-scale maps showing areas where landslides are not expected in Italy and in the Mediterranean area. To construct the method we used digital terrain elevation and landslide information. The digital terrain consisted in the 3-arc-second SRTM DEM, the landslide information was obtained for 13 areas in Italy where landslide inventory maps were available to us. We tested three different models to determine the non-susceptible landslide areas, including a linear model (LR), a quantile linear model (QLR), and a quantile non-linear model (QNL). Model performances have been evaluated using independent landslide information represented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia - IFFI). Best results were obtained using the QNL model. The corresponding zonation of non- susceptible landslide areas was intersected in a GIS with geographical census data for Italy. The results show that the 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility was expected to be null or negligible, while the remaining 42.5% in areas where some landslide susceptibility was significant or not negligible. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non- susceptibility zonation using independent landslide information for three study areas in Spain. Results proved that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the Mediterranean area. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible and susceptible landslide areas, at the synoptic scale.

  16. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    USGS Publications Warehouse

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  17. Using Coronal Hole Maps to Constrain MHD Models

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  18. Description of data on the Nimbus 7 LIMS map archive tape: Temperature and geopotential height

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.; Remsberg, E. E.; Grose, W. L.; Russell, J. M., III; Marshall, B. T.; Lingenfelser, G.

    1986-01-01

    The process by which the analysis of the Limb Infared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of temperature and geopotential height is described. In addition to a detailed description of the analysis procedure, several interesting features in the data are discussed and these features are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components. While some suggestions are made for an improved analysis of the data, it is shown that, in general, the maps are an excellent estimation of the synoptic fields.

  19. STUDY OF THE 3D GEOMETRIC STRUCTURE AND TEMPERATURE OF A CORONAL CAVITY USING THE LIMB SYNOPTIC MAP METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karna, N.; Pesnell, W. Dean; Webber, S. A. Hess

    2015-09-10

    We present the three-dimensional geometric structure and thermal properties of a coronal cavity deduced from limb synoptic maps. The observations are extreme ultraviolet images from the Atmospheric Imager Assembly (AIA) and magnetic images from the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory. We describe a limb synoptic-map method used to effectively identify and measure cavities from annuli of radiance above the solar limb. We find that cavities are best seen in the 211, 193, and 171 Å passbands. The prominence associated with each cavity is best seen in the 304 Å synoptic maps. We also estimate themore » thermal properties of the cavity and surrounding plasma by combining the AIA radiances with a differential emission measure analysis. This paper focuses on one long cavity from a catalog of coronal cavities that we are developing. Cavities in this catalog are designated by a coded name using the Carrington Rotation number and position. Cavity C211347177N was observed during Carrington Rotation 2113 at the northwestern limb of the solar disk with an average latitude of 47° N and a central longitude of 177°. We showed the following. (1) The cavity is a long tube with an elliptical cross-section with ratios of the length to width and the length to height of 11:1 and 7:1, respectively. (2) The cavity is about 1360 Mm long, or 170° in longitude. (3) It is tilted in latitude. (4) And it is slightly hotter than its surroundings.« less

  20. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  1. Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.

    PubMed

    Jiang, Ningbo; Betts, Alan; Riley, Matt

    2016-02-01

    This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.

  2. Variations in synoptic-scale eddy activity during the life cycles of persistent flow anomalies

    NASA Technical Reports Server (NTRS)

    Dole, Randall M.; Neilley, Peter P.

    1991-01-01

    The objective of the study was to identify how synoptic-scale eddy activity varies throughout the life cycles of major scale flow anomalies. In particular, composite analyses of various measures of synoptic-scale eddy activity are constructed, with the composites obtained relative to the onset and termination times of cases typically associated with either blocking or abnormally intense zonal flows. The potential mechanisms that are likely to contribute to the observed changes in eddy behavior are discussed.

  3. Areas of Polar Coronal Holes from 1996 Through 2010

    NASA Technical Reports Server (NTRS)

    Webber, Hess S. A.; Karna, N.; Pesnell, W. D.; Kirk, M. S.

    2014-01-01

    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.

  4. The synoptic maps of Br from HMI observations

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham

    2012-03-01

    The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.

  5. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  6. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  7. Rawinsonde sounding data and synoptic conditions for the CCOPE-VAS experiment, July 1981

    NASA Technical Reports Server (NTRS)

    Henry, W. K.

    1982-01-01

    During the cooperative convective precipitation experiment, eight times were selected as VISSR atmospheric sounder (VAS) observation periods. A synoptic analysis of the surface and the 850, 700, 500, 300, and 200 maps for those eight periods. The satellite and radar data for those periods are included with the analyses. There were five rawinsonde stations in eastern Montana which made extra soundings for the VAS periods.

  8. LSST Data Management

    NASA Astrophysics Data System (ADS)

    O'Mullane, William; LSST Data Management Team

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) is an 8-m optical ground-based telescope being constructed on Cerro Pachon in Chile. LSST will survey half the sky every few nights in six optical bands. The data will be transferred to the data center in North America and within 60 seconds it will be reduced using difference imaging and an alert list be generated for the community. Additionally, annual data releases will be constructed from all the data during the 10-year mission, producing catalogs and deep co-added images with unprecedented time resolution for such a large region of sky. In the paper we present the current status of the LSST stack including the data processing components, Qserv database and data visualization software, describe how to obtain it, and provide a summary of the development road map. We are also discuss the move to Python3 and timeline for dropping Python2.

  9. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  10. H-alpha synoptic charts of solar activity during the first year of solar cycle 20, October 1964 - August 1965. [Skylab program

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1975-01-01

    Solar activity during the period October 28, 1964 through August 27, 1965 is presented in the form of charts for each solar rotation constructed from observations made with the chromospheric H-alpha spectra line. These H-alpha synoptic charts are identical in format and method of construction to those published for the period of Skylab observations. The sunspot minimum marking the start of Solar Cycle 20 occurred in October, 1964; therefore, charts represent solar activity during the first year of this solar cycle.

  11. Retrospective Conversion of Solar Data Printed in "Synoptic Maps of the Solar Chromosphere": A Scientific and Librarianship Project

    NASA Astrophysics Data System (ADS)

    Laurenceau, A.; Aboudarham, J.; Renié, C.

    2015-04-01

    Between 1928 and 2003, the Observatoire de Paris published solar activity maps and their corresponding data tables, first in the Annals of the Meudon Observatory, then in the Synoptic Maps of the Solar Chromosphere. These maps represent the main solar structures in a single view and spread out on a complete Carrington rotation as well as tables of associated data, containing various information on these structures such as positions, length, morphological characteristics, and behavior. Since 2003, these maps and data tables have not been released in print, as they are only published on the online BASS2000 database, the solar database maintained by LESIA (Laboratory for space studies and astrophysical instruments). In order to make the first 80 years of observations which were available only in paper accessible and usable, the LESIA and the Library of the Observatory have started a project to digitize the publications, enter the data with the assistance of a specialized company, and then migrate the files obtained in BASS2000 and in the Heliophysics Features Catalog created in the framework of the European project HELIO.

  12. Improving Prediction of Large-scale Regime Transitions

    NASA Astrophysics Data System (ADS)

    Gyakum, J. R.; Roebber, P.; Bosart, L. F.; Honor, A.; Bunker, E.; Low, Y.; Hart, J.; Bliankinshtein, N.; Kolly, A.; Atallah, E.; Huang, Y.

    2017-12-01

    Cool season atmospheric predictability over the CONUS on subseasonal times scales (1-4 weeks) is critically dependent upon the structure, configuration, and evolution of the North Pacific jet stream (NPJ). The NPJ can be perturbed on its tropical side on synoptic time scales by recurving and transitioning tropical cyclones (TCs) and on subseasonal time scales by longitudinally varying convection associated with the Madden-Julian Oscillation (MJO). Likewise, the NPJ can be perturbed on its poleward side on synoptic time scales by midlatitude and polar disturbances that originate over the Asian continent. These midlatitude and polar disturbances can often trigger downstream Rossby wave propagation across the North Pacific, North America, and the North Atlantic. The project team is investigating the following multiscale processes and features: the spatiotemporal distribution of cyclone clustering over the Northern Hemisphere; cyclone clustering as influenced by atmospheric blocking and the phases and amplitudes of the major teleconnection indices, ENSO and the MJO; composite and case study analyses of representative cyclone clustering events to establish the governing dynamics; regime change predictability horizons associated with cyclone clustering events; Arctic air mass generation and modification; life cycles of the MJO; and poleward heat and moisture transports of subtropical air masses. A critical component of the study is weather regime classification. These classifications are defined through: the spatiotemporal clustering of surface cyclogenesis; a general circulation metric combining data at 500-hPa and the dynamic tropopause; Self Organizing Maps (SOM), constructed from dynamic tropopause and 850 hPa equivalent potential temperature data. The resultant lattice of nodes is used to categorize synoptic classes and their predictability, as well as to determine the robustness of the CFSv2 model climate relative to observations. Transition pathways between these synoptic classes, both in the observations and the CFSv2, are investigated. At a future point in the project, the results from these multiscale investigations will be integrated in the form of a prediction tool for important variables (temperatures, precipitation and their extremes) for the 1-4 week timeframe.

  13. Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs

    NASA Astrophysics Data System (ADS)

    Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.

    2012-04-01

    This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre-conditioning climatic information. Nevertheless, the best results are attained when both synoptic and climatic predictors are used simultaneously as predictors, in particular for the two western clusters, where correlation coefficient values are higher than 0.7. Finally, we have used WTC composite maps to characterize the typical synoptic configurations that favor high values of BA. These patterns correspond to dry and warm fluxes, associated with anticyclonic regimes, which foster fire ignition (Pereira et al., 2005). Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. COST733, 2011: "COST 733 Wiki - Harmonisation and Applications of Weather Type Classifications for European regions or COST733 spatial domains for Europe". Available at http://geo21.geo.uni-augsburg.de/cost733wiki/Cost733_Wiki_Main [accessed 1 September 2011].

  14. Surface features of central North America: a synoptic view from computer graphics

    USGS Publications Warehouse

    Pike, R.J.

    1991-01-01

    A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author

  15. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.

  16. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinqiang; Li, Jun; Xia, Xiangao

    In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less

  17. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements

    DOE PAGES

    Zhang, Jinqiang; Li, Jun; Xia, Xiangao; ...

    2016-11-28

    In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less

  18. Analysis and Modeling of Coronal Holes Observed by CORONAS-1. 1; Morphology and Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Obridko, Vladmir; Formichev, Valery; Kharschiladze, A. F.; Zhitnik, Igor; Slemzin, Vladmir; Hathaway, David H.; Wu, Shi T.

    1998-01-01

    Two low-latitude coronal holes observed by CORONAS-1 in April and June 1994 are analyzed together with magnetic field measurements obtained from Wilcox and Kitt Peak Solar Observatories. To estimate the comparable temperature of these two coronal holes, the YOHKOH observations are also utilized. Using this information, we have constructed three-dimensional magnetic field lines to illustrate the geometrical configuration of these coronal holes. The calculated synoptic maps are used to determine the existence of closed and open field regions of the hole. Finally, we have correlated the characteristics of two coronal holes with observed solar wind speed. We found that the brighter coronal hole has high speed solar wind, and the dimmer coronal hole has low speed solar wind.

  19. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.

  20. A synoptic climatology for forest fires in the NE US and future implications for GCM simulations

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu

    1994-01-01

    We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...

  1. Where is the USA Corn Belt, and how is it changing?

    USDA-ARS?s Scientific Manuscript database

    The “Corn Belt” is a commonly used term, but often referenced as a vaguely defined region in the Midwest USA. A few key studies have delineated synoptic maps of the Corn Belt boundaries going back to the early 20th century, but a modern flexible and accessible framework for mapping the Corn Belt in ...

  2. Characterizing synoptic and cloud variability in the northern atlantic using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Fish, Carly

    Low-level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast Atlantic region are highly variable in space and time and are a research focus for many atmospheric scientists. Characterizing the synoptic patterns in the region through the implementation of self-organizing maps (SOMs) enables a climatological grasp of cloud and atmospheric fields. ERA -- Interim and MODIS provide the platform to explore the variability in the Northeast Atlantic for over 30 years of data. Station data comes from CAP -- MBL on Graciosa Island in the Azores, which lies in a strong gradient of cloud and other atmospheric fields, offer an opportunity to incorporate an observational aspect for the years of 2009 and 2010.

  3. Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.

  4. Using SysML for verification and validation planning on the Large Synoptic Survey Telescope (LSST)

    NASA Astrophysics Data System (ADS)

    Selvy, Brian M.; Claver, Charles; Angeli, George

    2014-08-01

    This paper provides an overview of the tool, language, and methodology used for Verification and Validation Planning on the Large Synoptic Survey Telescope (LSST) Project. LSST has implemented a Model Based Systems Engineering (MBSE) approach as a means of defining all systems engineering planning and definition activities that have historically been captured in paper documents. Specifically, LSST has adopted the Systems Modeling Language (SysML) standard and is utilizing a software tool called Enterprise Architect, developed by Sparx Systems. Much of the historical use of SysML has focused on the early phases of the project life cycle. Our approach is to extend the advantages of MBSE into later stages of the construction project. This paper details the methodology employed to use the tool to document the verification planning phases, including the extension of the language to accommodate the project's needs. The process includes defining the Verification Plan for each requirement, which in turn consists of a Verification Requirement, Success Criteria, Verification Method(s), Verification Level, and Verification Owner. Each Verification Method for each Requirement is defined as a Verification Activity and mapped into Verification Events, which are collections of activities that can be executed concurrently in an efficient and complementary way. Verification Event dependency and sequences are modeled using Activity Diagrams. The methodology employed also ties in to the Project Management Control System (PMCS), which utilizes Primavera P6 software, mapping each Verification Activity as a step in a planned activity. This approach leads to full traceability from initial Requirement to scheduled, costed, and resource loaded PMCS task-based activities, ensuring all requirements will be verified.

  5. Atmospheric circulation patterns and spatial climatic variations in Beringia

    NASA Astrophysics Data System (ADS)

    Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.

    1998-08-01

    Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.

  6. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  7. Assessing the Potential Impact of the 2015-2016 El Niño on the California Rim Fire Burn Scar Through Debris Flow Hazard Mapping

    NASA Astrophysics Data System (ADS)

    Larcom, S.; Grigsby, S.; Ustin, S.

    2015-12-01

    Wildfires are a perennial issue for California, and the current record-breaking drought is exacerbating the potential problems for the state. Fires leave behind burn scars characterized by diminished vegetative cover and abundant bare soil, and these areas are especially susceptible to storm events that pose an elevated risk of debris flows and sediment-rich sheet wash. This study focused on the 2013 Rim Fire that devastated significant portions of Stanislaus National Forest and Yosemite National Park, and utilized readily available NASA JPL SRTM elevation data and AVIRIS spectral imaging data to construct a debris flow hazard map that assesses mass wasting risk for the Rim Fire burn scar. This study consisted entirely of remotely sensed data, which was processed in software programs such as ENVI, GRASS GIS, ArcMap, and Google Earth. Parameters that were taken into consideration when constructing this map include hill slope (greater than 30 percent rise), burn severity (assessed by calculating NDVI), and erodibility of the soil (by comparing spectral reflectance of AVIRIS images with the reference spectra of illite). By calculating percent of total burn area, 6% was classified as low risk, 55% as medium risk, and 39% as high risk. In addition, this study assessed the importance of the 2015-2016 El Niño, which is projected to be one of the strongest on record, by studying historic rainfall records and storm events of past El Niño's. Hydrological and infrastructural problems that could be caused by short-term convective or long-term synoptic storms and subsequent debris flows were explored as well.

  8. Investigation of the agricultural resources in Sri Lanka

    NASA Technical Reports Server (NTRS)

    Silva, A. T. M.; Nanayakkara, S. D. F. C.; Herath, L. S. K. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. It is observed that LANDSAT data is easily adaptable to photogrammetric techniques. With such adaptations, revision of topographic or thematic maps can be performed at very little cost. Revision of maps up to scale 1:100,000 (or better) can be performed. The LANDSAT image has definite advantages over the standard methods in areas of extensive development where the synoptic view of the LANDSAT image offers the required control in the form of distant mapped data in one frame.

  9. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.

  10. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector

    NASA Astrophysics Data System (ADS)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors ( Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  11. A synoptic approach for analyzing erosion as a guide to land-use planning

    USGS Publications Warehouse

    Brown, William M.; Hines, Walter G.; Rickert, David A.; Beach, Gary L.

    1979-01-01

    A synoptic approach has been devised to delineate the relationships that exist' between physiographic factors, land-use activities, and resultant erosional problems. The approach involves the development of an erosional-depositional province map and a numerical impact matrix for rating the potential for erosional problems. The province map is prepared by collating data on the natural terrain factors that exert the dominant controls on erosion and deposition in each basin. In addition, existing erosional and depositional features are identified and mapped from color-infrared, high-altitude aerial imagery. The axes of the impact matrix are composed of weighting values for the terrain factors used in developing the map and by a second set of values for the prevalent land-use activities. The body of the matrix is composed of composite erosional-impact ratings resulting from the product of the factor sets. Together the province map and problem matrix serve as practical tools for estimating the erosional impact of human activities on different types of terrain. The approach has been applied to the Molalla River basin, Oregon, and has proven useful for the recognition of problem areas. The same approach is currently being used by the State of Oregon (in the 208 assessment of nonpoint-source pollution under Public Law 92-500) to evaluate the impact of land-management practices on stream quality.

  12. Structure and Variability of Water Vapor in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    2001-01-01

    Upper-tropospheric humidity (UTH) has been synoptically mapped via an algorithm that rejects small-scale undersampled variance, which is intrinsic to asymptotic measurements of water vapor, cloud, and other convective properties. Mapped distributions of UTH have been used, jointly with high-resolution Global Cloud Imagery (GCI), to study how the upper troposphere is humidified. The time-mean distribution of UTH is spatially correlated to the time-mean distribution of cold cloud fraction (eta)(sub c) (T < than 230 K). Regions of large UTH coincide with regions of large eta(sub c), which mark deep convection. They also coincide with regions of reduced vertical stability, in which the vertical gradient of theta is weakened by convective mixing. Coldest cloud cover is attended convective overshoots above the local tropopause, which is simultaneously coldest and highest. Together, these features reflect the upper-troposphere being ventilated by convection, which mixes in moist air from lower levels. Histograms of UTH and eta(sub c) have been applied to construct the joint probability density function, which quantifies the relationship between these properties. The expected value of UTH in convective regions is strongly correlated to the expected value of eta(sub c). In ensembles of asymptotic samples, the correlation between epsilon[UTH] and epsilon[eta(sub c)] exceeds 0.80. As these expectations reflect the most likely values, the strong correlation between epsilon[UTH] and epsilon[eta(sub c)] indicates that the large-scale organization of UTH is strongly shaped by convective pumping of moisture from lower levels. The same relationship holds for unsteady fields - even though, instantaneously, those fields are comprised almost entirely of small-scale convective structure. The spatial autocorrelation of UTH, constructed at high resolution from overpass data along ascending and descending tracks of the orbit, is limited to only a couple of degrees in the horizontal. This mirrors the spatial autocorrelation of eta(sub c), which likewise operates coherently on short scales. The short correlation scale of UTH, which reflects the scale of individual convective systems, is comparable to the spacing of retrievals from MLS. These scales are undersampled in the asynoptic measurements. Despite their prevalence, the mapping algorithm described above successfully recovers synoptic behavior operating coherently on large scales. It reveals eastward migration of anomalous UTH from the Indian ocean to the central Pacific, in association with the modulation of convection by the Madden-Julian oscillation. Additional information is contained in the original extended abstract.

  13. A preliminary look at AVE-SESAME 3 conducted on 25-26 April 1979

    NASA Technical Reports Server (NTRS)

    Williams, S. F.; Horvath, N.; Turner, R. E.

    1980-01-01

    General weather conditions, including synoptic maps, radar reports, satellite photographs, precipitation areas and amounts, and a summary of severe weather reports are presented. These data provide researchers a preliminary look at conditions during the AVE-SESAME 3 period.

  14. Improved Wetland Mapping Through the use of Advanced Geospatial Technologies

    USDA-ARS?s Scientific Manuscript database

    For the United States to effectively manage its remaining wetlands, their abundance, distribution, boundaries, and inherent characteristics must be better understood. As natural resource management becomes more holistic and moves towards ecosystem management, the synoptic view that remotely sensed d...

  15. RECENT DEVELOPMENTS IN THE U. S. GEOLOGICAL SURVEY'S LANDSAT IMAGE MAPPING PROGRAM.

    USGS Publications Warehouse

    Brownworth, Frederick S.; Rohde, Wayne G.

    1986-01-01

    At the 1984 ASPRS-ACSM Convention in Washington, D. C. a paper on 'The Emerging U. S. Geological Survey Image Mapping Program' was presented that discussed recent satellite image mapping advancements and published products. Since then Landsat image mapping has become an integral part of the National Mapping Program. The Survey currently produces about 20 Landsat multispectral scanner (MSS) and Thematic Mapper (TM) image map products annually at 1:250,000 and 1:100,000 scales, respectively. These Landsat image maps provide users with a regional or synoptic view of an area. The resultant geographical presentation of the terrain and cultural features will help planners and managers make better decisions regarding the use of our national resources.

  16. Wind regimes and their relation to synoptic variables using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Berkovic, Sigalit

    2018-01-01

    This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.

  17. North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Orrhede, Anna Karin

    1990-01-01

    In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.

  18. Tectonics and volcanism in central Mexico - A Landsat Thematic Mapper perspective

    NASA Technical Reports Server (NTRS)

    Johnson, C. A.; Harrison, C. G. A.

    1989-01-01

    Digitally enhanced Landsat Thematic Mapper (TM) images were used to map neotectonic deformation in central Mexico. This region has been studied for decades using a variety of geological and geophysical techniques, but synoptic mapping of neotectonic activity and major fault zones there, and an evaluation of their regional relationship to the character and location of volcanism were not previously possible until the application of synoptic, high resolution satellite imagery. Interpretation of the TM images shows that the tectonic deformation is closely linked in time and space to the dominantly calc-alkaline volcanics of the Mexican Volcanic Belt (MVB). The eruptive style and distribution of the volcanics is clearly related to the deformation resulting from relative motions of three large crustal blocks south of the MVB. Therefore, zones of weakness within the crust of central Mexico, which may be inherited from earlier episodes of deformation, are a principal factor controlling the oblique orientation of the MVB relative to the Acapulco Trench.

  19. Assessment of WRF Simulated Precipitation by Meteorological Regimes

    NASA Astrophysics Data System (ADS)

    Hagenhoff, Brooke Anne

    This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.

  20. Synoptic backgrounds of the widest wildfire in Mazandaran Province of Iran during December 11-13, 2010

    NASA Astrophysics Data System (ADS)

    Ghavidel, Yousef; Farajzadeh, Manuchehr; Khaleghi Babaei, Meysam

    2016-12-01

    In this paper, atmospheric origins of the widest wildfire in Mazandaran province on 11-13th of December, 2010 have been investigated. Data sets of this research include maximum daily temperature (MDT), minimum relative humidity (MRH) of terrestrial stations, dynamic and thermodynamic features of the atmosphere, Gridded data sets of Self-Calibrated Palmer drought severity index (SCPDSI) and global drought dataset standardized precipitation-evapotranspiration index (SPEI) and data related to the time and the extent of the wildfire. The ``environmental to circulation'' approach to synoptic classification has been used to investigate relationships between local-scale surface environment (wildfire) and the synoptic-scale atmospheric circulation conditions. Results of study show that during the 3-day wide wildfire, the average of MDT and the MRH was significantly different from the long-term average. During the aforementioned wildfire, the average of MDT in Mazandaran province was 26 °C and the average of MRH was reported 35 %. The long-term average of MDT and the MRH in Mazandaran province during 3 days of wildfire was 12.3 °C and 68 %, respectively. Therefore, the MDT has a positive abnormality of 13.7 °C and the MRH has a negative abnormality of 33 %. In addition, monthly SCPDSI and SPEI indicated severe drought conditions at December 2010 in Mazandaran. Analysis of SLP maps shows that during the 3-day fire, a pressure center of 1110 hPa on Persian Gulf and a very low-pressure center on Turkey and Asia Minor were created. Normally, this event has caused the pressure gradient and warm and dry air advection from Arabian Peninsula to higher longitudes, particularly Mazandaran province. Consequently, the MDT increased and the wildfire of Mazandaran forest took place in an area of 220 ha. Zonal wind maps signify the weakness of Zonal wind and meridional wind maps show the southern direction of meridional wind flow during the wide wildfire. Moreover, Omega maps prove that during the aforementioned wildfire, the Omega flow has been positive and the warm air flow has subsidence. This made the infusion of warm air and increased the MDT substantially and consequently the wildfire occurrence was facilitated. Temperature advection maps showed that in the level of 1000 hPa, the warm air blowing source is originated from Arabian Peninsula, in the level of 850 hPa from the Arabian Peninsula and Iraq and in the level of 700 and 500 hPa from Ethiopia, Arabian Peninsula and Iraq. The Hybrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model outputs confirm the synoptic mechanisms for the discussed wildfire.

  1. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations

    NASA Astrophysics Data System (ADS)

    Dolei, S.; Susino, R.; Sasso, C.; Bemporad, A.; Andretta, V.; Spadaro, D.; Ventura, R.; Antonucci, E.; Abbo, L.; Da Deppo, V.; Fineschi, S.; Focardi, M.; Frassetto, F.; Giordano, S.; Landini, F.; Naletto, G.; Nicolini, G.; Nicolosi, P.; Pancrazzi, M.; Romoli, M.; Telloni, D.

    2018-05-01

    We investigated the capability of mapping the solar wind outflow velocity of neutral hydrogen atoms by using synergistic visible-light and ultraviolet observations. We used polarised brightness images acquired by the LASCO/SOHO and Mk3/MLSO coronagraphs, and synoptic Lyα line observations of the UVCS/SOHO spectrometer to obtain daily maps of solar wind H I outflow velocity between 1.5 and 4.0 R⊙ on the SOHO plane of the sky during a complete solar rotation (from 1997 June 1 to 1997 June 28). The 28-days data sequence allows us to construct coronal off-limb Carrington maps of the resulting velocities at different heliocentric distances to investigate the space and time evolution of the outflowing solar plasma. In addition, we performed a parameter space exploration in order to study the dependence of the derived outflow velocities on the physical quantities characterising the Lyα emitting process in the corona. Our results are important in anticipation of the future science with the Metis instrument, selected to be part of the Solar Orbiter scientific payload. It was conceived to carry out near-sun coronagraphy, performing for the first time simultaneous imaging in polarised visible-light and ultraviolet H I Lyα line, so providing an unprecedented view of the solar wind acceleration region in the inner corona. The movie (see Sect. 4.2) is available at https://www.aanda.org

  2. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  3. Surficial geology of Mars: A study in support of a penetrator mission to Mars

    NASA Technical Reports Server (NTRS)

    Spudis, P.; Greeley, R.

    1976-01-01

    Physiographic and surficial cover information were combined into unified surficial geology maps (30 quadrangles and 1 synoptic map). The surface of Mars is heterogeneous and is modified by wind, water, volcanism, tectonism, mass wasting and other processes. Surficial mapping identifies areas modified by these processes on a regional basis. Viking I mission results indicate that, at least in the landing site area, the surficial mapping based on Mariner data is fairly accurate. This area was mapped as a lightly cratered plain with thin or discontinuous eolian sediment. Analysis of lander images indicates that this interpretation is very close to actual surface conditions. These initial results do not imply that all surficial units are mapped correctly, but they do increase confidence in estimates based on photogeologic interpretations of orbital pictures.

  4. Synoptic and Mesoscale Climatologies of Severe Local Storms for the American Midwest.

    NASA Astrophysics Data System (ADS)

    Arnold, David Leslie

    This study investigates the synoptic and mesoscale environments associated with severe local storms (SELS) in the heart of the American Midwest. This region includes west-central Illinois, most of Indiana, the extreme western counties of Ohio, and a small part of northeastern Kentucky. The primary objectives of this study are to determine the surface and middle-tropospheric synoptic circulation patterns and thermodynamic and kinematic environments associated with SELS event types (tornadoes, hail, severe straight -line winds), and to assess the degree to which the synoptic circulation patterns and meso-beta scale kinematic and thermodynamic climatology of the Midwest differ from that of the Great Plains. A secondary objective is to investigate the possible role that land-surface atmosphere interactions play in the spatial distribution of SELS. A new subjective synoptic typing scheme is developed and applied to determine the synoptic-scale circulation patterns associated with the occurrence of SELS event types. This scheme is based on a combination of surface and middle -tropospheric patterns. Thermodynamic and kinematic parameters are analyzed to determine meso-scale environments favorable for the development of SELS. Results indicate that key synoptic-scale circulation patterns, and specific ranges of thermodynamic and kinematic parameters are related to specific SELS event types. These circulation types and ranges of thermodynamic and kinematic parameters may be used to help improve the medium-range forecasting of severe local storms. Results of the secondary objective reveal that the spatial distribution of SELS events is clustered within the study region, and most occur under a negative climate division-level soil moisture gradient; that is, a drier upwind division than the division in which the event occurs. Moreover, the spatial distribution of SELS events is compared against a map of soil types and vegetation. The resulting distribution depicts a visual correlation between the primary soil and vegetative boundaries and clusters of SELS. This supports the likely role of meso-scale land-surface-atmosphere interactions in severe weather development for humid lowlands of the Midwest United States.

  5. Description of data on the Nimbus 7 LIMS map archive tape: Water vapor and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Haggard, Kenneth V.; Marshall, B. T.; Kurzeja, Robert J.; Remsberg, Ellis E.; Russell, James M., III

    1988-01-01

    Described is the process by which the analysis of the Limb Infrared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of water vapor and nitrogen dioxide. In addition to a detailed description of the analysis procedure, also discussed are several interesting features in the data which are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components.

  6. Synoptic maps of solar coronal hole boundaries derived from He 2 304 A spectroheliograms from the manned skylab missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.; Rubenstein, D. M.

    1975-01-01

    The disk boundaries of coronal holes have been determined from He II 304 A spectroheliograms which were taken with the Naval Research Laboratory slitless XUV spectrograph during the manned Skylab missions. These boundaries are plotted by Carrington rotation as synoptic charts in both the standard rectangular as well as polar-view projections. The periods of time for which boundaries were determined are 24 May through 28 June 1973 (first manned Skylab mission), 2 August through 24 September 1973 (second manned mission), and 21 November 1973 through 2 February 1974 (third manned mission); the Carrington rotations covered (in part or totally) are 1601 and 02; 160r, 1604, 05 and 06; and 1608, 09 and 10, respectively.

  7. The Synoptic Climatology of Severe Thunderstorms in Manitoba.

    NASA Astrophysics Data System (ADS)

    Ladochy, Stephen Eugene Gabriel

    The thesis presents the climatologies for Manitoba thunderstorms, hailstorms and tornadoes as well as investigates the synoptic weather conditions conducive for their development. The study not only uses standard meteorological information, but also various kinds of proxy data, in the form of damage reports. These damage reports complement the meteorological data by providing a higher resolution of observations, particularly in the sparsely populated regions. The synoptic conditions are relatively similar for all forms of severe thunderstorms, though the upper level jet stream (ULJ) is stronger for tornadoes, in general. Composite charts, drawn for 50 larger, more damaging hail days and 48 tornado days in the 1970's, helped identify important surface and upper air weather parameters and their inter -relationships with each other and the location of the storm. Time sequence composite charts were used to also show the development process in severe weather occurrences. From the composites, a synoptic weather type classification was devised with 10 categories to identify each storm by type. The most common pattern for severe weather has a strong southwesterly ULJ, with the storm occurring ahead of an advancing cold front. The ULJ patterns were drawn for each synoptic type days, showing differences between categories. The average conditions during tornado touchdowns were also seen from composite maps of surface and upper air isobaric charts. While severe thunderstorms are seen to occur under the "ideal" conditions, often described for U.S. severe weather, they can also be produced under other weather patterns and combinations of atmospheric parameters thought less favorable. The ULJ and LLJ (low-level jet stream) models used in U.S. studies do not always fit Manitoba storms, however, less favorable jet positions, at specific levels, can be compensated for by low-level advection of warm, and moist air.

  8. Analysis of Eocene depositional environments - Preliminary TM and TIMS results, Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.

    1987-01-01

    Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.

  9. Satellite snowcover and runoff monitoring in central Arizona. [Salt River Project: Salt-Verde Watershed

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.; Kirdar, E.; Warskow, W. L. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Although the very high resolution experimental LANDSAT imagery permits rapid snow cover mapping at low cost, only one observation is available very 9 days. In contrast, low resolution operational imagery acquired by the ITOS and SMS/GOES satellites provide the daily synoptic observations necessary to monitor the rapid changes in snow covered areas in the entire Salt-Verde watershed. Geometric distortions in meteorological satellite imagery require specialized optical equipment or digital image processing for snow cover mapping.

  10. Potentiometric surface of the Upper Floridan aquifer in Florida and parts of Georgia, South Carolina, and Alabama, May – June 2010

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2011-01-01

    The Floridan aquifer system covers nearly 100,000 square miles in the southeastern United States throughout Florida and in parts of Georgia, South Carolina, and Alabama, and is one of the most productive aquifers in the world (Miller, 1990). This sequence of carbonate rocks is hydraulically connected and is over 300 feet thick in south Florida and thins toward the north. Typically, this sequence is subdivided into the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. The majority of freshwater is contained in the Upper Floridan aquifer and is used for water supply (Miller, 1986). The Lower Floridan aquifer contains fresh to brackish water in northeastern Florida and Georgia, while in south Florida it is saline. The potentiometric surface of the Upper Floridan aquifer in May–June 2010 shown on this map was constructed as part of the U.S. Geological Survey Floridan Aquifer System Groundwater Availability Study (U.S. Geological Survey database, 2011). Previous synoptic measurements and regional potentiometric maps of the Upper Floridan aquifer were prepared for May 1980 (Johnston and others, 1981) and May 1985 (Bush and others, 1986) as part of the Floridan Regional Aquifer System Analysis.

  11. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    NASA Astrophysics Data System (ADS)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  12. Exploring the usefulness of two conceptual frameworks for understanding how organizational factors influence innovation implementation in cancer care.

    PubMed

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors important to the successful implementation of innovations in health care settings; (2) discuss each in relation to the literature; and (3) briefly demonstrate how each may be applied to 3 initiatives involving the implementation of a specific innovation-synoptic reporting tools-in cancer care. Synoptic reporting tools capture information from diagnostic tests, surgeries, and pathology examinations in a standardized, structured manner and contain only the information necessary for patient care. The frameworks selected were the Promoting Action on Research Implementation in Health Services framework and an organizational framework of innovation implementation; these frameworks arise from different disciplines (nursing and management, respectively). The constructs from each framework are examined in relation to the literature, with each construct applied to synoptic reporting tool implementation to demonstrate how each may be used to inform both practice and research in this area. By improving our understanding of existing frameworks, we enhance our ability to more effectively study and target implementation processes. Copyright © 2013 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  13. Enhancement and identification of dust events in the south-west region of Iran using satellite observations

    NASA Astrophysics Data System (ADS)

    Taghavi, F.; Owlad, E.; Ackerman, S. A.

    2017-03-01

    South-west Asia including the Middle East is one of the most prone regions to dust storm events. In recent years, there was an increase in the occurrence of these environmental and meteorological phenomena. Remote sensing could serve as an applicable method to detect and also characterise these events. In this study, two dust enhancement algorithms were used to investigate the behaviour of dust events using satellite data, compare with numerical model output and other satellite products and finally validate with in-situ measurements. The results show that the use of thermal infrared algorithm enhances dust more accurately. The aerosol optical depth from MODIS and output of a Dust Regional Atmospheric Model (DREAM8b) are applied for comparing the results. Ground-based observations of synoptic stations and sun photometers are used for validating the satellite products. To find the transport direction and the locations of the dust sources and the synoptic situations during these events, model outputs (HYSPLIT and NCEP/NCAR) are presented. Comparing the results with synoptic maps and the model outputs showed that using enhancement algorithms is a more reliable way than any other MODIS products or model outputs to enhance the dust.

  14. Mapping northern Atlantic coastal marshlands, Maryland-Virginia, using ERTS imagery

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1973-01-01

    The author has identified the following significant results. ERTS-1 data provides repetitive synoptic coverage for DC 00000 of wetland ecology, detection of change, and mapping or inventory of wetland boundaries and plant communities. ERTS-1 positive transparencies of Atlantic Coastal wetlands were enlarged to different scales and mapped using a variety of methods. Results of analysis indicate: (1) mapping of wetland boundaries and vegetative communities from imagery at a scale of 1:1,000,000 is impractical because small details are difficult to illustrate; (2) mapping to a scale of 1:250,000 is practical for defining land-water interface, upper wetland boundary, gross vegetative communities, and spoil disposal/dredge and fill operations; (3) 1:125,000 enlargements provide additional information on transition zones, smaller plant communities, and drainage or mosquito ditching. Overlays may be made directly from prints.

  15. Theoretical Framework for Educational Assessment: A Synoptic Review

    ERIC Educational Resources Information Center

    Ghaicha, Abdallah

    2016-01-01

    At this age of accountability, it is acknowledged that assessment is a powerful lever that can either boost or undermine students' learning. Hitherto, much of the regular institutional and instructional practices show that assessments remain inhibitory or void rather than constructive as these lack the assessment formative aspect. This denotes…

  16. Multiwavelength Characteristics of Microflares

    NASA Astrophysics Data System (ADS)

    Poduval, Bala; Schmelz, J. T.

    2016-10-01

    We present the multiwavelength characteristic of microflare detected in the SDO/AIA and IRIS images using the Automated Microevent-finding Code (AMC). We have catalogued independent events with information such as location on the disk, size, lifetime and peak flux, and obtained their frequency distribution. We mapped these events to other wavelengths, using their location information, to study their associated features, and infer the temperature characteristics and evolution. Moreover, we obtained their magnetic topologies by mapping the microflare locations on to the HMI photospheric magnetic field synoptic maps. Further, we analyzed the filtered brightness profiles and light curves for each event to classify them. Finally, we carried out a differential emission measure (DEM) analysis to study their temperature characteristics.

  17. Water-table and potentiometric-surface altitudes in the Upper Glacial, Magothy, and Lloyd aquifers of Long Island, New York, April-May 2013

    USGS Publications Warehouse

    Como, Michael D.; Noll, Michael L.; Finkelstein, Jason S.; Monti, Jack; Busciolano, Ronald J.

    2015-01-01

    Hydrographs are included on these maps for selected wells that have digital recording equipment. These hydrographs are representative of the 2013 water year to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.

  18. Social Justice in Australian Higher Education Policy: An Historical and Conceptual Account of Student Participation

    ERIC Educational Resources Information Center

    Gale, Trevor; Tranter, Deborah

    2011-01-01

    This article provides a synoptic account of historically changing conceptions and practices of social justice in Australian higher education policy. It maps the changes in this policy arena, beginning with the period following the Second World War and concluding with an analysis of the most recent policy proposals of the Bradley Review.…

  19. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  20. Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China).

    PubMed

    Zhang, Yuchao; Lin, Shan; Liu, Jianping; Qian, Xin; Ge, Yi

    2010-09-01

    Although there has been considerable effort to use remotely sensed images to provide synoptic maps of total suspended matter (TSM), there are limited studies on universal TSM retrieval models. In this paper, we have developed a TSM retrieval model for Lake Taihu using TSM concentrations measured in situ and a time series of quasi-synchronous MODIS 250 m images from 2005. After simple geometric and atmospheric correction, we found a significant relationship (R = 0.8736, N = 166) between in situ measured TSM concentrations and MODIS band normalization difference of band 3 and band 1. From this, we retrieved TSM concentrations in eight regions of Lake Taihu in 2007 and analyzed the characteristic distribution and variation of TSM. Synoptic maps of model-estimated TSM of 2007 showed clear geographical and seasonal variations. TSM in Central Lake and Southern Lakeshore were consistently higher than in other regions, while TSM in East Taihu was generally the lowest among the regions throughout the year. Furthermore, a wide range of TSM concentrations appeared from winter to summer. TSM in winter could be several times that in summer.

  1. The life cycles of persistent anomalies and blocking over the North Pacific

    NASA Technical Reports Server (NTRS)

    Dole, Randall M.

    1986-01-01

    The evolution of persistent anomaly patterns over the central North Pacific is investigated. Composite time evolution fields of the 500-mbar anomaly patterns are constructed from low-pass and unfiltered height anomaly data; the time scales for the development and decay of these persistent anomalies are analyzed. The relationship between zonal flow in the Pacific jet region and the development of the anomaly patterns is examined. The effect of baroclinic instabilities on the development of the anomalies is studied. The vertical structure and synoptic characteristics of the evolution of the anomalies are described. It is noted that the initial rapid growth of the main center may be associated with a propagating, intensifying, synoptic-scale disturbance which originates in the midlatitudes over eastern Asia.

  2. Synoptic thermal and oceanographic parameter distributions in the New York Bight Apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.; Thomas, J. P.

    1981-01-01

    Concurrent surface water measurements made from a moving oceanographic research vessel were used to calibrate and interpret remotely sensed data collected over a plume in the New York Bight Apex on 23 June 1977. Multiple regression techniques were used to develop equations to map synoptic distributions of chlorophyll a and total suspended matter in the remotely sensed scene. Thermal (which did not have surface calibration values) and water quality parameter distributions indicated a cold mass of water in the Bight Apex with an overflowing nutrient-rich warm water plume that originated in the Sandy Hook Bay and flowed south near the New Jersey shoreline. Data analysis indicates that remotely sensed data may be particularly useful for studying physical and biological processes in the top several metres of surface water at plume boundaries.

  3. Heat Capacity Mapping Mission investigation no. 25 (Tellus project)

    NASA Technical Reports Server (NTRS)

    Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)

    1982-01-01

    The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.

  4. A synoptic description of coal basins via image processing

    NASA Technical Reports Server (NTRS)

    Farrell, K. W., Jr.; Wherry, D. B.

    1978-01-01

    An existing image processing system is adapted to describe the geologic attributes of a regional coal basin. This scheme handles a map as if it were a matrix, in contrast to more conventional approaches which represent map information in terms of linked polygons. The utility of the image processing approach is demonstrated by a multiattribute analysis of the Herrin No. 6 coal seam in Illinois. Findings include the location of a resource and estimation of tonnage corresponding to constraints on seam thickness, overburden, and Btu value, which are illustrative of the need for new mining technology.

  5. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1975-01-01

    A review of satellite-based photographic (optical and infrared) and microwave exploration and large-area mapping of the earth's surface in the ERTS program. Synoptic cloud-free coverage of large areas has been achieved with planimetric vertical views of the earth's surface useful in compiling close-to-orthographic mosaics. Radar penetration of cloud cover and infrared penetration of forest cover have been successful to some extent. Geological applications include map editing (with corrections in scale and computer processing of images), landforms analysis, structural geology studies, lithological identification, and exploration for minerals and fuels. Limitations of the method are noted.

  6. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  7. Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008

    USGS Publications Warehouse

    Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.

    2008-01-01

    This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.

  8. Southern Hemisphere Upper Thermospheric Wind Climatology

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  9. The Large Synoptic Survey Telescope (LSST) Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Ranked as the top ground-based national priority for the field for the current decade, LSST is currently under construction in Chile. The U.S. Department of Energy’s SLAC National Accelerator Laboratory is leading the construction of the LSST camera – the largest digital camera ever built for astronomy. SLAC Professor Steven M. Kahn is the overall Director of the LSST project, and SLAC personnel are also participating in the data management. The National Science Foundation is the lead agency for construction of the LSST. Additional financial support comes from the Department of Energy and private funding raised by the LSST Corporation.

  10. A synoptic survey of microbial respiration, organic matter decomposition, and carbon efflux in U.S. streams and rivers

    EPA Science Inventory

    We analyzed microbial respiration and ecoenzyme activities related to organic matter processing in 1879 streams and rivers across the continental US as part of the USEPA’s 2008-2009 National Rivers and Streams Assessment. Ecoenzymatic stoichiometry was used to construct models fo...

  11. The application of automatic recognition techniques in the Apollo 9 SO-65 experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.

  12. Tectonics of the central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.

    1989-01-01

    Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.

  13. Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.

    NASA Astrophysics Data System (ADS)

    Mock, Cary Jeffrey

    This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.

  14. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y. Y.; Chen, Y. D.

    2017-12-01

    Dominant synoptic moisture pathway patterns of vertically integrated water vapor transport (IVT) in winter and spring over Canada West and East were identified using the self-organizing map method. Large-scale meteorological patterns (LSMPs) were related to the variability in seasonal precipitation totals and occurrences of precipitation extremes. Changes in both occurrences of LSMPs and seasonal precipitation occurred under those LSMPs were evaluated to attribute observed changes in seasonal precipitation totals and occurrences of precipitation extremes. Effects of large-scale climate anomalies on occurrences of LSMPs were also examined. Results show that synoptic moisture pathways and LSMPs exhibit the propagation of jet streams as the location and direction of ridges and troughs, and the strength and center of pressure lows and highs varied considerably between LSMPs. Significant decreases in occurrences of synoptic moisture pathway patterns that are favorable with positive precipitation anomalies and more precipitation extremes in winter over Canada West resulted in decreases in seasonal precipitation and occurrences of precipitation extremes. LSMPs resulting in a hot and dry climate and less (more) frequent precipitation extremes over the Canadian Prairies in winter and northwestern Canada in spring are more likely to occur in years with a negative phase of PNA. Occurrences of LSMPs for a wet climate and frequent occurrences of extreme precipitation events over southeastern Canada are associated with a positive phase of NAO. In El Niño years or negative PDO years, LSMPs associated with a dry climate and less frequent precipitation extremes over western Canada tend to occur.

  15. How to Display Hazards and other Scientific Data Using Google Maps

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Fee, J. M.

    2007-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) is launching a map-based interface to display hazards information using the Google® Map API (Application Program Interface). Map-based interfaces provide a synoptic view of data, making patterns easier to detect and allowing users to quickly ascertain where hazards are in relation to major population and infrastructure centers. Several map-based interfaces are now simple to run on a web server, providing ideal platforms for sharing information with colleagues, emergency managers, and the public. There are three main steps to making data accessible on a map-based interface; formatting the input data, plotting the data on the map, and customizing the user interface. The presentation, "Creating Geospatial RSS and ATOM feeds for Map-based Interfaces" (Fee and Venezky, this session), reviews key features for map input data. Join us for this presentation on how to plot data in a geographic context and then format the display with images, custom markers, and links to external data. Examples will show how the VHP Volcano Status Map was created and how to plot a field trip with driving directions.

  16. Surface pressure maps from scatterometer data

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Levy, Gad

    1991-01-01

    The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.

  17. Millimeter radio evidence for containment mechanisms in solar flares

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; White, K. P., III; Shimabukuro, F. I.

    1974-01-01

    Recent theories of solar flares are reviewed with emphasis on the aspects of pre-flare heating. The heating evident at 3.3-mm wavelength is analyzed in the form of daily maps of the solar disk and synoptic maps compiled from the daily maps. It is found that isotherms defining antenna temperature enhancements of 340 K correspond in shape and location to facular areas reported by Waldmeier. Maximum enhancements occur over sunspots or near neutral lines of the longitudinal magnetic fields which indicates heating associated with chromospheric currents. These enhancements are correlated with flare importance number and are observed to increase during several days preceding flaring. This evidence for a containment mechanism in the chromosphere is collated with current theories of solar flares.

  18. Integration and verification testing of the Large Synoptic Survey Telescope camera

    NASA Astrophysics Data System (ADS)

    Lange, Travis; Bond, Tim; Chiang, James; Gilmore, Kirk; Digel, Seth; Dubois, Richard; Glanzman, Tom; Johnson, Tony; Lopez, Margaux; Newbry, Scott P.; Nordby, Martin E.; Rasmussen, Andrew P.; Reil, Kevin A.; Roodman, Aaron J.

    2016-08-01

    We present an overview of the Integration and Verification Testing activities of the Large Synoptic Survey Telescope (LSST) Camera at the SLAC National Accelerator Lab (SLAC). The LSST Camera, the sole instrument for LSST and under construction now, is comprised of a 3.2 Giga-pixel imager and a three element corrector with a 3.5 degree diameter field of view. LSST Camera Integration and Test will be taking place over the next four years, with final delivery to the LSST observatory anticipated in early 2020. We outline the planning for Integration and Test, describe some of the key verification hardware systems being developed, and identify some of the more complicated assembly/integration activities. Specific details of integration and verification hardware systems will be discussed, highlighting some of the technical challenges anticipated.

  19. A systematic approach to synoptic tornado climatology of Hungary for the recent years (1996 2001) based on official damage reports

    NASA Astrophysics Data System (ADS)

    Szilárd, Sárközi

    2007-02-01

    Due to the significant amount of severe storm damage from the mid 1990s, a practical need has arisen for updating risk assessment. For reliable and systematic sampling of events, data acquisition has been arranged through the disaster management official body using a pyramidal national coverage. Post-analysis, including its meteorological part, proceeds in a GIS environment. This paper focuses specifically on damaging tornadoes, since those are the most violent and best-documented phenomena. Different statistics are calculated and explained, such as seasonal, diurnal and magnitude distributions. Spatial occurrence and features are mapped. A complete synoptic climatology is given by typifying the generating conditions and categorizing events into certain classes, while discussing the role of the Carpathian Basin. In the end a conceptual issue in connection with self-similarity is raised for further discussion.

  20. Use of Landsat data in soil and agricultural land use studies

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Brandner, T. M.

    1980-01-01

    This paper describes how the synoptic, multispectral, and temporal characteristics of Landsat can be used to locate Soil Association boundaries. Then, using these techniques we describe how a low intensity soil survey was conducted and how some interpretive maps were developed from this. Finally, we describe how soil suitability and land use interpretations were made to aid in defining Agrophysical units used in crop inventories.

  1. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research projects described include: (1) identifying coniferous forest types in Michigan using LANDSAT imagery; (2) investigating synoptic temperature patterns in Michigan as determined via GOES and HCMM thermal imagery; (3) land surface change detection using satellite data and a geographic data base; (4) determining soil map unit composition by electronic scanning densitometry; and (5) delimiting areas of virus infection in vineyards and blueberry fields in southwestern and western Michigan. Contractual activities involve important farmlands inventory, changes in aquatic vegetation in Saginaw Bay, digitized soil association map of Michigan, and aerial photography for hybrid-poplar research. On-going projects are also being conducted in Jamaica, Honduras, the Dominican Republic and Kenya.

  2. A study of the usefulness of Skylab EREP data for earth resources studies in Australia

    NASA Technical Reports Server (NTRS)

    Lambert, B. P.; Benson, M. L.; Borough, C. J.; Myers, B. J.; Maffi, C. E.; Simpson, C. J.; Perry, W. J.; Burns, K. L.; Shepherd, J.; Beattie, R. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In subhumid, vegetated areas, S190B photography: (1) has a potentially operational role in detecting lineaments in 1:100,000 scale geological mapping and in major civil engineering surveys; (2) is of limited value for regional lithological mapping at 1:500,000 scale; and (3) provided much useful synoptic information and some detailed information of direct value to the mapping of nonmineral natural resources such as vegetation, land soil, and water. In arid, well exposed areas, S190B photography could be used: (1) with a limited amount of field traverses, to produce reliable 1:500,000 scale geological maps of sedimentary sequences; (2) to update superficial geology on 1:250,000 scale maps; and (3) together with the necessary field studies, to prepare landform, soil, and vegetation maps at 1:1,000,000 scale. Skylab photography was found to be more useful than LANDSAT images for small scale mapping of geology and land types, and for the revision of topographic maps at 1:100,000 scale, because of superior spatial resolution and stereoscopic coverage.

  3. The Large Synoptic Survey Telescope (LSST) Camera

    ScienceCinema

    None

    2018-06-13

    Ranked as the top ground-based national priority for the field for the current decade, LSST is currently under construction in Chile. The U.S. Department of Energy’s SLAC National Accelerator Laboratory is leading the construction of the LSST camera – the largest digital camera ever built for astronomy. SLAC Professor Steven M. Kahn is the overall Director of the LSST project, and SLAC personnel are also participating in the data management. The National Science Foundation is the lead agency for construction of the LSST. Additional financial support comes from the Department of Energy and private funding raised by the LSST Corporation.

  4. Mapping and simulating systematics due to spatially-varying observing conditions in DES science verification data

    DOE PAGES

    Leistedt, B.; Peiris, H. V.; Elsner, F.; ...

    2016-10-17

    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less

  5. MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leistedt, B.; Peiris, H. V.; Elsner, F.

    Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky« less

  6. Mapping and simulating systematics due to spatially-varying observing conditions in DES science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leistedt, B.; Peiris, H. V.; Elsner, F.

    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less

  7. Validation of Satellite Snow Cover Maps in North America and Norway

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Solberg, Rune; Riggs, George A.

    2002-01-01

    Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.

  8. Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River

    NASA Astrophysics Data System (ADS)

    Pai, Henry; Villamizar, Sandra R.; Harmon, Thomas C.

    2017-11-01

    Delineating pollutant reactive transport pathways that connect local land use patterns to surface water is an important goal. This work illustrates high-resolution river mapping of salinity or specific conductance (SC) and nitrate (NO3-) as a potential part of achieving this goal. We observed longitudinal river SC and nitrate distributions using high-resolution synoptic in situ sensing along the lower Merced River (38 river km) in Central California (USA) from 2010 to 2012. We calibrated a distributed groundwater-surface water (GW-SW) discharge model for a conservative solute using 13 synoptic SC sampling events at flows ranging from 1.3 to 31.6 m3 s-1. Nitrogen loads ranged from 0.3 to 1.6 kg N d-1 and were greater following an extended high flow period during a wet winter. Applying the distributed GW-SW discharge estimates to a simplistic reactive nitrate transport model, the model reproduced observed river nitrate distribution well (RRMSE = 5-21%), with dimensionless watershed-averaged nitrate removal (kt) ranging from 0 to 0.43. Estimates were uncertain due to GW nitrate data variability, but the resulting range was consistent with prior removal estimates. At the segment scale, estimated GW-SW nitrate loading ranged from 0 to 17 g NO3- s-1 km-1. Local loading peaked near the middle of the study reach, a location that coincides with a shallow clay lens and with confined animal feed operations in close proximity to the river. Overall, the results demonstrate the potential for high-resolution synoptic monitoring to support GW-SW modeling efforts aimed at understanding and managing nonpoint source pollution.

  9. LANDSAT-1 data, its use in a soil survey program

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Frazee, C. J.

    1975-01-01

    The following applications of LANDSAT imagery were investigated: assistance in recognizing soil survey boundaries, low intensity soil surveys, and preparation of a base map for publishing thematic soils maps. The following characteristics of LANDSAT imagery were tested as they apply to the recognition of soil boundaries in South Dakota and western Minnesota: synoptic views due to the large areas covered, near-orthography and lack of distortion, flexibility of selecting the proper season, data recording in four parts of the spectrum, and the use of computer compatible tapes. A low intensity soil survey of Pennington County, South Dakota was completed in 1974. Low intensity inexpensive soil surveys can provide the data needed to evaluate agricultural land for the remaining counties until detailed soil surveys are completed. In using LANDSAT imagery as a base map for publishing thematic soil maps, the first step was to prepare a mosaic with 20 LANDSAT scenes from several late spring passes in 1973.

  10. On the Evolution of Precipitation Associated with a Wintertime East Coast Cyclone: A GALE Preliminary Study.

    DTIC Science & Technology

    1985-01-01

    CYCLES (CYCLone Extratropical Storms project), a more elaborate study of precipitation structure, has been carried out by Hobbs and his collaborators...toward the heavily populated northeast portion of the country. The disruption of human activity caused by these often poorly forecast storms is...daily synoptic maps over a century ago permitted analysis of the structure and behavior of extratropical cyclones. Since then considerable literature

  11. SASS measurements of the Ku-band radar signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Grantham, W. L.; Mitchell, J. L.; Sweet, J. L.

    1982-01-01

    SeaSat-A Satellite Scatterometer (SASS) measurements of normalized radar cross section (NRCS) have been merged with high quality surface-wind fields based on in situ, to create a large data base of NRCS-wind signature data. These data are compared to the existing NRCS-wind model used by the SASS to infer winds. Falso-color maps of SASS NRCS and ocean winds from multiple orbits show important synoptic trends.

  12. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.

  13. Future Changes in Autumn Flood Type and Frequency in Pacific Northwest North America

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Cannon, A. J.; Radic, V.; Moore, R. D.; Dery, S. J.; Jackson, P. L.; Anslow, F. S.

    2013-12-01

    During the 20th and early 21st century, autumn storms in the Pacific Northwest of North America - PNWNA (coastal British Columbia and Washington) caused widespread flooding and landslides. Understanding how these intense storms are likely to change in the future is important given their potential to harm people and cause widespread damage, but assessing these changes using climate models is difficult. Parameterization of precipitation in general circulation and regional climate models (GCM, RCM) is prone to error, especially in the mountainous terrain of the PNWNA. High computational demands of RCMs also limits their use in assessing changes in flood type and frequency for a suite of GCM and emission scenarios. We instead focus our efforts on understanding atmospheric circulation patterns responsible for historical autumn flooding (15 August - 31 December) and examine how these synoptic conditions are likely to change under future emission scenarios. Our analysis includes identification of extreme events (runoff and precipitation) in streamflow and precipitation records from coastal Washington and British Columbia for the period 1948-2010. Our methods to link the instrumental record of extreme autumn events to atmospheric conditions (500 and 850 hPa geopotential height and integrated vapor transport obtained from NCEP and CFSR reanalysis) include: (1) compositing of streamflow and precipitation events (environment-to-circulation); (2) self organizing map synoptic classification (circulation-to-environment); and (3) regression tree synoptic classification (hybrid of environment-to-circulation and circulation-to-environment). We then evaluate changes in flood-generating synoptic types in the CMIP5 ensemble over the period 2010-2100. Our analysis indicates that, as expected, most floods are associated with atmospheric river events that are commonly associated with upper level, quasi stationary low- and high-pressure systems respectively located in the Gulf of Alaska and east of the PNWNA. Based on our initial analysis of the CMIP5 data, we note an increase in autumn flood-producing synoptic weather types for the PNWNA. We discuss the implications of increased autumn flooding to communities and infrastructure.

  14. Can we do better than the grid survey: Optimal synoptic surveys in presence of variable uncertainty and decorrelation scales

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Garau, Bartolame; Bellingham, James

    2014-08-01

    Regular grid ("lawnmower") survey is a classical strategy for synoptic sampling of the ocean. Is it possible to achieve a more effective use of available resources if one takes into account a priori knowledge about variability in magnitudes of uncertainty and decorrelation scales? In this article, we develop and compare the performance of several path-planning algorithms: optimized "lawnmower," a graph-search algorithm (A*), and a fully nonlinear genetic algorithm. We use the machinery of the best linear unbiased estimator (BLUE) to quantify the ability of a vehicle fleet to synoptically map distribution of phytoplankton off the central California coast. We used satellite and in situ data to specify covariance information required by the BLUE estimator. Computational experiments showed that two types of sampling strategies are possible: a suboptimal space-filling design (produced by the "lawnmower" and the A* algorithms) and an optimal uncertainty-aware design (produced by the genetic algorithm). Unlike the space-filling designs that attempted to cover the entire survey area, the optimal design focused on revisiting areas of high uncertainty. Results of the multivehicle experiments showed that fleet performance predictors, such as cumulative speed or the weight of the fleet, predicted the performance of a homogeneous fleet well; however, these were poor predictors for comparing the performance of different platforms.

  15. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  16. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    DTIC Science & Technology

    2008-01-01

    faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter , taking an inventory of the Solar...Energy and Dark Matter (2) Taking an Inventory of the Solar System (3) Exploring the Transient Optical Sky (4) Mapping the Milky Way Each of these four...Constraining Dark Energy and Dark Matter Current models of cosmology require the exis- tence of both dark matter and dark energy to match observational

  17. Cloud fraction at the ARM SGP site: Reducing uncertainty with self-organizing maps

    DOE PAGES

    Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike

    2015-02-15

    Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997–2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrumentmore » record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91–105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. Lastly, this result may be due to a manifestation of seasonally dependent biases in NARR.« less

  18. The Meandering Margin of the Meteorological Moist Tropics

    NASA Astrophysics Data System (ADS)

    Mapes, Brian E.; Chung, Eui Seok; Hannah, Walter M.; Masunaga, Hirohiko; Wimmers, Anthony J.; Velden, Christopher S.

    2018-01-01

    Bimodally distributed column water vapor (CWV) indicates a well-defined moist regime in the Tropics, above a margin value near 48 kg m-2 in current climate (about 80% of column saturation). Maps reveal this margin as a meandering, sinuous synoptic contour bounding broad plateaus of the moist regime. Within these plateaus, convective storms of distinctly smaller convective and mesoscales occur sporadically. Satellite data composites across the poleward most margin reveal its sharpness, despite the crude averaging: precipitation doubles within 100 km, marked by both enhancement and deepening of cloudiness. Transported patches and filaments of the moist regime cause consequential precipitation events within and beyond the Tropics. Distinguishing synoptic flows that cross the margin from flows that move the margin is made possible by a novel satellite-based Lagrangian CWV tendency estimate. Climate models do not reliably reproduce the observed bimodal distribution, so studying the moist mode's maintenance processes and the margin-zone air mass transformations, guided by the Lagrangian tendency product, might importantly constrain model moist process treatments.

  19. Maps of Structured Aerosol Activity During the MY 25 Planet-encircling Dust Storm on Mars

    NASA Astrophysics Data System (ADS)

    Noble, J.; Wilson, R. J.; Cantor, B. A.; Kahre, M. A.; Hollingsworth, J. L.; Bridger, A. F. C.; Haberle, R. M.; Barnes, J.

    2016-12-01

    We have produced a sequence of 42 global maps from Ls=165.1-187.7° that delimit the areal extent of structured aerosol activity based on a synthesis of Mars Global Surveyor (MGS) data, including Mars Orbiter Camera (MOC) daily global maps (DGMs) and wide angle imagery, Thermal Emission Spectrometer (TES) dust and H2O ice opacity, and Mars general circulation model (MGCM) derived dust opacity. The primary motivation of this work is to examine the temporal and spatial relationship between dust storms observed by MOC and baroclinic eddies inferred from Fast Fourier Synoptic Mapping (FFSM) of TES temperatures in order to study the initiation and evolution of Mars year (MY) 25 planet-encircling dust storm (PDS) precursor phase dust storms. A secondary motivation is to provide improved input to MGCM simulations. Assuming that structured dust storms indicate active dust lifting, these maps allow us to define potential dust lifting regions. This work has two implications for martian atmospheric science. First, integration of MGS data has enabled us to develop improved quantitative and qualitative descriptions of storm evolution that may be used to constrain estimates of dust lifting regions, horizontal dust distribution, and to infer associated circulations. Second, we believe that these maps provide better bases and constraints for modeling storm initiation. Based on our analysis of these MGS data, we propose the following working hypothesis to explain the dynamical processes responsible for PDS initiation and expansion. Six eastward-traveling transient baroclinic eddies triggered the MY 25 precursor storms in Hellas during Ls=176.2-184.6° due to the enhanced dust lifting associated with their low-level wind and stress fields. This was followed by a seventh eddy that contributed to expansion on Ls=186.3°. Increased opacity and temperatures from dust lifting associated with the first three eddies enhanced thermal tides which supported further storm initiation and expansion out of Hellas. Constructive interference of eddies and other circulation components including sublimation flow, anabatic winds (daytime upslope), and diurnal tides may have contributed to storm onset in, and expansion out of Hellas.

  20. Characterization of the Cloud-Topped Boundary Layer at the Synoptic Scale Using AVHRR Observations during the SEMAPHORE Experiment.

    NASA Astrophysics Data System (ADS)

    Mathieu, A.; Sèze, G.; Lahellec, A.; Guerin, C.; Weill, A.

    2003-12-01

    Satellite platforms NOAA-11 and -12 Advanced Very High Resolution Radiometer (AVHRR) data are used during the daytime to study large sheets of stratocumulus over the North Atlantic Ocean. The application concerns an anticyclonic period of the Structure des Echanges Mer Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherché Expérimentale (SEMAPHORE) campaign (10 17 November 1993). In the region of interest, the satellite images are recorded under large solar zenith angles. Extending the SEMAPHORE area, a region of about 3000 × 3000 km2 is studied to characterize the atmospheric boundary layer. A statistical cloud classification method is applied to discriminate for low-level and optically thick clouds. For AVHRR pixels covered with thick clouds, brightness temperatures are used to evaluate the boundary layer cloud-top temperature (CTT). The objective is to obtain accurate CTT maps for evaluation of a global model. In this application, the full-resolution fields are reduced to match model grid size. An estimate of overall temperature uncertainty associated with each grid point is also derived, which incorporates subgrid variability of the fields and quality of the temperature retrieval. Results are compared with the SEMAPHORE campaign measurements. A comparison with “DX” products obtained with the same dataset, but at lower resolution, is also presented. The authors claim that such instantaneous CTT maps could be as intensively used as classical SST maps, and both could be efficiently complemented with gridpoint error-bar maps. They may be used for multiple applications: (i) to provide a means to improve numerical weather prediction and climatological reanalyses, (ii) to represent a boundary layer global characterization to analyze the synoptic situation of field experiments, and (iii) to allow validation and to test development of large-scale and mesoscale models.

  1. Concepts of integrated satellite surveys. [thematic mapping of land use in Ethiopia, Sudan, and Morocco

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1974-01-01

    The United Nations initially contracted with NASA to carry out investigations in three countries; but now as the result of rapidly increasing interest, ERTS imagery has been/is being used in 7 additional projects related to agriculture, forestry, land-use, soils, landforms and hydrology. Initially the ERTS frames were simply used to provide a synoptic view of a large area of a developing country as a basis to regional surveys. From this, interest has extended to using reconstituted false color imagery and latterly, in co-operation with Purdue University, the use of computer generated false color mosaics and computer generated large scale maps. As many developing countries are inadequately mapped and frequently rely on outdated maps, the ERTS imagery is considered to provide a very wide spectrum of valuable data. Thematic maps can be readily prepared at a scale of 1:250,000 using standard NASA imagery. These provide coverage of areas not previously mapped and provide supplementary information and enable existing maps to be up-dated. There is also increasing evidence that ERTS imagery is useful for temporal studies and for providing a new dimension in integrated surveys.

  2. Water-table and Potentiometric-surface altitudes in the Upper Glacial, Magothy, and Lloyd aquifers beneath Long Island, New York, April-May 2010

    USGS Publications Warehouse

    Monti, Jack; Como, Michael D.; Busciolano, Ronald J.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the USGS conducts a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers (Smolensky and others, 1989)—and the hydraulically connected Jameco (Soren, 1971) and North Shore aquifers (Stumm, 2001). These data and the maps constructed from them are commonly used in studies of Long Island’s hydrology and are used by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 503 monitoring wells, a network of observation and supply wells, and 16 streamgage locations across Long Island during April–May 2010 were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured by using these measurements. The water-table contours were interpreted by using water-level data collected from 16 streamgages, 349 observation wells, and 1 supply well screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer’s potentiometric-surface contours were interpreted from measurements at 67 observation wells and 27 supply wells screened in the middle to deep Magothy aquifer and (or) the contiguous and hydraulically connected Jameco aquifer. The Lloyd aquifer’s potentiometric-surface contours were interpreted from measurements at 55 observation wells and 4 supply wells screened in the Lloyd aquifer or the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped (Busciolano, 2002). In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Hydrographs are included on these maps for selected wells that are instrumented with recording equipment. These hydrographs are representative of the 2010 water year1 to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.

  3. The useful potential of using existing data to uniquely identify predictable wind events and regimes, part 1

    NASA Technical Reports Server (NTRS)

    Trettel, D. W.; Aquino, J. T.; Piazza, T. R.; Taylor, L. E.; Trask, D. C.

    1982-01-01

    Correlations between standard meteorological data and wind power generation potential were developed. Combined with appropriate wind forecasts, these correlations can be useful to load dispatchers to supplement conventional energy sources. Hourly wind data were analyzed for four sites, each exhibiting a unique physiography. These sites are Amarillo, Texas; Ludington, Michigan; Montauk Point, New York; and San Gorgonio, California. Synoptic weather maps and tables are presented to illustrate various wind 'regimes' at these sites.

  4. A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States

    DTIC Science & Technology

    1996-01-01

    Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data

  5. PMP-1 Report: the Fourth Winter of PMP-1, 1981 - 1982: a Winter with Several Interesting Features

    NASA Technical Reports Server (NTRS)

    Labitzke, K.

    1982-01-01

    A synoptic description is given for the fourth winter of pre-MAP project 1 (PMP-1), 1981/82. The main characteristics of this winter are a Canadian warming in the beginning of December, a very strong minor warming in January, and an early final warming in mid-March. The eddy momentum budget, calculated from the daily height and temperature charts, is discussed in terms of the divergence of the Eliassen-Palm-vector.

  6. Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units

    NASA Technical Reports Server (NTRS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2014-01-01

    We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.

  7. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  8. Utility of high-altitude infrared spectral data in mineral exploration: Application to Northern Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.

    2003-01-01

    Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.

  9. Characteristics of vegetation phenology over the Alaskan landscape using AVHRR time-series data

    USGS Publications Warehouse

    Markon, Carl J.; Fleming, Michael D.; Binnian, Emily F.

    1995-01-01

    Advanced Very High Resolution Radiometer (AVHRR) satellite data were acquired and composited into twice-a-month periods from 1 May 1991 to 15 October 1991 in order to map vegetation characteristics of the Alaskan landscape. Unique spatial and temporal qualities of the AVHRR data provide information that leads to a better understanding of regional biophysical characteristics of vegetation communities and patterns. These data provided synoptic views of the landscape and depicted phenological diversity, temporal vegetation phenology (green-up, peak of green, and senescence), photosynthetic activity, and regional landscape patterns. Products generated from the data included a phenological class map, phenological composite maps (onset, peak, and duration), and photosynthetic activity maps (mean and maximum greenness). The time-series data provide opportunities to study phenological processes at small landscape scales over time periods of weeks, months, and years. Regional patterns identified on some of the maps are unique to specific areas; others correspond to biophysical or ecoregional boundaries. The data provide new insights to landscape processes, ecology, and landscape physiognomy that allow scientists to look at landscapes in ways that were previously difficult to achieve.

  10. Synoptic analysis of heat waves in the Barcelona city (Catalonia, Spain) during 21st century

    NASA Astrophysics Data System (ADS)

    Amaro, Jéssica; Peña, Juan Carlos; Miró, Josep Ramon; Aran, Montserrat

    2017-04-01

    The impact of extremely warm episodes on health has been analysed by a large number of studies conducted in different countries and cities, showing that heat waves events (HWE) can cause an abrupt increase in mortality. A HWE was defined as a 7-day sequence following a key-day labelled by the 95th percentile of Barcelona daily mortality (see Peña et al., 2015). The aim of this study is to identify synoptic patterns associated to HWE in Barcelona over the 21st century and evaluate the impact and possible mitigations. To achieve it, a multivariate analysis (MVA) integrating different atmospheric levels (sea level pressure, temperature at 850 hPa and geopotential at 500 hPa) was undertaken. The observed data used for this study was the 20th Century Reanalysis. The Max Planck Institute Earth system model was used to study two scenarios (RCP 4.5 and RCP 8.5) during the 21st century. The model was calibrated given the variability in the climate scenario, using the Quantile-Quantile mapping transformation (Q-Q). The MVA applied to the observed period (1990-2015) distinguish three main synoptic patterns: two dynamic configurations produced by southern fluxes related to an Atlantic low, associated with HWE recorded in southern Europe, and a third pattern identified by a stagnation situation related to persistent anticyclone periods. These patterns were also detected in the control simulated period (1961-2005) after the Q-Q calibration, preserving, therefore, the climatic variability: the number of HWE during the warm period (1990-2005) is twice more than during the cold period (1976-1989) due to an intensification of the warm masses. In the RCP 4.5 scenario (2006-2100 period) a positive and significant trend is shown in synoptic patterns which provoke HWE in Barcelona, especially during August; in the RCP 8.5 scenario there is no significant trend, but the intensification of the warm masses is higher.

  11. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.

  12. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations between seasonal mean GrIS velocities and the frequency or intensity of storms during the season.

  13. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing.

    PubMed

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-05-08

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy.

  14. Geomagnetism-Aided Indoor Wi-Fi Radio-Map Construction via Smartphone Crowdsourcing

    PubMed Central

    Li, Wen; Wei, Dongyan; Lai, Qifeng; Li, Xianghong; Yuan, Hong

    2018-01-01

    Wi-Fi radio-map construction is an important phase in indoor fingerprint localization systems. Traditional methods for Wi-Fi radio-map construction have the problems of being time-consuming and labor-intensive. In this paper, an indoor Wi-Fi radio-map construction method is proposed which utilizes crowdsourcing data contributed by smartphone users. We draw indoor pathway map and construct Wi-Fi radio-map without requiring manual site survey, exact floor layout and extra infrastructure support. The key novelty is that it recognizes road segments from crowdsourcing traces by a cluster based on magnetism sequence similarity and constructs an indoor pathway map with Wi-Fi signal strengths annotated on. Through experiments in real world indoor areas, the method is proved to have good performance on magnetism similarity calculation, road segment clustering and pathway map construction. The Wi-Fi radio maps constructed by crowdsourcing data are validated to provide competitive indoor localization accuracy. PMID:29738454

  15. Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps

    NASA Astrophysics Data System (ADS)

    Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike

    2016-04-01

    Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997-2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrument record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. This result may be due to a manifestation of seasonally dependent biases in NARR. With use of the SOMs, the average uncertainty in monthly CF is reduced in half from the values calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014).

  16. Longshore water-current velocity and the potential for transport of contaminants—A pilot study in Lake Erie from Walnut Creek to Presque Isle State Park beaches, Erie, Pennsylvania, June and August 2015

    USGS Publications Warehouse

    Hittle, Elizabeth A.

    2017-04-20

    Bacteria-driven restrictions and (or) advisories on swimming at beaches in Presque Isle State Park (PISP), Erie, Pennsylvania, can occur during the summer months. One of the suspected sources of bacteria is sediment. A terrestrial sediment source to the west of PISP is Walnut Creek, which discharges to Lake Erie about 8.5 kilometers southwest of PISP Beach 1. On June 24, June 25, August 18, and August 19, 2015, synoptic surveys were conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Sea Grant, in Lake Erie between Walnut Creek and PISP Beach 1 to characterize the water-current velocity and direction to determine whether sediment from Walnut Creek could be affecting the PISP beaches. Water-quality data (temperature, specific conductance, and turbidity) were collected in conjunction with the synoptic surveys in June. Water-quality data (Escherichia coli [E. coli] bacteria, temperature, and turbidity) were collected about a meter from the shore (nearshore) on June 24, August 19, and after a precipitation event on August 11, 2015. Additionally, suspended sediment was collected nearshore on June 24 and August 11, 2015. Samples collected near Walnut Creek during all three bacterial sampling events contained higher counts than other samples. Counts steadily decreased from west to east, then increased about 1–2 kilometers from PISP Beach 1; however, this study was not focused on examining other potential sources of bacteria.The Velocity Mapping Toolbox (VMT) was used to process the water-current synoptic surveys, and the results were visualized within ArcMap. For the survey accomplished on June 24, 2015, potential paths a particle could take between Walnut Creek and PSIP Beach 1 if conditions remained steady over a number of hours were visualized. However, the water-current velocity and direction were variable from one day to the other, indicating this was likely an unrealistic assumption for the study area. This analysis was not accomplished for the other surveys due to unsteady lake conditions encountered on June 25 and August 18, and reduced quality of the survey on August 19.

  17. Development and implementation of a synoptic MRI report for preoperative staging of rectal cancer on a population-based level.

    PubMed

    Kennedy, Erin D; Milot, Laurent; Fruitman, Mark; Al-Sukhni, Eisar; Heine, Gabrielle; Schmocker, Selina; Brown, Gina; McLeod, Robin S

    2014-06-01

    Colorectal cancer physician champions across the province of Ontario, Canada, reported significant concern about appropriate selection of patients for preoperative chemoradiotherapy because of perceived variation in the completeness and consistency of MRI reports. The purpose of this work was to develop, pilot test, and implement a synoptic MRI report for preoperative staging of rectal cancer. This was an integrated knowledge translation project. This study was conducted in Ontario, Canada. Surgeons, radiologists, radiation oncologists, medical oncologists, and pathologists treating patients with rectal cancer were included in this study. A multifaceted knowledge translation strategy was used to develop, pilot test, and implement a synoptic MRI report. This strategy included physician champions, audit and feedback, assessment of barriers, and tailoring to the local context. A radiology webinar was conducted to pilot test the synoptic MRI report. Seventy-three (66%) of 111 Ontario radiologists participated in the radiology webinar and evaluated the synoptic MRI report. A total of 78% and 90% radiologists expressed that the synoptic MRI report was easy to use and included all of the appropriate items; 82% noted that the synoptic MRI report improved the overall quality of their information, and 83% indicated they would consider using this report in their clinical practice. An MRI report audit after implementation of the synoptic MRI report showed a 39% improvement in the completeness of MRI reports and a 37% uptake of the synoptic MRI report format across the province. Radiologists evaluating the synoptic MRI report and participating in the radiology webinar may not be representative of gastroenterologic radiologists in other geographic jurisdictions. The evaluation of completeness and uptake of the synoptic MRI reports is limited because of unmeasured differences that may occur before and after the MRI. A synoptic MRI report for preoperative staging of rectal cancer was successfully developed and pilot tested in the province of Ontario, Canada.

  18. The Large Synoptic Survey Telescope: Projected Near-Earth Object Discovery Performance

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Veres, Peter

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is a large-aperture, wide-field survey that has the potential to detect millions of asteroids. LSST is under construction with survey operations slated to begin in 2022. We describe an independent study to assess the performance of LSST for detecting and cataloging near-Earth objects (NEOs). A significant component of the study will be to assess the survey's ability to link observations of a single object from among the large numbers of false detections and detections of other objects. We also will explore the survey's basic performance in terms of fraction of NEOs discovered and cataloged, both for the planned baseline survey, but also for enhanced surveys that are more carefully tuned for NEO search, generally at the expense of other science drivers. Preliminary results indicate that with successful linkage under the current baseline survey LSST would discover approximately 65% of NEOs with absolute magnitude H is less than 22, which corresponds approximately to 140m diameter.

  19. Hydrogeologic framework, groundwater movement, and water budget in the Chimacum Creek basin and vicinity, Jefferson County, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

    2011-01-01

    This report presents information used to characterize the groundwater flow system in the Chimacum Creek basin. It includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal fluctuations in groundwater level; interactions between aquifers and the surface-water system; and a groundwater budget. The study area covers 124 square miles in northeastern Jefferson County, Washington, and includes the Chimacum Creek basin, which drains an area of about 37 square miles. The area is underlain by a north-thickening sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and igneous bedrock units that crop out along the margins and western interior of the study area. Six hydrogeologic units consisting of unconsolidated aquifers and confining units, along with an underlying bedrock unit, were identified. A surficial hydrogeologic map was developed and used with well information from 187 drillers' logs to construct 4 hydrogeologic sections, and maps showing the extent and thickness of the units. Natural recharge was estimated using precipitation-recharge relation regression equations developed for western Washington, and estimates were calculated for return flow from data on domestic indoor and outdoor use and irrigated agriculture. Results from synoptic streamflow measurements and water table elevations determined from monthly measurements at monitoring wells are presented and compared with those from a study conducted during 2002-03. A water budget was calculated comprising long-term average recharge, domestic public-supply withdrawals and return flow, self-supplied domestic withdrawals and return flow, and irrigated agricultural withdrawals and return flow.

  20. THE POSSIBLE IMPACT OF L5 MAGNETOGRAMS ON NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    The proposed Carrington-L5 mission would bring instruments to the L5 Lagrange point to provide us with crucial data for space weather prediction. To assess the importance of including a magnetograph, we consider the possible differences in non-potential solar coronal magnetic field simulations when magnetograph observations are available from the L5 point, compared with an L1-based field of view (FOV). A timeseries of synoptic radial magnetic field maps is constructed to capture the emergence of two active regions from the L5 FOV. These regions are initially absent in the L1 magnetic field maps, but are included once they rotate into themore » L1 FOV. Non-potential simulations for these two sets of input data are compared in detail. Within the bipolar active regions themselves, differences in the magnetic field structure can exist between the two simulations once the active regions are included in both. These differences tend to reduce within 5 days of the active region being included in L1. The delayed emergence in L1 can, however, lead to significant persistent differences in long-range connectivity between the active regions and the surrounding fields, and also in the global magnetic energy. In particular, the open magnetic flux and the location of open magnetic footpoints, are sensitive to capturing the real-time of emergence. These results suggest that a magnetograph at L5 could significantly improve predictions of the non-potential corona, the interplanetary magnetic field, and of solar wind source regions on the Sun.« less

  1. Construct Maps as a Foundation for Standard Setting

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2013-01-01

    Construct maps are tools that display how the underlying achievement construct upon which one is trying to set cut-scores is related to other information used in the process of standard setting. This article reviews what construct maps are, uses construct maps to provide a conceptual framework to view commonly used standard-setting procedures (the…

  2. Forest Resource Information System (FRIS)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technological and economical feasibility of using multispectral digital image data as acquired from the LANDSAT satellites in an ongoing operational forest information system was evaluated. Computer compatible multispectral scanner data secured from the LANDSAT satellites were demonstrated to be a significant contributor to ongoing information systems by providing the added dimensions of synoptic and repeat coverage of the Earth's surface. Major forest cover types of conifer, deciduous, mixed conifer-deciduous and non-forest, were classified well within the bounds of the statistical accuracy of the ground sample. Further, when overlayed with existing maps, the acreage of cover type retains a high level of positional integrity. Maps were digitized by a graphics design system, overlayed and registered onto LANDSAT imagery such that the map data with associated attributes were displayed on the image. Once classified, the analysis results were converted back to map form as a cover type of information. Existing tabular information as represented by inventory is registered geographically to the map base through a vendor provided data management system. The notion of a geographical reference base (map) providing the framework to which imagery and tabular data bases are registered and where each of the three functions of imagery, maps and inventory can be accessed singly or in combination is the very essence of the forest resource information system design.

  3. The effects of implementing synoptic pathology reporting in cancer diagnosis: a systematic review.

    PubMed

    Sluijter, Caro E; van Lonkhuijzen, Luc R C W; van Slooten, Henk-Jan; Nagtegaal, Iris D; Overbeek, Lucy I H

    2016-06-01

    Pathology reporting is evolving from a traditional narrative report to a more structured synoptic report. Narrative reporting can cause misinterpretation due to lack of information and structure. In this systematic review, we evaluate the impact of synoptic reporting on completeness of pathology reports and quality of pathology evaluation for solid tumours. Pubmed, Embase and Cochrane databases were systematically searched to identify studies describing the effect of synoptic reporting implementation on completeness of reporting and quality of pathology evaluation of solid malignant tumours. Thirty-three studies met the inclusion criteria. All studies, except one, reported an increased overall completeness of pathology reports after introduction of synoptic reporting (SR). Most frequently studied cancers were breast (n = 9) and colorectal cancer (n = 16). For breast cancer, narrative reports adequately described 'tumour type' and 'nodal status'. Synoptic reporting resulted in improved description of 'resection margins', 'DCIS size', 'location' and 'presence of calcifications'. For colorectal cancer, narrative reports adequately reported 'tumour type', 'invasion depth', 'lymph node counts' and 'nodal status'. Synoptic reporting resulted in increased reporting of 'circumferential margin', 'resection margin', 'perineural invasion' and 'lymphovascular invasion'. In addition, increased numbers of reported lymph nodes were found in synoptic reports. Narrative reports of other cancer types described the traditional parameters adequately, whereas for 'resection margins' and '(lympho)vascular/perineural invasion', implementation of synoptic reporting was necessary. Synoptic reporting results in improved reporting of clinical relevant data. Demonstration of clinical impact of this improved method of pathology reporting is required for successful introduction and implementation in daily pathology practice.

  4. Recent Developments in Gravity Wave Effects in Climate Models, and the Global Distribution of Gravity Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2009-01-01

    super-pressure balloon observations. Intermit - tency in this work was quantified via 1 = (1 + σ2/µ2)−1 where µ is the mean momentum flux in each...can be very local- ized in both space and time, a concept termed intermit - tency. Because of intermittency, local values can be more than an order of... Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 2601-2614. Sato, K. 1993: Small-scale wind disturbances observed by the MU radar during the passage

  5. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  6. Comparative analysis of near-present and future synoptic conditions and their contribution to precipitation in central Greece

    NASA Astrophysics Data System (ADS)

    Karacostas, Theodore S.; Bampzelis, Dimitrios; Karipidou, Symela; Pytharoulis, Ioannis; Tegoulias, Ioannis; Kartsios, Stergios; Kotsopoulos, Stylianos; Pakalidou, Nikoletta

    2015-04-01

    The objective on this study is to identify and categorize the daily synoptic circulation patterns encountered between the two periods, in near-present (2001-2010) and future (2041-2050), over the greater area of central and northern Greece, under the "DAPHNE" project (www.daphne-meteo.gr). The followed up statistical analyses and comparisons are focus on the demonstration of the differences in the frequency of occurrences of the synoptic situations between the two time periods, aiming at mitigating drought in central Greece by means of Weather Modification. Actually, within the context of the project, the daily synoptic circulation patterns encountered during the near-present ten-year period are identified and classified according to Karacostas et al. (1992) synoptic classification, into ten distinct synoptic conditions, based on the isobaric level of 500hPa. A similar procedure is adopted for the future period 2041-2050, by developing the mid-tropospheric synoptic circulation patterns through the RegCM3 regional climate model, under the IPCC scenario A1B. Results indicate that certain differences exist between near-present and future frequency distribution of occurrences of the synoptic situations over the study area. The northwest (NW) and southwest (SW) synoptic circulation patterns remain the most frequent synoptic conditions observed for both examined periods. The low pressure system activity over the area exhibit significant decrease during the future period, as it is depicted from the inter-comparison of the frequencies of the closed low (L-2) and cut-off low (L-3) systems. On the other hand, the unorganized synoptic conditions, which are mostly identified as high-low patterns (H-L), appear to increase considerably. The frequencies of zonal flow (ZON) and those of synoptic conditions associated with the presence of high-pressure system over the area, that is (H-1) and (H-2), remain almost unchanged between the two periods. The impact of the aforementioned differences in the frequencies of the synoptic conditions during the future period is examined on a yearly and seasonal basis. The contribution of each synoptic condition on the annual precipitation amounts are estimated for the near-present period, which coupled with the altered frequencies of the synoptic conditions for the future period, result to the future projected annual precipitation amounts. Possible decrease in precipitation amounts is indicated during the future period, as a result of the reduction in the frequencies of certain synoptic conditions associated with high amount of precipitation during the near-present conditions. Acknowledgments: This research work is part of DAPHNE project (11SYN_8_1088_TPE) which is co-funded by the European Union (European Regional Development Fund) and Greek National Funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" in the framework of the operational programme "Competitiveness and Enterpreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).

  7. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  8. Solar thematic maps for space weather operations

    USGS Publications Warehouse

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-01-01

    Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  9. Snow survey and vegetation growth in high mountains (Swiss Alps)

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A method for mapping snow over large areas was developed combining the possibilities of a Quantimet (QTM 72) to evaluate the exact density level of the snow cover for each individual image (or a selected section of the photo) with the higher resolution of photographic techniques. The density level established on the monitor by visual control is used as reference for the exposure time of a lithographic film, producing a clear tonal separation of all snow- and ice-covered areas from uncovered land in black and white. The data is projected onto special maps 1:500,000 or 1:100,000 showing the contour lines and the hydrographic features only. The areal extent of the snow cover may be calculated directly with the QTM 720 or on the map. Bands 4 and 5 provide the most accurate results for mapping snow. Using all four bands a separation of an old melting snow cover from a new one is possible. Regional meteorological studies combining ERTS-1 imagery and conventional sources describe synoptical evolution of meteorological systems over the Alps.

  10. Production of a water quality map of Saginaw Bay by computer processing of LANDSAT-2 data

    NASA Technical Reports Server (NTRS)

    Mckeon, J. B.; Rogers, R. H.; Smith, V. E.

    1977-01-01

    Surface truth and LANDSAT measurements collected July 31, 1975, for Saginaw Bay were used to demonstrate a technique for producing a color coded water quality map. On this map, color was used as a code to quantify five discrete ranges in the following water quality parameters: (1) temperature, (2) Secchi depth, (3) chloride, (4) conductivity, (5) total Kjeldahl nitrogen, (6) total phosphorous, (7)chlorophyll a, (8) total solids and (9) suspended solids. The LANDSAT and water quality relationship was established through the use of a set of linear regression equations where the water quality parameters are the dependent variables and LANDSAT measurements are the independent variables. Although the procedure is scene and surface truth dependent, it provides both a basis for extrapolating water quality parameters from point samples to unsampled areas and a synoptic view of water mass boundaries over the 3000 sq. km bay area made from one day's ship data that is superior, in many ways, to the traditional machine contoured maps made from three day's ship data.

  11. DAFNE: A Matlab toolbox for Bayesian multi-source remote sensing and ancillary data fusion, with application to flood mapping

    NASA Astrophysics Data System (ADS)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco P.; Pasquariello, Guido

    2018-03-01

    High-resolution, remotely sensed images of the Earth surface have been proven to be of help in producing detailed flood maps, thanks to their synoptic overview of the flooded area and frequent revisits. However, flood scenarios can be complex situations, requiring the integration of different data in order to provide accurate and robust flood information. Several processing approaches have been recently proposed to efficiently combine and integrate heterogeneous information sources. In this paper, we introduce DAFNE, a Matlab®-based, open source toolbox, conceived to produce flood maps from remotely sensed and other ancillary information, through a data fusion approach. DAFNE is based on Bayesian Networks, and is composed of several independent modules, each one performing a different task. Multi-temporal and multi-sensor data can be easily handled, with the possibility of following the evolution of an event through multi-temporal output flood maps. Each DAFNE module can be easily modified or upgraded to meet different user needs. The DAFNE suite is presented together with an example of its application.

  12. Construct Maps: A Tool to Organize Validity Evidence

    ERIC Educational Resources Information Center

    McClarty, Katie Larsen

    2013-01-01

    The construct map is a promising tool for organizing the data standard-setting panelists interpret. The challenge in applying construct maps to standard-setting procedures will be the judicious selection of data to include within this organizing framework. Therefore, this commentary focuses on decisions about what to include in the construct map.…

  13. Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2014-12-01

    We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.

  14. Bone Marrow Synoptic Reporting for Hematologic Neoplasms: Guideline From the College of American Pathologists Pathology and Laboratory Quality Center.

    PubMed

    Sever, Cordelia; Abbott, Charles L; de Baca, Monica E; Khoury, Joseph D; Perkins, Sherrie L; Reichard, Kaaren Kemp; Taylor, Ann; Terebelo, Howard R; Colasacco, Carol; Rumble, R Bryan; Thomas, Nicole E

    2016-09-01

    -There is ample evidence from the solid tumor literature that synoptic reporting improves accuracy and completeness of relevant data. No evidence-based guidelines currently exist for synoptic reporting for bone marrow samples. -To develop evidence-based recommendations to standardize the basic components of a synoptic report template for bone marrow samples. -The College of American Pathologists Pathology and Laboratory Quality Center convened a panel of experts in hematopathology to develop recommendations. A systematic evidence review was conducted to address 5 key questions. Recommendations were derived from strength of evidence, open comment feedback, and expert panel consensus. -Nine guideline statements were established to provide pathology laboratories with a framework by which to develop synoptic reporting templates for bone marrow samples. The guideline calls for specific data groups in the synoptic section of the pathology report; provides a list of evidence-based parameters for key, pertinent elements; and addresses ancillary testing. -A framework for bone marrow synoptic reporting will improve completeness of the final report in a manner that is clear, succinct, and consistent among institutions.

  15. The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution

    NASA Astrophysics Data System (ADS)

    Edwards, David P.; Worden, Helen M.; Neil, Doreen; Francis, Gene; Valle, Tim; Arellano, Avelino F., Jr.

    2018-02-01

    The CHRONOS space mission concept provides time-resolved abundance for emissions and transport studies of the highly variable and highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit rate at fine (˜ 4 km) horizontal spatial resolution across a North American domain. CHRONOS can provide complete synoptic air pollution maps (snapshots) of the continental domain with less than 10 min of observations. This rapid mapping enables visualization of air pollution transport simultaneously across the entire continent and enables a sentinel-like capability for monitoring evolving, or unanticipated, air pollution sources in multiple locations at the same time with high temporal resolution. CHRONOS uses a compact imaging gas filter correlation radiometer for these observations, with heritage from more than 17 years of scientific data and algorithm advances by the science teams for the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA's Terra spacecraft in low Earth orbit. To achieve continental-scale sub-hourly sampling, the CHRONOS mission would be conducted from geostationary orbit, with the instrument hosted on a communications or meteorological platform. CHRONOS observations would contribute to an integrated observing system for atmospheric composition using surface, suborbital and satellite data with atmospheric chemistry models, as defined by the Committee on Earth Observing Satellites. Addressing the U.S. National Academy's 2007 decadal survey direction to characterize diurnal changes in tropospheric composition, CHRONOS observations would find direct societal applications for air quality management and forecasting to protect public health.

  16. Addressing the mischaracterization of extreme rainfall in regional climate model simulations - A synoptic pattern based bias correction approach

    NASA Astrophysics Data System (ADS)

    Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona

    2018-01-01

    Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.

  17. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL

    USGS Publications Warehouse

    Hu, Chuanmin; Chen, Zhiqiang; Clayton, Tonya D.; ,; Brock, John C.; Muller-Karger, Frank E.

    2004-01-01

    Using Tampa Bay, FL as an example, we explored the potential for using MODIS medium-resolution bands (250- and 500-m data at 469-, 555-, and 645-nm) for estuarine monitoring. Field surveys during 21–22 October 2003 showed that Tampa Bay has Case-II waters, in that for the salinity range of 24–32 psu, (a) chlorophyll concentration (11 to 23 mg m−3), (b) colored dissolved organic matter (CDOM) absorption coefficient at 400 nm (0.9 to 2.5 m−1), and (c) total suspended sediment concentration (TSS: 2 to 11 mg L−1) often do not co-vary. CDOM is the only constituent that showed a linear, inverse relationship with surface salinity, although the slope of the relationship changed with location within the bay. The MODIS medium-resolution bands, although designed for land use, are 4–5 times more sensitive than Landsat-7/ETM+ data and are comparable to or higher than those of CZCS. Several approaches were used to derive synoptic maps of water constituents from concurrent MODIS medium-resolution data. We found that application of various atmospheric-correction algorithms yielded no significant differences, due primarily to uncertainties in the sensor radiometric calibration and other sensor artifacts. However, where each scene could be groundtruthed, simple regressions between in situ observations of constituents and at-sensor radiances provided reasonable synoptic maps. We address the need for improvements of sensor calibration/characterization, atmospheric correction, and bio-optical algorithms to make operational and quantitative use of these medium-resolution bands.

  18. Atmospheric Drivers of Greenland Surface Melt Revealed by Self-Organizing Maps

    NASA Technical Reports Server (NTRS)

    Mioduszewski, J. R.; Rennermalm, A. K.; Hammann, A.; Tedesco, M.; Noble, E. U.; Stroeve, J. C.; Mote, T. L.

    2016-01-01

    Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979-2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modèle Atmosphérique Régional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979-1988 and 2005-2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007-2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns.

  19. Pliocene planktic foraminifer census data from the North Atlantic region

    USGS Publications Warehouse

    ,

    1996-01-01

    INTRODUCTION: The U.S. Geological Survey is conducting a long-term study of the climatic and oceanographic conditions of the Pliocene known as PRISM (Pliocene Research, Interpretation, and Synoptic Mapping). One of the major elements of the study involves the use of quantitative composition of planktic foraminifer assemblages to estimate seasurface temperatures and identify major oceanographic boundaries and water masses (Dowsett, 1991; Dowsett and Poore, 1991; Dowsett et al., 1992; Dowsett et al., 1994). We have analyzed more than 900 samples from 19 core sites in the North Atlantic Basin (Fig. 1) resulting in a large volume of raw census data. These data are presented here together to facilitate comparison of North Atlantic faunal assemblages. Latitude, longitude, water depth, source of faunal data and source of data used to construct age model (or publication from which age model was taken) are provided for each locality in Table 1. All ages refer to the geomagnetic polarity time scale of Berggren et al. (1985). Counts of species tabulated in each sample are given in Tables 2-20. DSDP and ODP sample designations are abbreviated in Tables 2-20 as core-section, depth within section in centimeters (eg. 10-5, 34 = core 10, section 5, 34 cm below top of section 5).

  20. Flow patterns and bathymetric signatures on the delta front of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Mohrig, D. C.; Wagner, R. W.

    2016-02-01

    The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.

  1. The Large Synoptic Survey Telescope Science Requirements

    NASA Astrophysics Data System (ADS)

    Tyson, J. A.; LSST Collaboration

    2004-12-01

    The Large Synoptic Survey Telescope (LSST) is a wide-field telescope facility that will add a qualitatively new capability in astronomy and will address some of the most pressing open questions in astronomy and fundamental physics. The 8.4-meter telescope and 3 billion pixel camera covering ten square degrees will reach sky in less than 10 seconds in each of 5-6 optical bands. This is enabled by advances in microelectronics, software, and large optics fabrication. The unprecedented optical throughput drives LSST's ability to go faint-wide-fast. The LSST will produce time-lapse digital imaging of faint astronomical objects across the entire visible sky with good resolution. For example, the LSST will provide unprecedented 3-dimensional maps of the mass distribution in the Universe, in addition to the traditional images of luminous stars and galaxies. These weak lensing data can be used to better understand the nature of Dark Energy. The LSST will also provide a comprehensive census of our solar system. By surveying deeply the entire accessible sky every few nights, the LSST will provide large samples of events which we now only rarely observe, and will create substantial potential for new discoveries. The LSST will produce the largest non-proprietary data set in the world. Several key science drivers are representative of the LSST system capabilities: Precision Characterization of Dark Energy, Solar System Map, Optical Transients, and a map of our Galaxy and its environs. In addition to enabling all four of these major scientific initiatives, LSST will make it possible to pursue many other research programs. The community has suggested a number of exciting programs using these data, and the long-lived data archives of the LSST will have the astrometric and photometric precision needed to support entirely new research directions which will inevitably develop during the next several decades.

  2. Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Tindale, N. W.

    1999-01-01

    Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.

  3. CENTER FOR CLIMATIC RESEARCH, UNIVERSITY OF DELAWARE

    EPA Science Inventory

    The synoptic climatology group performs research into a variety of applied climatological issues that affect humans and other organisms around the world. Synoptic climatology is essentially an holistic approach to weather and climate. Synoptic climatologists attempt to characteri...

  4. A preliminary look at AVE-SESAME 5 conducted on 20-21 May 1979

    NASA Technical Reports Server (NTRS)

    July, M.; Turner, R. E.

    1981-01-01

    Information on data collected, synoptic conditions, and severe and unusual weather reported during the period are presented. Records of the synoptic conditions include synoptic charts, radar charts, satellite photographs, and rainfall observations.

  5. An investigation of relationships between meso- and synoptic-scale phenomena

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Wood, J. E.; Fuelberg, H. E.; Read, W. L.

    1972-01-01

    Methods based on the vorticity equation, the adiabatic method, the curvature of the vertical wind profile, and the structure of synoptic waves are used to determine areas of positive vertical motion in the mid-troposphere for a period in each season. Parameters indicative of low-level moisture and conditional instability are areas in which mesoscale systems may be present. The best association between mesoscale and synoptic-scale phenomena was found for a period during December when synoptic-scale systems were well developed. A good association between meso- and synoptic-scale events also was found for a period during March, while the poorest association was found for a June period. Daytime surface heating apparently is an important factor in the formation of mesoscale systems during the summer. It is concluded that the formation of mesoscale phenomena may be determined essentially from synoptic-scale conditions during winter, late fall, and early spring.

  6. Remote sensing in Iowa agriculture. [land use, crop identification, and soil mapping

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P. (Principal Investigator); Carlson, R. E.; Fenton, T. E.

    1974-01-01

    The author has identified the following significant results. Analysis of 1972 single-date coverage indicated that a complete crop classification was not attainable at the test sites. Good multi-date coverage during 1973 indicates that many of the problems encountered in 1972 will be minimized. In addition, the compilation of springtime imagery covering the entire state of Iowa has added a new dimension to interpretation of Iowa's natural resources. ERTS-1 has provided data necessary to achieve the broad synoptic view not attainable through other means. This should provide soils and crop researchers and land use planners a base map of Iowa. Granted and due to the resolution of ERTS-1, not all details are observable for many land use planning needs, but this gives a general and current view of Iowa.

  7. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; McKee, Brent A.

    2004-01-01

    High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.

  8. Inter-Annual Variability of the Acoustic Propagation in the Mediterranean Sea Identified from a Synoptic Monthly Gridded Database as Compared with GDEM

    DTIC Science & Technology

    2016-12-01

    VARIABILITY OF THE ACOUSTIC PROPAGATION IN THE MEDITERRANEAN SEA IDENTIFIED FROM A SYNOPTIC MONTHLY GRIDDED DATABASE AS COMPARED WITH GDEM by...ANNUAL VARIABILITY OF THE ACOUSTIC PROPAGATION IN THE MEDITERRANEAN SEA IDENTIFIED FROM A SYNOPTIC MONTHLY GRIDDED DATABASE AS COMPARED WITH GDEM 5...profiles obtained from the synoptic monthly gridded World Ocean Database (SMD-WOD) and Generalized Digital Environmental Model (GDEM) temperature (T

  9. Analysis of Solar Coronal Holes with Synoptic Magnetogram Data

    NASA Astrophysics Data System (ADS)

    Canner, A.; Kim, T. K.; Pogorelov, N.; Yalim, M. S.

    2017-12-01

    Coronal holes are regions in which the magnetic field of the Sun is open with high magnetic flux and low plasma density. Because of the low plasma beta in these regions, the open field lines transport plasma from the Sun throughout the heliosphere. Coronal hole area is closely related to the expansion factor of the magnetic flux tube, as demonstrated by Tokumaru et al. (2017). Following the approach of Tokumaru et al. (2017), we employ a potential field source surface model to identify the open field regions on the photosphere and estimate the area and expansion factor for each coronal hole. While Tokumaru et al. (2017) analyzed synoptic maps from Kitt Peak National Observatory for the period 1995-2011, we use different magnetograph observations with higher spatial resolution (e.g., SOHO-MDI) for the same time period. We compare the coronal hole area - expansion factor relationship with the original results of Tokumaru et al (2017). This work was supported by the NSF-funded Research Experience for Undergraduates program "Solar and Heliospheric Physics at UAH and MSFC" run by the University of Alabama in Huntsville in partnership with the Marshall Space Flight Center through grant AGS-1460767.

  10. Characteristics of extreme dust events observed over two urban areas in Iran

    NASA Astrophysics Data System (ADS)

    Bidokhti, Abbas-Ali A.; Gharaylou, Maryam; Pegahfar, Nafiseh; Sabetghadam, Samaneh; Rezazadeh, Maryam

    2016-03-01

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity is low in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

  11. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  12. Mars Observer: Mission toward a basic understanding of Mars

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1992-01-01

    The Mars Observer Mission will provide a spacecraft platform about Mars from which the entire Martian surface and atmosphere will be observed and mapped by remote sensing instruments for at least 1 Martian year. The scientific objectives for the Mission emphasize qualitative and quantitative determination of the elemental and mineralogical composition of the surface; measurement of the global surface topography, gravity field, and magnetic field; and the development of a synoptic data base of climatological conditions. The Mission will provide basic global understanding of Mars as it exists today and will provide a framework for understanding its past.

  13. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  14. Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry

    USGS Publications Warehouse

    Jones, John W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.

  15. The Landsat program: Its origins, evolution, and impacts

    USGS Publications Warehouse

    Lauer, D.T.; Morain, S.A.; Salomonson, V.V.

    1997-01-01

    Landsat 1 began an era of space-based resource data collection that changed the way science, industry, governments, and the general public view the Earth. For the last 25 years, the Landsat program - despite being hampered by institutional problems and budget uncertainties - has successfully provided a continuous supply of synoptic, repetitive, multi-spectral data of the Earth's land areas. These data have profoundly affected programs for mapping resources, monitoring environmental changes, and assessing global habitability. The societal applications this program generated are so compelling that international systems have proliferated to carry on the tasks initiated with Landsat data.

  16. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.

  17. Exploiting the Magnetic Origin of Solar Activity in Forecasting Thermospheric Density Variations

    DTIC Science & Technology

    2014-09-01

    computed daily sums of Φr integrated over the disk using synoptic maps from both MDI and the Helioseismic and Magnetic Imager ( HMI ) on the Solar Dynamics...generally well understood, making a proxy derived from measured magnetic fields potentially much easier 2010 2011 2012 2013 2014 0 1 2 3 HMI /SDO Φ r (1...200 250 300 F10.7 0 1 2 3 Φ r (1 02 3 M X ) r = 0.90 Figure 5: The same as Fig. 4, but for Φr derived from HMI observations of the magnetic field

  18. A Gridded Climatology of Clouds over Land (1971-1996) and Ocean (1954-2008) from Surface Observations Worldwide (NDP-026E)*

    DOE Data Explorer

    Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington

    2007-01-01

    Surface synoptic weather reports from ships and land stations worldwide were processed to produce a global cloud climatology which includes: total cloud cover, the amount and frequency of occurrence of nine cloud types within three levels of the troposphere, the frequency of occurrence of clear sky and of precipitation, the base heights of low clouds, and the non-overlapped amounts of middle and high clouds. Synoptic weather reports are made every three hours; the cloud information in a report is obtained visually by human observers. The reports used here cover the period 1971-96 for land and 1954-2008 for ocean. This digital archive provides multi-year monthly, seasonal, and annual averages in 5x5-degree grid boxes (or 10x10-degree boxes for some quantities over the ocean). Daytime and nighttime averages, as well as the diurnal average (average of day and night), are given. Nighttime averages were computed using only those reports that met an "illuminance criterion" (i.e., made under adequate moonlight or twilight), thus minimizing the "night-detection bias" and making possible the determination of diurnal cycles and nighttime trends for cloud types. The phase and amplitude of the first harmonic of both the diurnal cycle and the annual cycle are given for the various cloud types. Cloud averages for individual years are also given for the ocean for each of 4 seasons, and for each of the 12 months (daytime-only averages for the months). [Individual years for land are not gridded, but are given for individual stations in a companion data set, CDIAC's NDP-026D).] This analysis used 185 million reports from 5388 weather stations on continents and islands, and 50 million reports from ships; these reports passed a series of quality-control checks. This analysis updates (and in most ways supercedes) the previous cloud climatology constructed by the authors in the 1980s. Many of the long-term averages described here are mapped on the University of Washington, Department of Atmospheric Sciences Web site. The Online Cloud Atlas containing NDP-026E data is available via the University of Washington.

  19. Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Leathers, D. J.; Levia, D. F.

    2017-05-01

    Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.

  20. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  1. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  2. Photospheric and coronal magnetic fields in 1974 - 2015: A comparison of six magnetographs

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; Mursula, K.

    2015-12-01

    Photospheric magnetic field has been measured since 1950s and digital synoptic data exists since 1970s. We study the long-term development of photospheric and coronal magnetic fields, using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field and the the potential field source surface (PFSS) model. We pay particular attention to the occurrence of the hemispheric asymmetry of the coronal field. The solar and heliospheric magnetic fields are systematically north-south asymmetric. The southward shift of the heliospheric current sheet (HCS) (the so-called Bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. Multipole analysis of the photospheric magnetic field has shown that the Bashful ballerina is mainly due to the g02 quadrupole term, which is oppositely signed to the dipole moment and reflects the larger magnitude of the southern polar field. The six data sets are in general in a good agreement with each other, but the different spatial resolution causes difference some in results. Moreover, there are number of deviations in different individual data sets that are not related to resolution, e.g., in WSO data and in the current version of Kitt Peak 512 channel magnetograph data. We note that the two lowest harmonic coefficients do not scale with the overall magnitude of photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding factor in dipole strength is typically less than two. Scaling also depends on the harmonic coefficient. This should be noted, e.g., when using synoptic maps as input for coronal models. We find that, despite the differences between the six different data sets, especially in the measurements at the highest latitudes, they all support the southward shift of the HCS. At the moment, polar fields have reversed and are strengthening especially in the southern hemisphere, leading to the bashful ballerina, but it is not necessary the final condition during the solar minimum after solar cycle 24. Accordingly, it seems that the Ballerina will be bashful even during cycle 24, although final conclusions must wait the later declining phase.

  3. Contrasting environments associated with storm prediction center tornado outbreak forecasts using synoptic-scale composite analysis

    NASA Astrophysics Data System (ADS)

    Bates, Alyssa Victoria

    Tornado outbreaks have significant human impact, so it is imperative forecasts of these phenomena are accurate. As a synoptic setup lays the foundation for a forecast, synoptic-scale aspects of Storm Prediction Center (SPC) outbreak forecasts of varying accuracy were assessed. The percentages of the number of tornado outbreaks within SPC 10% tornado probability polygons were calculated. False alarm events were separately considered. The outbreaks were separated into quartiles using a point-in-polygon algorithm. Statistical composite fields were created to represent the synoptic conditions of these groups and facilitate comparison. Overall, temperature advection had the greatest differences between the groups. Additionally, there were significant differences in the jet streak strengths and amounts of vertical wind shear. The events forecasted with low accuracy consisted of the weakest synoptic-scale setups. These results suggest it is possible that events with weak synoptic setups should be regarded as areas of concern by tornado outbreak forecasters.

  4. Mapping of information and identification of construction waste at project life cycle

    NASA Astrophysics Data System (ADS)

    Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia

    2018-03-01

    The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.

  5. A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains

    NASA Astrophysics Data System (ADS)

    Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.

    2000-09-01

    Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.

  6. Geochemical Data for Upper Mineral Creek, Colorado, Under Existing Ambient Conditions and During an Experimental pH Modification, August 2005

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Steiger, Judy I.; Walton-Day, Katherine

    2009-01-01

    Mineral Creek, an acid mine drainage stream in south-western Colorado, was the subject of a water-quality study that employed a paired synoptic approach. Under the paired synoptic approach, two synoptic sampling campaigns were conducted on the same study reach. The initial synoptic campaign, conducted August 22, 2005, documented stream-water quality under existing ambient conditions. A second synoptic campaign, conducted August 24, 2005, documented stream-water quality during a pH-modification experiment that elevated the pH of Mineral Creek. The experimental pH modification was designed to determine the potential reductions in dissolved constituent concentrations that would result from the implementation of an active treatment system for acid mine drainage. During both synoptic sampling campaigns, a solution containing lithium bromide was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 30 stream sites and 11 inflow locations along the 2-kilometer study reach. Data from the study provide spatial profiles of pH, concentration, and streamflow under both existing and experimentally-altered conditions. This report presents the data obtained August 21-24, 2005, as well as the methods used for sample collection and data analysis.

  7. Long-term Study of the Solar Filaments from the Synoptic Maps as Derived from {{\\rm{H}}}_{\\alpha } Spectroheliograms of the Kodaikanal Observatory

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhamoy; Hegde, Manjunath; Banerjee, Dipankar; Ravindra, B.

    2017-11-01

    The century long (1914-2007) {{{H}}}α (656.28 nm) spectroheliograms from the Kodaikanal Solar Observatory (KSO) have been recently digitized. Using these newly calibrated, processed images we study the evolution of dark elongated on-disk structures called filaments, which are potential representatives of magnetic activities on the Sun. To our knowledge, this is the oldest uniform digitized data set with daily images available today in {{{H}}}α . We generate Carrington maps for the entire time duration and try to find the correlations with maps of the same Carrington rotation from the Ca II K KSO data. Filaments are segmented from the Carrington maps using a semi-automated technique and are studied individually to extract their centroids and tilts. We plot the time-latitude distribution of the filament centroids, producing a butterfly diagram which clearly shows the presence of poleward migration. We separate polar filaments for each cycle and try to estimate the delay between the polar filament number cycle and the sunspot number cycle peaks. We correlate this delay with the delay between polar reversal and sunspot number maxima. This provides new insight on the role of polar filaments on polar reversal.

  8. Simulation and assimilation of satellite altimeter data at the oceanic mesoscale

    NASA Technical Reports Server (NTRS)

    Demay, P.; Robinson, A. R.

    1984-01-01

    An improved "objective analysis' technique is used along with an altimeter signal statistical model, an altimeter noise statistical model, an orbital model, and synoptic surface current maps in the POLYMODE-SDE area, to evaluate the performance of various observational strategies in catching the mesoscale variability at mid-latitudes. In particular, simulated repetitive nominal orbits of ERS-1, TOPEX, and SPOT/POSEIDON are examined. Results show the critical importance of existence of a subcycle, scanning in either direction. Moreover, long repeat cycles ( 20 days) and short cross-track distances ( 300 km) seem preferable, since they match mesoscale statistics. Another goal of the study is to prepare and discuss sea-surface height (SSH) assimilation in quasigeostrophic models. Restored SSH maps are shown to meet that purpose, if an efficient extrapolation method or deep in-situ data (floats) are used on the vertical to start and update the model.

  9. Delineation of estuarine fronts in the German Bight using airborne laser-induced water Raman backscatter and fluorescence of water column constituents

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1982-01-01

    The acquisition and application of airborne laser induced emission spectra from German Bight water during the 1979 MARSEN experiment is detailed for the synoptic location of estuarine fronts. The NASA Airborne Oceanographic Lidar (AOL) was operated in the fluorosensing mode. A nitrogen laser transmitter at 337.1 nm was used to stimulate the water column to obtain Gelbstoff or organic material fluorescence spectra together with water Raman backscatter. Maps showing the location and relative strength of estuarine fronts are presented. The distribution of the fronts indicates that mixing within the German Bight takes place across a relatively large area. Reasonable agreement between the patterns observed by the AOL and published results are obtained. The limitations and constraints of this technique are indicated and improvements to the AOL fluorosensor are discussed with respect to future ocean mapping applications.

  10. Bistatic LIDAR experiment proposed for the shuttle/tethered satellite system missions

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Spense, H. E.; Karl, R. R.; Horak, H. G.; Wilkerson, T. D.

    1986-01-01

    A new experiment concept has been proposed for the shuttle/tethered satellite system missions, which can provide high resolution, global density mappings of certain ionospheric species. The technique utilizes bistatic LIDAR to take advantage of the unique dual platform configuration offered by these missions. A tuned, shuttle-based laser is used to excite a column of the atmosphere adjacent to the tethered satellite, while triangulating photometic detectors on the satellite are employed to measure the fluorescence from sections of the column. The fluorescent intensity at the detectors is increased about six decades over both ground-based and monostatic shuttle-based LIDAR sounding of the same region. In addition, the orbital motion of the Shuttle provides for quasi-global mapping unattainable with ground-based observations. Since this technique provides such vastly improved resolution on a synoptic scale, many important middle atmospheric studies, heretofore untenable, may soon be addressed.

  11. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  12. THE DYNAMICS OF THE SOLAR MAGNETIC FIELD: POLARITY REVERSALS, BUTTERFLY DIAGRAM, AND QUASI-BIENNIAL OSCILLATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchio, A.; Meduri, D.; Carbone, V.

    2012-04-10

    The spatio-temporal dynamics of the solar magnetic field has been investigated by using NSO/Kitt Peak magnetic synoptic maps covering the period 1976 August-2003 September. The field radial component, for each heliographic latitude, has been decomposed in intrinsic mode functions through the Empirical Mode Decomposition in order to investigate the time evolution of the various characteristic oscillating modes at different latitudes. The same technique has also been applied on synoptic maps of the meridional and east-west components, which were derived from the observed line-of-sight projection of the field by using the differential rotation. Results obtained for the {approx}22 yr cycle, relatedmore » to the polarity inversions of the large-scale dipolar field, show an antisymmetric behavior with respect to the equator in all the field components and a marked poleward flux migration in the radial and meridional components (from about -35 Degree-Sign and +35 Degree-Sign in the southern and northern hemispheres, respectively). The quasi-biennial oscillations (QBOs) are also identified as a fundamental timescale of variability of the magnetic field and associated with poleward magnetic flux migration from low latitudes around the maximum and descending phase of the solar cycle. Moreover, signs of an equatorward drift, at a {approx}2 yr rate, seem to appear in the radial and toroidal components. Hence, the QBO patterns suggest a link to a dynamo action. Finally, the high-frequency component of the magnetic field, at timescales less than 1 yr, provides the most energetic contribution and it is associated with the outbreaks of the bipolar regions on the solar surface.« less

  13. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China

    NASA Astrophysics Data System (ADS)

    Song, Lei; Wu, Renguang; Jiao, Yang

    2018-06-01

    The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.

  14. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  15. Construction of Cognitive Maps to Improve E-Book Reading and Navigation

    ERIC Educational Resources Information Center

    Li, Liang-Yi; Chen, Gwo-Dong; Yang, Sheng-Jie

    2013-01-01

    People have greater difficulty reading academic textbooks on screen than on paper. One notable problem is that they cannot construct an effective cognitive map because of the lack of contextual information cues and ineffective navigational mechanisms in e-books. To support the construction of cognitive maps, this paper proposes the visual cue map,…

  16. Attitude-referenced radiometer study. Part 2: Primary calibration system

    NASA Technical Reports Server (NTRS)

    Williamson, W. R.; Otte, A. A.

    1971-01-01

    A primary calibration system, PCS, for infrared radiometers has been developed, built, and tested. The system allows radiometers to be calibrated with less than 1 percent error for use in earth coverage horizon measurements, earth resources surveys, and synoptic meteorological measurement. The final design, fabrication and test of the PCS are reported. A detailed description of the PCS construction is presented, along with the results of a complete series of functional tests. Test to verify the source thermal characteristics, collimator reflectance, and output beam characteristics are described and their results presented.

  17. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  18. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  19. Energy transformations associated with the synoptic and planetary scales during the evolution of a blocking anticyclone and an upstream explosively-developing cyclone

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Tsou, Chih-Hua

    1992-01-01

    The eddy kinetic energy (KE), release of eddy potential energy, generation of eddy kinetic energy, and exchange between eddy and zonal kinetic energy are investigated for a blocking anticyclone over the North Atlantic Ocean and an extratropical cyclone that developed during January 17-21, 1979. The results indicate that KE was maintained by baroclinic conversion of potential to kinetic. As released potential energy was being used to generate KE, a portion of the KE was barotropically converted to zonal KE. These transformations were dominated by the synoptic-scale component. While changes in the mass field depended not only on the synoptic scale but also on the interactions between the synoptic and planetary scales, the corresponding changes in the eddy motion fields responded largely to synoptic-scale processes.

  20. Middle-School Students' Map Construction: Understanding Complex Spatial Displays.

    ERIC Educational Resources Information Center

    Bausmith, Jennifer Merriman; Leinhardt, Gaea

    1998-01-01

    Examines the map-making process of middle-school students to determine which actions influence their accuracy, how prior knowledge helps their map construction, and what lessons can be learned from map making. Indicates that instruction that focuses on recognition of interconnections between map elements can promote map reasoning skills. (DSK)

  1. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  2. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  3. Aeromagnetic map compilation: Procedures for merging and an example from Washington

    USGS Publications Warehouse

    Finn, C.

    1999-01-01

    Rocks in Antarctica and offshore have widely diverse magnetic properties. Consequently, aeromagnetic data collected there can improve knowledge of the geologic, tectonic and geothermal characteristics of the region. Aeromagnetic data can map concealed structures such as faults, folds and dikes, ascertain basin thickness and locate buried volcanic, as well as some intrusive and metamorphic rocks. Gridded, composite data sets allow a view of continental-scale trends that individual data sets do not provide and link widely-separated areas of outcrop and disparate geologic studies. Individual magnetic surveys must be processed so that they match adjacent surveys prior to merging. A consistent representation of the Earth's magnetic field (International Geomagnetic Reference Field (IGRF)) must be removed from each data set. All data sets need to be analytically continued to the same flight elevation with their datums shifted to match adjacent data. I advocate minimal processing to best represent the individual surveys in the merged compilation. An example of a compilation of aeromagnetic surveys from Washington illustrates the utility of aeromagnetic maps for providing synoptic views of regional tectonic features.

  4. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  5. Analysis of the characteristics appearing in LANDSAT multispectral images in the geological structural mapping of the midwestern portion of the Rio Grande do Sul shield. M.S. Thesis - 25 Mar. 1982; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Ohara, T.

    1982-01-01

    The central-western part of Rio Grande do Sul Shield was geologically mapped to test the use of MSS-LANDSAT data in the study of mineralized regions. Visual interpretation of the images a the scale of 1:500,000 consisted, in the identification and analysis of the different tonal and textural patterns in each spectral band. After the structural geologic mapping of the area, using visual interpretation techniques, the statistical data obtained were evaluated, specially data concerning size and direction of fractures. The IMAGE-100 system was used to enlarge and enhance certain imagery. The LANDSAT MSS data offer several advantages over conventional white and black aerial photographs for geological studies. Its multispectral characteristic (band 6 and false color composition of bands 4, 5 and 7 were best suitable for the study). Coverage of a large imaging area of about 35,000 sq km, giving a synoptical view, is very useful for perceiving the regional geological setting.

  6. Ways of Viewing Pictorial Plasticity

    PubMed Central

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found. PMID:28491270

  7. Development of a synoptic MRI report for primary rectal cancer.

    PubMed

    Spiegle, Gillian; Leon-Carlyle, Marisa; Schmocker, Selina; Fruitman, Mark; Milot, Laurent; Gagliardi, Anna R; Smith, Andy J; McLeod, Robin S; Kennedy, Erin D

    2009-12-02

    Although magnetic resonance imaging (MRI) is an important imaging modality for pre-operative staging and surgical planning of rectal cancer, to date there has been little investigation on the completeness and overall quality of MRI reports. This is important because optimal patient care depends on the quality of the MRI report and clear communication of these reports to treating physicians. Previous work has shown that the use of synoptic pathology reports improves the quality of pathology reports and communication between physicians. The aims of this project are to develop a synoptic MRI report for rectal cancer and determine the enablers and barriers toward the implementation of a synoptic MRI report for rectal cancer in the clinical setting. A three-step Delphi process with an expert panel will extract the key criteria for the MRI report to guide pre-operative chemoradiation and surgical planning following a review of the literature, and a synoptic template will be developed. Furthermore, standardized qualitative research methods will be used to conduct interviews with radiologists to determine the enablers and barriers to the implementation and sustainability of the synoptic MRI report in the clinic setting. Synoptic MRI reports for rectal cancer are currently not used in North America and may improve the overall quality of MRI report and communication between physicians. This may, in turn, lead to improved patient care and outcomes for rectal cancer patients.

  8. Exploring the Interactive Patterns of Concept Map-Based Online Discussion: A Sequential Analysis of Users' Operations, Cognitive Processing, and Knowledge Construction

    ERIC Educational Resources Information Center

    Wu, Sheng-Yi; Chen, Sherry Y.; Hou, Huei-Tse

    2016-01-01

    Concept maps can be used as a cognitive tool to assist learners' knowledge construction. However, in a concept map-based online discussion environment, studies that take into consideration learners' manipulative actions of composing concept maps, cognitive process among learners' discussion, and social knowledge construction at the same time are…

  9. Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California

    Treesearch

    Charles Jones; Francis Fujioka; Leila M.V. Carvalho

    2010-01-01

    Santa Ana winds (SAW) are synoptically driven mesoscale winds observed in Southern California usually during late fall and winter. Because of the complex topography of the region, SAW episodes can sometimes be extremely intense and pose significant environmental hazards, especially during wildfire incidents. A simple set of criteria was used to identify synoptic-scale...

  10. A Model Based Analysis of the Role of an Upper-Level Front and Stratospheric Intrusion in the Mack Lake Fire

    Treesearch

    Tarisa K. Zimet; Jonathan E. Martin

    2003-01-01

    Meteorological assessment of wildfire risk has traditionally involved identification of several synoptic types empirically determined to influence wildfire spread. Such weather types are characterized by identifiable synoptic-scale structures and processes. Schroeder et. al. (1964) identified four recognizable synoptic-scale patterns that contribute most frequently to...

  11. Synoptic variability of extreme snowfall in the St. Elias Mountains, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Andin, Caroline; Zdanowicz, Christian; Copland, Luke

    2015-04-01

    Glaciers in the Wrangell and St. Elias Mountains (Alaska and Yukon) are presently experiencing some of the highest regional wastage rates worldwide. While the effect of regional temperatures on glacier melt rates in this region has been investigated, comparatively little is known about how synoptic climate variations, for example in the position and strength of the Aleutian Low, modulate snow accumulation on these glaciers. Such information is needed to accurately forecast future wastage rates, glacier-water resource availability, and contributions to sea-level rise. Starting in 2000, automated weather stations (AWS) were established in the central St-Elias Mountains (Yukon) at altitudes ranging from 1190 to 5400 m asl, to collect climatological data in support of glaciological research. These data are the longest continuous year-round observations of surface climate ever obtained from this vast glaciated region. Here we present an analysis of snowfall events in the icefields of the St-Elias Mountains based on a decade-long series of AWS observations of snow accumulation. Specifically, we investigated the synoptic patterns and air mass trajectories associated with the largest snowfall events (> 25 cm/12 hours) that occurred between 2002 and 2012. Nearly 80% of these events occurred during the cold season (October-March), and in 74 % of cases the precipitating air masses originated from the North Pacific south of 50°N. Zonal air mass advection over Alaska, or from the Bering Sea or the Arctic Ocean, was comparatively rare (20%). Somewhat counter-intuitively, dominant surface winds in the St. Elias Mountains during high snowfall events were predominantly easterly, probably due to boundary-layer frictional drag and topographic funneling effects. Composite maps of sea-level pressure and 700 mb winds reveal that intense snowfall events between 2002 and 2012 were associated with synoptic situations characterized by a split, eastwardly-shifted or longitudinally-stretched Aleutian Low (AL) having an easternmost node near the Kenai Peninsula, conditions that drove a strong southwesterly upper airstream across the Gulf of Alaska towards the coast. Situations with a single-node, westerly-shifted AL were comparatively rare. The spatial configuration of the synoptic AL pressure pattern appears to play a greater role in determining snowfall amount in the central St. Elias Mountains than do pressure anomalies within the AL. The estimated snowfall gradient from coastal Alaska to the central St. Elias Mountains during intense snowfall events averaged +2.0 ± 0.7 mm/km (SWE), while the continental-side gradient from the mountains towards the Yukon plateau averaged -3.3 ± 0.9 mm/km (SWE). The findings presented here can better constrain the climatic interpretation of long proxy records of snow accumulation variations developed from glacier cores drilled in the St. Elias Mountains or nearby regions.

  12. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  13. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  14. Satellite monitoring of sea surface pollution. [North and Irish Seas

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Hall, T. S. (Principal Investigator); Telfer, D. J.; Wilson, L.; Fryer, R. J.

    1980-01-01

    Thermal IR data from NASA's Heat Capacity Mapping Mission were used in a study of the feasibility of detecting oil spills in the seas around the UK. The period of observation covered the years 1978/9, in which there were no major spills in the area. A video processor capable of generating false color renderings of any satellite image from eight density levels was used in the synoptic search for spills. Other laboratory equipment, and associated analyses, were used to study the thermal behavior of oil spills on water. Oil spills may appear to be warmer or cooler that the surrounding sea, depending on numerous factors.

  15. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.

    1985-01-01

    During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.

  16. Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry

    USGS Publications Warehouse

    Jones, J.W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.

  17. A global planktic foraminifer census data set for the Pliocene ocean

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.

    2016-01-01

    This article presents data derived by the USGS Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project. PRISM has generated planktic foraminifer census data from core sites and outcrops around the globe since 1988. These data form the basis of a number of paleoceanographic reconstructions focused on the mid-Piacenzian Warm Period (3.264 to 3.025 million years ago). Data are presented as counts of individuals within 64 taxonomic categories for each locality. We describe sample acquisition and processing, age dating, taxonomy and archival storage of material. These data provide a unique, stratigraphically focused opportunity to assess the effects of global warming on marine plankton.

  18. 24 CFR 200.1520 - Termination of MAP privileges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-application, the firm application, the mortgage insurance commitment, or the insured construction loan back to... construction or substantial rehabilitation must be immediately transferred to a new MAP lender. At no time can the new MAP lender assign the firm mortgage insurance commitment, or the insured construction loan...

  19. Scheduling Algorithm for the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Ichharam, Jaimal; Stubbs, Christopher

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is a wide-field telescope currently under construction and scheduled to be deployed in Chile by 2022 and operate for a ten-year survey. As a ground-based telescope with the largest etendue ever constructed, and the ability to take images approximately once every eighteen seconds, the LSST will be able to capture the entirety of the observable sky every few nights in six different band passes. With these remarkable features, LSST is primed to provide the scientific community with invaluable data in numerous areas of astronomy, including the observation of near-Earth asteroids, the detection of transient optical events such as supernovae, and the study of dark matter and energy through weak gravitational lensing.In order to maximize the utility that LSST will provide toward achieving these scientific objectives, it proves necessary to develop a flexible scheduling algorithm for the telescope which both optimizes its observational efficiency and allows for adjustment based on the evolving needs of the astronomical community.This work defines a merit function that incorporates the urgency of observing a particular field in the sky as a function of time elapsed since last observed, dynamic viewing conditions (in particular transparency and sky brightness), and a measure of scientific interest in the field. The problem of maximizing this merit function, summed across the entire observable sky, is then reduced to a classic variant of the dynamic traveling salesman problem. We introduce a new approximation technique that appears particularly well suited for this situation. We analyze its effectiveness in resolving this problem, obtaining some promising initial results.

  20. Using Big Data to Understand the Human Condition: The Kavli HUMAN Project.

    PubMed

    Azmak, Okan; Bayer, Hannah; Caplin, Andrew; Chun, Miyoung; Glimcher, Paul; Koonin, Steven; Patrinos, Aristides

    2015-09-01

    Until now, most large-scale studies of humans have either focused on very specific domains of inquiry or have relied on between-subjects approaches. While these previous studies have been invaluable for revealing important biological factors in cardiac health or social factors in retirement choices, no single repository contains anything like a complete record of the health, education, genetics, environmental, and lifestyle profiles of a large group of individuals at the within-subject level. This seems critical today because emerging evidence about the dynamic interplay between biology, behavior, and the environment point to a pressing need for just the kind of large-scale, long-term synoptic dataset that does not yet exist at the within-subject level. At the same time that the need for such a dataset is becoming clear, there is also growing evidence that just such a synoptic dataset may now be obtainable-at least at moderate scale-using contemporary big data approaches. To this end, we introduce the Kavli HUMAN Project (KHP), an effort to aggregate data from 2,500 New York City households in all five boroughs (roughly 10,000 individuals) whose biology and behavior will be measured using an unprecedented array of modalities over 20 years. It will also richly measure environmental conditions and events that KHP members experience using a geographic information system database of unparalleled scale, currently under construction in New York. In this manner, KHP will offer both synoptic and granular views of how human health and behavior coevolve over the life cycle and why they evolve differently for different people. In turn, we argue that this will allow for new discovery-based scientific approaches, rooted in big data analytics, to improving the health and quality of human life, particularly in urban contexts.

  1. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  2. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  3. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany

    NASA Astrophysics Data System (ADS)

    Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.

    2017-12-01

    The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.

  4. Systems engineering in the Large Synoptic Survey Telescope project: an application of model based systems engineering

    NASA Astrophysics Data System (ADS)

    Claver, C. F.; Selvy, Brian M.; Angeli, George; Delgado, Francisco; Dubois-Felsmann, Gregory; Hascall, Patrick; Lotz, Paul; Marshall, Stuart; Schumacher, German; Sebag, Jacques

    2014-08-01

    The Large Synoptic Survey Telescope project was an early adopter of SysML and Model Based Systems Engineering practices. The LSST project began using MBSE for requirements engineering beginning in 2006 shortly after the initial release of the first SysML standard. Out of this early work the LSST's MBSE effort has grown to include system requirements, operational use cases, physical system definition, interfaces, and system states along with behavior sequences and activities. In this paper we describe our approach and methodology for cross-linking these system elements over the three classical systems engineering domains - requirement, functional and physical - into the LSST System Architecture model. We also show how this model is used as the central element to the overall project systems engineering effort. More recently we have begun to use the cross-linked modeled system architecture to develop and plan the system verification and test process. In presenting this work we also describe "lessons learned" from several missteps the project has had with MBSE. Lastly, we conclude by summarizing the overall status of the LSST's System Architecture model and our plans for the future as the LSST heads toward construction.

  5. Intervention Mapping as a framework for developing an intervention at the worksite for older construction workers.

    PubMed

    Oude Hengel, Karen M; Joling, Catelijne I; Proper, Karin I; van der Molen, Henk F; Bongers, Paulien M

    2011-01-01

    The purpose of this study was to apply the Intervention Mapping approach as a framework in the development of a worksite intervention to improve the work ability of construction workers. Development of an intervention by using the Intervention Mapping approach. Construction worksite. Construction workers aged 45 years and older. According to the principles of Intervention Mapping, evidence from the literature was combined with data collected from stakeholders (e.g., construction workers, managers, providers). The Intervention Mapping approach resulted in an intervention with the following components: (1) two individual visits of a physical therapist to lower the physical workload, (2) a Rest-Break tool to improve the balance between work and recovery, and (3) two empowerment training sessions to increase the range of influence at the worksite. Application of Intervention Mapping in the development of a worksite prevention program was useful in the construction industry to obtain a positive attitude and commitment. Stakeholders could give input regarding the program components as well as provide specific leads for the practical intervention strategy. Moreover, it also gives insight in the current theoretical and empirical knowledge in the field of improving the work ability of older workers in the construction industry.

  6. The Potential Observation Network Design with Mesoscale Ensemble Sensitivities in Complex Terrain

    DTIC Science & Technology

    2012-03-01

    in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances from a finite-sized ensemble, they...diagnose predictors of forecast error in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances...sensitivities can be used successfully to diagnose predictors of forecast error in synoptic storms (Torn and Hakim 2008), extratropical transition (Torn and

  7. Synoptic climatology of the long-distance dispersal of white pine blister rust I. Development of an upper level synoptic classification

    Treesearch

    K. L. Frank; L. S. Kalkstein; B. W. Geils; H. W. Thistle

    2008-01-01

    This study developed a methodology to temporally classify large scale, upper level atmospheric conditions over North America, utilizing a newly-developed upper level synoptic classification (ULSC). Four meteorological variables: geopotential height, specific humidity, and u- and v-wind components, at the 500 hPa level over North America were obtained from the NCEP/NCAR...

  8. Synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in Southern California

    Treesearch

    Chenjie Huang; Y.L. Lin; M.L. Kaplan; Joseph J.J. Charney

    2009-01-01

    This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations,...

  9. Comparison of RAPD Linkage Maps Constructed For a Single Longleaf Pine From Both Haploid and Diploid Mapping Populations

    Treesearch

    Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine

    1996-01-01

    Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...

  10. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott

    2006-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.

  11. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.

  12. Deep convection over Northern Italy: synoptic and thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Costa, S.; Mezzasalma, P.; Levizzani, V.; Alberoni, P. P.; Nanni, S.

    Synoptic and thermodynamic characteristics of severe storm outbreaks, including supercells, over northern Italy's Po valley are examined over a 3-year period. Storms are divided into three main categories according to the most relevant associated ground phenomenon: tornado-like, hailfall and heavy rain. For each category, the most common synoptic characteristics are investigated. Sounding data are used to calculate stability indices that help define the storm's environment. Results indicate that the interaction between the synoptic flow and the steep Alpine orography is the key factor responsible for building up the mesoscale circulation that leads to different kinds of severe storms. Some of the stability indices can be regarded as predictors of intense convection.

  13. Building Exposure Maps Of Urban Infrastructure And Crop Fields In The Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Haas, E.; Weichselbaum, J.; Gangkofner, U.; Miltzer, J.; Wali, A.

    2013-12-01

    In the frame of the Integrated Water Resources Management (IWRM) initiative for the Mekong river basin World Bank is collaborating with the Mekong River Commission and governmental organizations in Cambodia, Lao PDR, Thailand and Vietnam to build national and regional capacities for managing the risks associated with natural disasters, such as floods, flash floods and droughts. Within ‘eoworld', a joint initiative set up by ESA and World Bank to foster the use of Earth Observation (EO) for sustainable development work, a comprehensive database of elements at risk in the Lower Mekong river basin has been established by GeoVille, including urban infrastructure and crops (primarily rice paddies). In the long term, this exposure information shall be fed into an open-source multi- hazard modeling tool for risk assessment along the Mekong River, which then shall be used by national stakeholders as well as insurance and financial institutions for planning, disaster preparedness and emergency management. Earth Observation techniques can provide objective, synoptic and repetitive observations of elements at risk including buildings, infrastructure and crops. Through the fusion of satellite-based with in-situ data from field surveys and local knowledge (e.g. on building materials) features at risk can be characterised and mapped with high accuracy. Earth Observation data utilised comprise bi-weekly Envisat ASAR imagery programmed for a period of 9 months in 2011 to map the development of the rice cultivation area, identify predominant cropping systems (wet-season vs. dry season cultivation), crop cycles (single /double / triple crop per year), date of emergence/harvest and the distinction between rice planted under intensive (SRI) vs. regular rice cultivation techniques. Very High Resolution (VHR) optical data from SPOT, KOMPSAT and QuickBird were used for mapping of buildings and infrastructure, such as building footprints, residential / commercial areas, industrial buildings, main infrastructure, and other public assets. A key input to this work was data collected by the project team in the field with the purpose of scoping information about buildings including material, height (number of stories), construction technique, and floor area. A high resolution satellite-based Digital Elevation Model was additionally generated to provide surface elevations of vegetation and man-made objects with a vertical accuracy of 10 m. By using this methodology thousands of buildings and infrastructure features were mapped, clearly indicating the location and characteristics of the assets. Exposure maps were complemented with the analysis of historical flood and drought events using ERS and Envisat ASAR radar data for historical flood mapping alongside with vegetation index data from SPOT-VEGETATION and NOAA-AVHRR, concerning drought events.

  14. The 'surf zone' in the stratosphere

    NASA Astrophysics Data System (ADS)

    McIntyre, M. E.; Palmer, T. N.

    Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.

  15. Interpolation of Water Quality Along Stream Networks from Synoptic Data

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.

    2005-12-01

    Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.

  16. Using synoptic weather types to predict visitor attendance at Atlanta and Indianapolis zoological parks

    NASA Astrophysics Data System (ADS)

    Perkins, David R.

    2018-01-01

    Defining an ideal "tourism climate" has been an often-visited research topic where explanations have evolved from global- to location-specific indices tailored to tourists' recreational behavior. Unfortunately, as indices become increasingly specific, they are less translatable across geographies because they may only apply to specific activities, locales, climates, or populations. A key need in the future development of weather and climate indices for tourism has been a translatable, meteorologically based index capturing the generalized ambient atmospheric conditions yet considering local climatology. To address this need, this paper tests the applicability of the spatial synoptic classification (SSC) as a tool to predict visitor attendance response in the tourism, recreation, and leisure (TRL) sector across different climate regimes. Daily attendance data is paired with the prevailing synoptic weather condition at Atlanta and Indianapolis zoological parks from September 2001 to June 2011, to review potential impacts ambient atmospheric conditions may have on visitor attendances. Results indicate that "dry moderate" conditions are most associated with high levels of attendance and "moist polar" synoptic conditions are most associated with low levels of attendance at both zoological parks. Comparing visitor response at these zoo locations, visitors in Indianapolis showed lower levels of tolerance to synoptic conditions which were not "ideal." Visitors in Indianapolis also displayed more aversion to "polar" synoptic regimes while visitors in Atlanta displayed more tolerance to "moist tropical" synoptic regimes. Using a comprehensive atmospheric measure such as the SSC may be a key to broadening application when assessing tourism climates across diverse geographies.

  17. The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.

    2015-07-01

    Synoptic meteorology can have a significant influence on UK air quality. Cyclonic (anticyclonic) conditions lead to the dispersion (accumulation) of air pollutants away from (over) source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to determine the controlling factors. We show that AQUM successfully captures the observed relationships, when sampled under the Lamb Weather Types, an objective classification of midday UK circulation patterns. By using a range of idealised NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK column NO2 field can be explained by the idealised model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.

  18. Using synoptic weather types to predict visitor attendance at Atlanta and Indianapolis zoological parks.

    PubMed

    Perkins, David R

    2018-01-01

    Defining an ideal "tourism climate" has been an often-visited research topic where explanations have evolved from global- to location-specific indices tailored to tourists' recreational behavior. Unfortunately, as indices become increasingly specific, they are less translatable across geographies because they may only apply to specific activities, locales, climates, or populations. A key need in the future development of weather and climate indices for tourism has been a translatable, meteorologically based index capturing the generalized ambient atmospheric conditions yet considering local climatology. To address this need, this paper tests the applicability of the spatial synoptic classification (SSC) as a tool to predict visitor attendance response in the tourism, recreation, and leisure (TRL) sector across different climate regimes. Daily attendance data is paired with the prevailing synoptic weather condition at Atlanta and Indianapolis zoological parks from September 2001 to June 2011, to review potential impacts ambient atmospheric conditions may have on visitor attendances. Results indicate that "dry moderate" conditions are most associated with high levels of attendance and "moist polar" synoptic conditions are most associated with low levels of attendance at both zoological parks. Comparing visitor response at these zoo locations, visitors in Indianapolis showed lower levels of tolerance to synoptic conditions which were not "ideal." Visitors in Indianapolis also displayed more aversion to "polar" synoptic regimes while visitors in Atlanta displayed more tolerance to "moist tropical" synoptic regimes. Using a comprehensive atmospheric measure such as the SSC may be a key to broadening application when assessing tourism climates across diverse geographies.

  19. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.

  20. Metrics: A Synoptic Analysis of User Data and Service Usage at GES DISC

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Kempler, S. J.; Alcott, G. T.; Lei, G. D.; Vadnais, E.

    2016-12-01

    The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has provided massive Earth science data, information, and services to diverse research communities and general publics for decades. How to genuinely maintain our overall data and service quality, as well as continually improve serving our users (such as research scientists, applications scientists, general publics, and students) with better data services have always been our primary goal. A synoptic metric analysis involving the data and service usages by our diverse user communities at GES DISC that should help us better understand our overall data services, as well as further improve them has therefore been performed. The results of this metrics analysis, along with its purpose, which will be presented at the meeting can be genuinely categorized into the "Five Ws and One H" concept, seemingly cliché, yet by all means pertinent and useful. * What: Metrics involving our archived and served data products addressing useful info's such as "volume of data in archive"; "number of granules in archive"; "volume of data distributed"; "number of granules distributed"; "number of distinct users"; and "relative data usage". a) Remote Sensing: GPM/TRMM, AIRS, OCO-2, etc. b) Modeling: MERRA-2/MERRA, NLDAS, GLDAS, etc. c) Projects: MEaSUREs-2006, MEaSUREs-2012, etc. * Why: The goal: a synoptic (overall) metric analysis should help us better understand and learn from our overall user and data services so that we may further improve them accordingly. * When: Metrics for data during the past decade or longer. Trends or/and usages for specific seasons (e.g., summer or holidays) may also be studied. * Where: Maps showing users from global, continents, countries, and specific area of interests. * Who: Users from various domains/backgrounds: .gov, .edu, .com, .org, anonymous, countries. * How: Data download or service usage via HTTP, FTP, Giovanni, etc.

  1. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  2. Discrimination of tornadic and non-tornadic severe weather outbreaks

    NASA Astrophysics Data System (ADS)

    Mercer, Andrew Edward

    Outbreaks of severe weather affect the majority of the conterminous United States. An outbreak is characterized by multiple severe weather occurrences within a single synoptic system. Outbreaks can be categorized by whether or not they produce tornadoes. It is hypothesized that the antecedent synoptic signal contains important information about outbreak type. Accordingly, the scope of this research is to determine the extent that the synoptic signal can be utilized to classify outbreak type at various lead times. Outbreak types are classified using the NCEP/NCAR reanalysis data, which are arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressure levels, and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for this work. Two types of analyses are performed on these cases to assess discrimination ability. One analysis involves outbreak classification using the Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR reanalysis dataset. Meteorological covariates are computed from the WRF output and used in training and testing of statistical classification models. The covariate fields are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the outbreak. Covariates with large discrimination potential are determined using permutation testing. A P-mode principal component analysis (PCA) is used on the subset of covariates determined by permutation testing to reduce data dimensionality, since numerous redundancies exist in the initial covariate set. Three statistical classification models are trained and tested with the resulting PC scores: a support vector machine (SVM), a logistic regression model (LogR), and a multiple linear regression model (LR). Promising results emerge from these methods, as a probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are obtained from the best discriminating statistical technique (SVM) at 24-hours lead time. Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 and minimum FAR of 0.276). Synoptic composites of the outbreak types are the second analysis considered. Composites are used to reveal synoptic features of outbreak types, which can be utilized to diagnose the differences between classes (in this case, TOs and NTOs). The composites are created using PCA. Five raw variables, height, temperature, relative humidity, and u and v wind components, are extracted from the NCEP/NCAR reanalysis data for North America. Converging longitude lines with increasing latitude on the reanalysis grid introduce bias into correlation calculations in higher latitudes; hence, the data are mapped onto both a latitudinal density grid and a Fibonacci grid. The resulting PCA produces two significant principal components (PCs), and a cluster analysis on these PCs for each outbreak type results in two types of TOs and NTOs. TO composites are characterized by a trough of low pressure over the central United States and major quasigeostrophic forcing features such as an upper level jet streak, cyclonic vorticity advection increasing with height, and warm air advection. These dynamics result in a strong surface cyclone in most tornado outbreaks. These features are considerably less pronounced in NTOs. The statistical analyses presented herein were successful in classifying outbreak types at various lead times, using synoptic scale data as input.

  3. Linking storm surge activity and circulation variability along the Spanish coast through a synoptic pattern classification

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; Garcia Codrón, Juan Carlos

    2010-05-01

    The potentially negative consequences resulting from the estimations of global sea level rising along the current century are a matter of serious concern in many coastal areas worldwide. Most of the negative consequences of the sea level variability, such as flooding or erosion, are linked to episodic events of strong atmospheric forcing represented by deep atmospheric disturbances, especially if they combine with extreme astronomical high tides. Moreover, the interaction between the prevailing flows during such events and the actual orientation of the coast line might accelerate or mitigate such impacts. This contribution analyses sea surge variations measured at five tide-gauge stations located around the Iberian Peninsula and their relationships with regional scale circulation patterns with local-scale winds. Its aim is to improve the knowledge of surge related-coastal-risks by analysing the relationship between surges and their atmospheric forcing factors at different spatial scales. The oceanographic data set consists of hourly data from 5 tide gauge stations (Santander, Vigo, Bonanza, Málaga, Valencia and Barcelona) disseminated along the Spanish coastline, provided by Puertos del Estado. To explore the atmospheric mechanisms responsible for the sign and magnitude of sea surges, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the Atlantic and local information (synop reports) obtained from the closest meteorological stations to the tide gauges. The synoptic catalogue was obtained following a procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The second task was to evaluate the performance of each circulation type on the spatial patterns of a daily fire danger risk index (Canadian Fire Weather Index, FWI). Finally, anomaly maps of several surface and low level climate variables, corresponding to the dates of ignition of the very large forest fires within each synoptic pattern, were calculated to provide insight of the specific conditions associated to those extreme events. A principal component analysis upon 6 hourly residuals highlighted the homogeneous behaviour of the tide gauges and provided a regional quantitative index to identify the largest storm surges. The leading PCA displayed a homogeneous spatial pattern, describing the low frequency variability along the entire coast, in spite of different orientations of the coast, accounting for more than 80% of the total variability. The second PCA displayed opposite phases between the Atlantic and the Mediterranean. Furthermore, the results suggest that surges are a regional rather than local phenomenon, probably related to the same single physical forcing. The comparison between extreme surge events and circulation patterns highlighted that single physical mechanism is represented by extratropical cyclonic disturbances located at the north-western corner of the Iberian Peninsula, responsible for an environment characterized by low pressure readings and westerly-southwesterly winds. That wind pattern acquires an onshore component in the Atlantic coast, but becomes offshore in the Mediterranean. So, the main mechanism responsible for those storm surges is the inverse barometer effect, being the wind dragging secondary. The main physical forcing of the storm surges, the extratropical cyclones, have experience a reduction of this frequency and a marked reduction in their strength since 1950, replaced by stable circulations. Both conditions suggest a long term reduction of the frequency and the magnitude of storm surges.

  4. Coming Full Circle in Standard Setting: A Commentary on Wyse

    ERIC Educational Resources Information Center

    Skaggs, Gary

    2013-01-01

    The construct map is a particularly good way to approach instrument development, and this author states that he was delighted to read Adam Wyse's thoughts about how to use construct maps for standard setting. For a number of popular standard-setting methods, Wyse shows how typical feedback to panelists fits within a construct map framework.…

  5. A Body of Work Standard-Setting Method with Construct Maps

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Bunch, Michael B.; Deville, Craig; Viger, Steven G.

    2014-01-01

    This article describes a novel variation of the Body of Work method that uses construct maps to overcome problems of transparency, rater inconsistency, and scores gaps commonly occurring with the Body of Work method. The Body of Work method with construct maps was implemented to set cut-scores for two separate K-12 assessment programs in a large…

  6. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.; Agard, S. S.; Barton, R.; Blackstone, D. L.; Breckenridge, R. M.; Decker, E. R.; Earle, J.; Evans, M. A.

    1975-01-01

    The author has identified the following significant results. The Earth Resources Technology Satellite data included the following successful applications: (1) general geologic mapping, (2) structural and tectonic studies, (3) landforms and surface processes, (4) mineral exploration, (5) land use inventories, (6) hydrologic studies, (7) investigations in agriculture and forestry, and (8) environmental quality and ecology. The chief advantages of ERTS-1 data for geologic studies are synoptic view, spectral information, and seasonal coverage. The spectral data and repetitive aspect are also important for land use and vegetation studies. Low resolution and lack of steoscopic coverage were found to be the main limitations of ERTS data.

  7. Comparison of Southern Hemisphere radiosonde and LIMS temperatures at 100 mb. [limb infrared monitor of stratosphere

    NASA Technical Reports Server (NTRS)

    Miles, T.; Grose, W. L.; Russell, J. M., III; Remsberg, E. E.

    1987-01-01

    Radiosonde (RS)and satellite-derived (Nimbus-7 LIMS) 100-mb temperatures over New Zealand at 12 GMT are compared for the 1978-79 summer. The colocated LIMS temperature information consists of synoptically mapped values (for 12 GMT), as well as the primary nighttime orbital retrievals valid at about 1030 GMT. The RS time series of temperature is dominated by temporal fluctuations associated mainly with the eastward passage of waves which have characteristic periods of 4-5 and 11-12 days and peak-to-peak amplitudes of 10-15 K. The LIMS temperatures and the corresponding temperature time series are also found to exhibit quite close agreement (in terms of temporal phase for the latter) with the RS data. However, the LIMS-mapped temperature fluctuations suffer from a noticeable attenuation in amplitude (approaching 50 percent for higher-frequency fluctuations), which will affect the accuracy of LIMS-derived estimates of dynamical quantities such as wind velocity and relative vorticity in the lower stratosphere.

  8. History and use of remote sensing for conservation and management of federal lands in Alaska, USA

    USGS Publications Warehouse

    Markon, Carl

    1995-01-01

    Remote sensing has been used to aid land use planning efforts for federal public lands in Alaska since the 1940s. Four federal land management agencies-the U.S. Fish and Wildlife Service, US. Bureau of Land Management, US. National Park Service, and U.S. Forest Service-have used aerial photography and satellite imagery to document the extent, type, and condition of Alaska's natural resources. Aerial photographs have been used to collect detailed information over small to medium-sized areas. This standard management tool is obtainable using equipment ranging from hand-held 35-mm cameras to precision metric mapping cameras. Satellite data, equally important, provide synoptic views of landscapes, are digitally manipulatable, and are easily merged with other digital databases. To date, over 109.2 million ha (72%) of Alaska's land cover have been mapped via remote sensing. This information has provided a base for conservation, management, and planning on federal public lands in Alaska.

  9. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary evaluation of autumnal phase ground truth data suggests that the sampling procedures at the Great Plains Corridor network test sites are adequate to show relatively small temporal changes in above-ground vegetation biomass and vegetation condition. Vegetation changes measured August through December, reflect grazing intensity and environmental conditions at the test sites. Preliminary analysis of black and white imagery suggests that detail in vegetation patterns is much greater than originally anticipated. A first look analysis of single band imagery and digital data at two locations shows that woodland, grassland, and cropland areas are easily delineated. Computer derived grey-scale maps from MSS digital data were shown to be useful in identifying the location of small fields and features of the natural and cultivated lands. Single band imagery and digital data are believed to have important application for synoptic land use mapping and inventory. Initial ratio analysis, using band 5 and 7 data, suggests the applicability in the greenness of a vegetative scene.

  10. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  11. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  12. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    NASA Astrophysics Data System (ADS)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    Flood events in the Mediterranean are frequently linked to synoptic scale cyclones, although topographical or anthropogenic factors can play important role. The knowledge of the vertical profile and dynamics of these cyclones can serve as a reliable early flood warning system that can further help in hazard mitigation and risk management planning. Crete is the second largest island in the eastern Mediterranean region, being characterized by high precipitation amounts during winter, frequently causing flood events. The objective of this study is to examine the dynamic and thermodynamic mechanisms at the upper and lower levels responsible for the generation of these events, according to their origin domain. The flooding events were recorded for a period of almost 20 years. The surface cyclones are identified with the aid of MS scheme that was appropriately modified and extensively employed in the Mediterranean region in previous studies. Then, the software VTS, specially developed for the Mediterranean cyclones, was employed to investigate the vertical extension, slope and dynamic/kinematic characteristics of the surface cyclones. Composite maps of dynamic/thermodynamic parameters, such as potential vorticity, temperature advection, divergence, surface fluxes were then constructed before and during the time of the flood. The dataset includes 6-hourly surface and isobaric analyses on a 0.5° x 0.5° regular latitude-longitude grid, as derived from the ERA-INTERIM Reanalysis of the ECMWF. It was found that cyclones associated with flood events in Crete mainly generate over northern Africa or southern eastern Mediterranean region and experience their minimum pressure over Crete or southwestern Greece. About 84% of the cyclones extend up to 500hPa, demonstrating that they are well vertically well-organized systems. The vast majority (almost 84%) of the surface cyclones attains their minimum pressure when their 500 hpa counterparts are located in the NW or SW, confirming that baroclinicity is one of the most important driving mechanisms for the cyclonic deepening over the examined region. The upper level dynamics acting well before the event and the low level diabatic processes over the Aegean or the Levantine sea contribute to the large amounts of precipitation. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.

  13. An Analysis of Prospective Teachers' Knowledge for Constructing Concept Maps

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela

    2015-01-01

    Background: Literature contends that a teacher's knowledge of concept map-based tasks influence how their students perceive the task and execute the creation of acceptable concept maps. Teachers who are skilled concept mappers are able to (1) understand and apply the operational terms to construct a hierarchical/non-hierarchical concept map; (2)…

  14. Construction of a high-density high-resolution genetic map and its integration with BAC-based physical map in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...

  15. The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.

    2015-10-01

    Synoptic meteorology can have a significant influence on UK air quality. Cyclonic conditions lead to the dispersion of air pollutants away from source regions, while anticyclonic conditions lead to their accumulation over source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to explore the relative importance of various factors. We show that AQUM successfully captures the observed relationships when sampled under the Lamb weather types, an objective classification of midday UK circulation patterns. By using a range of idealized NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial tropospheric column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in tropospheric column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK tropospheric column NO2 field can be explained by the idealized model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.

  16. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  17. Evaluation of ERTS-1 data applications to geologic mapping, structural analysis and mineral resource inventory of South America with special emphasis on the Andes Mountain region

    NASA Technical Reports Server (NTRS)

    Carter, W. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 data is ideally suited for small-scale geologic mapping and structural analysis of remote, inaccessible areas such as the Andes of South America. The synoptic view of large areas, low sun-angle and multispectral nature of the images provide the right ingredients for improving existing geologic and other maps of the regions. In most areas it has been possible to compile geologic, drainage, and cultural interpretive overlays to individual scenes mainly using MSS bands 4, 5, and 7. A test image mosaic using MSS band 6 is being compiled for Test Area 7 (La Paz, Bolivia). It will be at a scale of 1:1,000,000 and cover 4 x 6 degrees of latitude and longitude and will serve as a compilation base on which to join the overlays. Repetitive data shows changes in river channels and sedimentation plumes, changes in lake shorelines, and surface moisture distribution. Vegetation and snow line changes in the Andes have been recognized. A year of seasonal data, however, has not yet been acquired due to tape recorder failure.

  18. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1997-07-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu`u `O `o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu`u `O `o (17-20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu`u `O `o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER).

  19. Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts

    PubMed Central

    Sugihara, George; Casdagli, Martin; Habjan, Edward; Hess, Dale; Dixon, Paul; Holland, Greg

    1999-01-01

    We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems. PMID:10588685

  20. Description of data on the Nimbus 7 LIMS map archive tape: Ozone and nitric acid

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Kurzeja, R. J.; Haggard, K. V.; Russell, J. M., III; Gordley, L. L.

    1986-01-01

    The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) data set has been processed into a Fourier coefficient representation with a Kalman filter algorithm applied to profile data at individual latitudes and pressure levels. The algorithm produces synoptic data at noon Greenwich Mean Time (GMT) from the asynoptic orbital profiles. This form of the data set is easy to use and is appropriate for time series analysis and further data manipulation and display. Ozone and nitric acid results are grouped together in this report because the LIMS vertical field of views (FOV's) and analysis characteristics for these species are similar. A comparison of the orbital input data with mixing ratios derived from Kalman filter coefficients indicates errors in mixing ratio of generally less than 5 percent, with 15 percent being a maximum error. The high quality of the mapped data was indicated by coherence of both the phases and the amplitudes of waves with latitude and pressure. Examples of the mapped fields are presented, and details are given concerning the importance of diurnal variations, the removal of polar stratospheric cloud signatures, and the interpretation of bias effects in the data near the tops of profiles.

  1. Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps

    ERIC Educational Resources Information Center

    Pingel, Thomas J.

    2018-01-01

    Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…

  2. Relationship between AOD and synoptic circulation over the Eastern Mediterranean: A comparison between subjective and objective classifications

    NASA Astrophysics Data System (ADS)

    Bodenheimer, Shalev; Nirel, Ronit; Lensky, Itamar M.; Dayan, Uri

    2018-03-01

    The Eastern Mediterranean (EM) Basin is strongly affected by dust originating from two of the largest world sources: The Sahara Desert and the Arabian Peninsula. Climatologically, the distribution pattern of aerosol optical depth (AOD), as proxy to particulate matter (PM), is known to be correlated with synoptic circulation. The climatological relationship between circulation type classifications (CTCs) and AOD levels over the EM Basin ("synoptic skill") was examined for the years 2000-2014. We compared the association between subjective (expert-based) and objective (fully automated) classifications and AOD using autoregressive models. After seasonal adjustment, the mean values of R2 for the different methods were similar. However, the distinct spatial pattern of the R2 values suggests that subjective classifications perform better in their area of expertise, specifically in the southeast region of the study area, while, objective CTCs had better synoptic skill over the northern part of the EM. This higher synoptic skill of subjective CTCs stem from their ability to identify distinct circulation types (e.g. Sharav lows and winter lows) that are infrequent but are highly correlated with AOD. Notably, a simple CTC based on seasonality rather than meteorological parameters predicted well AOD levels, especially over the south-eastern part of the domain. Synoptic classifications that are area-oriented are likely better predictors of AOD and possibly other environmental variables.

  3. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations

    PubMed Central

    Bilton, Timothy P.; Schofield, Matthew R.; Black, Michael A.; Chagné, David; Wilcox, Phillip L.; Dodds, Ken G.

    2018-01-01

    Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species’ genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology (e.g., genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander–Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. PMID:29487138

  4. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations.

    PubMed

    Bilton, Timothy P; Schofield, Matthew R; Black, Michael A; Chagné, David; Wilcox, Phillip L; Dodds, Ken G

    2018-05-01

    Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies, providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species' genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput sequencing technology ( e.g. , genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new methodology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid species, implemented in a package called GUSMap. Our model is based on the Lander-Green hidden Markov model but extended to account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model. Copyright © 2018 Bilton et al.

  5. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities.

    PubMed

    Hebbern, Christopher; Cakmak, Sabit

    2015-09-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Using remotely sensed data to construct and assess forest attribute maps and related spatial products

    Treesearch

    Ronald E. McRoberts; Warren B. Cohen; Erik Naesset; Stephen V. Stehman; Erkki O. Tomppo

    2010-01-01

    Tremendous advances in the construction and assessment of forest attribute maps and related spatial products have been realized in recent years, partly as a result of the use of remotely sensed data as an information source. This review focuses on the current state of techniques for the construction and assessment of remote sensing-based maps and addresses five topic...

  7. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome

    PubMed Central

    2010-01-01

    Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These distorted loci tended to cluster on LG1, LG3, LG4 and LG5. There were only 15 EST-SSR markers mapped due to low polymorphism. By comparison, there were potential synteny, collinear order of some markers and conservation of collinear linkage groups among the maps and with the AA genome but not fully conservative. Conclusion A composite linkage map was constructed from three individual mapping populations with 175 SSR markers in 22 composite linkage groups. This composite genetic linkage map is among the first "true" tetraploid peanut maps produced. This map also consists of 47 SSRs that have been used in the published AA genome maps, and could be used in comparative mapping studies. The primers described in this study are PCR-based markers, which are easy to share for genetic mapping in peanuts. All 1044 primer pairs are provided as additional files and the three RIL populations will be made available to public upon request for quantitative trait loci (QTL) analysis and linkage map improvement. PMID:20105299

  8. A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesin, Y.; Weiss, H.

    1997-01-01

    In this paper we establish the complete multifractal formalism for equilibrium measures for Holder continuous conformal expanding maps and expanding Markov Moran-like geometric constructions. Examples include Markov maps of an interval, beta transformations of an interval, rational maps with hyperbolic Julia sets, and conformal total endomorphisms. We also construct a Holder continuous homeomorphism of a compact metric space with an ergodic invariant measure of positive entropy for which the dimension spectrum is not convex, and hence the multifractal formalism fails.

  9. Geologic Mapping of Impact Craters and the Mahuea Tholus Construct: A Year Three Progress Report for the Mahuea Tholus (V-49) Quadrangle, Venus

    NASA Astrophysics Data System (ADS)

    Lang, N. P.; Covley, M. T.; Beltran, J.; Rogers, K.; Thomson, B. J.

    2018-06-01

    We are reporting on our year three status of mapping the V-49 quadrangle (Mahuea Tholus). Our mapping efforts over this past year emphasized the 13 impact craters in the quadrangle as well as larger-scale mapping of the Mahuea Tholus construct.

  10. Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing

    PubMed Central

    Guo, Yinshan; Xing, Huiyang; Zhao, Yuhui; Liu, Zhendong; Li, Kun; Guo, Xiuwu

    2017-01-01

    Genetic maps are important tools in plant genomics and breeding. We report a large-scale discovery of single nucleotide polymorphisms (SNPs) using the specific length amplified fragment sequencing (SLAF-seq) technique for the construction of high-density genetic maps for two elite wine grape cultivars, ‘Chardonnay’ and ‘Beibinghong’, and their 130 F1 plants. A total of 372.53 M paired-end reads were obtained after preprocessing. The average sequencing depth was 33.81 for ‘Chardonnay’ (the female parent), 48.20 for ‘Beibinghong’ (the male parent), and 12.66 for the F1 offspring. We detected 202,349 high-quality SLAFs of which 144,972 were polymorphic; 10,042 SNPs were used to construct a genetic map that spanned 1,969.95 cM, with an average genetic distance of 0.23 cM between adjacent markers. This genetic map contains the largest molecular marker number of the grape maps so far reported. We thus demonstrate that SLAF-seq is a promising strategy for the construction of high-density genetic maps; the map that we report here is a good potential resource for QTL mapping of genes linked to major economic and agronomic traits, map-based cloning, and marker-assisted selection of grape. PMID:28746364

  11. Synoptic scale forecast skill and systematic errors in the MASS 2.0 model. [Mesoscale Atmospheric Simulation System

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.

    1985-01-01

    The synoptic scale performance characteristics of MASS 2.0 are determined by comparing filtered 12-24 hr model forecasts to same-case forecasts made by the National Meteorological Center's synoptic-scale Limited-area Fine Mesh model. Characteristics of the two systems are contrasted, and the analysis methodology used to determine statistical skill scores and systematic errors is described. The overall relative performance of the two models in the sample is documented, and important systematic errors uncovered are presented.

  12. 77 FR 42696 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... construction awards, 30 requests for amendments to non-construction awards, 2 project service maps). Average Hours Per Response: 2 hours for an amendment to a construction award, 1 hour for an amendment to a non-construction award, 6 hours for a project service map. Burden Hours: 1,242. Needs and Uses: A recipient must...

  13. A Precipitation Climatology of the Snowy Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2014-05-01

    The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale atmospheric circulation affects the hydroclimate of alpine environments in southeast Australia - allowing recently observed precipitation declines to be placed in the context of a long-term record spanning at least 100 years. This information will provide further insight into the impacts of predicted anthropogenic climate change and will ultimately lead to more informed water resource management in the Snowy Mountains.

  14. Rapid construction of genome map for large yellow croaker (Larimichthys crocea) by the whole-genome mapping in BioNano Genomics Irys system.

    PubMed

    Xiao, Shijun; Li, Jiongtang; Ma, Fengshou; Fang, Lujing; Xu, Shuangbin; Chen, Wei; Wang, Zhi Yong

    2015-09-03

    Large yellow croaker (Larimichthys crocea) is an important commercial fish in China and East-Asia. The annual product of the species from the aqua-farming industry is about 90 thousand tons. In spite of its economic importance, genetic studies of economic traits and genomic selections of the species are hindered by the lack of genomic resources. Specifically, a whole-genome physical map of large yellow croaker is still missing. The traditional BAC-based fingerprint method is extremely time- and labour-consuming. Here we report the first genome map construction using the high-throughput whole-genome mapping technique by nanochannel arrays in BioNano Genomics Irys system. For an optimal marker density of ~10 per 100 kb, the nicking endonuclease Nt.BspQ1 was chosen for the genome map generation. 645,305 DNA molecules with a total length of ~112 Gb were labelled and detected, covering more than 160X of the large yellow croaker genome. Employing IrysView package and signature patterns in raw DNA molecules, a whole-genome map of large yellow croaker was assembled into 686 maps with a total length of 727 Mb, which was consistent with the estimated genome size. The N50 length of the whole-genome map, including 126 maps, was up to 1.7 Mb. The excellent hybrid alignment with large yellow croaker draft genome validated the consensus genome map assembly and highlighted a promising application of whole-genome mapping on draft genome sequence super-scaffolding. The genome map data of large yellow croaker are accessible on lycgenomics.jmu.edu.cn/pm. Using the state-of-the-art whole-genome mapping technique in Irys system, the first whole-genome map for large yellow croaker has been constructed and thus highly facilitates the ongoing genomic and evolutionary studies for the species. To our knowledge, this is the first public report on genome map construction by the whole-genome mapping for aquatic-organisms. Our study demonstrates a promising application of the whole-genome mapping on genome maps construction for other non-model organisms in a fast and reliable manner.

  15. Lifting the Green Veil: A Fresh Look at Synoptic Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Vina, A.; Gitelson, A. A.

    2003-12-01

    Observing the dynamics of the vegetated land surface synoptically from spaceborne sensors plays a key role in understanding the global water, carbon, and nitrogen cycles, land cover and land use change, and biodiversity mapping. For the past three decades the study of global and regional vegetation dynamics has relied on satellite observations of the distinctive spectral contrast between red and near infrared reflectance exhibited by photosynthetically active green vegetation. It has long been recognized, however, that the spectral vegetation index with the widest currency-the Normalized Difference Vegetation Index (NDVI)-suffers a rapid decrease of sensitivity even at moderate Leaf Area Index (LAI) values of 2 to 4, as are commonly encountered in croplands and woodlands. This decrease in NDVI sensitivity casts a green veil over the land surface that obscures vegetation dynamics across vast areas during much of the growing season. This veil has important consequences for monitoring vegetation dynamics, developing land surface climatologies, and detecting significant changes. A straightforward modification of the NDVI, developed to increase its sensitivity under higher green biomass conditions, was applied to a standard, widely available AVHRR NDVI dataset for the conterminous US. The new Wide Dynamic Range Vegetation Index (WDRVI) exhibited increases in sensitivity between 30%-50% for Omernik Level III ecoregions dominated by woodlands, croplands, and grasslands. Ecoregions with lower aboveground net primary production, such as aridlands and semi-arid grasslands, showed no increase in sensitivity of the WDRVI over the NDVI. This powerful, new but simple approach creates an opportunity for a fresh look at the satellite data record. Further, it offers the possibility for significant improvements in the retrievals of canopy variables for carbon and nitrogen models, more accurate land surface characterizations for numerical weather prediction models, more sensitive analyses of land cover / land use change, and improvements in habitat mapping for biodiversity management.

  16. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  17. Development and Evaluation of an Integrated Hydrological Modeling Framework for Monitoring and Understanding Floods and Droughts

    NASA Astrophysics Data System (ADS)

    Yang, Z. L.; Wu, W. Y.; Lin, P.; Maidment, D. R.

    2017-12-01

    Extreme water events such as catastrophic floods and severe droughts have increased in recent decades. Mitigating the risk to lives, food security, infrastructure, energy supplies, as well as numerous other industries posed by these extreme events requires informed decision-making and planning based on sound science. We are developing a global water modeling capability by building models that will provide total operational water predictions (evapotranspiration, soil moisture, groundwater, channel flow, inundation, snow) at unprecedented spatial resolutions and updated frequencies. Toward this goal, this talk presents an integrated global hydrological modeling framework that takes advantage of gridded meteorological forcing, land surface modeling, channeled flow modeling, ground observations, and satellite remote sensing. Launched in August 2016, the National Water Model successfully incorporates weather forecasts to predict river flows for more than 2.7 million rivers across the continental United States, which transfers a "synoptic weather map" to a "synoptic river flow map" operationally. In this study, we apply a similar framework to a high-resolution global river network database, which is developed from a hierarchical Dominant River Tracing (DRT) algorithm, and runoff output from the Global Land Data Assimilation System (GLDAS) to a vector-based river routing model (The Routing Application for Parallel Computation of Discharge, RAPID) to produce river flows from 2001 to 2016 using Message Passing Interface (MPI) on Texas Advanced Computer Center's Stampede system. In this simulation, global river discharges for more than 177,000 rivers are computed every 30 minutes. The modeling framework's performance is evaluated with various observations including river flows at more than 400 gauge stations globally. Overall, the model exhibits a reasonably good performance in simulating the averaged patterns of terrestrial water storage, evapotranspiration and runoff. The system is appropriate for monitoring and studying floods and droughts. Directions for future research will be outlined and discussed.

  18. North south asymmetry in the photospheric and coronal magnetic fields observed by different instruments

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2015-04-01

    Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.

  19. The Open Flux Problem

    NASA Astrophysics Data System (ADS)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  20. The Open Flux Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linker, J. A.; Caplan, R. M.; Downs, C.

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less

  1. Satellite Radiothermovision on Synoptic and Climatically Significant Scales

    NASA Astrophysics Data System (ADS)

    Ermakov, D. M.; Sharkov, E. A.; Chernushich, A. P.

    2017-12-01

    This paper is focused on the development of a methodological basis for the authors' approach to the processing of large volumes of satellite radiothermal data, which is known as satellite radiothermovision. A closed scheme for calculating the latent heat flux (and other integral characteristics of the dynamics of geophysical fields) through arbitrary contours (boundaries) has been constructed and mathematically described. The opportunity for working with static, as well as movable and deformable boundaries of arbitrary shape, has been provided. The computational scheme was tested using the example of calculations of the atmospheric advection of the latent heat from the North Atlantics to the Arctic in 2014. Preliminary analysis of the results showed a high potential of the approach when applying it to the study of a wide range of synoptic and climatically significant atmospheric processes of the Earth. Some areas for the further development of the satellite radiothermovision approach are briefly discussed. It is noted that expanding the analysis of the available satellite data to as much data as possible is of considerable importance. Among the immediate prospects is the analysis of large arrays of data already accumulated and processed in terms of the satellite radiothermovision ideology, which are partially presented and continuously updated on a specialized geoportal.

  2. Significant Findings: Seasonal Distributions of Global Ocean Chlorophyll and Nutrients With a Coupled Ocean General Circulation, Biogeochemical, and Radiative Model. 2; Comparisons With Satellite and In Situ Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.

  3. Synoptic-scale atmospheric conditions associated with flash flooding in watersheds of the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Quiring, S. M.

    2015-12-01

    Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.Understanding flash flooding is important in unfiltered watersheds, such as portions of the New York City water supply system (NYCWSS), as water quality is degraded by turbidity associated with flooding. To further understand flash flooding in watersheds of the NYCWSS, synoptic-scale atmospheric conditions most frequently associated with flash flooding between 1987 and 2013 were examined. Flash floods were identified during this time period using USGS 15-minute discharge data at the Esopus Creek near Allaben, NY and Neversink River at Claryville, NY gauges. Overall, 25 flash floods were detected, occurring over 17 separate flash flood days. These flash flood days were compared to the days on which flash flood warnings encompassing the study area was issued by the National Weather Service. The success rate for which the flash flood warnings for Ulster County coincided with flash flood in the study watershed was 0.09, demonstrating the highly localized nature of flash flooding in the Catskill Mountain region. The synoptic-scale atmospheric patterns influencing the study area were characterized by a principal component analysis and k-means clustering of NCEP/NCAR 500 mb geopotential height reanalysis data. This procedure was executed in Spatial Synoptic Typer Tools 4.0. While 17 unique synoptic patterns were identified, only 3 types were strongly associated with flash flooding events. A strong southwesterly flow suggesting advection of moisture from the Atlantic Ocean and Gulf of Mexico is shown in composites of these 3 types. This multiscalar study thereby links flash flooding in the NYCWSS with synoptic-scale atmospheric circulation.

  4. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.).

    PubMed

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.

  5. Spatial and temporal dynamic of surface water and vegetation dynamic using remotely sensed data in the Murray -Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Kingsford, R.; Broich, M.

    2012-12-01

    Australia is the driest inhabited continent and river systems have highly variable flows in space and time. The Murray-Darling Basin (MDB), a catchment covering 14% of the continent contains the nation's largest rivers and important groundwater systems. The basin has highly variable rainfall patterns in space and time and the vast majority of rainfall is lost to evapotranspiration with only 4% becoming runoff. The basin is home to several wetlands of high hydrological and ecological value with a number of them being recognised as wetlands of international importance. The basin produces more than a third of Australia's food supply, making it the most important agricultural area in the country. However, variation in surface and ground water availability exacerbated by a long period of drought, combined with high water demands for irrigation and in several major cities, and the need for water to maintain ecosystem health in the floodplains have led to the need of managing water resources in an integrated fashion. Several dams have been constructed in the basin, which store water during wet periods which is released during dry periods as environmental flows. Assessment of water resources and understanding of the effectiveness of environmental flows requires knowledge of 1) long term trends in occurrence and extent of surface water, 2) what is the vegetation response to flooding and 3) whether water reached target vegetation communities. However, such information does not exist at the basin level. Satellite remote sensing is the only viable way for synoptically mapping and monitoring the extent and dynamic of flooding and vegetation response to flooding. Moreover, recent La Nina -induced, extreme flooding broke a decade long of drought and made 2010 the wettest calendar year on record in the MDB and across vast areas of Australia. This represents a unique opportunity to develop predictive models relating flow regime to vegetation response and identify trends over long term and across a large space in a drying yet variable climate. Using an internally consistent method, Landsat TM and ETM+ data were used to synoptically map the extent and dynamic of surface water bodies and track the response of vegetation communities to flooding in space and time at selected sites. Per pixel trajectory of surface water and vegetation index time series were used. Results show high interannual variability in number and size of flooded areas and a positive relationship with rainfall. Response of vegetation communities to flooding varied in space and time and with vegetation types and densities. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the MDB. The approach presented here can be transferred to other river systems around the world where high demand for water requires informed management decisions.

  6. Standardized synoptic cancer pathology reports - so what and who cares? A population-based satisfaction survey of 970 pathologists, surgeons, and oncologists.

    PubMed

    Lankshear, Sara; Srigley, John; McGowan, Thomas; Yurcan, Marta; Sawka, Carol

    2013-11-01

    Cancer Care Ontario implemented synoptic pathology reporting across Ontario, impacting the practice of pathologists, surgeons, and medical and radiation oncologists. The benefits of standardized synoptic pathology reporting include enhanced completeness and improved consistency in comparison with narrative reports, with reported challenges including increased workload and report turnaround time. To determine the impact of synoptic pathology reporting on physician satisfaction specific to practice and process. A descriptive, cross-sectional design was utilized involving 970 clinicians across 27 hospitals. An 11-item survey was developed to obtain information regarding timeliness, completeness, clarity, and usability. Open-ended questions were also employed to obtain qualitative comments. A 51% response rate was obtained, with descriptive statistics reporting that physicians perceive synoptic reports as significantly better than narrative reports. Correlation analysis revealed a moderately strong, positive relationship between respondents' perceptions of overall satisfaction with the level of information provided and perceptions of completeness for clinical decision making (r = 0.750, P < .001) and ease of finding information for clinical decision making (r = 0.663, P < .001). Dependent t tests showed a statistically significant difference in the satisfaction scores of pathologists and oncologists (t169 = 3.044, P = .003). Qualitative comments revealed technology-related issues as the most frequently cited factor impacting timeliness of report completion. This study provides evidence of strong physician satisfaction with synoptic cancer pathology reporting as a clinical decision support tool in the diagnosis, prognosis, and treatment of cancer patients.

  7. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  8. Study of the tornado event in Greece on March 25, 2009: Synoptic analysis and numerical modeling using modified topography

    NASA Astrophysics Data System (ADS)

    Matsangouras, I. T.; Nastos, P. T.; Pytharoulis, I.

    2016-03-01

    Recent research revealed that western Greece and NW Peloponnese are regions that favor prefrontal tornadic incidence. On March 25, 2009 a tornado developed approximately at 10:30 UTC near Varda village (NW Peloponnese). Tornado intensity was T4-T5 (TORRO scale) and consequently caused an economic impact of 350,000 € over the local society. The goals of this study are: (i) to analyze synoptic and remote sensing features regarding the tornado event over NW Peloponnese and (ii) to investigate the role of topography in tornadogenesis triggered under strong synoptic scale forcing over that area. Synoptic analysis was based on the European Centre for Medium-Range Weather Forecasts (ECMWF) data sets. The analysis of daily anomaly of synoptic conditions with respect to 30 years' climatology (1981-2010), was based on the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data sets. In addition, numerous remote sensing data sets were derived by the Hellenic National Meteorological Service (HNMS) weather station network in order to better interpret the examined tornado event. Finally, numerical modeling was performed using the non-hydrostatic Weather Research and Forecasting model (WRF), initialized by ECMWF gridded analyses, with telescoping nested grids that allow the representation of atmospheric circulations ranging from the synoptic scale down to the meso-scale. The two numerical experiments were performed on the basis of: (a) the presence and (b) the absence of topography (landscape), so as to determine whether the occurrence of a tornado - identified by diagnostic instability indices - could be indicated by modifying topography. The energy helicity index (EHI), the bulk Richardson number (BRN) shear, the storm-relative environmental helicity (SRH), and the maximum convective available potential energy (MCAPE, for parcels with maximum θe) were considered as principal diagnostic instability variables and employed in both numerical experiments. Furthermore, model verification was conducted, accompanied by analysis of the absolute vorticity budget. Synoptic analysis revealed that the synoptic weather conditions on March 25, 2009 are in agreement with the composite synoptic climatology for tornado days over western Greece. In addition, maximum daily anomalies at the barometric levels of 500, 700, 850 and 925 hPa were found, compared to the climatology of composite mean anomalies for tornado days over western Greece. Numerical simulations revealed that the topography of NW Peloponnese did not constitute an important factor during the tornado event on March 25, 2009, based on EHI, SRH, BRN, and MCAPE analyses.

  9. Carbon Monoxide Distributions and Atmosphere Transports over Southern Africa. Pt-2

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Swap, Robert J.; Piketh, Stuart; Mason, Simon; Connors, Vickie

    1999-01-01

    Sources and transports of CO as measured by the Measurement of Air Pollution from Space (MAPS) over a substantial sector of the southern hemisphere between South America and southern Africa are described by air parcel trajectories based upon European Center for Medium Range Weather Forecasts (ECMWF) model data fields. Observations, made by NASA Shuttle astronauts during the October 1994 mission, of vegetation fires suggest a direct relationship between in situ biomass burning, at least over South America and southern Africa, and coincident tropospheric measurements of CO. Results of this paper indicate that the transport of CO from the surface to the levels of maximum MAPS sensitivity (about 450 hPa) over these regions is not of a direct nature due largely to the well stratified atmospheric environment. The atmospheric transport of CO from biomass burning within this region is found to occur over intercontinental scales over numbers of days to more than a week. Three distinct synoptic circulation and transport classes are found to have occurred over southern Africa during the October 1994 MAPS experiment: (1) transport from South America and Africa to southern Africa associated with elevated MAPS measured CO (> 150 ppbv); (2) weakening anticyclonic transport from South America associated with moderate CO (< 150 ppbv and > 105 ppbv); and (3) transport from the high southern latitudes associated with low CO (<105 ppbv).

  10. Supporting Problem-Solving Performance Through the Construction of Knowledge Maps

    ERIC Educational Resources Information Center

    Lee, Youngmin; Baylor, Amy L.; Nelson, David W.

    2005-01-01

    The purpose of this article is to provide five empirically-derived guidelines for knowledge map construction tools that facilitate problem solving. First, the combinational representation principle proposes that conceptual and corresponding procedural knowledge should be represented together (rather than separately) within the knowledge map.…

  11. Circulation patterns and wave climate along the coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrán, J. C.

    2010-09-01

    Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the wave climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation patterns and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the wave variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher wave climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast and Balearic Islands suffer stormier episodes than Mar de Alborán. Moderate wave power conditions occurred frequently by circulation patterns predominately stable and characterized by weak (mostly sea breezes) winds. Synoptic situations dominated by extra-tropical cyclones produced the highest, but least frequent wave power conditions. Depending on the location of the shorelines, three types of storm events are defined: 1. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess. Extratropical disturbances tracking between the 50-60°N parallels are the main forcing mechanism of those episodes, many of them result of a cyclogenesis processes along the eastern coast of North America. In some cases, the systems evolves as a secondary cyclon, crossing the area southward of the 50°N parallel; significant wave heights can be as high as the northernmost cyclones, but the wave period is slightly lower. 2.Cyclones tracking along the 40°N parallel bring stormy conditions to the western coast and the Gulf of Cádiz area, associated to southwesterly winds. 3. Finally, the Mediterranean shoreline suffer the worst conditions during easterly and northeasterly wind events, usually dominanted by local disturbances formed along the Western Mediterranean basin. Trends observed on the different circulation patterns can explain the temporal evolution of the wave climate along the Spanish coast, characterized by calmer conditions on the south and an increase of the wave period on the north, without discernible wave height trend. The overall results indicated that this synoptic climatological approach provides a viable framework to establish and examine links between weather systems and wave conditions.

  12. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961

  13. Integrable mappings with transcendental invariants

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Ramani, A.

    2007-06-01

    We examine a family of integrable mappings which possess rational invariants involving polynomials of arbitrarily high degree. Next we extend these mappings to the case where their parameters are functions of the independent variable. The resulting mappings do not preserve any invariant but are solvable by linearisation. Using this result we then proceed to construct the solution of the initial autonomous mappings and use it to explicitly construct the invariant, which turns out to be transcendental in the generic case.

  14. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata)

    PubMed Central

    2012-01-01

    Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186) was C03, and the chromosome with smallest number of markers (99) was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps. PMID:23033896

  15. Development of specifications for surface and subsurface oceanic environmental data

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.

    1976-01-01

    The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.

  16. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    PubMed

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  17. PFGE MAPPER and PFGE READER: two tools to aid in the analysis and data input of pulse field gel electrophoresis maps.

    PubMed Central

    Shifman, M. A.; Nadkarni, P.; Miller, P. L.

    1992-01-01

    Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898

  18. The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don

    PubMed Central

    2012-01-01

    Background High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. Results We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. Conclusions Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity. PMID:22424262

  19. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica.

    PubMed

    Doucleff, M; Jin, Y; Gao, F; Riaz, S; Krivanek, A F; Walker, M A

    2004-10-01

    A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.

  20. Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic-scale eddies

    NASA Technical Reports Server (NTRS)

    Higgins, R. W.; Schubert, S. D.

    1994-01-01

    This study examines the role of synoptic-scale eddies during the development of persistent anticyclonic height anomalies over the central North Pacific in a general circulation model under perpetual January conditions. The General Circulation Model (GCM) replicates the basic characteristics of the evolution of the anomaly patterns found in observations. The life cycle is characterized by the rapid establishment of the major anomaly center and considerably longer maintenance and decay phases, which include the development of downstream anomaly centers. The simulation also shows a realistic evolution of synoptic-scale activity beginning with enhanced activity off the east coast of Asia prior to onset, followed by a northward shift of the Pacific storm track, which lasts throughout the maintenance phase. The initial enhancement of synoptic-scale eddy activity is associated with a large-scale cyclonic anomaly that developes over Siberia several days prior to the onset of the main anticyclonic anomaly over the central North Pacific. The observations, however, show considerable interdecadel variability in the details of the composite onset behavior; it is unclear whether this variability is real or whether it reflects differences in the data assimilation systems. The role of the time mean flow and synoptic-scale eddies in the development of the persistent Pacific anomalies is studied within the context of a kinetic energy budget in which the flow is decomposed into the time-mean, low-frequency (timescales longer than 10 days), and synoptic (timescales less than 6 days) components. The budget, which is carried out for the simulation at 500 mb, shows that the initial growth of the persistent anticyclonic anomalies is associated with barotropic conversions of energy, with approximately equal contributions coming from the mean flow and the synoptic-scale eddies. After onset the barotropic conversion from the mean flow dominates, whereas the decay phase is associated with baroclinic processes within the low-frequency flow.

  1. Functional Assessment of Synoptic Pathology Reporting for Ovarian Cancer.

    PubMed

    Słodkowska, Janina; Cierniak, Szczepan; Patera, Janusz; Kopik, Jarosław; Baranowski, Włodzimierz; Markiewicz, Tomasz; Murawski, Piotr; Buda, Irmina; Kozłowski, Wojciech

    2016-01-01

    Ovarian cancer has one of the highest death/incidence rates and is commonly diagnosed at an advanced stage. In the recent WHO classification, new histotypes were classified which respond differently to chemotherapy. The e-standardized synoptic cancer pathology reports offer the clinicians essential and reliable information. The aim of our project was to develop an e-template for the standardized synoptic pathology reporting of ovarian carcinoma [based on the checklist of the College of American Pathologists (CAP) and the recent WHO/FIGO classification] to introduce a uniform and improved quality of cancer pathology reports. A functional and qualitative evaluation of the synoptic reporting was performed. An indispensable module for e-synoptic reporting was developed and integrated into the Hospital Information System (HIS). The electronic pathology system used a standardized structure with drop-down lists of defined elements to ensure completeness and consistency of reporting practices with the required guidelines. All ovarian cancer pathology reports (partial and final) with the corresponding glass slides selected from a 1-year current workflow were revised for the standard structured reports, and 42 tumors [13 borderline tumors and 29 carcinomas (mainly serous)] were included in the study. Analysis of the reports for completeness against the CAP checklist standard showed a lack of pTNM staging in 80% of the partial or final unstructured reports; ICD-O coding was missing in 83%. Much less frequently missed or unstated data were: ovarian capsule infiltration, angioinvasion and implant evaluation. The e-records of ovarian tumors were supplemented with digital macro- and micro-images and whole-slide images. The e-module developed for synoptic ovarian cancer pathology reporting was easily incorporated into HIS.CGM CliniNet and facilitated comprehensive reporting; it also provided open access to the database for concerned recipients. The e-synoptic pathology reports appeared more accurate, clear and conclusive than traditional narrative reports. Standardizing structured reporting and electronic tools allows open access and downstream utilization of pathology data for clinicians and tumor registries. © 2016 S. Karger AG, Basel.

  2. A Visual-Based Approach for Indoor Radio Map Construction Using Smartphones.

    PubMed

    Liu, Tao; Zhang, Xing; Li, Qingquan; Fang, Zhixiang

    2017-08-04

    Localization of users in indoor spaces is a common issue in many applications. Among various technologies, a Wi-Fi fingerprinting based localization solution has attracted much attention, since it can be easily deployed using the existing off-the-shelf mobile devices and wireless networks. However, the collection of the Wi-Fi radio map is quite labor-intensive, which limits its potential for large-scale application. In this paper, a visual-based approach is proposed for the construction of a radio map in anonymous indoor environments. This approach collects multi-sensor data, e.g., Wi-Fi signals, video frames, inertial readings, when people are walking in indoor environments with smartphones in their hands. Then, it spatially recovers the trajectories of people by using both visual and inertial information. Finally, it estimates the location of fingerprints from the trajectories and constructs a Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m. A weighted k-nearest neighbor method is also used to evaluate the constructed radio map. The average localization error is about 3.2 m, indicating that the quality of the constructed radio map is at the same level as those constructed by site surveying. However, this approach can greatly reduce the human labor cost, which increases the potential for applying it to large indoor environments.

  3. An atlas of solar events: 1996 2005

    NASA Astrophysics Data System (ADS)

    Artzner, G.; Auchère, F.; Delaboudinière, J. P.; Bougnet, M.

    2006-01-01

    Coronal mass ejections (CMEs) are observed in the plane of the sky in coronographic images. As the solar surface is masked by an occulting disk it is not clear whether halo CMEs are directed towards or away from the Earth. Observations of the solar corona on the solar disk by the extreme ultraviolet imaging telescope (EIT) on board the Solar Heliospheric Observatory SoHO can help to resolve this. Quasi-continuous observations of the solar corona were obtained from April 1997 up to the current date at a 12 min cadence in the coronal line of FeXII, as part of a “CME watch program”. At a slower 6 h cadence an additional synoptic program investigates the chromosphere and the corona at four different wavelengths. Large coronal solar events appear when viewing animations of the CME watch program. Fainter events do appear when viewing running difference animations of the CME watch program. When looking for additional spectral information from raw running differences of the synoptic program it is difficult to disentangle intrinsic solar events from the parasitic effect of the solar rotation. We constructed at www.ias.u-psud.fr/medoc/EIT/movies/ an atlas of more than 40,000 difference images from the synoptic programme, corrected for an average solar rotation, as well as more than 200,000 instantaneous and difference images from the CME watch program. We present case studies of specific events in order to investigate the source of darkenings or dimmings in difference images, due to the removal of emitting material, the presence of obscuring material or large changes in temperature. As the beneficial effect of correcting for the solar rotation vanishes at the solar limb, we do not investigate the case of prominence Doppler dimming. As a by-product of the atlas of solar events we obtain a number of quiet time sequences well suited to precisely measure the differential solar rotation by the apparent displacement of tracers.

  4. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  5. The Lunar Source Disk: Old Lunar Datasets on a New CD-ROM

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.

    1998-01-01

    A compilation of previously published datasets on CD-ROM is presented. This Lunar Source Disk is intended to be a first step in the improvement/expansion of the Lunar Consortium Disk, in order to create an "image-cube"-like data pool that can be easily accessed and might be useful for a variety of future lunar investigations. All datasets were transformed to a standard map projection that allows direct comparison of different types of information on a pixel-by pixel basis. Lunar observations have a long history and have been important to mankind for centuries, notably since the work of Plutarch and Galileo. As a consequence of centuries of lunar investigations, knowledge of the characteristics and properties of the Moon has accumulated over time. However, a side effect of this accumulation is that it has become more and more complicated for scientists to review all the datasets obtained through different techniques, to interpret them properly, to recognize their weaknesses and strengths in detail, and to combine them synoptically in geologic interpretations. Such synoptic geologic interpretations are crucial for the study of planetary bodies through remote-sensing data in order to avoid misinterpretation. In addition, many of the modem datasets, derived from Earth-based telescopes as well as from spacecraft missions, are acquired at different geometric and radiometric conditions. These differences make it challenging to compare or combine datasets directly or to extract information from different datasets on a pixel-by-pixel basis. Also, as there is no convention for the presentation of lunar datasets, different authors choose different map projections, depending on the location of the investigated areas and their personal interests. Insufficient or incomplete information on the map parameters used by different authors further complicates the reprojection of these datasets to a standard geometry. The goal of our efforts was to transfer previously published lunar datasets to a selected standard geometry in order to create an "image-cube"-like data pool for further interpretation. The starting point was a number of datasets on a CD-ROM published by the Lunar Consortium. The task of creating an uniform data pool was further complicated by some missing or wrong references and keys on the Lunar Consortium CD as well as erroneous reproduction of some datasets in the literature.

  6. Geological applications of LANDSAT-1 imagery to the Great Salt Lake area

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Smith, A. F.

    1975-01-01

    The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.

  7. Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons

    NASA Astrophysics Data System (ADS)

    Chooi Tan, Kok

    2018-04-01

    The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.

  8. Gemini IV Mission Image - Baja California, Colorado river and Sonora Desert

    NASA Image and Video Library

    1965-06-05

    S65-34673 (3-7 June 1965) --- This photograph shows the north end of the Gulf of California at the mouth of the Colorado River as it was seen from the Gemini-4 spacecraft during orbital flight June 3-7, 1965. This picture was part of the Synoptic Terrain Photography experiments conducted during the flight to obtain high quality photographs of large land areas already mapped by aerial photography. In charge of these experiments was Dr. Paul D. Lowman Jr., NASA geologist from Goddard Space Flight Center, Greenbelt, Md. This picture was taken with a modified 70mm Hasselblad camera using Eastman color film, ASA 64 at a lens setting of 250th of a second at f/11.

  9. Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Veres, Peter

    2017-01-01

    This report describes the methodology and results of an assessment study of the performance of the Large Synoptic Survey Telescope (LSST) in its planned efforts to detect and catalog near-Earth objects (NEOs).

  10. Effects of Web-Based Support for the Construction of Competence Maps

    ERIC Educational Resources Information Center

    Stoof, Angela; Martens, Rob L.; van Merrienboer, Jeroen J. G.

    2006-01-01

    Educationalists experience difficulties with the construction of competence maps that describe final attainment levels of educational programs. Web-based support was developed with three supportive aids: A construction kit, a phenomenarium, and an information bank. Each supportive aid was expected to improve perceived process and product quality…

  11. Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions

    NASA Astrophysics Data System (ADS)

    Bier, A.; Burkhardt, U.; Bock, L.

    2017-11-01

    The atmospheric state, aircraft emissions, and engine properties determine formation and initial properties of contrails. The synoptic situation controls microphysical and dynamical processes and causes a wide variability of contrail cirrus life cycles. A reduction of soot particle number emissions, resulting, for example, from the use of alternative fuels, strongly impacts initial ice crystal numbers and microphysical process rates of contrail cirrus. We use the European Centre/Hamburg (ECHAM) climate model version 5 including a contrail cirrus modul, studying process rates, properties, and life cycles of contrail cirrus clusters within different synoptic situations. The impact of reduced soot number emissions is approximated by a reduction in the initial ice crystal number, exemplarily studied for 80%. Contrail cirrus microphysical and macrophysical properties can depend much more strongly on the synoptic situation than on the initial ice crystal number. They can attain a large cover, optical depth, and ice water content in long-lived and large-scale ice-supersaturated areas, making them particularly climate-relevant. In those synoptic situations, the accumulated ice crystal loss due to sedimentation is increased by around 15% and the volume of contrail cirrus, exceeding an optical depth of 0.02, and their short-wave radiative impact are strongly decreased due to reduced soot emissions. These reductions are of little consequence in short-lived and small-scale ice-supersaturated areas, where contrail cirrus stay optically very thin and attain a low cover. The synoptic situations in which long-lived and climate-relevant contrail cirrus clusters can be found over the eastern U.S. occur in around 25% of cases.

  12. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  13. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  14. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.)

    PubMed Central

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826

  15. Exploring the interpersonal-, organization-, and system-level factors that influence the implementation and use of an innovation-synoptic reporting-in cancer care.

    PubMed

    Urquhart, Robin; Porter, Geoffrey A; Grunfeld, Eva; Sargeant, Joan

    2012-03-01

    The dominant method of reporting findings from diagnostic and surgical procedures is the narrative report. In cancer care, this report inconsistently provides the information required to understand the cancer and make informed patient care decisions. Another method of reporting, the synoptic report, captures specific data items in a structured manner and contains only items critical for patient care. Research demonstrates that synoptic reports vastly improve the quality of reporting. However, synoptic reporting represents a complex innovation in cancer care, with implementation and use requiring fundamental shifts in physician behaviour and practice, and support from the organization and larger system. The objective of this study is to examine the key interpersonal, organizational, and system-level factors that influence the implementation and use of synoptic reporting in cancer care. This study involves three initiatives in Nova Scotia, Canada, that have implemented synoptic reporting within their departments/programs. Case study methodology will be used to study these initiatives (the cases) in-depth, explore which factors were barriers or facilitators of implementation and use, examine relationships amongst factors, and uncover which factors appear to be similar and distinct across cases. The cases were selected as they converge and differ with respect to factors that are likely to influence the implementation and use of an innovation in practice. Data will be collected through in-depth interviews, document analysis, observation of training sessions, and examination/use of the synoptic reporting tools. An audit will be performed to determine/quantify use. Analysis will involve production of a case record/history for each case, in-depth analysis of each case, and cross-case analysis, where findings will be compared and contrasted across cases to develop theoretically informed, generalisable knowledge that can be applied to other settings/contexts. Ethical approval was granted for this study. This study will contribute to our knowledge base on the multi-level factors, and the relationships amongst factors in specific contexts, that influence implementation and use of innovations such as synoptic reporting in healthcare. Such knowledge is critical to improving our understanding of implementation processes in clinical settings, and to helping researchers, clinicians, and managers/administrators develop and implement ways to more effectively integrate innovations into routine clinical care.

  16. Road Maps for Learning: A Bird's Eye View

    ERIC Educational Resources Information Center

    Dunne, Timothy T.

    2011-01-01

    The notion of the road map, advocated by Black, Wilson, and Yao (2011), and the associated minutiae of the construct map have several powerful features. At one level these notions assist the teacher to select and embody a suitable sequence of constructs within a specified curriculum. Whatever disparate sequenced pathways individual learners may…

  17. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai

    2015-01-01

    The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227

  18. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  19. Meteorological Effects of Land Cover Changes in Hungary during the 20th Century

    NASA Astrophysics Data System (ADS)

    Drüszler, Á.; Vig, P.; Csirmaz, K.

    2012-04-01

    Geological, paleontological and geomorphologic studies show that the Earth's climate has always been changing since it came into existence. The climate change itself is self-evident. Therefore the far more serious question is how much does mankind strengthen or weaken these changes beyond the natural fluctuation and changes of climate. The aim of the present study was to restore the historical land cover changes and to simulate the meteorological consequences of these changes. Two different land cover maps for Hungary were created in vector data format using GIS technology. The land cover map for 1900 was reconstructed based on statistical data and two different historical maps: the derived map of the 3rd Military Mapping Survey of the Austro-Hungarian Empire and the Synoptic Forestry Map of the Kingdom of Hungary. The land cover map for 2000 was derived from the CORINE land cover database. Significant land cover changes were found in Hungary during the 20th century according to the examinations of these maps and statistical databases. The MM5 non-hydrostatic dynamic model was used to further evaluate the meteorological effects of these changes. The lower boundary conditions for this mesoscale model were generated for two selected time periods (for 1900 and 2000) based on the reconstructed maps. The dynamic model has been run with the same detailed meteorological conditions of selected days from 2006 and 2007, but with modified lower boundary conditions. The set of the 26 selected initial conditions represents the whole set of the macrosynoptic situations for Hungary. In this way, 2×26 "forecasts" were made with 48 hours of integration. The effects of land cover changes under different weather situations were further weighted by the long-term (1961-1990) mean frequency of the corresponding macrosynoptic types, to assume the climatic effects from these stratified averages. The detailed evaluation of the model results were made for three different meteorological variables (temperature, dew point and precipitation).

  20. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE PAGES

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; ...

    2016-12-05

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  1. Synoptic analysis of heat-related mortality in Sydney, Australia, 1993-2001

    NASA Astrophysics Data System (ADS)

    Vaneckova, Pavla; Hart, Melissa A.; Beggs, Paul J.; de Dear, Richard J.

    2008-07-01

    Exposure to extremely hot weather has been associated with increased mortality. Temporal Synoptic Index is an effective method used to analyze the relationship between mortality and combined weather factors. The aim of this study is to examine the short-term effect of ambient heat on mortality in Sydney during the warmest 6-month period (October-March) for the years 1993-2001. Eleven synoptic categories were related to daily mortality rates in Sydney. Two distinctive warm categories were associated with significantly higher mortality rates. Hot, dry and relatively rare Synoptic Category 7 (SC7) days showed the highest daily mortality rates, followed by warm and humid SC3 days, which occurred more frequently. Increased mortality was more pronounced among the elderly population, and gender-stratified analysis showed women to be more vulnerable. Mortality on the day of the weather event was higher than 1 or 2 days after the adverse synoptic situation. Ozone and particulate matter smaller than 10 µm were found at high concentrations in SC3 and SC7, respectively, but their impact on mortality was not clear. The population of Sydney was found to be vulnerable to high temperatures, with a lower susceptibility than those of some cities in the USA and Europe.

  2. Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends

    PubMed Central

    Merino, Andrés; Fernández, Sergio; Hermida, Lucía; López, Laura; Sánchez, José Luis; García-Ortega, Eduardo; Gascón, Estíbaliz

    2014-01-01

    In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations. PMID:25152912

  3. Comparison of Accuracy and Speed of Information Identification by Nonpathologists in Synoptic Reports With Different Formats.

    PubMed

    Renshaw, Andrew A; Gould, Edwin W

    2017-03-01

    - The College of American Pathologists requires synoptic reports for specific types of pathology reports. - To compare the accuracy and speed of information retrieval in synoptic reports of different formats. - We assessed the performance of 28 nonpathologists from 4 different types of users (cancer registrars, MDs, medical non-MDs, and nonmedical) at identifying specific information in various formatted synoptic reports, using a computerized quiz that measured both accuracy and speed. - There was no significant difference in the accuracy of data identification for any user group or in any format. While there were significant differences in raw time between users, these were eliminated when normalized times were used. Compared with the standard format of a required data element (RDE) and response on 1 line, both a list of responses without an RDE (21%, P < .001) and a paired response with more concise text (33%, P < .001) were significantly faster. In contrast, both the 2-line format (RDE header on one line, response indented on the second line) (12%, P < .001) and a report with the RDE response pairs in a random order were significantly slower (16%, P < .001). - There are significant differences in ease of use by nonpathologists between different synoptic report formats. Such information may be useful in deciding between different format options.

  4. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  5. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  6. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for 20-odd potential study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Among the more distinct features are the major moraines and outwash channels of the last (Wisconsin) glaciation. Analysis of dissection/drainage patterns from the synoptic imagery is proving useful for detecting anomalies that may be caused by stream diversions and moraines of pre-Wisconsin glaciations, by variable loess deposition, by tectonism, and other factors. Numerous abandoned river valleys have been mapped. Trend-lines of several known pre-Wisconsin moraine systems have been identified in Iowa, Nebraska, and Kansas, and also several similar trend-lines, that may indicate previously unknown moraine systems of middle and possibly early Pleistocene age, have been found in Iowa and Missouri. The area inundated by a major flood in southwestern Iowa also has been delineated from ERTS-1 imagery.

  7. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Sutton, A.J.; Elias, T.

    1997-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu'u 'O'o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu'u 'O'o (17 - 20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu'u 'O'o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER). Copyright 1997 by the American Geophysical Union.

  8. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    PubMed Central

    Beier, Sebastian; Himmelbach, Axel; Colmsee, Christian; Zhang, Xiao-Qi; Barrero, Roberto A.; Zhang, Qisen; Li, Lin; Bayer, Micha; Bolser, Daniel; Taudien, Stefan; Groth, Marco; Felder, Marius; Hastie, Alex; Šimková, Hana; Staňková, Helena; Vrána, Jan; Chan, Saki; Muñoz-Amatriaín, María; Ounit, Rachid; Wanamaker, Steve; Schmutzer, Thomas; Aliyeva-Schnorr, Lala; Grasso, Stefano; Tanskanen, Jaakko; Sampath, Dharanya; Heavens, Darren; Cao, Sujie; Chapman, Brett; Dai, Fei; Han, Yong; Li, Hua; Li, Xuan; Lin, Chongyun; McCooke, John K.; Tan, Cong; Wang, Songbo; Yin, Shuya; Zhou, Gaofeng; Poland, Jesse A.; Bellgard, Matthew I.; Houben, Andreas; Doležel, Jaroslav; Ayling, Sarah; Lonardi, Stefano; Langridge, Peter; Muehlbauer, Gary J.; Kersey, Paul; Clark, Matthew D.; Caccamo, Mario; Schulman, Alan H.; Platzer, Matthias; Close, Timothy J.; Hansson, Mats; Zhang, Guoping; Braumann, Ilka; Li, Chengdao; Waugh, Robbie; Scholz, Uwe; Stein, Nils; Mascher, Martin

    2017-01-01

    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX). PMID:28448065

  9. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  10. High-density genetic map construction and comparative genome analysis in asparagus bean.

    PubMed

    Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu

    2018-03-19

    Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.

  11. Preliminary aeromagnetic anomaly map of California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Rober C.

    1999-01-01

    The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.

  12. Analysis of Multipsectral Time Series for supporting Forest Management Plans

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Costantini, G.; Frattegiani, M.; Lanfredi, M.; Macchiato, M.

    2010-05-01

    Adequate forest management requires specific plans based on updated and detailed mapping. Multispectral satellite time series have been largely applied to forest monitoring and studies at different scales tanks to their capability of providing synoptic information on some basic parameters descriptive of vegetation distribution and status. As a low expensive tool for supporting forest management plans in operative context, we tested the use of Landsat-TM/ETM time series (1987-2006) in the high Agri Valley (Southern Italy) for planning field surveys as well as for the integration of existing cartography. As preliminary activity to make all scenes radiometrically consistent the no-change regression normalization was applied to the time series; then all the data concerning available forest maps, municipal boundaries, water basins, rivers, and roads were overlapped in a GIS environment. From the 2006 image we elaborated the NDVI map and analyzed the distribution for each land cover class. To separate the physiological variability and identify the anomalous areas, a threshold on the distributions was applied. To label the non homogenous areas, a multitemporal analysis was performed by separating heterogeneity due to cover changes from that linked to basilar unit mapping and classification labelling aggregations. Then a map of priority areas was produced to support the field survey plan. To analyze the territorial evolution, the historical land cover maps were elaborated by adopting a hybrid classification approach based on a preliminary segmentation, the identification of training areas, and a subsequent maximum likelihood categorization. Such an analysis was fundamental for the general assessment of the territorial dynamics and in particular for the evaluation of the efficacy of past intervention activities.

  13. Improving Critical Thinking Using Web Based Argument Mapping Exercises with Automated Feedback

    ERIC Educational Resources Information Center

    Butchart, Sam; Forster, Daniella; Gold, Ian; Bigelow, John; Korb, Kevin; Oppy, Graham; Serrenti, Alexandra

    2009-01-01

    In this paper we describe a simple software system that allows students to practise their critical thinking skills by constructing argument maps of natural language arguments. As the students construct their maps of an argument, the system provides automatic, real time feedback on their progress. We outline the background and theoretical framework…

  14. A Method of Surrogate Model Construction which Leverages Lower-Fidelity Information using Space Mapping Techniques

    DTIC Science & Technology

    2014-03-27

    fidelity. This pairing is accomplished through the use of a space mapping technique, which is a process where the design space of a lower fidelity model...is aligned a higher fidelity model. The intent of applying space mapping techniques to the field of surrogate construction is to leverage the

  15. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.

  16. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun

    2018-05-01

    The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.

  17. Design of a consensus-derived synoptic operative report for lung cancer surgery.

    PubMed

    Schneider, Laura; Shargall, Yaron; Schieman, Colin; Seely, Andrew J; Srinathan, Sadeesh; Malthaner, Richard A; Pierre, Andrew F; Safieddine, Najib; Vaillancourt, Rosaire; Plourde, Madelaine; Bond, James; Johnson, Scott; Smith, Shona E; Finley, Christian J

    2014-04-01

    For lung cancer surgery, a narrative operative report is the standard reporting procedure, whereas a synoptic-style report is increasingly utilized by healthcare professionals in various specialties with great success. A synoptic operative report more succinctly and accurately captures vital information and is rapidly generated with good intraobserver reliability. The objective of this study was to systematically develop a synoptic operative report for lung cancer surgery following a modified Delphi consensus model with the support of the Canadian thoracic surgery community. Using online survey software, thoracic surgeons and related physicians were asked to suggest and rate data elements for a synoptic report following the modified Delphi consensus model. The consensus exercise-derived template was forwarded to a small working group, who further refined the definition and priority designation of elements until the working group had reached a satisfactory consensus. In all, 139 physicians were invited to participate in the consensus exercise, with 36.7%, 44.6%, and 19.5% response rates, respectively, in the three rounds. Eighty-nine elements were agreed upon at the conclusion of the exercise, but 141 elements were forwarded to the working group. The working group agreed upon a final data set of 180 independently defined data elements, with 72 mandatory and 108 optional elements for implementation in the final report. This study demonstrates the process involved in developing a multidisciplinary, consensus-based synoptic lung cancer operative report. This novel report style is a quality improvement initiative to improve the capture, dissemination, readability, and potential utility of critical surgical information. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    PubMed

    Shi, Yuan Yuan; Sun, Liang Xian; Huang, Zachary Y; Wu, Xiao Bo; Zhu, Yong Qiang; Zheng, Hua Jun; Zeng, Zhi Jiang

    2013-01-01

    The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  19. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Chipperfield, Martyn; Savage, Nick

    2014-05-01

    In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is reduced as the indicative south-westerly flow transports it away from the UK over the North Sea. However, under anticyclonic conditions, the satellite shows that the stable conditions enhance the build-up of column NO2 over source regions. The influence of wind direction on column NO2 can also be seen from space with transport leeward of the source regions.

  20. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia

    2015-04-01

    Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.

  1. Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results

    NASA Astrophysics Data System (ADS)

    Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas

    2017-04-01

    The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.

  2. Echelon approach to areas of concern in synoptic regional monitoring

    USGS Publications Warehouse

    Myers, Wayne; Patil, Ganapati P.; Joly, Kyle

    1997-01-01

    Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.

  3. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  4. Knowledge Construction in a Teachers' Community of Enquiry: A Possible Road Map

    ERIC Educational Resources Information Center

    Zellermayer, Michal; Tabak, Edith

    2006-01-01

    This action research is targeted at academic researchers who facilitate the construction of communities of enquiry in school-university partnerships and are interested in understanding the process of such an enterprise as well as the knowledge constructed within such communities. Our action research study provides a possible road map for such a…

  5. A SYNOPTIC APPROACH FOR ASSESSING CUMULATIVE IMPACTS TO WETLANDS

    EPA Science Inventory

    The US Environmental Protection Agency's Wetlands Research Program has developed the synoptic approach as a proposed method for assessing cumulative impacts to wetlands by providing both a general and a comprehensive view of the environment. It can also be applied more broadly to...

  6. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  7. Relationship of Ground-level Ozone with Synoptic Weather Conditions in the Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Jing, P.

    2017-12-01

    This study investigates the relationship between ground-level ozone (O3) and synoptic weather conditions in the Midwestern U.S. over the period 1990-2015 using the air quality data obtained from the U.S. EPA Air Quality System (AQS) and meteorological data from NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The results show that among the six different types of Spatial Synoptic Classification (SSC) weather, the occurrence of dry tropical (DT) weather conditions is most likely to lead to high O3 concentrations. The summertime O3 concentrations in the Midwest decreased at an average rate of 0.7 ppb yr-1 in the 95th percentiles from 1990 to 2015 in response to NO2 emission controls. However, O3 has become more dependent on temperature since 2008 and this was accompanied by more frequent DT weather and air stagnation. The results have implications for the likely effect of future climate change on O3 as a result of modified synoptic weather conditions.

  8. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1993-01-01

    Full attention was now directed to the blocking case studies mentioned in previous reports. Coding and initial computational tests were completed for a North Atlantic blocking case that occurred in late October/early November 1985 and an upstream cyclone that developed rapidly 24 hours before block onset. This work is the subject of two papers accepted for presentation at the International Symposium on the Lifecycles of Extratropical Cyclones in Bergen, Norway, 27 June - 1 July 1994. This effort is currently highlighted by two features. The first is the extension of the Zwack-Okossi equation, originally formulated for the diagnosis of surface wave development, for application at any pressure level. The second is the separation of the basic large-scale analysis fields into synoptic-scale and planetary-scale components, using a two-dimensional Shapiro filter, and the corresponding partitioning of the Zwack-Okossi equation into synoptic-scale, planetary-scale, and synoptic/planetary-scale interaction terms. Preliminary tests suggest substantial contribution from the synoptic-scale and interaction terms.

  9. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    PubMed

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor.

  10. The Large Synoptic Survey Telescope project management control system

    NASA Astrophysics Data System (ADS)

    Kantor, Jeffrey P.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) program is jointly funded by the NSF, the DOE, and private institutions and donors. From an NSF funding standpoint, the LSST is a Major Research Equipment and Facilities (MREFC) project. The NSF funding process requires proposals and D&D reviews to include activity-based budgets and schedules; documented basis of estimates; risk-based contingency analysis; cost escalation and categorization. "Out-of-the box," the commercial tool Primavera P6 contains approximately 90% of the planning and estimating capability needed to satisfy R&D phase requirements, and it is customizable/configurable for remainder with relatively little effort. We describe the customization/configuration and use of Primavera for the LSST Project Management Control System (PMCS), assess our experience to date, and describe future directions. Examples in this paper are drawn from the LSST Data Management System (DMS), which is one of three main subsystems of the LSST and is funded by the NSF. By astronomy standards the LSST DMS is a large data management project, processing and archiving over 70 petabyes of image data, producing over 20 petabytes of catalogs annually, and generating 2 million transient alerts per night. Over the 6-year construction and commissioning phase, the DM project is estimated to require 600,000 hours of engineering effort. In total, the DMS cost is approximately 60% hardware/system software and 40% labor.

  11. Impacts of 2000-2050 Climate Change on Fine Particulate Matter (PM2.5) Air Quality in China Based on Statistical Projections Using an Ensemble of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.

    2017-12-01

    Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on human health under the RCP8.5 future.

  12. A Coastal Bay Summer Breeze Study, Part 1: Results of the Quiberon 2006 Experimental Campaign

    NASA Astrophysics Data System (ADS)

    Mestayer, Patrice G.; Calmet, Isabelle; Herlédant, Olivier; Barré, Sophie; Piquet, Thibaud; Rosant, Jean-Michel

    2018-04-01

    The Quiberon 2006 experiment was launched to document the onset and development of land and sea breezes over a semi-circular coastal bay propitious to inshore sailing competitions. The measurements were taken during the 2 weeks of 16-28 June 2006. Micrometeorological variables were recorded at three shore sites around the bay using turbulence sensors on 10-30-m high masts, on four instrumented catamarans at selected sites within the bay, and at a fourth shore site with a Sodar. Synoptic data and local measurements are analyzed here from the point of view of both micrometeorologists and competition skippers, testing in particular the empirical rules of breeze veering and backing according to the wind direction with respect to the coastline orientation at the mesoscale (the quadrant theory). Our analysis focuses on the patterns of lower-altitude wind direction and speed around the bay and over the water basin, and the temporal variations during the periods of the breeze onset, establishment and thermal reinforcement. In offshore synoptic-flow conditions (quadrants 1 and 2), the clockwise rotation of the surface flow had a very large amplitude, reaching up to 360°. The breeze strength was negatively correlated to that of the synoptic wind speed. In conditions of onshore synoptic flow from the west (quadrant 3) at an angle to the mainland coast but perpendicular to the Quiberon peninsula, the rotation of the flow was backwards in the early morning and clockwise during the day with a moderate amplitude (40°-50°) around the synoptic wind direction. As the surface wind speed was much larger than the synoptic wind speed, such a case we have designated as a "synoptic breeze". The breeze onset was shown to fail several times under the influence of weak non-thermal events, e.g., the passage of an occluded front or clouds or an excess of convection. Finally, several local-scale influences of the complex coastal shape appeared in our measurements, e.g., wind fanning in the lee of the isthmus and airflow skirting around the peninsula forehand.

  13. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  14. An effective self-assessment based on concept map extraction from test-sheet for personalized learning

    NASA Astrophysics Data System (ADS)

    Liew, Keng-Hou; Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping

    2013-12-01

    Examination is a traditional way to assess learners' learning status, progress and performance after a learning activity. Except the test grade, a test sheet hides some implicit information such as test concepts, their relationships, importance, and prerequisite. The implicit information can be extracted and constructed a concept map for considering (1) the test concepts covered in the same question means these test concepts have strong relationships, and (2) questions in the same test sheet means the test concepts are relative. Concept map has been successfully employed in many researches to help instructors and learners organize relationships among concepts. However, concept map construction depends on experts who need to take effort and time for the organization of the domain knowledge. In addition, the previous researches regarding to automatic concept map construction are limited to consider all learners of a class, which have not considered personalized learning. To cope with this problem, this paper proposes a new approach to automatically extract and construct concept map based on implicit information in a test sheet. Furthermore, the proposed approach also can help learner for self-assessment and self-diagnosis. Finally, an example is given to depict the effectiveness of proposed approach.

  15. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernardos, G.; Fluke, C. J.; Croton, D.

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy,more » finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.« less

  16. Tropical disturbances in relation to general circulation modeling

    NASA Technical Reports Server (NTRS)

    Estoque, M. A.

    1982-01-01

    The initial results of an evaluation of the performance of the Goddard Laboratory of Atmospheric Simulation general circulation model depicting the tropical atmosphere during the summer are presented. Because the results show the existence of tropical wave disturbances throughout the tropics, the characteristics of synoptic disturbances over Africa were studied and a synoptic case study of a selected disturbance in this area was conducted. It is shown that the model is able to reproduce wave type synoptic disturbances in the tropics. The findings show that, in one of the summers simulated, the disturbances are predominantly closed vortices; in another summer, the predominant disturbances are open waves.

  17. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.

  18. SYNOPTIC ASSESSMENT OF WETLAND FUNCTION: A PLANNING TOOL FOR PROTECTION OF WETLAND SPECIES DIVERSITY

    EPA Science Inventory

    We present a synoptic assessment intended to maximize the benefits to wetland species biodiversity gained through Clean Water Act regulatory efforts within 225 sub-basins in Missouri, Iowa, Nebraska and Kansas (U.S. Environmental Protection Agency, Region 7), USA. Our assessment...

  19. Program Monitoring: Problems and Cases.

    ERIC Educational Resources Information Center

    Lundin, Edward; Welty, Gordon

    Designed as the major component of a comprehensive model of educational management, a behavioral model of decision making is presented that approximates the synoptic model of neoclassical economic theory. The synoptic model defines all possible alternatives and provides a basis for choosing that alternative which maximizes expected utility. The…

  20. A Survey of Synoptic Waves over West Africa

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Ming; Thorncroft, Chris D.; Kiladis, George N.

    2017-04-01

    Motivated by the pronounced wave-to-wave variability in African easterly wave (AEW) circulation, the three-dimensional structure of synoptic waves over West Africa is revisited with an Empirical Orthogonal Function (EOF) approach to isolate the dominant wave pattern. In this talk we present results of EOF analyses conducted with brightness temperature (Tb) derived from satellite observation and meridional wind at multiple levels from reanalysis data to examine the characteristics and variability of synoptic waves. The structure of waves is extracted by projecting the wind fields and Tb onto the principle components associated with EOF patterns of appropriately filtered parameters. The Tb EOF shows a confined AEW circulation centered around 7.5°N and a distinct evolution of convection within the wave in line with previous research. However, in striking contrast to the confined flow pattern in the Tb EOF, the EOF of 700-hPa meridional wind is distinguished by a meridionally broad AEW circulation. While the peak in circulation is centered around 10°N, there is marked cross-equatorial flow that is associated with an antisymmetric geopotential signature across the equator. This suggests the presence of a mixed Rossby-gravity wave (MRG) structure consistent with Matsuno's shallow water theory. Granted that the vast majority of studies on MRGs focus on the central and western Pacific region, this "hybrid" between AEWs and MRGs over West Africa and Atlantic sector has received little attention and more work regarding the nature and causes of its wave structure and behavior is needed. In addition, an upper-level synoptic wave is captured by EOFs of 200-hPa meridional wind. The kinematic fields reveal a continental-scale wave straddling the equator that resembles an MRG. This upper-level MRG appears to develop in situ over the Horn of Africa and intensifies as it moves across the continent. The associated lower-level structure shows an AEW-like circulation but with a larger spatial extent. This finding motivates the need for more in-depth investigations of synoptic wave variability over the region including an assessment of the direction of causality between the upper-level MRG and the lower-level AEW. This study highlights the various synoptic wave structures over West Africa and their interaction with AEWs. The results suggest the variability of AEW activity could be modulated by, in addition to the large-scale environment, other synoptic waves in the region. We will pursue the EOF approach to shed light on the characteristics and causes of the variability in synoptic wave activity over West Africa.

  1. Genetic linkage map construction and QTL mapping of seedling height, basal diameter and crown width of Taxodium 'Zhongshanshan 302' × T. mucronatum.

    PubMed

    Wang, Ziyang; Cheng, Yanli; Yin, Yunlong; Yu, Chaoguang; Yang, Ying; Shi, Qin; Hao, Ziyuan; Li, Huogen

    2016-01-01

    Taxodium is a genus renowned for its fast growth, good form and tolerance of flooding, salt, alkalinity, disease and strong winds. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers based on an F1 population containing 148 individuals generated from a cross between T. 'Zhongshanshan 302' and T. mucronatum. The map has a total length of 976.5 cM, with a mean distance of 7.0 cM between markers, and contains 34 linkage groups with 179 markers (171 SRAPs and 8 SSRs). Quantitative trait loci (QTLs) affecting growth traits, such as seedling height, basal diameter and crown width, were detected based on the constructed linkage map. Four significant QTLs were identified, three of which, namely qtSH-1 for seedling height, qtBD-1 for basal diameter and qtCW-1 for crown width, were located at 2.659 cM of LG7 with logarithm odds values of 3.72, 3.49 and 3.93, respectively, and explained 24.9, 27.0 and 21.7 % of the total variation of the three grown traits, respectively. Another QTL for crown width (qtCW-2) was detected at 1.0 cM on LG13, with a logarithm of odds value of 3.15, and explained 31.7 % of the total variation of crown width. This is the first report on the construction of a genetic linkage map and QTL analysis in Taxodium, laying the groundwork for the construction of a high-density genetic map and QTL mapping in the genus Taxodium.

  2. Satellite mapping of Nile Delta coastal changes

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Taylor, P. T.; Roark, J. H.

    1989-01-01

    Multitemporal, multispectral scanner (MSS) landsat data have been used to monitor erosion and sedimentation along the Rosetta Promontory of the Nile Delta. These processes have accelerated significantly since the completion of the Aswan High Dam in 1964. Digital differencing of four MSS data sets, using standard algorithms, show that changes observed over a single year period generally occur as strings of single mixed pixels along the coast. Therefore, these can only be used qualitatively to indicate areas where changes occur. Areas of change recorded over a multi-year period are generally larger and thus identified by clusters of pixels; this reduces errors introduced by mixed pixels. Satellites provide a synoptic perspective utilizing data acquired at frequent time intervals. This permits multiple year monitoring of delta evolution on a regional scale.

  3. Analysis of high altitude remotely sensed data collected in the Nantucket Shoals experiment 4-15 May, 1981

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.

    1982-01-01

    High altitude ocean color scanner ratios of band 2 (456 to 476 nanometers) to band 4 (539 to 559 nanometers) and band 1 (418 to 438 nanometers) to band 3 (498 to 518 nanometers) had high correlation coefficient values (-0.928 and 0.891 respectively) with seven boat sampled chlorophyll a measurements. The range of chlorophyll a concentrations was small (1.7-2.58 mg/cu m.). Each ratio was used to calculate chlorophyll a values for the center pixel of each scan line on flight lines 5 and 6. The two ratios produced dissimilar chlorophyll a trends. Due to the high noise level in the scanner data, no reliable synoptic chlorophyll a map could be generated with either ratio algorithm.

  4. Mid-Pliocene planktic foraminifer assemblage of the North Atlantic Ocean

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2007-01-01

    The US Geological Survey Pliocene Research, Interpretation and Synoptic Mapping (PRISM) North Atlantic faunal data set provides a unique, temporally constrained perspective to document and evaluate the quantitative geographic distribution of key mid-Pliocene taxa. Planktic foraminifer census data from within the PRISM time slab (3.29 to 2.97 Ma) at thirteen sites in the North Atlantic Ocean have been analyzed. We have compiled Scanning Electron Micrographs for an atlas of mid-Pliocene assemblages from the North Atlantic with descriptions of each taxon to document the taxonomic concepts that accompany the PRISM data. In mid-Pliocene assemblages, the geographic distributions of extant taxa are similar to their present day distributions, although some are extended to the north. We use the distribution of extinct taxa to assess previous assumptions regarding environmental preferences.

  5. Measurements of the north polar cap of Mars and the earth's Northern Hemisphere ice and snow cover

    NASA Technical Reports Server (NTRS)

    Foster, J.; Owe, M.; Capen, C.

    1986-01-01

    The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the earth, the polar caps have been accurately mapped only since the mid 1960s when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as earth are intimately linked to global energy balance. Data on the year to year variations in the extent of the north polar caps of Mars and earth have been assembled and compared, although only 6 years of concurrent data were available for comparison.

  6. Correlation of chlorophyll, suspended matter, and related parameters of waters in the lower Chesapeake Bay area to LANDSAT-1 imagery

    NASA Technical Reports Server (NTRS)

    Fleischer, P. (Principal Investigator); Bowker, D. E.; Witte, W. G.; Gosink, T. A.; Hanna, W. J.; Ludwick, J. C.

    1976-01-01

    The author has identified the following significant results. An effort to relate water parameters of the lower Chesapeake Bay area to multispectral scanner images of LANDSAT 1 has shown that some spectral bands can be correlated to water parameters, and has demonstrated the feasibility of synoptic mapping of estuaries by satellite. Bands 5 and 6 were shown to be useful for monitoring total particles. Band 5 showed high correlation with suspended sediment concentration. Attenuation coefficients monitored continuously by ship along three baselines were cross correlated with radiance values on three days. Improved correlations resulted when tidal conditions were taken into consideration. A contouring program was developed to display sediment variation in the lower Chesapeake Bay from the MSS bands.

  7. Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1973-01-01

    A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.

  8. 10 years of mapping the icy saturnian satellites

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Porco, Carolyn

    2014-05-01

    The Cassini spacecraft started its tour through the Saturnian system in July 2004. The Imaging Science Subsystem onboard the orbiter con-sists of a high-resolution Narrow Angle Camera (NAC) with a focal length of 2000 mm and a Wide Angle Camera (WAC) with a focal length of 200 mm [1]. One of the main objectives of the Cassini mission is to investigate the icy Saturnian satellites. These satellites were imaged in many flybys during the no-minal mission between 2004 and 2008. The imaging campaign continued during the first extended mission (''Equinox mission'') between 2008 and 2010 and continues during the current second extended mission (''Solstice mission''). It is now possible to image also the Northern parts of the Icy satellites which were not illuminated during the nominal mission. Mosaicking: The image data processing chain con-sists of the same steps as described in [2]: radiometric calibration, geometric correction, map projection, and mosaicking. Spacecraft position and camera pointing data are available in the form of SPICE kernels (http://naif.jpl.nasa.gov). While the orbit information is sufficiently accurate to be used directly for mapping purposes, the pointing information must be corrected using limb fits (semi-controlled mosaics) or by photo-grammetric bundle adjustment (controlled mosaics). The coordinate system adopted by the Cassini mis-sion for satellite mapping is the IAU ''planetographic'' system, consisting of planetographic latitude and posi-tive West longitude. The surface position of the prime meridian as defined by the IAU cartography working group [3] is defined by small craters. New values for the rotational parameter W0 which defines the location of the prime meridian at January 1, 2000 were calcula-ted based on the high-resolution mosaics to be consis-tent with this definition [4] and approved by the IAU [3]. Cartographic maps: Three different quadrangle schemes were used for the generation of the maps and the atlases [5]: • A synoptic map for making planet-wide maps on a single sheet was used for Phoebe [2]. • A quadrangle scheme with 15 tiles for Mercury-sized bodies and high-resolution imaging was used for Enceladus, Tethys, Dione, and Rhea. • A quadrangle scheme with 3 tiles, a subdivision of the synoptic map was used for Mimas and Iapetus. The individual maps and tiles were extracted from global mosaics and reprojected into the defined map projections. We added resolution maps and index maps for every individual tile of the atlas, showing the image resolution, the image numbers and the location of the images for every map, respectively. The entire atlases are available to the public through the Imaging Team's website: http://ciclops.org/maps. The map tiles are also archived as standard products in the Planetary Data System (PDS): http://pds.jpl.nasa.gov/. Nomenclature: The nomenclature proposed by the Cassini-ISS team was approved by the IAU (http://planetarynames.wr.usgs.gov/). By international agreement, the features must be named after people or locations in • "Le Morte d'Arthur" for Mimas • "The Thousand Nights and a Night" for Enceladus • "The Odyssey of Homer" for Tethys • "The Aeneid of Virgil" for Dione • Creation myths (with Asian emphasis) for Rhea • "The Song of Roland" for Iapetus • "The Argonautica" for Phoebe Future work: The Cassini Equinox mission ended in 2010. Cassini is now operating in the Solstice mission hopefully until September 2017. Several additional close satellite flybys are scheduled for this time frame e.g. for Enceladus in October 2015 and for Mimas in January 2017. These upcoming flybys will help to replace the low-resolution parts of these atlases with higher resolu-tion images. The northern polar regions will be illumi-nated during the extended mission providing an oppor-tunity to obtain high-resolution Cassini coverage of high northern latitudes. References: [1] Porco et al., 2004, Cassini imaging science: instrument characteristics and anticipated scientific investigations at saturn, Space Science Re-view 115, 363-497. [2] Roatsch et al., 2006, Mapping of the icy Saturnian satellites: first results from Cassi-ni-ISS, Planetary Space Sciences 54, 1137-1145. [3] Archinal et al., 2011, Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celestial Mechanics and Dynamical Astronomy 109, 101-135. [4] Roatsch et al., 2009, Cartographic mapping of the icy satellites using ISS and VIMS data. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (Eds.), Saturn from Cassini-Huygens. Springer, NY, pp. 763-782. [5] Greeley and Batson, 1990, Planetary Mapping, Cambridge University Press, Cambridge.

  9. Synoptic meteorological conditions associated with high spring and summer ozone levels at a rural site in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos

    2017-04-01

    For the identification of the nature of spring and summertime ozone episodes, rural ozone measurements from the Eastern Mediterranean station of Finokalia-Crete, Greece during the first 4-year period of its record (1998-2001) have been analyzed with emphasis on periods of high ozone concentrations, according to the daily variation of the afternoon (12:00 - 18:00) ozone values. For the 7% highest spring and summertime ozone episodes composite NOAA/ESRL reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical wind velocity omega, vector wind speed and temperature) have been examined together with their corresponding HYSPLIT back trajectories. This work is a continuation of a previous first approach regarding summer highest and lowest surface ozone episodes in Finokalia and other Central and Eastern Mediterranean stations (Kalabokas et al., 2008), which is now extended to more meteorological parameters and higher pressure levels. The results show that the examined synoptic meteorological condition during springtime ozone episodes over the Eastern Mediterranean station of Finokalia are quite similar with those conditions during high ozone springtime episodes observed at rural stations over the Western Mediterranean (Kalabokas et al., 2016). On the other hand the summer time synoptic conditions corresponding to highest surface ozone episodes at Finokalia are comparable with the conditions encountered during highest ozone episodes in the lower troposphere following analysis of MOZAIC vertical profiles over the Aegean Sea and the Eastern Mediterranean (Kalabokas et al., 2015 and references therein). During the highest ozone episodes, for both examined seasons, the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  10. Research and Practice of the News Map Compilation Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Liu, W.; Ma, W.

    2018-04-01

    Based on the needs of the news media on the map, this paper researches on the news map compilation service, conducts demand research on the service of compiling news maps, designs and compiles the public authority base map suitable for media publication, and constructs the news base map material library. It studies the compilation of domestic and international news maps with timeliness and strong pertinence and cross-regional characteristics, constructs the hot news thematic gallery and news map customization services, conducts research on types of news maps, establish closer liaison and cooperation methods with news media, and guides news media to use correct maps. Through the practice of the news map compilation service, this paper lists two cases of news map preparation services used by different media, compares and analyses cases, summarizes the research situation of news map compilation service, and at the same time puts forward outstanding problems and development suggestions in the service of news map compilation service.

  11. Synergistic surface current mapping by spaceborne stereo imaging and coastal HF radar

    NASA Astrophysics Data System (ADS)

    Matthews, John Philip; Yoshikawa, Yutaka

    2012-09-01

    Well validated optical and radar methods of surface current measurement at high spatial resolution (nominally <100 m) from space can greatly advance our ability to monitor earth's oceans, coastal zones, lakes and rivers. With interest growing in optical along-track stereo techniques for surface current and wave motion determinations, questions of how to interpret such data and how to relate them to measurements made by better validated techniques arise. Here we make the first systematic appraisal of surface currents derived from along-track stereo Sun glitter (ATSSG) imagery through comparisons with simultaneous synoptic flows observed by coastal HF radars working at frequencies of 13.9 and 24.5 MHz, which return averaged currents within surface layers of roughly 1 m and 2 m depth respectively. At our Tsushima Strait (Japan) test site, we found that these two techniques provided largely compatible surface current patterns, with the main difference apparent in current strength. Within the northwest (southern) comparison region, the magnitudes of the ATSSG current vectors derived for 13 August 2006 were on average 22% (40%) higher than the corresponding vectors for the 1-m (2-m) depth radar. These results reflect near-surface vertical current structure, differences in the flow components sensed by the two techniques and disparities in instrumental performance. The vertical profile constructed here from ATSSG, HF radar and ADCP data is the first to resolve downwind drift in the upper 2 m of the open ocean. The profile e-folding depth suggests Stokes drift from waves of 10-m wavelength visible in the images.

  12. PRISM 8 degrees X 10 degrees North Hemisphere paleoclimate reconstruction; digital data

    USGS Publications Warehouse

    Barron, John A.; Cronin, Thomas M.; Dowsett, Harry J.; Fleming, Farley R.; Holtz, Thomas R.; Ishman, Scott E.; Poore, Richard Z.; Thompson, Robert S.; Willard, Debra A.

    1994-01-01

    The PRISM 8?x10? data set represents several years of investigation by PRISM (Pliocene Research, Interpretation, and Synoptic Mapping) Project members. One of the goals of PRISM is to produce time-slice reconstructions of intervals of warmer than modern climate within the Pliocene Epoch. The first of these was chosen to be at 3.0 Ma (time scale of Berggren et al., 1985) and is published in Global and Planetary Change (Dowsett et al., 1994). This document contains the actual data sets and a brief explanation of how they were constructed. For paleoenvironmental interpretations and discussion of each data set, see Dowsett et al., in press. The data sets includes sea level, land ice distribution, vegetation or land cover, sea surface temperature and sea-ice cover matrices. This reconstruction of Middle Pliocene climate is organized as a series of datasets representing different environmental attributes. The data sets are designed for use with the GISS Model II atmospheric general circulation model (GCM) using an 8?x10? resolution (Hansen et al., 1983). The first step in documenting the Pliocene climate involves assigning an appropriate fraction of land versus ocean to each grid box. Following grid cell by grid cell, land versus ocean allocations, winter and summer sea ice coverage of ocean areas are assigned and then winter and summer sea surface temperatures are assigned to open ocean areas. Average land ice cover is recorded for land areas and then land areas not covered by ice are assigned proportions of six vegetation or land cover categories modified from Hansen et al. (1983).

  13. Exploration and implementation of ontology-based cultural relic knowledge map integration platform

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Dong, Yiqiang

    2018-05-01

    To help designers to better carry out creative design and improve the ability of searching traditional cultural relic information, the ontology-based knowledge map construction method was explored and an integrated platform for cultural relic knowledge map was developed. First of all, the construction method of the ontology of cultural relics was put forward, and the construction of the knowledge map of cultural relics was completed based on the constructed cultural relic otology. Then, a personalized semantic retrieval framework for creative design was proposed. Finally, the integrated platform of the knowledge map of cultural relics was designed and realized. The platform was divided into two parts. One was the foreground display system, which was used for designers to search and browse cultural relics. The other was the background management system, which was for cultural experts to manage cultural relics' knowledge. The research results showed that the platform designed could improve the retrieval ability of cultural relic information. To sum up, the platform can provide a good support for the designer's creative design.

  14. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    The groundwater-level measurements were used to construct a generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system. Groundwater-level altitudes measured in nonflowing and flowing wells used to construct the potentiometric-surface map ranged from 6,451 to 7,307 feet (excluding four unmeasured flowing wells used for contour construction purposes). The potentiometric-surface map indicates that groundwater in the study area generally moves from north to south, but this pattern of flow is altered locally by groundwater divides, groundwater discharge to the Green River, and possibly to a tributary river (Big Sandy River) and two reservoirs (Fontenelle and Big Sandy Reservoirs).

  15. SYNOPTIC ASSESSMENT OF WETLAND FUNCTION: A PLANNING TOOL FOR PROTECTION OF WETLAND SPECIES BIODIVERSITY

    EPA Science Inventory

    We present a synoptic assessment intended to maximize the benefits to wetland species biodiversity gained through Clean Water Act regulatory efforts within 225 sub-basins in Missouri, Iowa, Nebraska and Kansas (U.S. EPA, Region 7) USA. Our assessment provides a method for identif...

  16. SYNOPTIC ASSESSMENT OF WETLAND FUNCTION: A PLANNING TOOL FOR PROTECTION OF WETLAND SPECIES BIODIVERSITY

    EPA Science Inventory

    We present a synoptic assessment intended to maximize the benefits to wetland species biodiversity gained through Clean Water Act regulatory efforts within 225 sub-basins in Missouri, Iowa, Nebraska and Kansas (U.S. EPA, Region 7), USA. Our assessment provides a method for identi...

  17. Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.

  18. A Consensus Map for Loblolly Pine (Pinus taeda L.). I. Construction and Integration of Individual Linkage Maps From TwoOutbred Three-Generation Pedigrees

    Treesearch

    Mitchell M. Sewell; Bradley K. Sherman; David B. Neale

    1998-01-01

    A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation out bred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent...

  19. Correlation of physical and genetic maps of human chromosome 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  20. Correlation of physical and genetic maps of human chromosome 16. Annual progress report, October 1, 1990--July 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-12-31

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  1. Signalling maps in cancer research: construction and data analysis

    PubMed Central

    Kondratova, Maria; Sompairac, Nicolas; Barillot, Emmanuel; Zinovyev, Andrei

    2018-01-01

    Abstract Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented. PMID:29688383

  2. High-Density Genetic Linkage Map Construction and Quantitative Trait Locus Mapping for Hawthorn (Crataegus pinnatifida Bunge).

    PubMed

    Zhao, Yuhui; Su, Kai; Wang, Gang; Zhang, Liping; Zhang, Jijun; Li, Junpeng; Guo, Yinshan

    2017-07-14

    Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.

  3. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing.

    PubMed

    Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing

    2017-05-08

    Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.

  4. Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Welch, Wendy B.; Johnson, Kenneth H.; Lane, R.C.; Fasser, Elisabeth T.

    2010-01-01

    This report presents information used to characterize the groundwater-flow system in the Chambers-Clover Creek Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 706 square miles in western Pierce County, Washington, and extends north to the Puyallup River, southwest to the Nisqually River, and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and southeastern margin of the study area. Geologic units were grouped into 11 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 450 drillers' logs to construct 6 hydrogeologic sections, and unit extent and thickness maps. Groundwater in unconsolidated glacial and interglacial aquifers generally flows to the northwest towards Puget Sound, and to the north and northeast towards the Puyallup River. These generalized flow patterns likely are complicated by the presence of low permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Water levels in wells completed in the unconsolidated hydrogeologic units show seasonal variations ranging from less than 1 to about 50 feet. The largest groundwater-level fluctuation (78 feet) observed during the monitoring period (March 2007-September 2008) was in a well completed in the bedrock unit. Synoptic streamflow measurements made in September 2007 and July 2008 indicated a total groundwater discharge to streams in the study area of 87,310 and 92,160 acre-feet per year, respectively. The synoptic streamflow measurements show a complex pattern of gains and losses to streamflows that varies throughout the study area, and appears to be influenced in places by local topography. Groundwater discharge occurs at numerous springs in the area and the total previously reported discharge of springs in the area is approximately 80,000 acre-feet per year. There are, in addition, many unmeasured springs and the total spring discharge in the area is unknown. The water-budget area (432 mi2 located within the larger study area) received an annual average (September1, 2006, to August 31, 2008) of about 1,025,000 acre-ft or about 45 inches of precipitation a year. About 44 percent of precipitation enters the groundwater system as recharge. Almost one-half of this recharge (49 percent) discharges to the Puyallup and Nisqually Rivers and leaves the groundwater system as submarine groundwater discharge to Puget Sound. The remaining groundwater recharge discharges to streams (20 percent) and springs (18 percent) or is withdrawn from wells (13 percent)

  5. Story Map Instruction: A Road Map for Reading Comprehension.

    ERIC Educational Resources Information Center

    Davis, Zephaniah, T.; McPherson, Michael D.

    1989-01-01

    Introduces teachers to the development and use of story maps as a tool for promoting reading comprehension. Presents a definition and review of story map research. Explains how to construct story maps, and offers suggestions for starting story map instruction. Provides variations on the use of story maps. (MG)

  6. Meteorological regimes for the classification of aerospace air quality predictions for NASA-Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Sloan, J. C.

    1976-01-01

    A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

  7. Intercomparisons of radiosondes and an airborne refractometer for measuring radio ducts

    NASA Astrophysics Data System (ADS)

    Morrissey, J. F.; Izumi, Y.; Cote, O. R.

    1986-07-01

    The capabilities of two types of radiosondes and an aircraft refractometer to measure radio ducting conditions were compared in a series of flights in September 1985 at Chatham, Mass., on Cape Cod. The tests were part of a program studying radio propagation on Air Force communication links. The intercomparisons were made between data from a refractometer mounted on a small single engine aircraft (Cessna 172) and data from an operational National Weather Service synoptic sounding system. The synoptic sonde and the portable sonde were often on the same balloon train. The comparisons show that the aircraft refractometer data indicate the highest number of ducts and the synoptic data the least number of ducts.

  8. Mapping Variables.

    ERIC Educational Resources Information Center

    Stone, Mark H.; Wright, Benjamin D.; Stenner, A. Jackson

    1999-01-01

    Describes mapping variables, the principal technique for planning and constructing a test or rating instrument. A variable map is also useful for interpreting results. Provides several maps to show the importance and value of mapping a variable by person and item data. (Author/SLD)

  9. Application of satellite data to tropic-subtropic moisture coupling

    NASA Technical Reports Server (NTRS)

    Thompson, Aylmer H.; Mcguirk, James P.

    1987-01-01

    Common tropical synoptic events, called moisture bursts, have been defined in terms of their appearance in infrared satellite imagery. Their synoptic and climatological behavior over the tropical North Pacific Ocean is described using data from four cool seasons, including the 1982 to 1983 El Nino winter and the January and May of 1979.

  10. REGIONAL, BASIN, AND LOCAL FACTORS INFLUENCING THE USE OF SYNOPTIC SURVEY DATA TO ASSESS ANTHROPOGENIC CHANGES IN STREAMBED STABILITY AND FINE SEDIMENT

    EPA Science Inventory

    To evaluate anthropogenic changes in stream bed stability or texture from synoptic stream surveys, we calculated relative bed stability RBS* as the ratio of the geometric mean bed surface substrate diameter to the estimated bankfull critical diameter. RBS* decreased with increas...

  11. General Framework for Employment. Tableau de Bord. (Synoptic Table). Second Edition.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Employment, Industrial Relations and Social Affairs.

    This synoptic table provides an overview and comparison of employment trends and policy measures for each member state of the European Community. Information on the following countries is presented in eight chapters: Belgium, Denmark, Germany, Greece, Spain, France, Ireland, Italy, Luxembourg, Netherlands, Portugal, and United Kingdom. Chapter 0…

  12. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  13. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  14. Role of enhanced synoptic activity and its interaction with intra-seasonal oscillations on the lower extended range prediction skill during 2015 monsoon season

    NASA Astrophysics Data System (ADS)

    Abhilash, S.; Mandal, R.; Dey, A.; Phani, R.; Joseph, S.; Chattopadhyay, R.; De, S.; Agarwal, N. K.; Sahai, A. K.; Devi, S. Sunitha; Rajeevan, M.

    2018-01-01

    Indian summer monsoon of 2015 was deficient with prominence of short-lived (long-lived) active (break) spells. The real-time extended range forecasts disseminated by Indian Institute of Tropical Meteorology using an indigenous ensemble prediction system (EPS) based on National Center for Environmental Predictions's climate forecast system could broadly predict these intraseasonal fluctuations at shorter time leads (i.e. up to 10 days), but failed to predict at longer leads (15-20 days). Considering the multi-scale nature of Indian Summer Monsoon system, this particular study aims to examine the inability of the EPS in predicting the active/break episodes at longer leads from the perspective of non-linear scale interaction between the synoptic, intraseasonal and seasonal scale. It is found that the 2015 monsoon season was dominated by synoptic scale disturbances that can hinder the prediction on extended range. Further, the interaction between synoptic scale disturbances and low frequency mode was prominent during the season, which might have contributed to the reduced prediction skill at longer leads.

  15. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    PubMed Central

    2013-01-01

    Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species. PMID:23324311

  16. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish

    PubMed Central

    Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang

    2015-01-01

    Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894

  17. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  18. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-Mode factor analysis

    USGS Publications Warehouse

    Wayland, Karen G.; Long, David T.; Hyndman, David W.; Pijanowski, Bryan C.; Woodhams, Sarah M.; Haak, Sheridan K.

    2003-01-01

    The relationship between land use and stream chemistry is often explored through synoptic sampling rivers at baseflow condition. However, base flow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO42-, and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not  consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land uses and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use.  

  19. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  20. SAE 2018-01-1412 Constructing Engine Maps - Presentation at the April 2018 World Congress

    EPA Pesticide Factsheets

    This presentation describes important factors and approach, along with the process for constructing complete engine maps using engine dynamometer and in-vehicle test data for use in ALPHA or any other full vehicle simulation which performs similar analyses

  1. Designing Hyperchaotic Cat Maps With Any Desired Number of Positive Lyapunov Exponents.

    PubMed

    Hua, Zhongyun; Yi, Shuang; Zhou, Yicong; Li, Chengqing; Wu, Yue

    2018-02-01

    Generating chaotic maps with expected dynamics of users is a challenging topic. Utilizing the inherent relation between the Lyapunov exponents (LEs) of the Cat map and its associated Cat matrix, this paper proposes a simple but efficient method to construct an -dimensional ( -D) hyperchaotic Cat map (HCM) with any desired number of positive LEs. The method first generates two basic -D Cat matrices iteratively and then constructs the final -D Cat matrix by performing similarity transformation on one basic -D Cat matrix by the other. Given any number of positive LEs, it can generate an -D HCM with desired hyperchaotic complexity. Two illustrative examples of -D HCMs were constructed to show the effectiveness of the proposed method, and to verify the inherent relation between the LEs and Cat matrix. Theoretical analysis proves that the parameter space of the generated HCM is very large. Performance evaluations show that, compared with existing methods, the proposed method can construct -D HCMs with lower computation complexity and their outputs demonstrate strong randomness and complex ergodicity.

  2. Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)

    NASA Astrophysics Data System (ADS)

    Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen

    2016-11-01

    Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.

  3. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhengning; Huang, Xin; Nie, Wei; Chi, Xuguang; Xu, Zheng; Zheng, Longfei; Sun, Peng; Ding, Aijun

    2017-11-01

    Both anthropogenic emission and synoptic conditions play important roles in ozone (O3) formation and accumulation. In order to understand the influence of synoptic condition and holiday effects on ozone production in the Yangtze River Delta region, China, concentrations of speciated volatile organic compounds (VOCs) and O3 as well as other relevant trace gases were simultaneously measured at the Station for Observing Regional Processes of the Earth System (SORPES) in Nanjing around the National Day holidays of China in 2014, which featured substantial change of emissions and dominated by typical anti-cyclones. Different groups of VOC species and their chemical reactivities were comprehensively analyzed. We observed clear diurnal variations of short alkenes during the measurement period, considerable amount of short alkenes were observed during night (more than 10 ppb) while almost no alkenes were measured during daytime, which might be attributed to different chemical processes. The obvious enhancement of the VOC tracers during the National Day holidays (Oct. 1st-Oct. 7th) indicated that the holiday effect strongly influenced the distribution of VOC profile and chemical reactivity in the atmosphere. At the same time, two meso-scale anticyclone processes were also observed during the measurement period. The synoptic condition contributed to the accumulation of VOCs and other precursors, which consequently impacted the ozone production in this region. The integrated influence of synoptic and holiday effects was also analyzed with an Observation Based Model (OBM) based on simplified MCM (Master Chemical Mechanism) chemical mechanism. The calculated relative increment reactivity (RIR) of different VOC groups revealed that during the holidays, this region was in VOC-limited regime and the variation of RIR shows a close linkage to the development and elimination of anti-cyclones, indicating an in-negligible contribution of synoptic effect toward ozone production in this region.

  4. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive potential temperature anomalies are induced in the lower troposphere, suppressing convection in a moist environment. This simple model also reproduces convective momentum transport and CCKWs in agreement with results from a recent cloud resolving simulation.

  5. Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic

    NASA Astrophysics Data System (ADS)

    Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.

    2017-12-01

    Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.

  6. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    PubMed

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  7. Linkage analysis by genotyping of sibling populations: a genetic map for the potato cyst nematode constructed using a "pseudo-F2" mapping strategy.

    PubMed

    Rouppe van der Voort, J N; van Eck, H J; van Zandvoort, P M; Overmars, H; Helder, J; Bakker, J

    1999-07-01

    A mapping strategy is described for the construction of a linkage map of a non-inbred species in which individual offspring genotypes are not amenable to marker analysis. After one extra generation of random mating, the segregating progeny was propagated, and bulked populations of offspring were analyzed. Although the resulting population structure is different from that of commonly used mapping populations, we show that the maximum likelihood formula for a normal F2 is applicable for the estimation of recombination. This "pseudo-F2" mapping strategy, in combination with the development of an AFLP assay for single cysts, facilitated the construction of a linkage map for the potato cyst nematode Globodera rostochiensis. Using 12 pre-selected AFLP primer combinations, a total of 66 segregating markers were identified, 62 of which were mapped to nine linkage groups. These 62 AFLP markers are randomly distributed and cover about 65% of the genome. An estimate of the physical size of the Globodera genome was obtained from comparisons of the number of AFLP fragments obtained with the values for Caenorhabditis elegans. The methodology presented here resulted in the first genomic map for a cyst nematode. The low value of the kilobase/centimorgan (kb/cM) ratio for the Globodera genome will facilitate map-based cloning of genes that mediate the interaction between the nematode and its host plant.

  8. Spatial characterization of the meltwater field from icebergs in the Weddell Sea.

    PubMed

    Helly, John J; Kaufmann, Ronald S; Vernet, Maria; Stephenson, Gordon R

    2011-04-05

    We describe the results from a spatial cyberinfrastructure developed to characterize the meltwater field around individual icebergs and integrate the results with regional- and global-scale data. During the course of the cyberinfrastructure development, it became clear that we were also building an integrated sampling planning capability across multidisciplinary teams that provided greater agility in allocating expedition resources resulting in new scientific insights. The cyberinfrastructure-enabled method is a complement to the conventional methods of hydrographic sampling in which the ship provides a static platform on a station-by-station basis. We adapted a sea-floor mapping method to more rapidly characterize the sea surface geophysically and biologically. By jointly analyzing the multisource, continuously sampled biological, chemical, and physical parameters, using Global Positioning System time as the data fusion key, this surface-mapping method enables us to examine the relationship between the meltwater field of the iceberg to the larger-scale marine ecosystem of the Southern Ocean. Through geospatial data fusion, we are able to combine very fine-scale maps of dynamic processes with more synoptic but lower-resolution data from satellite systems. Our results illustrate the importance of spatial cyberinfrastructure in the overall scientific enterprise and identify key interfaces and sources of error that require improved controls for the development of future Earth observing systems as we move into an era of peta- and exascale, data-intensive computing.

  9. Spatial characterization of the meltwater field from icebergs in the Weddell Sea

    PubMed Central

    Helly, John J.; Kaufmann, Ronald S.; Vernet, Maria; Stephenson, Gordon R.

    2011-01-01

    We describe the results from a spatial cyberinfrastructure developed to characterize the meltwater field around individual icebergs and integrate the results with regional- and global-scale data. During the course of the cyberinfrastructure development, it became clear that we were also building an integrated sampling planning capability across multidisciplinary teams that provided greater agility in allocating expedition resources resulting in new scientific insights. The cyberinfrastructure-enabled method is a complement to the conventional methods of hydrographic sampling in which the ship provides a static platform on a station-by-station basis. We adapted a sea-floor mapping method to more rapidly characterize the sea surface geophysically and biologically. By jointly analyzing the multisource, continuously sampled biological, chemical, and physical parameters, using Global Positioning System time as the data fusion key, this surface-mapping method enables us to examine the relationship between the meltwater field of the iceberg to the larger-scale marine ecosystem of the Southern Ocean. Through geospatial data fusion, we are able to combine very fine-scale maps of dynamic processes with more synoptic but lower-resolution data from satellite systems. Our results illustrate the importance of spatial cyberinfrastructure in the overall scientific enterprise and identify key interfaces and sources of error that require improved controls for the development of future Earth observing systems as we move into an era of peta- and exascale, data-intensive computing. PMID:21444769

  10. The application of large numbers of pleasure boats to collect synoptic sea-truth for ERTS-1 overpasses

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Philpot, W.

    1974-01-01

    The author has identified the following significant results. In order to interpret and annotate current circulation and suspended sediment concentration maps derived from ERTS-1 digital tapes, the University of Delaware has been collecting water samples and other data from boats and helicopters. In order to increase the number of samples at the exact time of the ERTS-1 pass over Delaware Bay, pleasure craft were organized to obtain samples of the entire test site. On the ERTS-1 pass of July second, scientists were stationed at three public boat launches along the Bay to hand out sampling packets to interested boaters. The packets contained two litre sampling bottles, a map, data card, and a pen. The boaters were asked to fill the two bottles between 11 and 11:15 a.m., mark their location on the map, and fill out the data card. Forty-nine packets were handed out of which 40 were returned (82%). Only four of the 40 were not in the alloted time range. This gave 36 real time data points covering approximately 30 nautical miles. The samples are being analyzed for sediment concentration, particle size, and salinity. Participating boaters will receive a copy of an ERTS image of the Delaware Bay and a summary report of the project. Because of the success of the project, future use of pleasure boaters is being planned.

  11. Space industrialization - Education. [via communication satellites

    NASA Technical Reports Server (NTRS)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  12. Rapid genotyping by low-coverage resequencing to construct genetic linkage maps of fungi: a case study in Lentinula edodes

    PubMed Central

    2013-01-01

    Background Genetic linkage maps are important tools in breeding programmes and quantitative trait analyses. Traditional molecular markers used for genotyping are limited in throughput and efficiency. The advent of next-generation sequencing technologies has facilitated progeny genotyping and genetic linkage map construction in the major grains. However, the applicability of the approach remains untested in the fungal system. Findings Shiitake mushroom, Lentinula edodes, is a basidiomycetous fungus that represents one of the most popular cultivated edible mushrooms. Here, we developed a rapid genotyping method based on low-coverage (~0.5 to 1.5-fold) whole-genome resequencing. We used the approach to genotype 20 single-spore isolates derived from L. edodes strain L54 and constructed the first high-density sequence-based genetic linkage map of L. edodes. The accuracy of the proposed genotyping method was verified experimentally with results from mating compatibility tests and PCR-single-strand conformation polymorphism on a few known genes. The linkage map spanned a total genetic distance of 637.1 cM and contained 13 linkage groups. Two hundred sequence-based markers were placed on the map, with an average marker spacing of 3.4 cM. The accuracy of the map was confirmed by comparing with previous maps the locations of known genes such as matA and matB. Conclusions We used the shiitake mushroom as an example to provide a proof-of-principle that low-coverage resequencing could allow rapid genotyping of basidiospore-derived progenies, which could in turn facilitate the construction of high-density genetic linkage maps of basidiomycetous fungi for quantitative trait analyses and improvement of genome assembly. PMID:23915543

  13. Creating soil moisture maps based on radar satellite imagery

    NASA Astrophysics Data System (ADS)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  14. The spectrum of progressive derecho formation environments

    NASA Astrophysics Data System (ADS)

    Guastini, Corey T.

    Progressive derechos are severe mesoscale convective systems that often form east of the Rocky Mountains during the warm season (May--August) and cause, by definition, straight-line wind damage along paths upwards of 400 km long. This study develops a subjective, seven-category classification scheme that spans the spectrum of progressive derecho formation environments from those dominated by robust upper-level ridges to those characterized by vigorous upper-level troughs. A climatology of 256 progressive derecho events is created for 1996--2013 and is categorized according to the developed classification scheme. Derecho initiation-relative composites are constructed for each of the seven groups using 0.5° Climate Forecast System Reanalysis data to document the environmental characteristics unique to each group as well as those shared among them. Finally, two in-depth case studies and five cursory case studies provide examples of the seven categories and reveal important nuances in mesoscale dynamic and thermodynamic structure inherent to all derecho cases. Results of the climatology show progressive derecho activity increases from 1 May through 1 July before decreasing again through the end of August and follows a northward trend in latitude from 1 May through 1 August before shifting slightly southward through the end of the warm season. Upslope flow in the vicinity of the Rocky Mountains initiates 28 percent of progressive derechos, upper-level troughs initiate 20 percent, 47 percent form in benign synoptic environments, and 5 percent are unclassifiable. Composite results show all progressive derecho initiation environments are marked by a long axis of instability caused by the overlap of high atmospheric moisture content and steep midlevel lapse rates, but the relative positions and strengths of upper-level troughs and ridges are crucial in determining how the instability axis develops and what its orientation in space will be. Case studies reveal instability axes forming in benign synoptic environments are generally zonally oriented and mainly the result of convergence of low-level moisture, whereas stronger synoptic-scale forcing forms meridionally oriented instability axes through the northward advection of Gulf moisture. The length and magnitude of these instability axes largely determines the duration and severity of a given progressive derecho.

  15. Antecedent Synoptic Environments Conducive to North American Polar/Subtropical Jet Superpositions

    NASA Astrophysics Data System (ADS)

    Winters, A. C.; Keyser, D.; Bosart, L. F.

    2017-12-01

    The atmosphere often exhibits a three-step pole-to-equator tropopause structure, with each break in the tropopause associated with a jet stream. The polar jet stream (PJ) typically resides in the break between the polar and subtropical tropopause and is positioned atop the strongly baroclinic, tropospheric-deep polar front around 50°N. The subtropical jet stream (STJ) resides in the break between the subtropical and the tropical tropopause and is situated on the poleward edge of the Hadley cell around 30°N. On occasion, the latitudinal separation between the PJ and the STJ can vanish, resulting in a vertical jet superposition. Prior case study work indicates that jet superpositions are often attended by a vigorous transverse vertical circulation that can directly impact the production of extreme weather over North America. Furthermore, this work suggests that there is considerable variability among antecedent environments conducive to the production of jet superpositions. These considerations motivate a comprehensive study to examine the synoptic-dynamic mechanisms that operate within the double-jet environment to produce North American jet superpositions. This study focuses on the identification of North American jet superposition events in the CFSR dataset during November-March 1979-2010. Superposition events will be classified into three characteristic types: "Polar Dominant" events will consist of events during which only the PJ is characterized by a substantial excursion from its climatological latitude band; "Subtropical Dominant" events will consist of events during which only the STJ is characterized by a substantial excursion from its climatological latitude band; and "Hybrid" events will consist of those events characterized by an excursion of both the PJ and STJ from their climatological latitude bands. Following their classification, frequency distributions of jet superpositions will be constructed to highlight the geographical locations most often associated with jet superpositions for each event type. PV inversion and composite analysis will also be performed on each event type in an effort to illustrate the antecedent environments and the dominant synoptic-dynamic mechanisms that favor the production of North American jet superpositions for each event type.

  16. Constructing an Indoor Floor Plan Using Crowdsourcing Based on Magnetic Fingerprinting

    PubMed Central

    Zhao, Fang; Jiang, Mengling; Ma, Hao; Zhang, Yuexia

    2017-01-01

    A large number of indoor positioning systems have recently been developed to cater for various location-based services. Indoor maps are a prerequisite of such indoor positioning systems; however, indoor maps are currently non-existent for most indoor environments. Construction of an indoor map by external experts excludes quick deployment and prevents widespread utilization of indoor localization systems. Here, we propose an algorithm for the automatic construction of an indoor floor plan, together with a magnetic fingerprint map of unmapped buildings using crowdsourced smartphone data. For floor plan construction, our system combines the use of dead reckoning technology, an observation model with geomagnetic signals, and trajectory fusion based on an affinity propagation algorithm. To obtain the indoor paths, the magnetic trajectory data obtained through crowdsourcing were first clustered using dynamic time warping similarity criteria. The trajectories were inferred from odometry tracing, and those belonging to the same cluster in the magnetic trajectory domain were then fused. Fusing these data effectively eliminates the inherent tracking errors originating from noisy sensors; as a result, we obtained highly accurate indoor paths. One advantage of our system is that no additional hardware such as a laser rangefinder or wheel encoder is required. Experimental results demonstrate that our proposed algorithm successfully constructs indoor floor plans with 0.48 m accuracy, which could benefit location-based services which lack indoor maps. PMID:29156639

  17. Ground Based Synoptic Instrumentation for Solar Observations (Postprint)

    DTIC Science & Technology

    2012-03-05

    vector spectropolarimetry in FeI 630.15-630.25 nm wavelength range, and line-of-sight (circular) polarimetry in Fe I 6301.5-6302.5 Å, and Ca II 8542 Å...Stokes vector polarimetry . Opt. Eng. 38, 1402-1408, 1999. [22] C. U. Keller, J. W. Harvey, M. S. Giampapa, “SOLIS: an innovative suite of synoptic

  18. Characteristics of the Areas in which Fast Current Oil Control is Needed

    DTIC Science & Technology

    1973-11-01

    Synoptic Meteorlogical Observations (1970) U. S. Department of Commerce, Local Cllmatologlcal Data (1972) 51 Q po «» o ov in .Hi «M iH H H <N S 4...Oceanographic Office, Washington, D. C. 24. Summary of Synoptic Meteorlogical Observations; U.S. Navy Weather Command, Washington, P C. 1970 - Volumes 1

  19. A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing

    PubMed Central

    Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian

    2016-01-01

    Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623

  20. Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view

    USGS Publications Warehouse

    Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.

    2007-01-01

    Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

  1. Evaluating the fidelity of CMIP5 models in producing large-scale meteorological patterns over the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Lintner, B. R.; Loikith, P. C.; Pike, M.; Aragon, C.

    2017-12-01

    Climate change information is increasingly required at impact-relevant scales. However, most state-of-the-art climate models are not of sufficiently high spatial resolution to resolve features explicitly at such scales. This challenge is particularly acute in regions of complex topography, such as the Pacific Northwest of the United States. To address this scale mismatch problem, we consider large-scale meteorological patterns (LSMPs), which can be resolved by climate models and associated with the occurrence of local scale climate and climate extremes. In prior work, using self-organizing maps (SOMs), we computed LSMPs over the northwestern United States (NWUS) from daily reanalysis circulation fields and further related these to the occurrence of observed extreme temperatures and precipitation: SOMs were used to group LSMPs into 12 nodes or clusters spanning the continuum of synoptic variability over the regions. Here this observational foundation is utilized as an evaluation target for a suite of global climate models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Evaluation is performed in two primary ways. First, daily model circulation fields are assigned to one of the 12 reanalysis nodes based on minimization of the mean square error. From this, a bulk model skill score is computed measuring the similarity between the model and reanalysis nodes. Next, SOMs are applied directly to the model output and compared to the nodes obtained from reanalysis. Results reveal that many of the models have LSMPs analogous to the reanalysis, suggesting that the models reasonably capture observed daily synoptic states.

  2. Topological visual mapping in robotics.

    PubMed

    Romero, Anna; Cazorla, Miguel

    2012-08-01

    A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.

  3. Canonical Representations of the Simple Map

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima; Boozer, Allen

    2007-11-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) toroidal flux and poloidal angle (ψ,θ) as canonical coordinates, (ii) the physical variables (R,Z) or (X,Y) as canonical coordinates, and (iii) the action-angle (J,ζ) or magnetic variables (ψ,θ) as canonical coordinates. We give the derivation of the simple map in the (X,Y) representation. The simple map in this representation has been studied extensively (Ref. 1 and references therein). We calculate the magnetic coordinates for the simple map, construct the simple map in magnetic coordinates, and calculate generic topological effects of magnetic perturbations in divertor tokamaks using the map. We also construct the simple map in (ψ,θ) representation. Preliminary results of these studies will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).

  4. Applications systems verification and transfer project. Volume 2: Operational applications of satellite snow-cover observations and data-collection systems in the Arizona test site

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.

    1981-01-01

    Ground surveys and aerial observations were used to monitor rapidly changing moisture conditions in the Salt-Verde watershed. Repetitive satellite snow cover observations greatly reduce the necessity for routine aerial snow reconnaissance flights over the mountains. High resolution, multispectral imagery provided by LANDSAT satellite series enabled rapid and accurate mapping of snow-cover distributions for small- to medium-sized subwatersheds; however, the imagery provided only one observation every 9 days of about a third of the watershed. Low resolution imagery acquired by the ITOSa dn SMS/GOES meteorological satellite series provides the daily synoptic observation necessary to monitor the rapid changes in snow-covered area in the entire watershed. Short term runoff volumes can be predicted from daily sequential snow cover observations.

  5. The 1886 tornado of Madrid

    NASA Astrophysics Data System (ADS)

    Gayà, Miquel

    2007-02-01

    Considering the number of dead people, the worst tornado in the last two centuries in Spain is presented. The words used to describe the phenomenon have hidden it to the general public and the specialist The coetaneous press and other printed sources have been revised, and this has let us know the true sense of those words as well as the sequence of the tornadic event. The synoptic situation that was presented by some European Meteorological Offices in 1886 has been revised when all available data and some indirect information have been included. Tornado track and force have been plotted on the actual map of the city following the available information in the newspapers and other documents. Other subjective comments made by the paper writers have allowed us to find out some psychological and sociological aspects used to enhance the tragic perception of their readers.

  6. Improved potential fishing zone forecast along East coast of India.

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, N.; Rao, M. V.; Chowdhary, S. B.; Rao, K. H.; Ramana, I. V.

    Marine fisheries provide support to millions of fishermen community in terms of their living and livelihood Remote sensing technology proved to be useful for successful fishing in reducing time fuel and manpower because of its synoptic coverage Potential Fishing Zone PFZ forecast is being provided to the fishing industry in near-real time since 1992 using SST data derived from NOAA AVHRR thermal IR channel Retrieval of chlorophyll and its mapping has been done over Bay of Bengal from IRS-P4 OCM data Synergetic study of SST and chlorophyll has been established and implemented recently for an improved PFZ forecast The validation of these forecasts revealed 2-3 fold increases in fish catch along east coast of India This program provides socio-economic benefits to the fishermen living all along the Indian coast

  7. The Cooperative VAS Program with the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Menzel, W. Paul

    1988-01-01

    Work was divided between the analysis/forecast model development and evaluation of the impact of satellite data in mesoscale numerical weather prediction (NWP), development of the Multispectral Atmospheric Mapping Sensor (MAMS), and other related research. The Cooperative Institute for Meteorological Satellite Studies (CIMSS) Synoptic Scale Model (SSM) has progressed from a relatively basic analysis/forecast system to a package which includes such features as nonlinear vertical mode initialization, comprehensive Planetary Boundary Layer (PBL) physics, and the core of a fully four-dimensional data assimilation package. The MAMS effort has produced a calibrated visible and infrared sensor that produces imager at high spatial resolution. The MAMS was developed in order to study small scale atmospheric moisture variability, to monitor and classify clouds, and to investigate the role of surface characteristics in the production of clouds, precipitation, and severe storms.

  8. Can Knowledge of the Characteristics of "High Performers" Be Generalised?

    ERIC Educational Resources Information Center

    McKenna, Stephen

    2002-01-01

    Two managers described as high performing constructed complexity maps of their organization/world. The maps suggested that high performance is socially constructed and negotiated in specific contexts and management competencies associated with it are context specific. Development of high performers thus requires personalized coaching more than…

  9. Development of Map Construction Skills in Childhood

    ERIC Educational Resources Information Center

    Hirsch, Pamela L.; Sandberg, Elisabeth Hollister

    2013-01-01

    Two studies examined children's map construction skills when drawing demands were removed from the task and scenes were highly simplified. Study 1 compared the performance of first graders and third graders on their ability to preserve configuration during transformation of pictured arrays from eye-level to aerial views. For children with…

  10. The Role of Construct Maps in Standard Setting

    ERIC Educational Resources Information Center

    Kane, Michael T.; Tannenbaum, Richard J.

    2013-01-01

    The authors observe in this commentary that construct maps can help standard-setting panels to make realistic and internally consistent recommendations for performance-level descriptions (PLDs) and cut-scores, but the benefits may not be realized if policymakers do not fully understand the rationale for the recommendations provided by the…

  11. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    USGS Publications Warehouse

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub-tropical Asia, and it delivers reasonable thematic detail and quantitative estimates of the main land-cover proportions. The map may therefore serve for regional stratification or modelling of vegetation cover, but could also support the implementation of forest policies, watershed management or conservation strategies at regional scales.

  12. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    USGS Publications Warehouse

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

  13. Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy

    USGS Publications Warehouse

    Swayze, Gregg A.; Clark, Roger N.; Goetz, Alexander F.H.; Livo, K. Eric; Breit, George N.; Kruse, Fred A.; Sutley, Stephen J.; Snee, Lawrence W.; Lowers, Heather A.; Post, James L.; Stoffregen, Roger E.; Ashley, Roger P.

    2014-01-01

    Mineral maps based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used to study late Miocene advanced argillic alteration at Cuprite, Nevada. Distributions of Fe-bearing minerals, clays, micas, sulfates, and carbonates were mapped using the Tetracorder spectral-shape matching system. The Al content of white micas increases toward altered areas and near intrusive rocks. Alunite composition varies from pure K to intimate mixtures of Na-K endmembers with subpixel occurrences of huangite, the Ca analogue of alunite. Intimately mixed Na-K alunite marks areas of relatively lower alteration temperature, whereas co-occurring Na-alunite and dickite may delineate relict hydrothermal conduits. The presence of dickite, halloysite, and well-ordered kaolinite, but absence of disordered kaolinite, is consistent with acidic conditions during hydrothermal alteration. Partial lichen cover on opal spectrally mimics chalcedony, limiting its detection to lichen-free areas. Pods of buddingtonite are remnants of initial quartz-adularia-smectite alteration. Thus, spectral maps provide a synoptic view of the surface mineralogy, and define a previously unrecognized early steam-heated hydrothermal event.Faulting and episodes of hydrothermal alteration at Cuprite were intimately linked to upper plate movements above the Silver Peak-Lone Mountain detachment and growth, collapse, and resurgence of the nearby Stonewall Mountain volcanic complex between 8 and 5 Ma. Isotopic dating indicates that hydrothermal activity started at least by 7.61 Ma and ended by about 6.2 Ma. Spectral and stable isotope data suggest that Cuprite is a late Miocene low-sulfidation adularia-sericite type hot spring deposit overprinted by late-stage, steam-heated advanced argillic alteration formed along the margin of the Stonewall Mountain caldera.

  14. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  15. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  16. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato (Ipomoea batatas (L.) Lam).

    PubMed

    Kim, Jin-Hee; Chung, Il Kyung; Kim, Kyung-Min

    2017-01-01

    The Sweet potato, Ipomoea batatas (L.) Lam, is difficult to study in genetics and genomics because it is a hexaploid. The sweet potato study not have been performed domestically or internationally. In this study was performed to construct genetic map and quantitative trait loci (QTL) analysis. A total of 245 EST-SSR markers were developed, and the map was constructed by using 210 of those markers. The total map length was 1508.1 cM, and the mean distance between markers was 7.2 cM. Fifteen characteristics were investigated for QTLs analysis. According to those, the Four QTLs were identified, and The LOD score was 3.0. Further studies need to develop molecular markers in terms of EST-SSR markers for doing to be capable of efficient breeding. The genetic map created here using EST-SSR markers will facilitate planned breeding of sweet potato cultivars with various desirable traits.

  17. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.

    PubMed

    Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2018-01-01

    Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.

  18. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations

    PubMed Central

    Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert

    2018-01-01

    Background Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. Materials and methods A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including “CDC Redberry” x “ILL7502” (LR8), “ILL8006” x “CDC Milestone” (LR11) and “PI320937” x “Eston” (LR39). Results The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. Conclusion This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data. PMID:29351563

  19. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.)

    PubMed Central

    2010-01-01

    Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. Conclusions The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species. PMID:20712870

  20. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-01-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  1. SNP Discovery and Linkage Map Construction in Cultivated Tomato

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2010-01-01

    Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984

  2. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-12-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.

  3. Satellite Ocean Color: Present Status, Future Challenges

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.

  4. From Open Geographical Data to Tangible Maps: Improving the Accessibility of Maps for Visually Impaired People

    NASA Astrophysics Data System (ADS)

    Ducasse, J.; Macé, M.; Jouffrais, C.

    2015-08-01

    Visual maps must be transcribed into (interactive) raised-line maps to be accessible for visually impaired people. However, these tactile maps suffer from several shortcomings: they are long and expensive to produce, they cannot display a large amount of information, and they are not dynamically modifiable. A number of methods have been developed to automate the production of raised-line maps, but there is not yet any tactile map editor on the market. Tangible interactions proved to be an efficient way to help a visually impaired user manipulate spatial representations. Contrary to raised-line maps, tangible maps can be autonomously constructed and edited. In this paper, we present the scenarios and the main expected contributions of the AccessiMap project, which is based on the availability of many sources of open spatial data: 1/ facilitating the production of interactive tactile maps with the development of an open-source web-based editor; 2/ investigating the use of tangible interfaces for the autonomous construction and exploration of a map by a visually impaired user.

  5. Global Network of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-01-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  6. Identification and Lagrangian analysis of oceanographic structures favorable for fishery of neon flying squid ( Ommastrephes bartramii) in the South Kuril area

    NASA Astrophysics Data System (ADS)

    Budyansky, M. V.; Prants, S. V.; Samko, E. V.; Uleysky, M. Yu.

    2017-09-01

    Based on the AVISO velocity field, we compute daily synoptic Lagrangian maps in the South Kuril area for the fishery seasons of 1998, 1999, and 2001-2005 from available catching data on neon flying squid (NFS). With the help of drift maps for artificial particles, we found that the majority of NFS fishing grounds featuring maximum catches are situated near large-scale Lagrangian intrusions: tongues of water penetrating the surrounding water of other Lagrangian properties. It is shown that the NFS catch locations tend to accumulate at places where waters with different magnitudes of certain Lagrangian indicators converge, mix, and produce filaments, swirls, and tendrils typical of chaotic advection. Potential NFS fishing grounds are mainly located near (1) Lagrangian intrusions of the Subarctic front, (2) intrusions of Okhotsk Sea and Oyashio waters around mesoscale anticyclones east of Hokkaido with subsequent penetration of catch locations inside eddies and (3) intrusions of subtropical waters into the central part of the South Kuril area due to interaction with eddies of different size and polarity. Possible reasons for increased biological production and fishery in the vicinity of Lagrangian intrusions are discussed.

  7. Mapping Dependence Between Extreme Rainfall and Storm Surge

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth

    2018-04-01

    Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.

  8. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  9. Coastal Seabed Mapping with Hyperspectral and Lidar data

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Valentini, E.; Filipponi, F.; Cappucci, S.

    2017-12-01

    A synoptic view of the coastal seascape and its dynamics needs a quantitative ability to dissect different components over the complexity of the seafloor where a mixture of geo - biological facies determines geomorphological features and their coverage. The present study uses an analytical approach that takes advantage of a multidimensional model to integrate different data sources from airborne Hyperspectral and LiDAR remote sensing and in situ measurements to detect antropogenic features and ecological `tipping points' in coastal seafloors. The proposed approach has the ability to generate coastal seabed maps using: 1) a multidimensional dataset to account for radiometric and morphological properties of waters and the seafloor; 2) a field spectral library to assimilate the high environmental variability into the multidimensional model; 3) a final classification scheme to represent the spatial gradients in the seafloor. The spatial pattern of the response to anthropogenic forcing may be indistinguishable from patterns of natural variability. It is argued that this novel approach to define tipping points following anthropogenic impacts could be most valuable in the management of natural resources and the economic development of coastal areas worldwide. Examples are reported from different sites of the Mediterranean Sea, both from Marine Protected and un-Protected Areas.

  10. LSST summit facility construction progress report: reacting to design refinements and field conditions

    NASA Astrophysics Data System (ADS)

    Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo

    2016-07-01

    The civil work, site infrastructure and buildings for the summit facility of the Large Synoptic Survey Telescope (LSST) are among the first major elements that need to be designed, bid and constructed to support the subsequent integration of the dome, telescope, optics, camera and supporting systems. As the contracts for those other major subsystems now move forward under the management of the LSST Telescope and Site (T and S) team, there has been inevitable and beneficial evolution in their designs, which has resulted in significant modifications to the facility and infrastructure. The earliest design requirements for the LSST summit facility were first documented in 2005, its contracted full design was initiated in 2010, and construction began in January, 2015. During that entire development period, and extending now roughly halfway through construction, there continue to be necessary modifications to the facility design resulting from the refinement of interfaces to other major elements of the LSST project and now, during construction, due to unanticipated field conditions. Changes from evolving interfaces have principally involved the telescope mount, the dome and mirror handling/coating facilities which have included significant variations in mass, dimensions, heat loads and anchorage conditions. Modifications related to field conditions have included specifying and testing alternative methods of excavation and contending with the lack of competent rock substrate where it was predicted to be. While these and other necessary changes are somewhat specific to the LSST project and site, they also exemplify inherent challenges related to the typical timeline for the design and construction of astronomical observatory support facilities relative to the overall development of the project.

  11. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China.

    PubMed

    Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang

    2018-06-11

    Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    NASA Astrophysics Data System (ADS)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  13. Synoptic weather types associated with critical fire weather

    Treesearch

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  14. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Treesearch

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  15. Evidence for gap flows in the Birch Creek Valley, Idaho

    Treesearch

    D. Finn; B. Reese; B. Butler; N. Wagenbrenner; K. L. Clawson; J. Rich; E. Russell; Z. Gao; H. Liu

    2016-01-01

    A field study was conducted of flows in the Birch Creek Valley in eastern Idaho. There is a distinct topographic constriction in the Birch Creek Valley that creates two subbasins: an upper and lower valley. The data were classified into one of three groups based on synoptic influence (weak/absent, high wind speeds, and other evidence of synoptic influence). Gap flows...

  16. Robot Competence Development by Constructive Learning

    NASA Astrophysics Data System (ADS)

    Meng, Q.; Lee, M. H.; Hinde, C. J.

    This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

  17. Robot Competence Development by Constructive Learning

    NASA Astrophysics Data System (ADS)

    Meng, Q.; Lee, M. H.; Hinde, C. J.

    This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system's adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

  18. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, B. C.

    1991-01-01

    A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.

  19. Analysis of synoptic patterns in relationship with severe rainfall events in the Ebre Observatory (Catalonia)

    NASA Astrophysics Data System (ADS)

    Pérez-Zanón, Núria; Casas-Castillo, M. Carmen; Peña, Juan Carlos; Aran, Montserrat; Rodríguez-Solà, Raúl; Redaño, Angel; Solé, German

    2018-03-01

    The study has obtained a classification of the synoptic patterns associated with a selection of extreme rain episodes registered in the Ebre Observatory between 1905 and 2003, showing a return period of not less than 10 years for any duration from 5 min to 24 h. These episodes had been previously classified in four rainfall intensity groups attending to their meteorological time scale. The synoptic patterns related to every group have been obtained applying a multivariable analysis to three atmospheric levels: sea-level pressure, temperature, and geopotential at 500 hPa. Usually, the synoptic patterns associated with intense rain in southern Catalonia are featured by low-pressure systems advecting warm and wet air from the Mediterranean Sea at the low levels of the troposphere. The configuration in the middle levels of the troposphere is dominated by negative anomalies of geopotential, indicating the presence of a low or a cold front, and temperature anomalies, promoting the destabilization of the atmosphere. These configurations promote the occurrence of severe convective events due to the difference of temperature between the low and medium levels of troposphere and the contribution of humidity in the lowest levels of the atmosphere.

  20. Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang

    2018-05-01

    The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.

  1. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  2. Communications among elements of a space construction ensemble

    NASA Technical Reports Server (NTRS)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  3. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun

    2015-10-01

    Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.

  4. Construct Maps for the Road Ahead

    ERIC Educational Resources Information Center

    Bunch, Michael B.

    2013-01-01

    In this issue of "Measurement: Interdisciplinary Research and Perspectives," Adam E. Wyse provides a thorough review of research to date on the use of construct maps in standard setting. He juxtaposes concepts and methods in ways that make their connections to one another clearer and more obvious than they might otherwise have been. In…

  5. Psychometric and Edumetric Validity of Dimensions of Geomorphological Knowledge Which Are Tapped by Concept Mapping.

    ERIC Educational Resources Information Center

    Hoz, Ron; Bowman, Dan; Chacham, Tova

    1997-01-01

    Students (N=14) in a geomorphology course took an objective geomorphology test, the tree construction task, and the Standardized Concept Structuring Analysis Technique (SConSAT) version of concept mapping. Results suggest that the SConSAT knowledge structure dimensions have moderate to good construct validity. Contains 82 references. (DDR)

  6. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    PubMed

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  7. Topographic map of Golden Gate Estates, Collier County, Florida

    USGS Publications Warehouse

    Jurado, Antonio

    1981-01-01

    Construction of canals related to land development in the Golden Gate Estates area of Collier County, Fla., has altered the natural drainage pattern of the watershed. The area of approximately 300 square miles was topographically mapped with a contour interval of 0.5 foot to assist in determining the effects of canal construction on the surface-water and ground-water resources in the watershed. The topographic map was prepared at a scale of 1:48,000 using aerial photography and ground-control points. (USGS)

  8. Using Google Maps to Access USGS Volcano Hazards Information

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Snedigar, S.; Guffanti, M.; Bailey, J. E.; Wall, B. G.

    2006-12-01

    The U.S. Geological Survey (USGS) Volcano Hazard Program (VHP) is revising the information architecture of our website to provide data within a geospatial context for emergency managers, educators, landowners in volcanic areas, researchers, and the general public. Using a map-based interface for displaying hazard information provides a synoptic view of volcanic activity along with the ability to quickly ascertain where hazards are in relation to major population and infrastructure centers. At the same time, the map interface provides a gateway for educators and the public to find information about volcanoes in their geographic context. A plethora of data visualization solutions are available that are flexible, customizable, and can be run on individual websites. We are currently using a Google map interface because it can be accessed immediately from a website (a downloadable viewer is not required), and it provides simple features for moving around and zooming within the large map area that encompasses U.S. volcanism. A text interface will also be available. The new VHP website will serve as a portal to information for each volcano the USGS monitors with icons for alert levels and aviation color codes. When a volcano is clicked, a window will provide additional information including links to maps, images, and real-time data, thereby connecting information from individual observatories, the Smithsonian Institution, and our partner universities. In addition to the VHP home page, many observatories and partners have detailed graphical interfaces to data and images that include the activity pages for the Alaska Volcano Observatory, the Smithsonian Google Earth files, and Yellowstone Volcano Observatory pictures and data. Users with varied requests such as raw data, scientific papers, images, or brief overviews expect to be able to quickly access information for their specialized needs. Over the next few years we will be gathering, cleansing, reorganizing, and posting data in multiple formats to meet these needs.

  9. Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome

    PubMed Central

    Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.

    2001-01-01

    We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203

  10. Concept mapping and network analysis: an analytic approach to measure ties among constructs.

    PubMed

    Goldman, Alyssa W; Kane, Mary

    2014-12-01

    Group concept mapping is a mixed-methods approach that helps a group visually represent its ideas on a topic of interest through a series of related maps. The maps and additional graphics are useful for planning, evaluation and theory development. Group concept maps are typically described, interpreted and utilized through points, clusters and distances, and the implications of these features in understanding how constructs relate to one another. This paper focuses on the application of network analysis to group concept mapping to quantify the strength and directionality of relationships among clusters. The authors outline the steps of this analysis, and illustrate its practical use through an organizational strategic planning example. Additional benefits of this analysis to evaluation projects are also discussed, supporting the overall utility of this supplemental technique to the standard concept mapping methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Concepts and applications for influenza antigenic cartography

    PubMed Central

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  13. A cup product structure for cyclic cohomology

    NASA Astrophysics Data System (ADS)

    Espinosa Tintos, Jose Eduardo

    In this work we construct a cup product structure for cyclic cohomology of a cyclic set X. introduced by Comics. We make use of a categorical construction of cyclic homology by Fiedorowicz and Loday to define our cup product structure by using a large resolution of the cyclic category. We also provide a way to construct a chain map from a smaller resolution where the action of the finite groups is clear. and in the process of constructing this map we learn the large complex can be viewed as all factorizations in the category DeltaC using the cyclic structure of X.

  14. A new perspective on the regional hydrologic cycle over North and South America

    NASA Astrophysics Data System (ADS)

    Weng, Shu-Ping

    The GEOS-1 vertically-integrated 3-hr moisture flux reanalyses and hourly-gridded United States station precipitation plus a satellite-based, 6-hr global precipitation estimate were employed to investigate the impacts of nocturnal low-level jets (LLJs) on the regional hydrological cycle over the central United States (Part I) and the subtropical plains of South America (Part II). Research stressed the influences of upper-level synoptic-scale waves (i.e., synoptic-scale forcings) upon the regional hydrologic processes, which were explored by the impacts associated with the occurrence of LLJ. Besides the conventional budget analysis, the adopted `synoptic-forcing approach' was proven illustrative in describing these impacts through the down-scaling process of LLJs. In Part 1, the major findings include: (1)the seasonal-averaged hydrological cycle over the Great Plains is strongly affected by the occurrence of GPLLJ, (2)the synoptic-scale forcing provided by the upper-level propagating jet (ULJ) streams is essential in generating the large-scale precipitation after the GPLLJ forms from the diurnal boundary layer process, (3)without the dynamic coupling between the ULJ and LLJ, the impact of LLJ on the hydrological cycle is demonstrated to be less important, and (4)the importance of synoptic-scale forcings in preconditioning the setting of wet/dry seasons in the interannual variability of rainfall anomaly is further illustrated by examining the changes of intensity as well as the occurrence frequency between the different types of LLJ. In Part II of this study, it was found that the occurrence of Andean LLJ represents a transient episode that detours the climatic rainfall activity along the South Atlantic Convergent Zone (SACZ) to the subtropical plains (Brazilian Nordeste) in its southwestern (northeastern) flank. The appearance of a seesaw pattern in the rainfall and flux convergence anomalies along the southeastern portion of South America, which is spatially in quadrature with the seasonal mean circulation, reflects the synoptic-scale forcing generated by the upper-level propagating transient-scale waves. In this regard, the function of the Andean LLJ in providing a scale-interaction mechanism that links the synoptic-scale setting with the localized rainfall event is the same as the GPLLJ. Due to the unique geographic background such as the narrow east-west landmass extension and the relative orientation between the Andean LLJ and the ULJ, however, the enhanced rainfall activity over the subtropical plains in response to the perturbed flux convergence is smaller than the case in the GPLLJ.

  15. Construction of cosmic string induced temperature anisotropy maps with CMBFAST and statistical analysis

    NASA Astrophysics Data System (ADS)

    Simatos, N.; Perivolaropoulos, L.

    2001-01-01

    We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.

  16. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  17. First results in terrain mapping for a roving planetary explorer

    NASA Technical Reports Server (NTRS)

    Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.

  18. Knotted fields and explicit fibrations for lemniscate knots

    NASA Astrophysics Data System (ADS)

    Bode, B.; Dennis, M. R.; Foster, D.; King, R. P.

    2017-06-01

    We give an explicit construction of complex maps whose nodal lines have the form of lemniscate knots. We review the properties of lemniscate knots, defined as closures of braids where all strands follow the same transverse (1, ℓ) Lissajous figure, and are therefore a subfamily of spiral knots generalizing the torus knots. We then prove that such maps exist and are in fact fibrations with appropriate choices of parameters. We describe how this may be useful in physics for creating knotted fields, in quantum mechanics, optics and generalizing to rational maps with application to the Skyrme-Faddeev model. We also prove how this construction extends to maps with weakly isolated singularities.

  19. Constructing linkage maps in the genomics era with MapDisto 2.0.

    PubMed

    Heffelfinger, Christopher; Fragoso, Christopher A; Lorieux, Mathias

    2017-07-15

    Genotyping by sequencing (GBS) generates datasets that are challenging to handle by current genetic mapping software with graphical interface. Geneticists need new user-friendly computer programs that can analyze GBS data on desktop computers. This requires improvements in computation efficiency, both in terms of speed and use of random-access memory (RAM). MapDisto v.2.0 is a user-friendly computer program for construction of genetic linkage maps. It includes several new major features: (i) handling of very large genotyping datasets like the ones generated by GBS; (ii) direct importation and conversion of Variant Call Format (VCF) files; (iii) detection of linkage, i.e. construction of linkage groups in case of segregation distortion; (iv) data imputation on VCF files using a new approach, called LB-Impute. Features i to iv operate through inclusion of new Java modules that are used transparently by MapDisto; (v) QTL detection via a new R/qtl graphical interface. The program is available free of charge at mapdisto.free.fr. mapdisto@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    NASA Astrophysics Data System (ADS)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  1. The Perkins Telescope in the 21st Century: An NSF PREST Project

    NASA Astrophysics Data System (ADS)

    Janes, K. A.; Buie, M. W.; Bosh, A. S.; Clemens, D. P.; Jackson, J. M.

    2005-12-01

    With the help of a grant under the NSF "Program for Research and Education with Small Telescopes (PREST)," Boston University and Lowell Observatory are engaged in a project to improve the performance of the 1.83-meter Perkins Telescope on Anderson Mesa near Flagstaff, Arizona. Our goal is to bring the Perkins Telescope into the 21st century, to create effective resources in support of the scientific and educational missions of our two institutions and the larger community. Over the past several years we have re-instrumented the telescope; two facility-class instruments, Mimir, a wide-field infrared imager, polarimeter and spectrometer and PRISM, an optical counterpart, are now in operation at the Perkins Telescope. The new instrumentation at the Perkins will give our partnership and visiting observers access to an important niche in "observation space" not readily available elsewhere. Wide-field polarimetry and imaging and multi-object low-resolution spectroscopy are now possible across the spectrum from the near uv to the thermal IR. We are well-placed for surveys and synoptic studies, ranging from monitoring polarization variations in blazars to mapping the galactic magnetic field to tracking Kuiper-belt objects. Our PREST project includes four components: Thermal management to improve the seeing at the telescope, upgrades to the instrumentation, productivity enhancements to the facility, and integration of the Boston University access to the telescope into our graduate and undergraduate educational programs. In the first year of the PREST grant we have set up a visitor program (see www.lowell.edu/VisitingObservers/), established a graduate-student-in-residence program, installed fans and ductwork around the telescope and dome to improve seeing, and completed a student-led project to construct an innovative grism for optical spectroscopy based on a volume-phase holographic grating.

  2. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  3. Atmospheric observations for STS-1 landing

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Arnold, J. E.; Wilson, G. S.

    1981-01-01

    A summary of synoptic weather conditions existing over the western United States is given for the time of shuttle descent into Edwards Air Force Base, California. The techniques and methods used to furnish synoptic atmospheric data at the surface and aloft for flight verification of the STS-1 orbiter during its descent into Edwards Air Force Base are specified. Examples of the upper level data set are given.

  4. Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon

    Treesearch

    Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner

    2009-01-01

    The Mediterranean climate region on the west coast of the United States is characterized by wet winters and dry summers, and by high fire activity. The importance of synoptic-scale circulation patterns (ENSO, PDO, PNA) on fire-climate interactions is evident in contemporary fire data sets and in pre-Euroamerican tree-ring-based fire records. We investigated how...

  5. Can Different Teaching Strategies or Methods of Preparing Pupils Lead to Greater Improvements from GCSE to A Level Performance?

    ERIC Educational Resources Information Center

    Greatorex, Jackie; Malacova, Eva

    2006-01-01

    There is no published empirically based research on the new GCE synoptic assessment. Consequently no published research has been undertaken on its role, how it is taught or how pupils are prepared for the assessment. Neither is there a published evaluation of the effectiveness of teaching the synoptic units. It is these issues which are addressed…

  6. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-adapted squash varieties. PMID:22356647

  7. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China

    NASA Astrophysics Data System (ADS)

    Leung, Danny M.; Tai, Amos P. K.; Mickley, Loretta J.; Moch, Jonathan M.; van Donkelaar, Aaron; Shen, Lu; Martin, Randall V.

    2018-05-01

    In his study, we use a combination of multivariate statistical methods to understand the relationships of PM2.5 with local meteorology and synoptic weather patterns in different regions of China across various timescales. Using June 2014 to May 2017 daily total PM2.5 observations from ˜ 1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong correlations of daily PM2.5 with all selected meteorological variables (e.g., positive correlation with temperature but negative correlation with sea-level pressure throughout China; positive and negative correlation with relative humidity in northern and southern China, respectively). The spatial patterns suggest that the apparent correlations with individual meteorological variables may arise from common association with synoptic systems. Based on a principal component analysis of 1998-2017 meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four major regions of China, we find strong correlations of PM2.5 with several synoptic modes that explain 10 to 40 % of daily PM2.5 variability. These modes include monsoonal flows and cold frontal passages in northern and central China associated with the Siberian High, onshore flows in eastern China, and frontal rainstorms in southern China. Using the Beijing-Tianjin-Hebei (BTH) region as a case study, we further find strong interannual correlations of regionally averaged satellite-derived annual mean PM2.5 with annual mean relative humidity (RH; positive) and springtime fluctuation frequency of the Siberian High (negative). We apply the resulting PM2.5-to-climate sensitivities to the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM2.5 by the 2050s due to climate change, and find a modest decrease of ˜ 0.5 µg m-3 in annual mean PM2.5 in the BTH region due to more frequent cold frontal ventilation under the RCP8.5 future, representing a small climate benefit, but the RH-induced PM2.5 change is inconclusive due to the large inter-model differences in RH projections.

  8. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063

  9. Effects of synoptic weather on ground-level PM2.5 concentrations in the United States

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhao, Naizhuo; Vanos, Jennifer K.; Cao, Guofeng

    2017-01-01

    It is known that individual meteorological factors affect the concentrations of fine particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), yet the specific meteorological effects found in previous studies are largely inconsistent and even conflicting. This study investigates influences of daily and short term changes in synoptic weather on ground-level PM2.5 concentrations in a large geographical area (75 cities across the contiguous United States (U.S.)) by using ten-year (2001-2010) spatial synoptic classification (SSC) data. We find that in the spring, summer, and fall the presence of the tropical weather types (i.e., dry-tropical (DT) and moist-tropical (MT)) is likely to associate with significantly higher levels of PM2.5 as compared to an all-weather-type-day average, and the presence of the polar weather types (i.e., dry-polar (DP) and moist-polar (MP)) is associated with significantly lower PM2.5 concentrations. The short-term (day to day) changes in synoptic weather types in a region are also likely to lead to significant variance in PM2.5 concentrations. For example, the largest increase in PM2.5 concentration occurs with the synoptic weather type changing from DP-to-MT. Conversely, a MT-to-DP weather type change results in the largest decrease in PM2.5 concentrations. Compared to air temperature, the effects of atmospheric moisture on PM2.5 concentration tend to be subtle, demonstrating that in conjunction with moderate temperature, neither the dry nor the moist air (except moist-moderate (MM) in summer) are associated with significantly high or low PM2.5 concentrations. Finally, we find that the effects of the synoptic weather type on PM2.5 concentrations may vary for different seasons and geographical areas. These findings suggest that interactions between atmospheric factors and seasonal and/or geographical factors have considerable impacts on the PM2.5 concentrations, and therefore should be considered in addition to the SSC when conducting environment health assessments.

  10. Synoptic Control of Cross-Barrier Precipitation Ratios

    NASA Astrophysics Data System (ADS)

    Mass, C.; Vargas, R.

    2013-12-01

    The substantial precipitation contrasts across mountain barriers, with windward enhancement on one side and leeward reduction on the other, have been the subject of several studies and reviews, both observational and theoretical. A lesser number of papers have examined the temporal variability of the orographic precipitation contrasts, including the origins of such variability. For example, Siler et al. (2013) examined the variability of the rain-shadow effect across the Cascade Mountains of Washington State. They found that the intensity of the winter-mean rain shadow was weaker in El Nino than La Nina years, and suggested that the strongest (weakest) rain shadows occurred for warm-sector (warm-frontal) situations. Dettinger et al. (2004) examined the synoptic controls of varying orographic precipitation ratios across the Sierra Nevada of California, with ratios defined by the difference in precipitation between the Central Valley and the western slopes of the barrier. They found increased ratios when the flow was more normal to the terrain and when vertical stability was less, with higher ratios after cold frontal passage compared to the warm sectors of midlatitude cyclones. The latter result appears to contradict the findings of Siler et al (2013). This presentation explores the temporal variations in the intensity of the precipitation gradient across the Cascade Mountains of Washington State and describes the synoptic conditions associated with periods in which precipitation is heavier on the western side, heavier on the eastern side, or nearly equal across the barrier. The talk will begin by summarizing the temporal variations of precipitation on the windward and leeward sides of the Cascades for a several year period. Segregating the hours when precipitation is substantially greater on the windward side, greater on the leeward side, or roughly equal, provides a series of dates used for synoptic composites for these three situations. It is shown that there are coherent and significant synoptic differences between the three precipitation ratio regimes, and these differences are illustrated for several case studies. For example, windward enhancement is greater after the passage of cold or occluded fronts, when stability is reduced and the flow is more westerly. Finally, the physical connection between synoptic flow and the changing cross-barrier precipitation contrasts are discussed.

  11. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.

  12. Constructing Concept Maps to Encourage Meaningful Learning in Science Classroom

    ERIC Educational Resources Information Center

    Akcay, Hakan

    2017-01-01

    The purpose of this activity is to demonstrate science teaching and assessing what is learned via using concept maps. Concept mapping is a technique for visually representing the structure of information. Concept mapping allows students to understand the relationships between concepts of science by creating a visual map of the connections. Concept…

  13. Dark Energy Survey Year 1 results: curved-sky weak lensing mass map

    NASA Astrophysics Data System (ADS)

    Chang, C.; Pujol, A.; Mawdsley, B.; Bacon, D.; Elvin-Poole, J.; Melchior, P.; Kovács, A.; Jain, B.; Leistedt, B.; Giannantonio, T.; Alarcon, A.; Baxter, E.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bonnett, C.; Busha, M. T.; Rosell, A. Carnero; Castander, F. J.; Cawthon, R.; da Costa, L. N.; Davis, C.; De Vicente, J.; DeRose, J.; Drlica-Wagner, A.; Fosalba, P.; Gatti, M.; Gaztanaga, E.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Hoyle, B.; Huff, E. M.; Jarvis, M.; Jeffrey, N.; Kacprzak, T.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Prat, J.; Rau, M. M.; Rollins, R. P.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Sevilla-Noarbe, I.; Sheldon, E.; Troxel, M. A.; Varga, T. N.; Vielzeuf, P.; Vikram, V.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Kirk, D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; Wester, W.; Zhang, Y.

    2018-04-01

    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg2, covering a comoving volume of ≈10 Gpc3. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ˜1.5 (˜2) when smoothed with a Gaussian filter of σG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation

  14. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    USGS Publications Warehouse

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made to allow the water levels in the wells to recover to ambient (nonpumping) conditions. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In addition to pumping stresses, density differences (saline water) also lower the water levels measured in certain wells. Recent water-quality data are lacking in these wells; therefore, a conversion to freshwater head could not be performed accurately and was not attempted. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).The land surface altitude, or topography, was obtained from the National Oceanic and Atmospheric Administration. The data were collected using light detection and ranging (lidar) and were used to produce a three-dimensional digital elevation model. The lidar data have a horizontal accuracy of 1.38 feet and a vertical accuracy of 0.40 foot at a 95-percent confidence level for the “open terrain” land-cover category. The digital elevation model was developed jointly by the National Oceanic and Atmospheric Administration and the U.S. Geological Survey as part of the Disaster Relief Appropriations Act of 2013. Land surface altitude is referenced to the North American Vertical Datum of 1988 (NAVD 88). On Long Island, NAVD 88 is approximately 1 foot higher than NGVD 29.Hydrographs are included on these maps for selected wells that have continuous digital recording equipment, and each hydrograph includes the water level measured during the synoptic survey. These hydrographs are representative of the 2016 water year and show the changes throughout that period; a water year is the 12-month period from October 1 to September 30 and is designated by the year in which it ends.

  15. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    PubMed

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

  16. A Practical Framework for Cartographic Design

    NASA Astrophysics Data System (ADS)

    Denil, Mark

    2018-05-01

    Creation of a map artifact that can be recognized, accepted, read, and absorbed is the cartographer's chief responsibility. This involves bringing coherence and order out of chaos and randomness through the construction of map artifacts that mediate processes of social communication. Maps are artifacts, first and foremost: they are artifacts with particular formal attributes. It is the formal aspects of the map artifact that allows it to invoke and sustain a reading as a map. This paper examines Cartographic Design as the sole means at the cartographer's disposal for constructing the meaning bearing artifacts we know as maps, by placing it in a center of a practical analytic framework. The framework draws together the Theoretic and Craft aspects of map making, and examines how Style and Taste operate through the rubric of a schema of Mapicity to produce high quality maps. The role of the Cartographic Canon, and the role of Critique, are also explored, and a few design resources are identified.

  17. Large-Scale SNP Discovery and Genotyping for Constructing a High-Density Genetic Map of Tea Plant Using Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

    PubMed Central

    Ma, Chun-Lei; Jin, Ji-Qiang; Li, Chun-Fang; Wang, Rong-Kai; Zheng, Hong-Kun; Yao, Ming-Zhe; Chen, Liang

    2015-01-01

    Genetic maps are important tools in plant genomics and breeding. The present study reports the large-scale discovery of single nucleotide polymorphisms (SNPs) for genetic map construction in tea plant. We developed a total of 6,042 valid SNP markers using specific-locus amplified fragment sequencing (SLAF-seq), and subsequently mapped them into the previous framework map. The final map contained 6,448 molecular markers, distributing on fifteen linkage groups corresponding to the number of tea plant chromosomes. The total map length was 3,965 cM, with an average inter-locus distance of 1.0 cM. This map is the first SNP-based reference map of tea plant, as well as the most saturated one developed to date. The SNP markers and map resources generated in this study provide a wealth of genetic information that can serve as a foundation for downstream genetic analyses, such as the fine mapping of quantitative trait loci (QTL), map-based cloning, marker-assisted selection, and anchoring of scaffolds to facilitate the process of whole genome sequencing projects for tea plant. PMID:26035838

  18. A Comprehensive Linkage Map of the Dog Genome

    PubMed Central

    Wong, Aaron K.; Ruhe, Alison L.; Dumont, Beth L.; Robertson, Kathryn R.; Guerrero, Giovanna; Shull, Sheila M.; Ziegle, Janet S.; Millon, Lee V.; Broman, Karl W.; Payseur, Bret A.; Neff, Mark W.

    2010-01-01

    We have leveraged the reference sequence of a boxer to construct the first complete linkage map for the domestic dog. The new map improves access to the dog's unique biology, from human disease counterparts to fascinating evolutionary adaptations. The map was constructed with ∼3000 microsatellite markers developed from the reference sequence. Familial resources afforded 450 mostly phase-known meioses for map assembly. The genotype data supported a framework map with ∼1500 loci. An additional ∼1500 markers served as map validators, contributing modestly to estimates of recombination rate but supporting the framework content. Data from ∼22,000 SNPs informing on a subset of meioses supported map integrity. The sex-averaged map extended 21 M and revealed marked region- and sex-specific differences in recombination rate. The map will enable empiric coverage estimates and multipoint linkage analysis. Knowledge of the variation in recombination rate will also inform on genomewide patterns of linkage disequilibrium (LD), and thus benefit association, selective sweep, and phylogenetic mapping approaches. The computational and wet-bench strategies can be applied to the reference genome of any nonmodel organism to assemble a de novo linkage map. PMID:19966068

  19. Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus.

    PubMed

    Sonnante, Gabriella; Gatto, Angela; Morgese, Anita; Montemurro, Francesco; Sarli, Giulio; Blanco, Emanuela; Pignone, Domenico

    2011-11-01

    An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F(1) progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.

  20. ASPECTS OF ARCTIC SEA ICE OBSERVABLE BY SEQUENTIAL PASSIVE MICROWAVE OBSERVATIONS FROM THE NIMBUS-5 SATELLITE.

    USGS Publications Warehouse

    Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,

    1984-01-01

    Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.

Top