Sample records for synthase gene polymorphisms

  1. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA.

  2. Effects of polymorphisms in endothelial nitric oxide synthase and folate metabolizing genes on the concentration of serum nitrate, folate, and plasma total homocysteine after folic acid supplementation: a double-blind crossover study.

    PubMed

    Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2015-02-01

    A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    PubMed

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic polymorphisms in nitric oxide synthase genes modify the relationship between vegetable and fruit intake and risk of non-Hodgkin lymphoma

    PubMed Central

    Han, Xuesong; Zheng, Tongzhang; Lan, Qing; Zhang, Yaqun; Kilfoy, Briseis A.; Qin, Qin; Rothman, Nathaniel; Zahm, Shelia H.; Holford, Theodore R.; Leaderer, Brian; Zhang, Yawei

    2010-01-01

    Oxidative damage caused by reactive oxygen species (ROS) and other free radicals is involved in carcinogenesis. It has been suggested that high vegetable and fruit intake may reduce the risk of non-Hodgkin lymphoma (NHL) as vegetables and fruit are rich in antioxidants. The aim of this study is to evaluate the interaction of vegetable and fruit intake with genetic polymorphisms in oxidative stress pathway genes and NHL risk. This hypothesis was investigated in a population-based case-control study of NHL and NHL histological subtype in Connecticut women including 513 histologically confirmed incident cases and 591 randomly selected controls. Gene-vegetable/fruit joint effects were estimated using unconditional logistic regression model. The false discovery rate method was applied to adjust for multiple comparisons. Significant interactions with vegetable and fruit intake were mainly found for genetic polymorphisms on nitric oxide synthase (NOS) genes among those with diffuse large B-cell lymphoma (DLBCL) and Follicular lymphoma (FL). Two single nucleotide polymorphisms (SNPs) in the NOS1 gene were found to significantly modify the association between total vegetable and fruit intake and risk of NHL overall, as well as the risk of follicular lymphoma (FL). When vegetables, bean vegetables, cruciferous vegetables, green leafy vegetables, red vegetables, yellow/orange vegetables, fruit, and citrus fruit were examined separately, strong interaction effects were narrowed to vegetable intake among DLBCL patients. Our results suggest that genetic polymorphisms in oxidative stress pathway genes, especially in the nitric oxide synthase genes, modify the association between vegetable and fruit intake and risk of NHL. PMID:19423521

  5. Association of endothelial nitric oxide synthase gene polymorphism with the risk of Henoch-Schönlein purpura/Henoch-Schönlein purpura nephritis.

    PubMed

    Zhong, Weiqiang; Zhou, Tian-Biao; Jiang, Zongpei

    2015-04-01

    Association between endothelial nitric oxide synthase (eNOS) gene polymorphism and Henoch-Schönlein purpura (HSP)/Henoch-Schönlein purpura nephritis (HSPN) risk is still controversial. A meta-analysis was performed to evaluate the association between eNOS gene polymorphism and HSP/HSPN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Three articles were identified for the analysis of association between eNOS gene polymorphism and HSPN/HSP risk. eNOS G894T gene polymorphism was not associated with HSPN susceptibility and the risk of patients with HSP developing into HSPN. Interestingly, eNOS G894T T allele and GG genotype were associated with HSP susceptibility, but not the TT genotype. eNOS T786C TT genotype was associated with HSPN susceptibility, but not C allele and CC genotype. Furthermore, eNOS T786C gene polymorphism was not associated with HSP risk and the risk of patients with HSP developing into HSPN. In conclusion, eNOS T786C TT genotype was associated with and eNOS G894T T allele and GG genotype were associated with HSP susceptibility. However, more studies should be performed in the future.

  6. The effect of a promoter polymorphism on the transcription of nitric oxide synthase 1 and its relevance to Parkinson's disease.

    PubMed

    Rife, Terrie; Rasoul, Bareza; Pullen, Nicholas; Mitchell, David; Grathwol, Kristen; Kurth, Janice

    2009-08-01

    Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A-1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)(m)TA(TG)(n)) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. Copyright 2009 Wiley-Liss, Inc.

  7. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women.

    PubMed

    Barbosa, P R; Stabler, S P; Machado, A L K; Braga, R C; Hirata, R D C; Hirata, M H; Sampaio-Neto, L F; Allen, R H; Guerra-Shinohara, E M

    2008-08-01

    To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism (RFLP). Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.

  8. Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis.

    PubMed

    Paschoal, Eric Homero Albuquerque; Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Paschoal Junior, Fernando Mendes; Jong-A-Liem, Glaucia Suzanna; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Ribeiro-Dos-Santos, Ândrea; Bor-Seng-Shu, Edson

    2018-01-01

    The aneurysmal subarachnoid hemorrhage is a major public health problem described as a sudden drastic event with no warning symptoms and high morbidity and mortality rates. The role of the endothelial isoform of nitric oxide synthase gene polymorphism in intracranial aneurysms (IAs) is still a matter of controversy with divergent findings among European, American, and Asian populations. Our study purposed to test the association between intracranial aneurysms formation and nitric oxide gene polymorphisms through a systematic review and meta-analysis. Systematic search on Medline, Lilacs, and EMBASE was performed. The primary search resulted in 139 papers, out of which 9 met our inclusion criteria after a full text analysis. The dominant T786C model found a significant association with IA (OR 1.22, 95 % CI 1.04-1.44, p = 0.01), so did studies of the recessive T786C model (OR 0.37, 95 % CI 0.30-0.45, p < 0.0001) but with opposite effect. Our findings support the presence of the T786C polymorphism as a predictor for the development of intracranial aneurysm in the cerebral vascular system. More studies are necessary in order to elucidate the pathways of the endothelial nitric oxide synthase (eNOS) in cerebrovascular diseases and in defining how different allelic combinations of the eNOS gene single-nucleotide polymorphism (SNP) could favor this pathological process.

  9. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  10. A66G and C524T polymorphisms of methionine synthase reductase gene are linked to the development of acyanotic congenital heart diseases in Egyptian children.

    PubMed

    Hassan, Fahima M; Khattab, Ahmad A; Abo El Fotoh, Wafaa Moustafa M; Zidan, Reham S

    2017-09-20

    Methionine synthase reductase (MTRR) is one of the main regulatory enzymes in the homocysteine/folate pathway. Genes involved in this pathway may play an important role in the development of congenital heart diseases (CHDs). C524T and A66G polymorphisms of MTRR gene may play an imperative role in the development of acyanotic CHDs. This study carried out on 200 children equally divided into 2 groups: group I: 100 children with acyanotic CHDs; and group II: 100 healthy children served as controls. PCR-RFLP method carried out to amplify the A66G and C524T polymorphisms of MTRR gene digested with Xho1and NdeI enzymes. A significant difference(P=0.015) in genotype frequencies of C524T polymorphism between cases and controls, where CC, CT, and TT were 14.0%, 40.0% and 46.0% in patients compared to 38.0,36.0% and 26.0% in controls. Again, a significant difference (P=0.010) in genotype frequencies of A66G polymorphism between the two groups as AA, AG and GG were 26.0%, 32.0% and42.0% in patients compared to 48.0, 36.0% and 16.0% in controls. Also, MTRR A66G and C524T polymorphisms were associated with a higher CHD risk in the homozygote comparison of wild and mutant genotypes and also in heterozygote and mutant comparison. So A66G and C524T polymorphisms of MTRR gene are associated with increased risk of acyanotic CHDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lack of association between the Glu298Asp polymorphism of endothelial nitric oxide synthase and slow coronary flow in the Turkish population

    PubMed Central

    Caglayan, Ahmet Okay; Kalay, Nihat; Saatci, Cetin; Yalcın, Arif; Akalın, Hilal; Dundar, Munis

    2009-01-01

    BACKGROUND: Coronary endothelial dysfunction plays an important pathogenetic role in patients with slow coronary flow (SCF). No data exist regarding the possible contribution of the Glu298Asp polymorphism genotype of the endothelial nitric oxide synthase (eNOS) gene to human SCF in the literature. OBJECTIVE: To investigate the association between SCF and the Glu298Asp polymorphism of the eNOS gene. METHODS: The study population consisted of 85 consecutive patients. The patient group included 66 patients with angiographically proven normal coronary arteries with SCF, and 19 subjects with normal coronary arteries with no SCF. The thrombolysis in myocardial infarction frame count was used for the diagnosis of SCF. The Glu298Asp polymorphism was determined by polymerase chain reaction and restriction fragment length polymorphism. RESULTS: The baseline characteristics were similar between the two groups, except for high-density lipoprotein cholesterol, which was higher in the SCF group than in the controls. The genotype distribution of Glu298Asp was as follows: GG 26%, GT 56% and TT 12%, where G is guanine and T is thymine. There was no difference in the frequency of the various genotypes or the alleles in patients with SCF versus normal controls. CONCLUSIONS: The Glu298Asp polymorphism genotype of the eNOS gene is not a risk factor for SCF in the present study population. PMID:19279989

  12. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    USDA-ARS?s Scientific Manuscript database

    To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. We screened 224 subjects (52% female, mean age 39 +/- 11 years) with SCID-diagnosed major...

  13. A genetic polymorphism in the sex-linked ATP5A1 gene is associated with individual fitness in Ovenbirds (Seiurus aurocapilla)

    Treesearch

    Judith D. Toms; Lori S. Eggert; Wayne J. Arendt; John Faaborg

    2012-01-01

    While testing genetic sexing techniques in Ovenbirds (Seiurus aurocapilla),we found a genetic polymorphism in the ATP5A1 gene in 38% of individuals. The Z ' allele included changes in both intronic and exonic portions of the sequenced region, but there was no evidence that this changed the resulting ATP synthase product. Males that had one or more copies of...

  14. Association of Cholesteryl Ester Transfer Protein and Endothelial Nitric Oxide Synthase Gene Polymorphisms With Coronary Artery Disease in the Multi-Ethnic Malaysian Population.

    PubMed

    Chu, Wern Cui; Aziz, Ahmad Fazli Abdul; Nordin, Abdul Jalil; Cheah, Yoke Kqueen

    2016-09-01

    Genetic variants of cholesteryl ester transfer protein (CETP) and endothelial nitric oxide synthase (eNOS) influence high-density lipoprotein cholesterol (HDL-C) metabolism and nitric oxide (NO) synthesis, respectively, and might increase the risk of coronary artery disease (CAD). This study is to investigate the relationship between genetic polymorphisms and the risk of CAD and to evaluate their potential interactions. A total of 237 patients with CAD and 101 controls were genotyped. The association of the polymorphism with the risk of CAD varied among the ethnic groups. Moreover, the concomitant presence of both CETP B1 and eNOS 4a alleles significantly increased the risk of CAD in the Malay group (OR = 33.8, P < .001) and the Indian group (OR = 10.9, P = .031) but not in the Chinese group. This study has identified a novel ethnic-specific gene-gene interaction and suggested that the combination of CETP B1 allele and eNOS 4a allele significantly increases the risk of CAD in Malays and Indians. © The Author(s) 2015.

  15. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease.

    PubMed

    Santos-Lobato, Bruno Lopes; Borges, Vanderci; Ferraz, Henrique Ballalai; Mata, Ignacio Fernandez; Zabetian, Cyrus P; Tumas, Vitor

    2018-04-01

    Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Thymidylate synthase and methionine synthase polymorphisms are not associated with susceptibility to childhood acute lymphoblastic leukemia in Kurdish population from Western Iran.

    PubMed

    Rahimi, Zohreh; Ahmadian, Zainab; Akramipour, Reza; Vaisi-Raygani, Asad; Rahimi, Ziba; Parsian, Abbas

    2012-03-01

    In order to determine the influence of polymorphism in thymidylate synthase (TS 28-bp repeat) and methionine synthase (MS A2756G) genes on the susceptibility to acute lymphoblastic leukemia (ALL), 73 children with ALL and 128 age and sex matched unrelated healthy individuals from the Kermanshah Province of Iran were screened. The genotyping of TS 28-bp repeat and MS A2756G polymorphisms were performed by polymerase chain reaction (PCR) and PCR-RFLP, respectively. The frequency of TS 2R allele in patients and controls were 41.5 and 38%, respectively (Odds ratios (OR) = 1.13, 95%CI 0.73-1.74, P = 0.56). The allelic frequency of G allele of MS was higher (25%) in patients compared with healthy subjects (23%) (OR = 1.09, 95%CI 0.67-1.75, P = 0.71). Considering MS AA and TS 3R3R genotypes as reference indicated that individuals with MS GG + TS 2R2R genotypes have 1.3-fold increase in the risk of ALL (OR = 1.3, 95%CI 0.6-2.7, P = 0.5). Our results showed that neither TS 28-bp repeat nor MS A2756G polymorphisms are risk factors for susceptibility to ALL in Western Iran.

  17. Fine Mapping Identifies SmFAS Encoding an Anthocyanidin Synthase as a Putative Candidate Gene for Flower Purple Color in Solanum melongena L.

    PubMed Central

    Chen, Mengqiang; Xu, Mengyun; Xiao, Yao; Cui, Dandan; Qin, Yongqiang; Wu, Jiaqi; Wang, Wenyi; Wang, Guoping

    2018-01-01

    Anthocyanins are the main pigments in flowers and fruits. These pigments are responsible for the red, red-purple, violet, and purple color in plants, and act as insect and animal attractants. In this study, phenotypic analysis of the purple flower color in eggplant indicated that the flower color is controlled by a single dominant gene, FAS. Using an F2 mapping population derived from a cross between purple-flowered ‘Blacknite’ and white-flowered ‘Small Round’, Flower Anthocyanidin Synthase (FAS) was fine mapped to an approximately 165.6-kb region between InDel marker Indel8-11 and Cleaved Amplified Polymorphic Sequences (CAPS) marker Efc8-32 on Chromosome 8. On the basis of bioinformatic analysis, 29 genes were subsequently located in the FAS target region, among which were two potential Anthocyanidin Synthase (ANS) gene candidates. Allelic sequence comparison results showed that one ANS gene (Sme2.5_01638.1_g00003.1) was conserved in promoter and coding sequences without any nucleotide change between parents, whereas four single-nucleotide polymorphisms were detected in another ANS gene (Sme2.5_01638.1_g00005.1). Crucially, a single base pair deletion at site 438 resulted in premature termination of FAS, leading to the loss of anthocyanin accumulation. In addition, FAS displayed strong expression in purple flowers compared with white flowers and other tissues. Collectively, our results indicate that Sme2.5_01638.1_g00005.1 is a good candidate gene for FAS, which controls anthocyanidin synthase in eggplant flowers. The present study provides information for further potential facilitate genetic engineering for improvement of anthocyanin levels in plants. PMID:29522465

  18. A meta-analysis of eNOS and ACE gene polymorphisms and risk of pre-eclampsia in women.

    PubMed

    Shaik, A P; Sultana, A; Bammidi, V K; Sampathirao, K; Jamil, K

    2011-10-01

    A meta-analyses of endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) gene polymorphisms in pre-eclampsia was performed. We shortlisted 33 studies (17 for ACE; 16 for eNOS gene polymorphisms), of which 29 articles (16 for ACE and 15 for eNOS) were analysed. Overall, 1,620 cases with pre-eclampsia and 2,158 controls were analysed for intron 16 insertion-deletion polymorphism in ACE gene. A total of 1,610 subjects with pre-eclampsia and 2,875 controls were analysed for the Glu298Asp in eNOS gene. Overall, the random-effects odds ratio (OR) with Glu298Asp in eNOS gene was 0.958 (95% confidence intervals, CI 0.747-1.228, p > 0.05), and for the insertion-deletion/ACE polymorphism was 0.987 (95% CI 0.698-1.395, p > 0.05). Significant heterogeneity was observed in the studies that evaluated polymorphisms in ACE (Q value = 55.6; I(2) = 73; p value = 0.000); and eNOS (Q value = 37.2; I(2) = 62.4; p value = 0.001) polymorphisms. No significant risk of pre-eclampsia was observed in both eNOS and ACE genes with these polymorphisms.

  19. Association of thymidylate synthase gene 3'-untranslated region polymorphism with sensitivity of non-small cell lung cancer to pemetrexed treatment: TS gene polymorphism and pemetrexed sensitivity in NSCLC.

    PubMed

    Wang, Xia; Wang, Yadi; Wang, Yue; Cheng, Jian; Wang, Yanyun; Ha, Minwen

    2013-01-25

    Thymidylate synthase (TS) is a key enzyme responsible for DNA synthesis and repair. Altered expression of TS protein or TS gene polymorphisms has been associated with cancer progression and treatment response. This study investigated the expressions of TS and its gene SNPs in non-small cell lung cancer (NSCLC), and then its association with sensitivity to pemetrexed treatment. Immunohistochemistry and qRT-PCR were performed on 160 resected NSCLC specimens and corresponding normal tissues to assess the expressions of TS protein and TS mRNA, and for associations with clinicopathological data. Blood samples of 106 lung adenocarcinoma patients were examined for polymorphisms of the TS gene 3'-UTR 1494del 6 bp, which was then investigated for associations with responses of the patients to pemetrexed treatment and survival. Expression of both TS protein and its mRNA was elevated in NSCLC tissues compared with matched normal tissues, and significantly higher in lung squamous cell carcinoma than in lung adenocarcinoma. TS expression was associated with poor tumor differentiation. Furthermore, the genotyping data showed that 56% of lung adenocarcinoma patients had the TS gene 3'-UTR 1494 bp (-6 bp/-6 bp) genotype and the rest had TS gene 3'-UTR 1494 bp (-6 bp/+6 bp). There was no TS 3'-UTR 1494 bp (+6 bp/+6 bp) genotype in any patients. Statistical analysis revealed that gender, tumor stage, and TS 3'-UTR 1494del 6 bp polymorphism were significant prognostic factors after short-term pemetrexed treatment. Log-rank analysis revealed that patients with the (-6 bp/-6 bp) genotype had significantly better progression-free and overall survival than patients with (-6 bp/+6 bp). This study showed that TS protein is highly expressed in NSCLC and that polymorphisms of TS 3'-UTR 1494del 6 bp are associated with sensitivity of lung adenocarcinoma patients to pemetrexed treatment. This suggests that TS gene polymorphisms should be further evaluated as prognostic markers for personalized therapy in lung adenocarcinoma.

  20. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paez, David, E-mail: dpaez@santpau.cat; Salazar, Juliana; Pare, Laia

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerasemore » chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate synthase genotype and XRCC1 Arg399Gln polymorphism might help to identify Stage II-III rectal cancer patients with a better outcome after preoperative concomitant chemoradiotherapy.« less

  1. Evaluation of eNOS gene polymorphisms in relation to BMD in postmenopausal women.

    PubMed

    Firat, Sibel Cubukcu; Cetin, Zafer; Samanci, Nehir; Aydin, Funda; Balci, Nilufer; Gungor, Firat; Firat, Mehmet Ziya; Luleci, Guven; Karauzum, Sibel Berker

    2009-08-20

    The aim of the present study was to evaluate the relations between T(-786)C and Glu298Asp polymorphisms of the endothelial nitric oxide synthase (eNOS) gene and BMD in postmenopausal Turkish women. The T(-786)C and Glu298Asp polymorphisms were genotyped by PCR-RFLP method in 311 postmenopausal osteoporotic women (OP) and in 305 age-matched postmenopausal females (CG) with normal BMD. None of the SNPs of the eNOS gene was significantly associated with BMD at the lumbar spine, femoral neck, Ward's triangle and femoral trochanter in the combined group. Mean BMD values were therefore found to be similar across the genotypes in postmenopausal Turkish women. However, there was a significant association between the T(-786)C polymorphism and BMD values at the lumbar spine in the normal control group (P=0.005), and at the femoral trochanter in the osteoporotic patients (P=0.046). The mean value of the lumbar spine BMD in the normal controls was significantly higher in women with the TC genotype of the T(-786)C polymorphism than in women with the TT genotype (P=0.0012). Women with the CC genotype of the T(-786)C polymorphism in the osteoporotic patients had significantly higher BMD value at the femoral trochanter than those with the TC (P=0.018) and TT genotypes (P=0.024). Frequencies of the TC heterozygotes for T(-786)C polymorphism were significantly higher among osteoporotic subjects than normal controls. Also, the CC and TT genotype frequencies of control group were significantly higher than those of the osteoporotic group at the femoral neck. We conclude that, although the biological role of the nitric oxide synthases is well established, our study does not suggest that eNOS gene polymorphisms, T(-786)C and Glu298Asp, are major contributors to adult bone mineral density in the postmenopausal Turkish women.

  2. [Prevalence of dyslipidemia in middle-aged adults with NOS3 gene polymorphism and low cardiorespiratory fitness].

    PubMed

    Malagrino, Pamella A; Sponton, Carlos H G; Esposti, Rodrigo D; Franco-Penteado, Carla F; Fernandes, Romulo A; Bezerra, Marcos André C; Albuquerque, Dulcinéia M; Rodovalho, Cynara M; Bacci, Maurício; Zanesco, Angelina

    2013-02-01

    To evaluate the influence of the interaction between endothelial nitric oxide synthase gene (NOS3) polymorphisms at positions -786T>C, Glu298Asp and intron 4b/a, and cardiorespiratory fitness on plasma nitrite/nitrate levels, blood pressure, lipid profile, and prevalence of cardiometabolic disorders. Ninety-two volunteers were genotyped for NOS3 polymorphisms at positions (-786T>C and Glu298Asp) and (intron 4b/a) and divided according to the genotype: non-polymorphic (NP) and polymorphic (P). After that, they were subdivided according to the cardiorespiratory fitness associated with genotype: high (HNP and HP) and low (LNP and LP). The subjects with polymorphism for the interactions at positions Glu298Asp + intron 4b/a, and Glu298Asp+-786T>C showed the highest values in total cholesterol, as well as dyslipidemia. Our findings show that NOS3 gene polymorphisms at positions -786T>C, Glu298Asp, and intron 4b/a exert negative effects on the lipid profile compared with those who do not carry polymorphisms.

  3. Thymidylate Synthase Gene Polymorphism Affects the Response to Preoperative 5-Fluorouracil Chemoradiation Therapy in Patients With Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hur, Hyuk; Kang, Jeonghyun; Kim, Nam Kyu, E-mail: namkyuk@yuhs.ac

    2011-11-01

    Purpose: This study aims to correlate thymidylate synthase (TS) gene polymorphisms with the tumor response to preoperative 5-fluorouracil (5-FU)-based chemoradiation therapy (CRT) in patients with rectal cancer. Methods and Materials: Forty-four patients with rectal cancer treated with 5-FU-based preoperative CRT were prospectively enrolled in this study. Thymidylate synthase expression and TS gene polymorphisms were evaluated in tumor obtained before preoperative CRT and were correlated with the pathologic response, as assessed by histopathologic staging (pTNM) and tumor regression grade. Results: Patients exhibited 2R/3R and 3R/3R tandem repeat polymorphisms in the TS gene. With regard to TS expression in these genotypes, 2R/3RCmore » and 3RC/3RC were defined as the low-expression group and 2R/3RG, 3RC/3RG, and 3RG/3RG as the high-expression group. There was no significant correlation between TS expression and tumor response. There was no significant difference in the tumor response between patients homozygous for 3R/3R and patients heterozygous for 2R/3R. However, 13 of 14 patients in the low-expression group with a G>C single-nucleotide polymorphism (SNP) (2R/3RC [n = 5] or 3RC/3RC [n = 9]) exhibited a significantly greater tumor downstaging rate, as compared with only 12 of 30 patients in the high-expression group without the SNP (2R/3RG [n = 10], 3RC/3RG [n = 9], or 3RG/3RG [n = 11]) (p = 0.001). The nodal downstaging rate was also significantly greater in this low-expression group, as compared with the high-expression group (12 of 14 vs. 14 of 30, p = 0.014). However, there was no significant difference in the tumor regression grade between these groups. Conclusions: This study suggests that SNPs within the TS enhancer region affect the tumor response to preoperative 5-FU-based CRT in rectal cancer.« less

  4. Polymorphisms in the methylene tetrahydrofolate reductase and methionine synthase reductase genes and their correlation with unexplained recurrent spontaneous abortion susceptibility.

    PubMed

    Zhu, L

    2015-07-28

    We aimed to explore the correlation between unexplained recurrent spontaneous abortion and polymorphisms in the methylene tetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) genes. A case control study was conducted in 118 patients with unexplained recurrent spontaneous abortion (abortion group) and 174 healthy women (control group). The genetic material was extracted from the oral mucosal epithelial cells obtained from all subjects. The samples were subjected to fluorescence quantitative PCR to detect the single nucleotide polymorphisms (SNPs) in the MTHFR (C677T and A1298C) and MTRR (A66G) gene loci. The distribution frequency (18/118, 15.3%) of the MTHFR 677TT genotype was significantly higher in the abortion group (χ2 = 11.006, P = 0.004) than in the control group (2/174, 1.1%); on the other hand, the distribution frequency of the MTHFR A1298C genotype did not significantly differ between the abortion and control groups (χ(2) = 0.441, P = 0.507). The distribution frequency of the MTRR A66G genotype was also significantly higher in the abortion group (14/118, 11.9%; χ(2) = 10.503, P = 0.005) than in the control group (8/174, 4.6%). The MTHFR C677T and MTRR A66G polymorphisms are significantly correlated with the occurrence of spontaneous abortion.

  5. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene.

    PubMed

    Welsch, Ralf; Arango, Jacobo; Bär, Cornelia; Salazar, Bertha; Al-Babili, Salim; Beltrán, Jesús; Chavarriaga, Paul; Ceballos, Hernan; Tohme, Joe; Beyer, Peter

    2010-10-01

    Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.

  6. Provitamin A Accumulation in Cassava (Manihot esculenta) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene[W

    PubMed Central

    Welsch, Ralf; Arango, Jacobo; Bär, Cornelia; Salazar, Bertha; Al-Babili, Salim; Beltrán, Jesús; Chavarriaga, Paul; Ceballos, Hernan; Tohme, Joe; Beyer, Peter

    2010-01-01

    Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification. PMID:20889914

  7. The Role of −786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    PubMed Central

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in −786CC homozygotes, in comparison with −786TC and −786TT patients. Regarding current smoking status, −786C allele was associated with higher CHOLT than −786T allele. Conclusion. Our study indicates the putative role of −786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking. PMID:22164159

  8. The Role of -786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome.

    PubMed

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of -786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in -786CC homozygotes, in comparison with -786TC and -786TT patients. Regarding current smoking status, -786C allele was associated with higher CHOLT than -786T allele. Conclusion. Our study indicates the putative role of -786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking.

  9. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    PubMed

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  10. Promoter Polymorphisms in the Nitric Oxide Synthase 3 Gene Are Associated With Ischemic Stroke Susceptibility in Young Black Women

    PubMed Central

    Howard, Timothy D.; Giles, Wayne H.; Xu, Jianfeng; Wozniak, Marcella A.; Malarcher, Ann M.; Lange, Leslie A.; Macko, Richard F.; Basehore, Monica J.; Meyers, Deborah A.; Cole, John W.; Kittner, Steven J.

    2006-01-01

    Background and Purpose Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. Methods We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (−1468 T>A, −922 G>A, −786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Results Significant associations with both the −922 G>A and −786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the −922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the −786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D′=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Conclusion Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women. PMID:16100023

  11. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.

    PubMed

    Howard, Timothy D; Giles, Wayne H; Xu, Jianfeng; Wozniak, Marcella A; Malarcher, Ann M; Lange, Leslie A; Macko, Richard F; Basehore, Monica J; Meyers, Deborah A; Cole, John W; Kittner, Steven J

    2005-09-01

    Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (-1468 T>A, -922 G>A, -786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Significant associations with both the -922 G>A and -786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the -922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D'=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women.

  12. Heart failure and endothelial nitric oxide synthase G894T gene polymorphism frequency variations within ancestries.

    PubMed

    Oliveira, Romulo V M; Albuquerque, Felipe N; Duque, Gustavo S; Freitas, Rossana G A; Carvalho, Elizeu F; Brandão, Andrea A; Silva, Dayse A; Mourilhe-Rocha, Ricardo; Albuquerque, Denilson C

    2018-02-28

    The G894T polymorphism in endothelial nitric oxide synthase enzyme gene plays an important role in heart failure (HF) and its frequency varies among populations. We investigated this association in highly admixed samples in terms of ancestry. The cohort included 210 HF patients and 106 healthy individuals. Self-reported race and NYHA class were analyzed for HF patients. G894T polymorphism was analyzed by polymerase chain reaction (PCR) and by restriction fragment length polymorphism technique. Ancestry was estimated using a PCR reaction containing 46 autosomal ancestry informative markers and an analysis by capillary electrophoresis. The GG homozygous genotype had a higher frequency in HF patients (63.8%) than in healthy individuals (48.1%), showing an increased chance (odds ratio 1.90, 95% confidence interval 1.18-3.05). The ancestry profiles in patients and controls were similar, with a major European contribution (57.1% and 63.2%), followed by African (30.2% and 24.0%) and Native American (12.7% and 12.8%), without a significant difference between both samples (p = 0.28). The GG genotype is associated to HF prognosis, and this association remains present in highly admixed sample groups. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of Folate-Related Gene Polymorphisms on High-Dose Methotrexate-Related Toxicity and Prognosis in Turkish Children with Acute Lymphoblastic Leukemia.

    PubMed

    Yazıcıoğlu, Burcu; Kaya, Zühre; Güntekin Ergun, Sezen; Perçin, Ferda; Koçak, Ülker; Yenicesu, İdil; Gürsel, Türkiz

    2017-06-05

    High-dose methotrexate (HD-MTX) is widely used in the consolidation phase of childhood acute lymphoblastic leukemia (ALL), but the roles that polymorphisms in folate-related genes (FRGs) play in HD-MTX toxicity and prognosis in children with ALL are not understood. The aims of this study were to investigate the frequencies of polymorphisms in the genes for thymidylate synthase (TS), methionine synthase reductase (MTRR), and methylene tetrahydrofolate reductase (MTHFR) in Turkish children with ALL and to assess associations between these polymorphisms and HD-MTX-related toxicity and leukemia prognosis in this patient group. FRG polymorphisms were assessed by real-time polymerase chain reaction. Survival status, MTX levels, and toxicity data were retrieved from 106 patients' charts. The allele frequencies for the FRG polymorphisms were as follows: TS 2R 41.0%, 3R 57.0%, and 4R 2.0%; MTRR 66A 42.4% and 66G 57.6%; MTHFR 677C 59.3% and 677T 40.7%; and MTHFR 1298A 58.1% and 1298C 41.9%. At the 48th hour of HD-MTX infusion, serum MTX was significantly higher in patients who had TS 2R/3R/4R variants as compared to those with wild-type TS (p<0.05). No significant differences were detected with respect to event-free survival or toxicity between wild-type and other FRG variants. The frequencies of FRG polymorphisms in Turkish children with ALL are similar to those reported in other Caucasian populations. This is the first published finding of the TS 3R/4R variant in the Turkish population. The results indicate that HD-MTX can be tolerated by leukemic children with some polymorphic variants of FRG; thus, it may prevent future risk of leukemic relapse.

  14. Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes

    PubMed Central

    Kacerovsky-Bielesz, Gertrud; Chmelik, Marek; Ling, Charlotte; Pokan, Rochus; Szendroedi, Julia; Farukuoye, Michaela; Kacerovsky, Michaela; Schmid, Albrecht I.; Gruber, Stephan; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael

    2009-01-01

    OBJECTIVE We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations with gene polymorphisms. RESEARCH DESIGN AND METHODS We studied 24 nonobese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using1H and31P magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O2uptake and insulin sensitivity. CONCLUSIONS The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. In addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training. PMID:19265027

  15. Endothelial Nitric Oxide Synthase Gene G894T Polymorphism and Myocardial Infarction: A Meta-Analysis of 34 Studies Involving 21068 Subjects

    PubMed Central

    Luo, Jian-Quan; Wen, Jia-Gen; Zhou, Hong-Hao; Chen, Xiao-Ping; Zhang, Wei

    2014-01-01

    Background Researches have revealed that the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism is associated with the risk of Myocardial infarction (MI), but the results remain conflicting. Objective and Methods A meta-analysis was conducted to investigate the association between eNOS G894T polymorphism and MI. Published studies from PubMed, Embase, CNKI and CBM databases were retrieved. The pooled odds ratios (ORs) for the association between eNOS G894T polymorphism and MI and their corresponding 95% confidence intervals (CIs) were estimated using the random- or fixed- effect model. Results A total of 34 studies including 8229 cases and 12839 controls were identified for the meta-analysis. The eNOS G894T polymorphism was significantly associated with MI under a homozygous genetic model (OR = 1.41, 95% CI = 1.08–1.84; P = 0.012), a recessive genetic model (OR = 1.35, 95% CI = 1.06–1.70; P = 0.014), a dominant genetic model (OR = 1.18, 95% CI = 1.04–1.34; P = 0.009). In the subgroup analysis by ethnicity (non-Asian and Asian), no significant association was observed between eNOS G894T polymorphism and MI risk among non-Asians (P>0.05), but a positive significant association was found among Asians (P<0.05). Conclusions The eNOS G894T polymorphism is associated with increased MI risk in Asians. The results indicate that ethnicity plays important roles in the association between eNOS G894T polymorphism and MI. PMID:24498040

  16. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism

    PubMed Central

    Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying

    2017-01-01

    There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase. PMID:29088779

  17. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism.

    PubMed

    Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying

    2017-09-26

    There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase.

  18. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene-Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients.

    PubMed

    Wu, Xiayu; Xu, Weijiang; Zhou, Tao; Cao, Neng; Ni, Juan; Zou, Tianning; Liang, Ziqing; Wang, Xu; Fenech, Michael

    2016-06-24

    Folate-mediated one-carbon metabolism (FMOCM) is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6) is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT), methionine synthase reductase (MTRR), and methionine synthase (MS), in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV). To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene-nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN) and PCR-restriction fragment length polymorphism (PCR-RFLP) techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state). SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer.

  19. ASSOCIATIONS BETWEEN POLYMORPHISMS WITHIN THE THYMIDYLATE SYNTHASE GENE AND SPINA BIFIDA. (R828292)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Detection of Pneumocystis jirovecii dihydropteroate synthase polymorphisms in patients with Pneumocystis pneumonia.

    PubMed

    Costa, M C; Gaspar, J; Mansinho, K; Esteves, F; Antunes, F; Matos, O

    2005-01-01

    In the present study, in order to improve the detection of Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations in pulmonary specimens of HIV-infected patients with P. jirovecii pneumonia, we evaluated a microfiltration procedure for the removal of human cell contamination and a nested-PCR method, for amplification in specimens with low parasite load. In the studied population, PCR amplification of the DHPS gene was more successful in unfiltered than in filtered specimens, with both touchdown-PCR and nested-PCR procedures (p<0.05 and p<0.001, respectively), but the amount of host DNA in the samples analysed seems to be inversely related with the successful PCR parasite detection. Amplification of P. jirovecii DHPS gene with nested-PCR was achieved in 77.5% of the specimens studied, demonstrating that this is a useful method for the identification of mutations in pulmonary specimens, including samples with low parasite loads, and will facilitate the evaluation of the relationship between the P. jirovecii DHPS polymorphisms and clinical resistance to sulfa drugs.

  1. Association of Nitric Oxide Synthase and Matrix Metalloprotease Single Nucleotide Polymorphisms with Preeclampsia and Its Complications

    PubMed Central

    Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura

    2015-01-01

    Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342

  2. Role of Plasmodium vivax Dihydropteroate Synthase Polymorphisms in Sulfa Drug Resistance

    PubMed Central

    Riangrungroj, Pinpunya; Chitnumsub, Penchit; Ittarat, Wanwipa; Kongkasuriyachai, Darin; Uthaipibull, Chairat; Yuthavong, Yongyuth

    2016-01-01

    Dihydropteroate synthase (DHPS) is a known sulfa drug target in malaria treatment, existing as a bifunctional enzyme together with hydroxymethyldihydropterin pyrophosphokinase (HPPK). Polymorphisms in key residues of Plasmodium falciparum DHPS (PfDHPS) have been characterized and linked to sulfa drug resistance in malaria. Genetic sequencing of P. vivax dhps (Pvdhps) from clinical isolates has shown several polymorphisms at the positions equivalent to those in the Pfdhps genes conferring sulfa drug resistance, suggesting a mechanism for sulfa drug resistance in P. vivax similar to that seen in P. falciparum. To characterize the role of polymorphisms in the PvDHPS in sulfa drug resistance, various mutants of recombinant PvHPPK-DHPS enzymes were expressed and characterized. Moreover, due to the lack of a continuous in vitro culture system for P. vivax parasites, a surrogate P. berghei model expressing Pvhppk-dhps genes was established to demonstrate the relationship between sequence polymorphisms and sulfa drug susceptibility and to test the activities of PvDHPS inhibitors on the transgenic parasites. Both enzyme activity and transgenic parasite growth were sensitive to sulfadoxine to different degrees, depending on the number of mutations that accumulated in DHPS. Ki values and 50% effective doses were higher for mutant PvDHPS enzymes than the wild-type enzymes. Altogether, the study provides the first evidence of sulfa drug resistance at the molecular level in P. vivax. Furthermore, the enzyme inhibition assay and the in vivo screening system can be useful tools for screening new compounds for their activities against PvDHPS. PMID:27161627

  3. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    PubMed

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Effect of exercise training on the cardiovascular and biochemical parameters in women with eNOS gene polymorphism.

    PubMed

    Rezende, Tiago M; Sponton, Carlos H G; Malagrino, Pamella A; Bezerra, Marcos A C; Penteado, Carla F F; Zanesco, Angelina

    2011-12-01

    Presence of endothelial nitric oxide synthase (eNOS) gene polymorphism has been associated with cardiovascular disease (CVD) whereas exercise training (EX) promotes beneficial effects on CVD which is related to increased nitric oxide levels (NO). To evaluate if women with eNOS gene polymorphism at position-G894T would be less responsive to EX than those who did not carry T allele. Women were trained 3 days/week, 40 minutes session during 6 months. Cardio-biochemical parameters and genetic analysis were performed in a double-blind fashion. Plasma NOx- levels were similar in both groups at baseline (GG genotype: 18.44±3.28 μM) and (GT+TT genotype: 17.19±2.43 μM) and after EX (GG: 29.20±4.33 and GT+TT: 27.38±3.12 μM). A decrease in blood pressure was also observed in both groups. The presence of eNOS polymorphism does not affect the beneficial effects of EX in women.

  5. CCTTT pentanucleotide repeats in inducible nitric oxide synthase gene expression in patients with pulmonary arterial hypertension.

    PubMed

    Baloira Villar, Adolfo; Pousada Fernández, Guillermo; Vilariño Pombo, Carlos; Núñez Fernández, Marta; Cifrián Martínez, Jose; Valverde Pérez, Diana

    2014-04-01

    One of the pathways involved in pulmonary arterial hypertension (PAH) is the nitric oxide (NO) pathway. A polymorphism in the inducible NO synthase (NOS2) gene has been described, consisting of the CCTTT pentanucleotide repeat, which causes a reduction in NO production. The aim of this study was to determine if this polymorphism increases susceptibility to developing PAH. Sixty four patients with a diagnosis of PAH groupsi and iv and 50 healthy controls were compared. DNA genotyping of the samples for this polymorphism was performed using PCR. The distribution between both groups was compared and correlated with clinical and haemodynamic parameters and therapeutic response. A significantly different distribution was observed in the number of repeats between patients and controls (P<.0001). When the samples were categorised by short forms (both alleles with less than 12repeats) and long forms (≥12 repeats), it was observed that the former had an almost 4-fold risk of developing PAH (odds ratio: 3.83; 95%CI: 1.19-12.32, P=.024). There were no differences between the most common types of PAH, either in therapeutic response or survival. There was no correlation between haemodynamic parameters and the number of repeats in the patients, and only a weak correlation with systolic PAH. There are significant differences in the distribution of the NOS2 promotor CCTTT polymorphism between patients with PAH and the healthy population. A minor CCTTT pentanucleotide repeat in the NOS2 gene may increase the risk of developing PAH. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  6. Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems

    PubMed Central

    von Netzer, Frederick; Pilloni, Giovanni; Kleindienst, Sara; Krüger, Martin; Knittel, Katrin; Gründger, Friederike

    2013-01-01

    The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems. PMID:23124238

  7. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients.

    PubMed

    Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, Adriaan J C

    2011-08-01

    Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p = 0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.

  8. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients.

    PubMed

    Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, A J C

    2010-01-01

    Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'-untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p=0.05).In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.

  9. TS Gene Polymorphisms Are Not Good Markers of Response to 5-FU Therapy in Stage III Colon Cancer Patients

    PubMed Central

    Fariña-Sarasqueta, A.; Gosens, M. J. E. M.; Moerland, E.; van Lijnschoten, I.; Lemmens, V. E. P. P.; Slooter, G. D.; Rutten, H. J. T.; van den Brule, A. J. C.

    2010-01-01

    Aim: Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. Patients and Methods: 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5′-untranslated region of the TS gene were genotyped. Results: There was a positive association between tumor T stage and the VNTR genotypes (p=0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. Conclusion: We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival. PMID:20966539

  10. Association of endothelial nitric oxide synthase gene variants (-786 T>C, intron 4 b/a VNTR and 894 G>T) with idiopathic recurrent pregnancy loss: A case-control study with haplotype and in silico analysis.

    PubMed

    Azani, Alireza; Hosseinzadeh, Asghar; Azadkhah, Roya; Zonouzi, Ali Akbar Poursadegh; Zonouzi, Ahmad Poursadegh; Aftabi, Younes; Khani, Hourieh; Heidary, Leida; Danaii, Shahla; Bargahi, Nasrin; Pouladi, Nasser; Hosseini, Sayed Mostafa

    2017-08-01

    Many lines of evidence suggest that reduced production of nitric oxide (NO) due to single nucleotide polymorphisms in endothelial nitric oxide synthase (eNOS) gene may affect the implantation and maintenance of pregnancy. Accordingly, our objective was to investigate whether the eNOS polymorphisms (-786 T>C, intron 4 b/a VNTR and 894 G>T) and haplotypes may be associated with increased susceptibility to recurrent pregnancy loss (RPL). A total of 130 women with a history of two or more unexplained consecutive first trimester miscarriages and 110 ethnically matched women with at least two normal pregnancies and no history of pregnancy loss were included in the study as cases and controls, respectively. To identify the genotypes, we used polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) methods In addition, an in silico analysis was conducted to predict the possible effects of the eNOS 894 G>T polymorphism on the structure and function of eNOS mRNA and protein using prediction servers. Our findings revealed that the prevalence of eNOS -786 T>C polymorphism, eNOS -786C allele and TC+CC genotype in cases were significantly higher than those in healthy controls (p<0.05). Also, the combination genotypes -786TT/4b4a and -786TT/894GG were significantly associated with reduced risk of RPL. We also found that the C-4a-G haplotype of the eNOS gene studied polymorphisms was significantly associated with a predisposition to RPL (odds ratio, 3.219; 95% confidence interval, 1.649-6.282; p=0.0003). The in silico analysis showed that the eNOS 894 G>T polymorphism couldn't affects eNOS mRNA and protein significantly. Our findings provide evidence to support the hypothesis that eNOS -786 T>C polymorphism and the -786C-4a-894G haplotype are associated with the high risk of RPL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Metabolism and gene polymorphisms of the folate pathway in Brazilian women with history of recurrent abortion.

    PubMed

    Boas, Wendell Vilas; Gonçalves, Rozana Oliveira; Costa, Olívia Lúcia Nunes; Goncalves, Marilda Souza

    2015-02-01

    To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA). We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test. The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels. The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.

  12. Analysis of the Role of Carriership of Polymorphic Genotypes of ESR1, eNOS, and APOE4 Genes in the Development of Arterial Hypertension in Men.

    PubMed

    Dolgikh, O V; Zaitseva, N V; Nosov, A E; Krivtsov, A V; Dianova, D G; Kazakova, O A; Otavina, E A; Alikina, I N

    2018-04-01

    We studied the role of the carrier status for polymorphic loci of genes encoding estrogen receptors (ESR1), endothelial NO synthase (eNOS), and apolipoprotein E (APOE4) and products of their expression nitrogen oxide (NO) and apolipoprotein (ApoE) in the development of arterial hypertension in men. Conventionally healthy volunteers and 149 men with clinical manifestations of stage I-II arterial hypertension were examined. In men with arterial hypertension, the frequency of minor allele A of ESR1 gene was higher (27.5 vs. 9.5% in the reference group; χ 2 =4.43, p=0.04). The level of NO in the peripheral blood was also higher in the main group (χ 2 =3.93, p=0.047). The increase in NO concentration did not depend on the presence of polymorphic genotypes (GG and GT) of eNOS gene, but the decrease in ApoE level in blood serum was associated with TC genotype of APOE4 gene (p=0.04). Our results suggest that minor allele A of ESR1 gene is associated with the development of arterial hypertension in men. Reduced content of ApoE in blood serum of men with arterial hypertension was associated with APOE4 gene polymorphism. However, increased level of NO did not depend on polymorphic genotypes GG and GT of eNOS gene. These polymorphisms are of specific interest as additional markers of genetic predisposition to the development of arterial hypertension in middle-age men.

  13. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.

    PubMed

    Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji

    2002-11-01

    Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.

  14. Endothelial nitric oxide synthase polymorphism and prognosis in systolic heart failure patients.

    PubMed

    Azzam, Naiel; Zafrir, Barak; Fares, Fuad; Smith, Yoav; Salman, Nabeeh; Nevzorov, Roman; Amir, Offer

    2015-05-01

    The endothelial nitric oxide synthase (eNOS) gene single nucleotide polymorphism G894T is associated with thrombotic vascular diseases. However, its functional significance is controversial and data are scarce concerning its influence in heart failure (HF). We studied 215 patients with chronic systolic HF. DNA was analyzed for eNOS gene G894T polymorphism using PCR and DNA sequencing. Evaluation of clinical characteristics and analysis of factors associated with 2-year mortality were performed for the homozygous G-allele G894T variant (GG), relative to the TT and GT variants. The genotype distributions of eNOS G894T alleles were: GG 135 patients (63%) and TT/GT 80 (37%). Two-year mortality was significantly higher in the GG variant (48%) than the combined TT/GT group (32%). The usage of nitrates was associated with increased 2-year mortality (HR 2.0, 95% CI 1.28-3.17; p = 0.003), which was most significant in the GG group treated with nitrates (73.5%) in comparison to the TT/GT group not treated with nitrates (34%); HR 2.75, 95% CI 1.57-4.79, P < 0.001. Homozygosity for the G allele of the eNOS G894T polymorphism was associated with worse survival in systolic HF patients, especially in those treated with nitrates. ENOS polymorphism may result in different mechanistic interactions in HF than in thrombotic vascular diseases, suggesting that overexpression of NO may be associated with deleterious effects in systolic HF. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Lack of association between methionine synthase A2756G polymorphism and digestive system cancer risk: evidence from 3,9327 subjects.

    PubMed

    Zhao, Yuan; Chen, Zixian; Ma, Yushui; Xia, Qing; Zhang, Feng; Fu, Da; Wang, Xiao-Feng

    2013-01-01

    Polymorphisms in genes involved in the metabolism of folate and methyl groups have been implicated with risk of digestive system cancer. Methionine synthase (MTR) plays a central role in folate metabolism, thereby affecting DNA methylation. The association between A2756G polymorphism (rs1805087) in MTR and digestive system cancer susceptibility was inconsistent in previous studies. To investigate this inconsistency, we performed this meta-analysis. Databases including Pubmed, EMBASE, ISI Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. Potential sources of heterogeneity were also assessed by subgroup analysis and meta-regression. A total of 29 articles with 15,368 patients and 23,959 controls were included. We found no association between MTR A2756G polymorphism and digestive system cancer in overall population (G allele: OR = 1.03, 95% CI = 0.98-1.09, P = 0.25; dominant model: OR = 1.03, 95% CI = 0.97-1.10, P = 0.33; recessive model: OR = 1.02, 95% CI = 0.89-1.17, P = 0.79). In the stratified analyses according to cancer type, sample size and genotyping method, no evidence of any gene-disease association was obtained in almost all genetic models. However, marginal significant associations were found for East Asians and hospital-based studies. This meta-analysis suggests that there is no significant association between the MTR A2756G polymorphism and digestive system cancer risk.

  16. Genetic polymorphism of antioxidant enzymes in eosinophilic and non-eosinophilic nasal polyposis.

    PubMed

    Akyigit, Abdulvahap; Keles, Erol; Etem, Ebru Onalan; Ozercan, Ibrahim; Akyol, Hatice; Sakallioglu, Oner; Karlidag, Turgut; Polat, Cahit; Kaygusuz, Irfan; Yalcin, Sinasi

    2017-01-01

    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the paranasal sinuses, and its pathophysiology is not yet precisely known. It is suggested that oxygen free radicals play an important role in the pathogenesis of nasal polyposis. This study aimed to identify genetic polymorphisms of superoxide dismutase (SOD 2), catalase (CAT), and inducible nitric oxide synthase (iNOS) enzymes in eosinophilic CRSwNP and non-eosinophilic CRSwNP patients; the study also aimed to evaluate the effect of genetic polymorphism of antioxidant enzymes on CRSwNP etiopathogenesis. One hundred thirty patients, who received endoscopic sinus surgery due to CRSwNP, and 188 control individuals were included in this study. Nasal polyp tissues were divided into two groups histopathologically as eosinophilic CRSwNP and non-eosinophilic CRSwNP. Venous blood samples were taken from the patient and control groups. Polymorphisms in the Ala16Va1 gene, which is the most common variation of SOD-2 gene, and 21 A/T polymorphisms in catalase gene were evaluated with the restriction fragment length polymorphism method and -277 C/T polymorphism in the iNOS gene was evaluated with the DNA sequencing method. The GG genotype distribution for the (-277) A/G polymorphism in the iNOS gene was a statistically significant difference between eosinophilic CRSwNP and control groups (p < 0.05). The CC genotype distribution for the SOD2 A16V (C/T) polymorphism was not statistically significant in all groups (p > 0.05). The TT genotype distribution for the A/T polymorphism in catalase gene at position -21 was statistically significant differences in eosinophilic CRSwNP and control groups (p < 0.05). Increased free oxygen radical levels, which are considered effective factors in the pathogenesis of CRSwNP, can occur due to genetic polymorphism of enzymes in the antioxidant system and genetic polymorphism of antioxidant enzymes in eosinophilic CRSwNP patients might contribute to the pathophysiology.

  17. Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species.

    PubMed

    Li, H C; Lu, H B; Yang, F Y; Liu, S J; Bai, C J; Zhang, Y W

    2015-03-31

    Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of Pennisetum spp (the hybrid P. americanum x P. purpureum, P. purpureum Schum., P. purpureum Schum. cv. Red, P. purpureum Schum. cv. Taiwan, and P. purpureum Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid Pennisetum had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species. Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

  18. Violent suicidal behaviour in bipolar disorder is associated with nitric oxide synthase 3 gene polymorphism.

    PubMed

    Oliveira, J; Debnath, M; Etain, B; Bennabi, M; Hamdani, N; Lajnef, M; Bengoufa, D; Fortier, C; Boukouaci, W; Bellivier, F; Kahn, J-P; Henry, C; Charron, D; Krishnamoorthy, R; Leboyer, M; Tamouza, R

    2015-09-01

    Given the importance of nitric oxide system in oxidative stress, inflammation, neurotransmission and cerebrovascular tone regulation, we postulated its potential dysfunction in bipolar disorder (BD) and suicide. By simultaneously analysing variants of three isoforms of nitric oxide synthase (NOS) genes, we explored interindividual genetic liability to suicidal behaviour in BD. A total of 536 patients with BD (DSM-IV) and 160 healthy controls were genotyped for functionally relevant NOS1, NOS2 and NOS3 polymorphisms. History of suicidal behaviour and violent suicide attempt was documented for 511 patients with BD. Chi-squared test was used to perform genetic association analyses and logistic regression to test for gene-gene interactions. NOS3 rs1799983 T homozygous state was associated with violent suicide attempts (26.4% vs. 10.8%, in patients and controls, P = 0.002, corrected P (Pc) = 0.004, OR: 2.96, 95% CI = 1.33-6.34), and this association was restricted to the early-onset BD subgroup (37.9% vs. 10.8%, in early-onset BD and controls, P = 0.0003, Pc = 0.0006 OR: 5.05, 95% CI: 1.95-12.45), while we found no association with BD per se and no gene-gene interactions. Our results bring further evidence for the potential involvement of endothelial NOS gene variants in susceptibility to suicidal behaviour. Future exploration of this pathway on larger cohort of suicidal behaviour is warranted. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Methionine Synthase A2756G Polymorphism and Risk of Colorectal Adenoma and Cancer: Evidence Based on 27 Studies

    PubMed Central

    Jiang, Xun; Lu, Lie-sheng

    2013-01-01

    Methionine synthase (MTR), which plays a central role in maintaining adequate intracellular folate, methionine and normal homocysteine concentrations, was thought to be involved in the development of colorectal cancer (CRC) and colorectal adenoma (CRA) by affecting DNA methylation. However, studies on the association between MTR A2756G polymorphism and CRC/CRA remain conflicting. We conducted a meta-analysis of 27 studies, including 13465 cases and 20430 controls for CRC, and 4844 cases and 11743 controls for CRA. Potential sources of heterogeneity and publication bias were also systematically explored. Overall, the summary odds ratio of G variant for CRC was 1.03 (95% CI: 0.96–1.09) and 1.05 (95% CI: 0.99–1.12) for CRA. No significant results were observed in heterozygous and homozygous when compared with wild genotype for these polymorphisms. In the stratified analyses according to ethnicity, source of controls, sample size, sex, and tumor site, no evidence of any gene-disease association was obtained. Results from the meta-analysis of four studies on MTR stratified according to smoking and alcohol drinking status showed an increased CRC risk in heavy smokers (OR = 2.06, 95% CI: 1.32–3.20) and heavy drinkers (OR = 2.00, 95% CI: 1.28–3.09) for G allele carriers. This meta-analysis suggests that the MTR A2756G polymorphism is not associated with CRC/CRA susceptibility and that gene-environment interaction may exist. PMID:23593229

  20. Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus.

    PubMed

    Ferro, Ana Margarida; Ramos, Patrícia; Guerra, Ângela; Parreira, Paula; Brás, Teresa; Guerreiro, Olinda; Jerónimo, Eliana; Capel, Carmen; Capel, Juan; Yuste-Lisbona, Fernando J; Duarte, Maria F; Lozano, Rafael; Oliveira, M Margarida; Gonçalves, Sónia

    2018-04-01

    Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.

  1. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate.

    PubMed

    Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang

    2013-09-01

    Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. [T(-786) --> C-polymorphism of the endothelial nitric oxide synthase promoter gene (eNOS) and exercise performance in sport].

    PubMed

    Drozdovs'ka, S B; Lysenko, O M; Dosenko, V Ie; Il'ïn, V M; Moĭbenko, O O

    2013-01-01

    Given the significant impact of the T(-786) --> C-polymorphism of the eNOS gene in the process of adaptation to physical stress, we aimed to investigate the effect of this polymorphism on physical performance in sportsmen and establish the possibility of its use as a marker of predisposition to the sport. DNA of 516 people, of which 195 qualified athletes and 321 people who had no experience of regular exercise was investigated. The frequency of genotypes and alleles of the T(-786) --> C-polymorphism of the eNOS gene in groups of athletes of different sports, the distribution of genotypes and alleles among athletes and those who are not involved in sports were studied. T allele frequency in a group of athletes on 6.4% (r(chi)2 = 0.03) than in control group. The association of the T allele of the T(-786) --> C-polymorphism of the eNOS gene with a predisposition for speed and power was established. In the group of athletes in speed and power sports, the T-allele frequency was higher than that in the control group by 12% (r(chi)2 = 0.002) and than in group endurance sports by 10% (r(chi)2 = 0.004). We found that the T(-786) --> C-polymorphism of the eNOS gene influence the power and efficiency ofthe functioning of the cardiorespiratory system of athletes during exercise.

  3. Correlation of interactions between NOS3 polymorphisms and oxygen therapy with retinopathy of prematurity susceptibility

    PubMed Central

    Yu, Chunhong; Yi, Jinglin; Yin, Xiaolong; Deng, Yan; Liao, Yujun; Li, Xiaobing

    2015-01-01

    Aim: This study was aimed to detect the correlation of nitric oxide synthase 3 (NOS3) gene polymorphisms (T-786C and G894T) and retinopathy of prematurity (ROP) susceptibility. Interaction between NOS3 gene polymorphisms and the duration of oxygen therapy was also explored in ROP babies. Methods: Genotypes of NOS3 gene polymorphisms were genotyped by MassArray method. Hardy-Weinberg equilibrium (HWE) was used to calculate the representativeness of the cases and controls. Crossover analysis was utilized to explore the gene environment interactions. Relative risk of ROP was presented by odds ratios (ORs) with corresponding 95% confidence intervals (95% CIs). Results: Among the subject features, oxygen therapy had obvious difference between case and control groups (P<0.05). There existed significant association between-786C allele and ROP susceptibility (P=0.049, OR=0.669, 95% CI=0.447-0.999). Genotypes of T-786C polymorphism and genotypes and alleles of G894T polymorphism did not related to the susceptibility of ROP. Interactions were existed between NOS3 gene polymorphisms and oxygen therapy duration. When the duration of oxygen therapy was less than 17 days, both -786CC genotype and 894GT genotype were correlated with ROP susceptibility (P=0.020, OR=0.115, 95% CI=0.014-0.960; P=0.011, OR=0.294, 95% CI=0.100-0.784). Conclusion: -786C allele might have a protective effect for ROP. Interactions of -786CC and 894GT genotype with oxygen therapy duration (less than 17 days) were both protection factors of ROP. PMID:26823875

  4. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean

    PubMed Central

    Liu, Shulin; Zhou, Xiaoqiong; Zhang, Huairen; Wang, Chun-e; Yang, Wenming; Tian, Zhixi; Cheng, Hao; Yu, Deyue

    2017-01-01

    Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5’-untranslated region (5’-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean. PMID:28489859

  5. Tetra primer ARMS-PCR relates folate/homocysteine pathway genes and ACE gene polymorphism with coronary artery disease.

    PubMed

    Masud, Rizwan; Qureshi, Irfan Zia

    2011-09-01

    Cardiovascular disorders and coronary artery disease (CAD) are significant contributors to morbidity and mortality in heart patients. As genes of the folate/homocysteine pathway have been linked with the vascular disease, we investigated association of these gene polymorphisms with CAD/myocardial infarction (MI) using the novel approach of tetraprimer ARMS-PCR. A total of 230 participants (129 MI cases, 101 normal subjects) were recruited. We genotyped rs1801133 and rs1801131 SNPs in 5'10' methylenetetrahydrofolate reductase (MTHFR), rs1805087 SNP in 5' methyltetrahydrofolate homocysteine methyltransferase (MTR), rs662 SNP in paroxanse1 (PON1), and rs5742905 polymorphism in cystathionine beta synthase (CBS). Angiotensin converting enzyme (ACE) insertion/deletion polymorphism was detected through conventional PCR. Covariates included blood pressure, fasting blood sugar, serum cholesterol, and creatinine concentrations. Our results showed allele frequencies at rs1801133, rs1801131, rs1805087 and the ACE insertion/deletion (I/D) polymorphism varied between cases and controls. Logistic regression, after adjusting for covariates, demonstrated significant associations of rs1801133 and rs1805087 with CAD in the additive, dominant, and genotype model. In contrast, ACE I/D polymorphism was significantly related with CAD where recessive model was applied. Gene-gene interaction against the disease status revealed two polymorphism groups: rs1801133, rs662, and rs1805087; and rs1801131, rs662, and ACE I/D. Only the latter interaction maintained significance after adjusted for covariates. Our study concludes that folate pathway variants exert contributory influence on susceptibility to CAD. We further suggest that tetraprimer ARMS-PCR successfully resolves the genotypes in selected samples and might prove to be a superior technique compared to the conventional approach.

  6. Inflammatory Gene Polymorphisms in Lung Cancer Susceptibility.

    PubMed

    Eaton, Keith D; Romine, Perrin E; Goodman, Gary E; Thornquist, Mark D; Barnett, Matt J; Petersdorf, Effie W

    2018-05-01

    Chronic inflammation has been implicated in carcinogenesis, with increasing evidence of its role in lung cancer. We aimed to evaluate the role of genetic polymorphisms in inflammation-related genes in the risk for development of lung cancer. A nested case-control study design was used, and 625 cases and 625 well-matched controls were selected from participants in the β-Carotene and Retinol Efficacy Trial, which is a large, prospective lung cancer chemoprevention trial. The association between lung cancer incidence and survival and 23 polymorphisms descriptive of 11 inflammation-related genes (interferon gamma gene [IFNG], interleukin 10 gene [IL10], interleukin 1 alpha gene [IL1A], interleukin 1 beta gene [IL1B], interleukin 2 gene [IL2], interleukin 4 receptor gene [IL4R], interleukin 4 gene [IL4], interleukin 6 gene [IL6], prostaglandin-endoperoxide synthase 2 gene [PTGS2] (also known as COX2), transforming growth factor beta 1 gene [TGFB1], and tumor necrosis factor alpha gene [TNFA]) was evaluated. Of the 23 polymorphisms, two were associated with risk for lung cancer. Compared with individuals with the wild-type (CC) variant, individuals carrying the minor allele variants of the IL-1β-511C>T promoter polymorphism (rs16944) (CT and TT) had decreased odds of lung cancer (OR = 0.74, [95% confidence interval (CI): 0.58-0.94] and OR = 0.71 [95% CI: 0.50-1.01], respectively, p = 0.03). Similar results were observed for the IL-1β-1464 C>G promoter polymorphism (rs1143623), with presence of the minor variants CG and CC having decreased odds of lung cancer (OR = 0.75 [95% CI: 0.59-0.95] and OR = 0.69 [95% CI: 0.46-1.03], respectively, p = 0.03). Survival was not influenced by genotype. This study provides further evidence that IL1B promoter polymorphisms may modulate the risk for development of lung cancer. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  7. Association of Nitric Oxide Synthase2 gene polymorphisms with leprosy reactions in northern Indian population.

    PubMed

    Dubey, Amit; Biswas, Sanjay Kumar; Sinha, Ekata; Chakma, Joy Kumar; Kamal, Raj; Arora, Mamta; Sagar, Harish; Natarajan, Mohan; Bhagyawant, Sameer S; Mohanty, Keshar Kunja

    2017-07-01

    The pathogen Mycobacterium leprae causes leprosy that affects mainly skin and nerves. Polymorphisms of certain genes are substantiated to be associated with the susceptibility/resistance to leprosy. The present investigation addressed the association of Nitric Oxide Synthase2 gene polymorphisms and leprosy in a population from northern part of India. A total of 323 leprosy cases and 288 healthy controls were genotyped for four NOS2 promoter variants (rs1800482, rs2779249, rs8078340 and rs2301369) using FRET technology in Real Time PCR. None of these SNPs in promoter sites was associated with susceptibility/resistance to leprosy. NOS2 rs1800482 was found to be monomorphic with GG genotype. However, NOS2-1026T allele was observed to be in higher frequency with leprosy cases (BL and LL) who were not suffering from any reactional episodes compared to cases with ENL reaction {OR=0.30, 95% CI (0.10-0.86), p=0.024}. NOS2-1026GT genotype was more prevalent in cases without reaction (BT, BB and BL) compared to RR reactional patients {OR=0.38, 95% CI (0.17-0.86), p=0.02}. Although haplotype analysis revealed that no haplotype was associated with leprosy susceptibility/resistance with statistical significance, GTG haplotype was noted to be more frequent in healthy controls. These SNPs are observed to be in linkage disequilibrium. Although, these SNPs are not likely to influence leprosy vulnerability, -1026G>T SNP was indicated to have noteworthy role in leprosy reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Folate and One-Carbon Metabolism Gene Polymorphisms and Their Associations With Oral Facial Clefts

    PubMed Central

    Boyles, Abee L.; Wilcox, Allen J.; Taylor, Jack A.; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Drevon, Christian A.; Vollset, Stein Emil; Lie, Rolv Terje

    2008-01-01

    Folate metabolism plays a critical role in embryonic development. Prenatal folate supplementation reduces the risk of neural tube defects and probably oral facial clefts. Previous studies of related metabolic genes have associated polymorphisms in cystathionine-beta-synthase (CBS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) with cleft risk. We explored associations between genes related to one-carbon metabolism and clefts in a Norwegian population-based study that included 362 families with cleft lip with or without cleft palate (CL/P) and 191 families with cleft palate only (CPO). We previously showed a 39% reduction in risk of CL/P with folic acid supplementation in this population. In the present study we genotyped 12 polymorphisms in nine genes related to one-carbon metabolism and looked for associations of clefting risk with fetal polymorphisms, maternal polymorphisms, as well as parent-of-origin effects, using combined likelihood-ratio tests (LRT). We also stratified by maternal periconceptional intake of folic acid (>400 μg) to explore gene-exposure interactions. We found a reduced risk of CL/P with mothers who carried the CBS C699T variant (rs234706); relative risk was 0.94 with one copy of the T allele (95% CI 0.63-1.4) and 0.50 (95% CI 0.26-0.96) with two copies (P = 0.008). We found no evidence of interaction of this variant with folate status. We saw no evidence of risk from the MTHFR C677T variant (rs1801133) either overall or after stratifying by maternal folate intake. No associations were found between any of the polymorphisms and CPO. Genetic variations in the nine metabolic genes examined here do not confer a substantial degree of risk for clefts. Published 2008 Wiley-Liss, Inc.† PMID:18203168

  9. Evidence for association of a common variant of the endothelial nitric oxide synthase gene (Glu298→Asp polymorphism) to the presence, extent, and severity of coronary artery disease

    PubMed Central

    Colombo, M G; Andreassi, M G; Paradossi, U; Botto, N; Manfredi, S; Masetti, S; Rossi, G; Clerico, A; Biagini, A

    2002-01-01

    Background: Genetic variants of endothelial nitric oxide synthase (eNOS) could influence individual susceptibility to coronary artery disease. Objective: To assess whether Glu298→Asp polymorphism of the eNOS gene is associated with the occurrence and severity of angiographically defined coronary artery disease in the Italian population. Methods: Polymerase chain reaction/restriction fragment length polymorphism analysis was done to detect the Glu298→Asp variant of the eNOS gene in 201 patients with coronary artery disease and 114 controls. The severity of coronary artery disease was expressed by the number of affected vessels and by the Duke scoring system. Results: The frequencies of the eNOS Glu/Glu, Glu/Asp, and Asp/Asp genotypes in the coronary artery disease group were significantly different from those of controls (45.3%, 38.8%, and 15.9% v 42.1%, 51.8%, and 6.1%, respectively; χ2 = 8.589, p = 0.0136). In comparison with subjects who had a Glu298 allele in the eNOS gene, the risk of coronary artery disease was increased among Asp/Asp carriers (odds ratio 2.9, 95% confidence interval 1.2 to 6.8, p = 0.01) and was independent of the other common risk factors (p = 0.04). There was a significant association between the eNOS Glu298→Asp variant and both the number of stenosed vessels (mean (SEM), 2.3 (0.1) for Asp/Asp v 1.9 (0.1) and 1.8 (0.1) for Glu/Glu and Glu/Asp, respectively; p = 0.01) and the Duke score (56.1 (3.1) for Asp/Asp v 46.7 (2.0) and 46.1 (1.9) for Glu/Glu and Glu/Asp, respectively; p = 0.02). Conclusions: Glu298→Asp polymorphism of the eNOS gene appears to be associated with the presence, extent, and severity of angiographically assessed coronary artery disease. PMID:12010932

  10. The 894G>T endothelial nitric oxide synthase genetic polymorphism affects hemodynamic responses to mental stress performed before and after exercise.

    PubMed

    Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio

    2012-03-01

    Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.

  11. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    PubMed

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  12. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi

    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AGmore » rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.« less

  13. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms with Coronary Artery Disease: An Updated Meta-Analysis and Systematic Review

    PubMed Central

    Parveen, Farah; Kapoor, Aditya; Sinha, Nakul

    2014-01-01

    Several association studies of endothelial nitric oxide synthase (NOS3) gene polymorphisms with respect to coronary artery disease (CAD) have been published in the past two decades. However, their association with the disease, especially among different ethnic subgroups, still remains controversial. This prompted us to conduct a systematic review and an updated structured meta-analysis, which is the largest so far (89 articles, 132 separate studies, and a sample size of 69,235), examining association of three polymorphic forms of the NOS3 gene (i.e. Glu298Asp, T786-C and 27bp VNTR b/a) with CAD. In a subgroup analysis, we tested their association separately among published studies originating predominantly from European, Middle Eastern, Asian, Asian-Indian and African ancestries. The pooled analysis confirmed the association of all the three selected SNP with CAD in three different genetic models transcending all ancestries worldwide. The Glu298Asp polymorphism showed strongest association (OR range = 1.28–1.52, and P<0.00001 for all comparisons), followed by T786-C (OR range = 1.34–1.42, and P<0.00001 for all comparisons) and 4b/a, (OR range = 1.19–1.41, and P≤0.002 for all comparisons) in our pooled analysis. Subgroup analysis revealed that Glu298Asp (OR range = 1.54–1.87, and P<0.004 for all comparisons) and 4b/a (OR range = 1.71–3.02, and P<0.00001 for all comparisons) have highest degree of association amongst the Middle Easterners. On the other hand, T786-C and its minor allele seem to carry a highest risk for CAD among subjects of Asian ancestry (OR range = 1.61–1.90, and P≤0.01 for all comparisons). PMID:25409023

  14. Responsiveness to montelukast is associated with bronchial hyperresponsiveness and total immunoglobulin E but not polymorphisms in the leukotriene C4 synthase and cysteinyl leukotriene receptor 1 genes in Korean children with exercise-induced asthma (EIA).

    PubMed

    Lee, S-Y; Kim, H-B; Kim, J-H; Kim, B-S; Kang, M-J; Jang, S-O; Seo, H-J; Hong, S-J

    2007-10-01

    As previous studies have shown that cysteinyl leukotrienes are important mediators in exercise-induced bronchoconstriction (EIB), and leukotriene receptor antagonists (LTRAs) such as montelukast have been shown to improve post-exercise bronchoconstrictor responses, we herein investigated whether clinical responsiveness to montelukast was associated with polymorphisms in the genes encoding leukotriene C4 synthase (LTC4S) and cysteinyl leukotriene receptor 1 (CysLTR1) and/or clinical parameters in Korean asthmatic children with EIB. The study population consisted of 100 asthmatic children with EIB. The individuals studied were given exercise challenge tests before and after receiving montelukast (5 mg/day) for 8 weeks. Responders were defined as children showing>10% post-treatment improvement in forced expiratory volume in 1 s (FEV1). The LTC4S A(-444)C and CysLTR1 T(+927)C polymorphisms were genotyped by PCR-restriction fragment length polymorphism analysis. Of 100 enrolled children, 68 were classified as responders and 32 were classified as non-responders. No significant association was observed between montelukast responsiveness and LTC4S or CysLTR1 genotype, either alone or in combination. In contrast, montelukast-induced improvement in FEV(1) after exercise was correlated with higher pre-treatment PC20 (methacholine) values (r=0.210, P=0.036) and lower total IgE levels (r=-0.216, P=0.031). The LTC4S A(-444)C and CysLTR1 T(+927)C genotypes do not appear to be useful for predicting clinical responsiveness to montelukast, whereas bronchial hyperresponsiveness and total IgE appear to predict the degree of montelukast responsiveness in Korean asthmatic children with EIB.

  15. Variants of endothelial nitric oxide synthase gene are associated with components of metabolic syndrome in an Arab population.

    PubMed

    Alkharfy, Khalid M; Al-Daghri, Nasser M; Al-Attas, Omar S; Alokail, Majed S; Mohammed, Abdul Khader; Vinodson, Benjamin; Clerici, Mario; Kazmi, Usamah; Hussain, Tajamul; Draz, Hossam M

    2012-01-01

    Genetics plays a crucial role in the development of metabolic syndrome (MetS). Here we examined the association between endothelial nitric oxide synthase (eNOS) gene polymorphisms and MetS in a Saudi Arabian cohort to extend the understanding of the genetic basis of MetS in diverse ethnic populations. Anthropometric, clinical and biochemical parameters as well as genotyping for 894G>T, -786T>C variants of eNOS gene by PCR-RFLP and 4a/b by direct PCR were performed in 886 Saudi Arabians (477 MetS and 409 Non-MetS). The genotype distribution (TT, p=0.001; TC, p=0.001; TC+CC, p=0.001) and allele (T, p=0.007; C, p=0.007) frequency of the -786T>C SNP were significantly different between Non-MetS and MetS subjects which remained significant after Bonferroni correction. Moreover: 1) the GT and GT+TT genotypes of the 894G>T SNP were associated with elevated blood pressure (p=0.017, and p=0.022, respectively); 2) the ab variant of 4a/b polymorphism was associated with decreased HDL levels (p= 0.044); and 3) the TC+CC genotype and C allele of the -786T>C SNP were associated with increased fasting glucose levels (p=0.039, and p=0.028, respectively). Also, G-a-C was identified as the risk haplotype for MetS susceptibility (p=0.034). The results suggest a significant association of 894G>T, 4a/b and -786T>C polymorphisms with MetS and its components is present in an Arab population. A genetic predisposition to develop abnormal metabolic phenotypes, consistent with an increased prevalence of metabolic phenotypes can be detected in this ethnic group.

  16. Gene polymorphisms as risk factors for predicting the cardiovascular manifestations in Marfan syndrome. Role of folic acid metabolism enzyme gene polymorphisms in Marfan syndrome.

    PubMed

    Benke, Kálmán; Ágg, Bence; Mátyás, Gábor; Szokolai, Viola; Harsányi, Gergely; Szilveszter, Bálint; Odler, Balázs; Pólos, Miklós; Maurovich-Horvat, Pál; Radovits, Tamás; Merkely, Béla; Nagy, Zsolt B; Szabolcs, Zoltán

    2015-10-01

    Folic acid metabolism enzyme polymorphisms are believed to be responsible for the elevation of homocysteine (HCY) concentration in the blood plasma, correlating with the pathogenesis of aortic aneurysms and aortic dissection. We studied 71 Marfan patients divided into groups based on the severity of cardiovascular involvement: no intervention required (n=27, Group A); mild involvement requiring intervention (n=17, Group B); severe involvement (n=27, Group C) subdivided into aortic dilatation (n=14, Group C1) and aortic dissection (n=13, Group C2), as well as 117 control subjects. We evaluated HCY, folate, vitamin B12 and the polymorphisms of methylenetetrahydrofolate reductase (MTHFR;c.665C>T and c.1286A>C), methionine synthase (MTR;c.2756A>G) and methionine synthase reductase (MTRR;c.66A>G). Multiple comparisons showed significantly higher levels of HCY in Group C2 compared to Groups A, B, C1 and control group (p<0.0001, p<0.0001, p=0.001 and p=0.003, respectively). Folate was lower in Group C2 than in Groups A, B, C1 and control subjects (p<0.0001, p=0.02, p<0.0001 and p<0.0001, respectively). Group C2 had the highest prevalence of homozygotes for all four gene polymorphisms. Multivariate logistic regression analysis revealed that HCY plasma level was an independent risk factor for severe cardiovascular involvement (Group C; odds ratio [OR] 1.85, 95% confidence interval [CI] 1.28-2.67, p=0.001) as well as for aortic dissection (Group C2; OR 2.49, 95%CI 1.30-4.78, p=0.006). In conclusion, severe cardiovascular involvement in Marfan patients, and especially aortic dissection, is associated with higher HCY plasma levels and prevalence of homozygous genotypes of folic acid metabolism enzymes than mild or no cardiovascular involvement. These results suggest that impaired folic acid metabolism has an important role in the development and remodelling of the extracellular matrix of the aorta.

  17. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    PubMed

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  18. Association of Polyaminergic Loci With Anxiety, Mood Disorders, and Attempted Suicide

    PubMed Central

    Fiori, Laura M.; Wanner, Brigitte; Jomphe, Valérie; Croteau, Jordie; Vitaro, Frank

    2010-01-01

    Background The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression. Methodology/Principal Findings We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes. Conclusions/Significance These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders. PMID:21152090

  19. Association of polyaminergic loci with anxiety, mood disorders, and attempted suicide.

    PubMed

    Fiori, Laura M; Wanner, Brigitte; Jomphe, Valérie; Croteau, Jordie; Vitaro, Frank; Tremblay, Richard E; Bureau, Alexandre; Turecki, Gustavo

    2010-11-30

    The polyamine system has been implicated in a number of psychiatric conditions, which display both alterations in polyamine levels and altered expression of genes related to polyamine metabolism. Studies have identified associations between genetic variants in spermidine/spermine N1-acetyltransferase (SAT1) and both anxiety and suicide, and several polymorphisms appear to play important roles in determining gene expression. We genotyped 63 polymorphisms, spread across four polyaminergic genes (SAT1, spermine synthase (SMS), spermine oxidase (SMOX), and ornithine aminotransferase like-1 (OATL1)), in 1255 French-Canadian individuals who have been followed longitudinally for 22 years. We assessed univariate associations with anxiety, mood disorders, and attempted suicide, as assessed during early adulthood. We also investigated the involvement of gene-environment interactions in terms of childhood abuse, and assessed internalizing and externalizing symptoms as endophenotypes mediating these interactions. Overall, each gene was associated with at least one main outcome: anxiety (SAT1, SMS), mood disorders (SAT1, SMOX), and suicide attempts (SAT1, OATL1). Several SAT1 polymorphisms displayed disease-specific risk alleles, and polymorphisms in this gene were involved in gene-gene interactions with SMS to confer risk for anxiety disorders, as well as gene-environment interactions between childhood physical abuse and mood disorders. Externalizing behaviors demonstrated significant mediation with regards to the association between OATL1 and attempted suicide, however there was no evidence that externalizing or internalizing behaviors were appropriate endophenotypes to explain the associations with mood or anxiety disorders. Finally, childhood sexual abuse did not demonstrate mediating influences on any of our outcomes. These results demonstrate that genetic variants in polyaminergic genes are associated with psychiatric conditions, each of which involves a set of separate and distinct risk alleles. As several of these polymorphisms are associated with gene expression, these findings may provide mechanisms to explain the alterations in polyamine metabolism which have been observed in psychiatric disorders.

  20. eNOS gene Glu298Asp and 4b/a polymorphisms are associated with renal function parameters in Mexican patients with Fabry disease.

    PubMed

    Marin-Medina, A; Brambila-Tapia, A J L; Picos-Cárdenas, V J; Gallegos-Arreola, M P; Figuera, L E

    2016-10-24

    Fabry disease (FD) is an inherited X-linked lysosomal disease that causes renal failure in a high percentage of affected individuals. The eNOS gene encodes for endothelial nitric oxide synthase, which plays an important role in glomerular hemodynamics. This gene has two main polymorphisms (Glu298Asp and 4b/a) that have been studied in the context of many different diseases, including those involving cardiovascular and renal alterations. Considering the lack of information regarding eNOS variants and FD, we investigated whether there were associations between eNOS genetic variants and renal function parameters in Mexican patients with FD and renal impairment. In total, 15 FD patients with renal alterations were included in the present study, and associations between eNOS polymorphisms and renal function parameters (urea, creatinine, and GFR) were evaluated. The Asp298 and 4a alleles of the eNOS gene were found to be significantly associated with increased levels of urea and creatinine, and a decreased glomerular filtration rate in FD patients, and this association behaved in a co-dominant fashion. Our results coincide with previous reports showing an association between these polymorphisms and kidney disease, and along with other studies regarding their role in the nitric oxide pathway, suggest that these variants affect the severity of nephropathy in patients with FD.

  1. Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study

    PubMed Central

    2012-01-01

    Background Chronic kidney disease progression has been linked to pro-inflammatory cytokines and markers of inflammation. These markers are also elevated in end-stage renal disease (ESRD), which constitutes a serious public health problem. Objective To investigate whether single nucleotide polymorphisms (SNPs) located in genes related to immune and inflammatory processes, could be associated with ESRD development. Design and methods A retrospective case-control study was carried out on 276 patients with ESRD and 288 control subjects. Forty-eight SNPs were genotyped via SNPlex platform. Logistic regression was used to assess the relationship between each sigle polymorphism and the development of ESRD. Results Four polymorphisms showed association with ESRD: rs1801275 in the interleukin 4 receptor (IL4R) gene (OR: 0.66 (95%CI = 0.46-0.95); p = 0.025; overdominant model), rs4586 in chemokine (C-C motif) ligand 2 (CCL2) gene (OR: 0.70 (95%CI = 0.54-0.90); p = 0.005; additive model), rs301640 located in an intergenic binding site for signal transducer and activator of transcription 4 (STAT4) (OR: 1.82 (95%CI = 1.17-2.83); p = 0.006; additive model) and rs7830 in the nitric oxide synthase 3 (NOS3) gene (OR: 1.31 (95%CI = 1.01-1.71); p = 0.043; additive model). After adjusting for multiple testing, results lost significance. Conclusion Our preliminary data suggest that four genetic polymorphisms located in genes related to inflammation and immune processes could help to predict the risk of developing ESRD. PMID:22817530

  2. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer’s disease: a pilot study

    PubMed Central

    Toral-Rios, Danira; Franco-Bocanegra, Diana; Rosas-Carrasco, Oscar; Mena-Barranco, Francisco; Carvajal-García, Rosa; Meraz-Ríos, Marco Antonio; Campos-Peña, Victoria

    2015-01-01

    Amyloid peptide is able to promote the activation of microglia and astrocytes in Alzheimer’s disease (AD), and this stimulates the production of pro-inflammatory cytokines. Inflammation contributes to the process of neurodegeneration and therefore is a key factor in the development of AD. Some of the most important proteins involved in AD inflammation are: clusterin (CLU), complement receptor 1 (CR1), C reactive protein (CRP), tumor necrosis factor α (TNF-α), the interleukins 1α (IL-1α), 6 (IL-6), 10 (IL-10) and cyclooxygenase 2 (COX-2). In particular, COX-2 is encoded by the prostaglandin-endoperoxide synthase 2 gene (PTGS2). Since variations in the genes that encode these proteins may modify gene expression or function, it is important to investigate whether these variations may change the developing AD. The aim of this study was to determine whether the presence of polymorphisms in the genes encoding the aforementioned proteins is associated in Mexican patients with AD. Fourteen polymorphisms were genotyped in 96 subjects with AD and 100 controls; the differences in allele, genotype and haplotype frequencies were analyzed. Additionally, an ancestry analysis was conducted to exclude differences in genetic ancestry among groups as a confounding factor in the study. Significant differences in frequencies between AD and controls were found for the single-nucleotide polymorphism (SNP) rs20417 within the PTGS2 gene. Ancestry analysis revealed no significant differences in the ancestry of the compared groups, and the association was significant even after adjustment for ancestry and correction for multiple testing, which strengthens the validity of the results. We conclude that this polymorphism plays an important role in the development of the AD pathology and further studies are required, including their proteins. PMID:26041990

  3. Frequency of uridine monophosphate synthase Gly(213)Ala polymorphism in Caucasian gastrointestinal cancer patients and healthy subjects, investigated by means of new, rapid genotyping assays.

    PubMed

    Gusella, Milena; Bertolaso, Laura; Bolzonella, Caterina; Pasini, Felice; Padrini, Roberto

    2011-10-01

    Uridine monophosphate synthase (UMPS) is a fundamental enzyme in pyrimidine synthesis. A single-nucleotide polymorphism, a G-C transversion at the 638th nucleotide, was demonstrated to increase UMPS activity and suggested to have clinical effects. The aims of this study were to set up simple genotyping methods and investigate the UMPS 638G>C polymorphism in the Caucasian population. Two hundred forty-one patients with gastrointestinal cancers and 189 healthy subjects were enrolled. Genomic DNA was extracted from peripheral blood. A polymerase chain reaction-restriction fragment length polymorphism (RFLP) method was implemented using a forward primer incorporating a mismatched base to produce an artificial restriction site and BsrI restriction enzyme digestion; a denaturing high performance liquid chromatography (DHPLC) method was developed to further speed up UMPS genotyping. A 153 bp UMPS gene fragment was successfully amplified and analyzed in all samples. RFLP and DHPLC results showed a 100% match and where confirmed by direct sequencing. UMPS genotype distribution was similar in patients with cancer and control subjects. Although no association was detected between UMPS variants and gastrointestinal cancer risk in Caucasians, polymerase chain reaction-RFLP with BsrI digestion and DHPLC set up at 59°C are reliable and cost-effective methods to genotype UMPS.

  4. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco

    PubMed Central

    Diakite, Brehima; Hamzi, Khalil; Slassi, Ilham; EL Yahyaoui, Mohammed; EL Alaoui, Moulay M.F.; Habbal, Rachida; Sellama, Nadifi

    2014-01-01

    Nitric oxide plays a major role in the regulation of cerebral blood flow and loss of its function leads to alteration of the vascular relaxation given its central role in the physiology of the vascular system. G894T eNOS polymorphism could have adverse effects on the expression and activity of endothelial nitric oxide synthase, which can result in functional impairment of the endothelium and contribute to the development of ischemic stroke in the different models of transmission. In this study, genotyping with PCR-RFLP and HRM (high resolution melting) methods were conducted on 165 ischemic stroke patients as well as 182 controls. The goal here was to compare genotyping with PCR-RLFP primer sequences of eNOS gene (size < 300 bp) to HRM. Our data suggests a statistically significant association between G894T eNOS polymorphism and ischemic stroke in recessive, dominant and additive models with P < 0.05 and odds ratio of 2.68 (1.08–6.70), 1.78 (1.16–2.73), and 1.71 (1.21–2.43) respectively. In sum, although the sample size is relatively small, it suggests that G894T eNOS polymorphism could be a potentially important genetic marker of ischemic stroke in the Moroccan population. Future studies should be conducted in this direction taking into consideration the functional activity of eNOS. PMID:25606419

  5. Association of methionine synthase gene polymorphisms with wool production and quality traits in Chinese Merino population.

    PubMed

    Rong, E G; Yang, H; Zhang, Z W; Wang, Z P; Yan, X H; Li, H; Wang, N

    2015-10-01

    Methionine synthase (MTR) plays a crucial role in maintaining homeostasis of intracellular methionine, folate, and homocysteine, and its activity correlates with DNA methylation in many mammalian tissues. Our previous genomewide association study identified that 1 SNP located in the gene was associated with several wool production and quality traits in Chinese Merino. To confirm the potential involvement of the gene in sheep wool production and quality traits, we performed sheep tissue expression profiling, SNP detection, and association analysis with sheep wool production and quality traits. The semiquantitative reverse transcription PCR analysis showed that the gene was differentially expressed in skin from Merino and Kazak sheep. The sequencing analysis identified a total of 13 SNP in the gene from Chinese Merino sheep. Comparison of the allele frequencies revealed that these 13 identified SNP were significantly different among the 6 tested Chinese Merino strains ( < 0.001). Linkage disequilibrium analysis showed that SNP 3 to 11 were strongly linked in a single haplotype block in the tested population. Association analysis showed that SNP 2 to 11 were significantly associated with the average wool fiber diameter and the fineness SD and that SNP 4 to 11 were significantly associated with the CV of fiber diameter trait ( < 0.05). Single nucleotide polymorphism 2 and SNP 5 to 12 were weakly associated with wool crimp. Similarly, the haplotypes derived from these 13 identified SNP were also significantly associated with the average wool fiber diameter, fineness SD, and the CV of fiber diameter ( < 0.05). Our results suggest that is a candidate gene for sheep wool production and quality traits, and the identified SNP might be used in sheep breeding.

  6. Association of a NOS3 gene polymorphism with Behçet's disease but not with Vogt-Koyanagi-Harada syndrome in Han Chinese.

    PubMed

    Zhou, Yan; Yu, Hongsong; Hou, Shengping; Fang, Jing; Qin, Jieying; Yuan, Gangxiang; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    Previous studies have identified that nitric oxide synthase (NOS) genes are associated with several immune-mediated diseases. This study aimed to investigate whether NOS2 and NOS3 gene polymorphisms are associated with Behçet's disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome in a Han Chinese population. An association analysis of NOS2/rs4795067, NOS3/rs1799983 and NOS3/rs1800779 was performed in 733 patients with BD, 800 patients with VKH syndrome, and 1,359 controls using PCR restriction fragment length polymorphism (PCR-RFLP) assay. Statistical analysis was performed with the chi-square test followed by the Bonferroni correction. The result showed a decreased frequency of the NOS3/rs1799983 GG genotype and an increased frequency of NOS3/rs1799983 GT genotype in the patients with BD (Bonferroni correction test [Pc]=0.02, odds ratio [OR]=0.74; Pc=2.1×10(-3), OR=1.57, respectively). No significant association was found between rs1799983 and VKH syndrome. NOS2/ rs4795067 and NOS3/rs1800779 were not associated with either BD or VKH syndrome. Our findings suggest that a NOS3/rs1799983polymorphism is associated with susceptibility to BD in Han Chinese.

  7. [Meta-analysis on the association of G894T polymorphism in endothelial nitric oxide synthase gene and essential hypertension in Chinese population].

    PubMed

    Wang, Cong-Ju; Zhao, Jing-Bo; Xu, Jia-Liang; Xiang, Ze-Lin; Liang, Chang-Wei; Li, Jie

    2009-08-01

    To evaluate the relationship between G894T (Glu298Asp) polymorphism in the endothelial nitric oxide synthase (eNOS) gene and essential hypertension in Chinese population from different regions. Odds ratios (ORs) of G894T genotype and allele distributions in essential hypertension patients against healthy controls were analyzed. All the relevant studies were screened with poor-qualified studies eliminated. Meta-analysis software MIX (Meta-analysis with interactive explanations-version 1.71), was applied for investigating and analyzing heterogeneity among individual studies and summarizing the effects across studies, and the risk of publication bias was evaluated. A total of 1900 cases and 1216 controls from 10 studies were included. The heterogeneity between studies was significant (P = 0.013; P = 0.011) and there were substantial sources of publication bias (P = 0.049; P = 0.038). The pooled OR (with 95%CI) of GT + TT vs. GG genotype was 1.79 (1.33 - 2.42) (Z = 3.83, P < 0.001), and the pooled OR (with 95%CI) of T vs. G allele was 1.73 (1.32 - 2.27) (Z = 3.92, P < 0.001). In Chinese population, mainly the Hans ethnic group, 894G-->T mutation in the eNOS appeared to be related to essential hypertension.

  8. A variant of the endothelial nitric oxide synthase gene (NOS3) associated with AMS susceptibility is less common in the Quechua, a high altitude Native population.

    PubMed

    Wang, Pei; Ha, Alice Y N; Kidd, Kenneth K; Koehle, Michael S; Rupert, Jim L

    2010-01-01

    Endothelial nitric oxide synthase (eNOS) is a vascular enzyme that produces nitric oxide, a transient signaling molecule that by vasodilatation regulates blood flow and pressure. Nitric oxide is believed to play roles in both short-term acclimatization and long-term evolutionary adaptation to environmental hypoxia. Several laboratories, including ours, have shown that variants in NOS3 (the gene encoding eNOS) are overrepresented in individuals with altitude-related illnesses such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS), suggesting that NOS3 genotypes contribute to altitude tolerance. To further test our hypothesis that the G allele at the G894T polymorphism in NOS3 (dbSNP number: rs1799983; protein polymorphism Glu298Asp) is beneficial in hypoxic environments, we compared frequencies of this allele in an altitude-adapted Amerindian population, Quechua of the Andean altiplano, with those in a lowland Amerindian population, Maya of the Yucatan Peninsula. While common in both populations, the G allele was significantly more frequent in the highlanders. Taken together, our data suggest that this variant in NOS3, which has been previously associated with higher levels of nitric oxide, contributes to both acclimatization and adaptation to altitude.

  9. The effects of polymorphisms in IL-2, IFN-γ, TGF-β2, IgL, TLR-4, MD-2, and iNOS genes on resistance to Salmonella enteritidis in indigenous chickens.

    PubMed

    Tohidi, Reza; Idris, Ismail Bin; Panandam, Jothi Malar; Bejo, Mohd Hair

    2012-12-01

    Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.

  10. Endothelial Nitric Oxide Synthase (G894T) Gene Polymorphism in a Random Sample of the Egyptian Population: Comparison with Myocardial Infarction Patients

    PubMed Central

    Abdel Rahman, Mohamed F.; Hashad, Ingy M.; Abdel-Maksoud, Sahar M.; Farag, Nabil M.; Abou-Aisha, Khaled

    2012-01-01

    Aim: The aim of this study was to detect endothelial nitric oxide synthase (eNOS) Glu298Asp gene variants in a random sample of the Egyptian population, compare it with those from other populations, and attempt to correlate these variants with serum levels of nitric oxide (NO). The association of eNOS genotypes or serum NO levels with the incidence of acute myocardial infarction (AMI) was also examined. Methods: One hundred one unrelated healthy subjects and 104 unrelated AMI patients were recruited randomly from the 57357 Hospital and intensive care units of El Demerdash Hospital and National Heart Institute, Cairo, Egypt. eNOS genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism. Serum NO was determined spectrophotometrically. Results: The genotype distribution of eNOS Glu298Asp polymorphism determined for our sample was 58.42% GG (wild type), 33.66% GT, and 7.92% TT genotypes while allele frequencies were 75.25% and 24.75% for G and T alleles, respectively. No significant association between serum NO and specific eNOS genotype could be detected. No significant correlation between eNOS genotype distribution or allele frequencies and the incidence of AMI was observed. Conclusion: The present study demonstrated the predominance of the homozygous genotype GG over the heterozygous GT and homozygous TT in random samples of Egyptian population. It also showed the lack of association between eNOS genotypes and mean serum levels of NO, as well as the incidence of AMI. PMID:22731641

  11. X-Ray Cross-Complementing Group 1 and Thymidylate Synthase Polymorphisms Might Predict Response to Chemoradiotherapy in Rectal Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamas, Maria J., E-mail: mlamasd@yahoo.es; Duran, Goretti; Gomez, Antonio

    2012-01-01

    Purpose: 5-Fluorouracil-based chemoradiotherapy before total mesorectal excision is currently the standard treatment of Stage II and III rectal cancer patients. We used known predictive pharmacogenetic biomarkers to identify the responders to preoperative chemoradiotherapy in our series. Methods and Materials: A total of 93 Stage II-III rectal cancer patients were genotyped using peripheral blood samples. The genes analyzed were X-ray cross-complementing group 1 (XRCC1), ERCC1, MTHFR, EGFR, DPYD, and TYMS. The patients were treated with 225 mg/m{sup 2}/d continuous infusion of 5-fluorouracil concomitantly with radiotherapy (50.4 Gy) followed by total mesorectal excision. The outcomes were measured by tumor regression grade (TRG)more » as a major response (TRG 1 and TRG 2) or as a poor response (TRG3, TRG4, and TRG5). Results: The major histopathologic response rate was 47.3%. XRCC1 G/G carriers had a greater probability of response than G/A carriers (odds ratio, 4.18; 95% confidence interval, 1.62-10.74, p = .003) Patients with polymorphisms associated with high expression of thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) showed a greater pathologic response rate compared with carriers of low expression (odds ratio, 2.65; 95% confidence interval, 1.10-6.39, p = .02) No significant differences were seen in the response according to EGFR, ERCC1, MTHFR{sub C}677 and MTHFR{sub A}1298 expression. Conclusions: XRCC1 G/G and thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) are independent factors of a major response. Germline thymidylate synthase and XRCC1 polymorphisms might be useful as predictive markers of rectal tumor response to neoadjuvant chemoradiotherapy with 5-fluorouracil.« less

  12. NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study.

    PubMed

    Rankinen, T; Rice, T; Pérusse, L; Chagnon, Y C; Gagnon, J; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C; Bouchard, C

    2000-11-01

    Endothelium-dependent vasodilation is a mechanism that may affect blood pressure response to endurance training. Because NO plays a central role in this process, the endothelial NO synthase gene is a good candidate for the regulation of exercise blood pressure. We investigated the associations between an endothelial NO synthase gene polymorphism (Glu298Asp) and endurance training-induced changes in resting and submaximal exercise blood pressure in 471 white subjects of the HERITAGE Family Study. Two submaximal exercise tests at 50 W were conducted both before and after a 20-week endurance training program. Steady-state exercise blood pressure was measured twice in each test with an automated unit. The Glu298Asp polymorphism was typed with a PCR-based method and digestion with BAN:II. Both systolic and diastolic blood pressure at 50 W decreased in response to the training program, whereas resting blood pressure remained unchanged. The decrease in diastolic blood pressure at 50 W was greater (P=0.0005, adjusted for age, gender, baseline body mass index, and baseline diastolic blood pressure at 50 W) in the Glu/Glu homozygotes (4.4 [SEM 0.4] mm Hg, n=187) than in the heterozygotes (3.1 [0.4] mm Hg, n=213) and the Asp/Asp homozygotes (1.3 [0.7] mm Hg, n=71). The genotype accounted for 2.3% of the variance in diastolic blood pressure at 50 W training response. Both the Glu298 homozygotes and the heterozygotes had a greater (P=0.013) training-induced reduction in rate-pressure product at 50 W than the Asp298 homozygotes. These data suggest that DNA sequence variation in the endothelial NO synthase gene locus is associated with the endurance training-induced decreases in submaximal exercise diastolic blood pressure and rate-pressure product in sedentary normotensive white subjects.

  13. Association between endothelial nitric oxide synthase (ENOS) G894T polymorphism and high altitude (HA) adaptation: a meta-analysis.

    PubMed

    Lu, Hong-xiang; Wang, Yu-xiao; Chen, Yu; Luo, Yong-jun

    2015-11-01

    Highland natives adapt well to the hypoxic environment at high altitude (HA). Several genes have been reported to be linked to HA adaptation. Previous studies showed that the endothelial ni- tric oxide synthase (ENOS) G894T polymorphism contributed to the physiology and pathophysiology of hu- mans at HA by regulating the production of NO. In this meta-analysis, we evaluate the association between the ENOS G894T polymorphism and HA adaptation through analyzing the published data. We searched all relevant literature about the ENOS G894T polymorphism and HA adaptation in PubMed, Med- line, and Embase before Step 2015. A random-effects model was applied (Revman 5.0), and study quality was assessed in duplicate. Six studies with 634 HA native cases and 621 low-altitude controls were included in this meta-analysis. From the results, we observed that the wild-type allele G was significantly overrepresented in the HA groups (OR = 1.85; 95% Cl, 1.47-2.33; P < 0.0001). In addition, the GG genotype was significantly associated with HA adaptation (OR = 1.99; 95% Cl, 1.54-2.57; P < 0.0001). Our results showed that in 894 G allele carriers, the GG genotype might be a beneficial factor for HA adaptation through enhancing the level of NO. However, more studies were needed to confirm our findings due to the limited sample size.

  14. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L.

    PubMed

    Staginnus, Christina; Zörntlein, Siegfried; de Meijer, Etienne

    2014-07-01

    Neither absolute THC content nor morphology allows the unequivocal discrimination of fiber cultivars and drug strains of Cannabis sativa L. unequivocally. However, the CBD/THC ratio remains constant throughout the plant's life cycle, is independent of environmental factors, and considered to be controlled by a single locus (B) with two codominant alleles (B(T) and B(D)). The homozygous B(T)/B(T) genotype underlies the THC-predominant phenotype, B(D)/B(D) is CBD predominant, and an intermediate phenotype is induced by the heterozygous state (B(T)/B(D)). Using PCR-based markers in two segregating populations, we proved that the THCA synthase gene represents the postulated B locus and that specific sequence polymorphisms are absolutely linked either to the THC-predominant or the THC-intermediate chemotype. The absolute linkage provides an excellent reliability of the marker signal in forensic casework. For validation, the species-specific marker system was applied to a large number of casework samples and fiber hemp cultivars. © 2014 American Academy of Forensic Sciences.

  15. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study.

    PubMed

    Cheng, Ting-Yuan David; Makar, Karen W; Neuhouser, Marian L; Miller, Joshua W; Song, Xiaoling; Brown, Elissa C; Beresford, Shirley A A; Zheng, Yingye; Poole, Elizabeth M; Galbraith, Rachel L; Duggan, David J; Habermann, Nina; Bailey, Lynn B; Maneval, David R; Caudill, Marie A; Toriola, Adetunji T; Green, Ralph; Ulrich, Cornelia M

    2015-10-15

    Investigations of folate-mediated one-carbon metabolism (FOCM) genes and gene-nutrient interactions with respect to colorectal cancer (CRC) risk are limited to candidate polymorphisms and dietary folate. This study comprehensively investigated associations between genetic variants in FOCM and CRC risk and whether the FOCM nutrient status modified these associations. Two hundred eighty-eight candidate and tagging single-nucleotide polymorphisms (SNPs) in 30 FOCM genes were genotyped for 821 incident CRC case-control matched pairs in the Women's Health Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma folate, pyridoxal-5'-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol consumption were measured at the baseline. Conditional logistic regression was implemented; effect modification was examined on the basis of known enzyme-nutrient relations. Statistically significant associations were observed between CRC risk and functionally defined candidate SNPs of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1; K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR; P450R), and PR domain containing 2 with ZNF domain (PRDM2; S450N) and a literature candidate SNP of thymidylate synthase (TYMS; g.676789A>T; nominal P < .05). In addition, suggestive associations were noted for tagging SNPs in cystathionine-β-synthase (CBS), dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3β (DNMT3B), methionine adenosyltransferase I α (MAT1A), MTHFD1, and MTRR (nominal P < .05; adjusted P, not significant). Significant interactions between nutrient biomarkers and candidate polymorphisms were observed for 1) plasma/RBC folate and folate hydrolase 1 (FOLH1), paraoxonase 1 (PON1), transcobalamin II (TCN2), DNMT1, and DNMT3B; 2) plasma PLP and TYMS TS3; 3) plasma B12 and betaine-homocysteine S-methyltransferase 2 (BHMT2); and 4) homocysteine and methylenetetrahydrofolate reductase (MTHFR) and alanyl-transfer RNA synthetase (AARS). Genetic variants in FOCM genes are associated with CRC risk among postmenopausal women. FOCM nutrients continue to emerge as effect modifiers of genetic influences on CRC risk. © 2015 American Cancer Society.

  16. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  17. The presence of the NOS3 gene polymorphism for intron 4 mitigates the beneficial effects of exercise training on ambulatory blood pressure monitoring in adults.

    PubMed

    Sponton, Carlos H; Esposti, Rodrigo; Rodovalho, Cynara M; Ferreira, Maycon J; Jarrete, Aline P; Anaruma, Chadi P; Bacci, Mauricio; Zanesco, Angelina

    2014-06-15

    The number of studies that have evaluated exercise training (ET) and nitric oxide synthase (NOS)3 gene polymorphisms is scarce. The present study was designed to evaluate the relationship between exercise training and NOS3 polymorphisms at -786T>C, 894G>T, and intron 4b/a on blood pressure (BP) using 24-h ambulatory BP monitoring (ABPM), nitrate/nitrite levels (NOx), and redox state. Eighty-six volunteers (51 ± 0.6 yr old) were genotyped into nonpolymorphic and polymorphic groups for each of the three positions of NOS3 polymorphisms. Auscultatory BP, ABPM, SOD activity, catalase activity, NOx levels, and malondialdehyde levels were measured. DNA was extracted from leukocytes, and PCR followed by sequencing was applied for genotype analysis. Aerobic ET consisted of 24 sessions for 3 days/wk for 40 min at moderate intensity. This study was performed in a double-blind and crossover format. ET was effective in lowering office BP (systolic BP: 3.2% and diastolic BP: 3%) as well as ABPM (systolic BP: 2% and diastolic BP: 1.3%). Increased SOD and catalase activity (42.6% and 15.1%, respectively) were also observed. The NOS3 polymorphism for intron 4 mitigated the beneficial effect of ET for systolic BP (nonpolymorphic group: -3.0% and polymorphic group: -0.6%) and diastolic BP (nonpolymorphic group: -3.2% and polymorphic group: -0.5%), but it was not associated with NOx level and redox state. Paradoxical responses were found for positions T786-C and G894T for the NOS3 gene. Consistently, the presence of the polymorphism for intron 4 blunted the beneficial effects of ET in middle-aged adults. Possibly, this effect might be as consequence of intron 4 acting as a short intronic repeat RNA controlling endothelial NOS activity epigenetically. Copyright © 2014 the American Physiological Society.

  18. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians.

    PubMed

    Kovacs, Peter; Harper, Inge; Hanson, Robert L; Infante, Aniello M; Bogardus, Clifton; Tataranni, P Antonio; Baier, Leslie J

    2004-07-01

    Inhibition of fatty acid synthase (FAS) induces a rapid decline in fat stores in mice, suggesting a role for this enzyme in energy homeostasis. The human FAS gene (FAS) maps to chromosome 17q25, a region previously shown to have suggestive linkage to adiposity in a genome-wide linkage scan for genetic determinants of obesity in Pima Indians. To investigate the potential role of FAS in the pathophysiology of human obesity, the FAS gene was sequenced and 13 single nucleotide polymorphisms (SNPs) were identified. Five representative SNPs were genotyped in 216 full-blooded, nondiabetic Pima Indians for association analyses. A Val1483Ile polymorphism (GTC to ATC; allele frequency of A = 0.10) was associated with percentage of body fat and 24-h substrate oxidation rates measured in a respiratory chamber. Compared with homozygotes for the Val variant, subjects with Ile/x had a lower mean percentage of body fat (30 +/- 1 vs. 33 +/- 1%, P = 0.002; adjusted for age, sex, and family membership) and a lower mean carbohydrate oxidation rate (983 +/- 41 vs. 1,094 +/- 19 kcal/day, P = 0.03), which resulted in a lower mean 24-h respiratory quotient (0.845 +/- 0.01 vs. 0.850 +/- 0.01 kcal/day, P = 0.04; both adjusted for age, sex, family membership, percentage of body fat, and energy balance). Our findings indicate that the Val1483Ile substitution in FAS is protective against obesity in Pima Indians, an effect possibly explained by the role of this gene in the regulation of substrate oxidation.

  19. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA) Genes in Flax (Linum usitatissimum L.).

    PubMed

    Yurkevich, Olga Y; Kirov, Ilya V; Bolsheva, Nadezhda L; Rachinskaya, Olga A; Grushetskaya, Zoya E; Zoschuk, Svyatoslav A; Samatadze, Tatiana E; Bogdanova, Marina V; Lemesh, Valentina A; Amosova, Alexandra V; Muravenko, Olga V

    2017-01-01

    Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase ( CesA ) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum . Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.

  20. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA) Genes in Flax (Linum usitatissimum L.)

    PubMed Central

    Yurkevich, Olga Y.; Kirov, Ilya V.; Bolsheva, Nadezhda L.; Rachinskaya, Olga A.; Grushetskaya, Zoya E.; Zoschuk, Svyatoslav A.; Samatadze, Tatiana E.; Bogdanova, Marina V.; Lemesh, Valentina A.; Amosova, Alexandra V.; Muravenko, Olga V.

    2017-01-01

    Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding. PMID:28878799

  1. Impact of genomic polymorphism on arterial hypertension after aortic coarctation repair.

    PubMed

    Hager, Alfred; Bildau, Judith; Kreuder, Joachim; Kaemmerer, Harald; Hess, John

    2011-08-18

    Even after repair of aortic coarctation without restenosis there is a high incidence of arterial hypertension. This study was performed to assess the contribution of several inherited gene polymorphisms, which are known to be related to essential hypertension. 122 patients aged 17-72 years, 46 women, and 2-27 years after repair of isolated aortic coarctation without restenosis were investigated. Genomic polymorphism of angiotensin converting enzyme (ACE I/D), angiotensinogen (AGT, c.704C>T), angiotensin II receptor type 1 (AGTR1, c.1166A>C), aldosterone synthase (CYP11B2, c.-344C>T), endothelin 1 (EDN1, EDN1/ex5-c.5665G>T), G protein (GNB3, c.825C>T), G protein-coupled receptor kinase 4 (GRK4, c.679C>T), fibrillin 1 (FBN1, VNTR(TAAA)) and two polymorphisms each of the ß1 adrenoreceptor (ADRB1, c.145G>A and c.1165C>G), ß2 adrenoreceptor (ADRB2, c.46A>G and c.79C>G), and endothelial NO synthase (NOS3, intron 4 I/D and NOS3, c.894G>T) were determined by PCR amplification and fragment length analysis. Patients were classified "normotensive", if they were not on antihypertensive drugs and showed normal blood pressure both on ambulatory measurement and exercise test. None of the investigated genomic polymorphism could be related to hypertension. Only patients with the ACE I/I genotype had a less pronounced nocturnal dipping and patients with a ADRB1 c.1165 C/C genotype had a higher systolic and mean blood pressure at night. Development of late hypertension after aortic coarctation repair could not be related to the investigated genomic polymorphism. The correlation of the ACE I/D and the ADRB1 c.1165C>G polymorphism to nocturnal dipping and blood pressure at nighttime needs further confirmation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene.

    PubMed

    Drew, Damian Paul; Andersen, Trine Bundgaard; Sweetman, Crystal; Møller, Birger Lindberg; Ford, Christopher; Simonsen, Henrik Toft

    2016-02-01

    Rotundone was initially identified as a grape-derived compound responsible for the peppery aroma of Shiraz wine varieties. It has subsequently been found in black and white pepper and several other spices. Because of its potent aroma, the molecular basis for rotundone formation is of particular relevance to grape and wine scientists and industry. We have identified and functionally characterized in planta a sesquiterpene synthase, VvGuaS, from developing grape berries, and have demonstrated that it produces the precursor of rotundone, α-guaiene, as its main product. The VvGuaS enzyme is a novel allele of the sesquiterpene synthase gene, VvTPS24, which has previously been reported to encode VvPNSeInt, an enzyme that produces a variety of selinene-type sesquiterpenes. This newly discovered VvTPS24 allele encodes an enzyme 99.5% identical to VvPNSeInt, with the differences comprising just 6 out of the 561 amino acid residues. Molecular modelling of the enzymes revealed that two of these residues, T414 and V530, are located in the active site of VvGuaS within 4 Å of the binding-site of the substrate, farnesyl pyrophosphate. Mutation of these two residues of VvGuaS into the corresponding polymorphisms in VvPNSeInt results in a complete functional conversion of one enzyme into the other, while mutation of each residue individually produces an intermediate change in the product profile. We have therefore demonstrated that VvGuaS, an enzyme responsible for production of the rotundone precursor, α-guaiene, is encoded by a novel allele of the previously characterized grapevine gene VvTPS24 and that two specific polymorphisms are responsible for functional differences between VvTPS24 alleles. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Prevalence of polymorphisms in glucose-6-phosphate dehydrogenase, sickle haemoglobin and nitric oxide synthase genes and their relationship with incidence of uncomplicated malaria in Iganga, Uganda.

    PubMed

    Lwanira, Catherine Nassozi; Kironde, Fred; Kaddumukasa, Mark; Swedberg, Göte

    2017-08-09

    Host genetics play an important role in Plasmodium falciparum malaria susceptibility. However, information on host genetic factors and their relationships with malaria in the vaccine trial site of Iganga, Uganda is limited. The main objective of this study was to determine the prevalence of selected host genetic markers and their relationship to malaria incidence in the vaccine trial site of Iganga, Uganda. In a 1-year longitudinal cohort study, 423 children aged below 9 years were recruited and their malaria episodes were investigated. Host genetic polymorphisms were assessed by PCR-RFLP, haemoglobin electrophoresis and DNA sequencing. Using a multivariate negative binomial regression model, estimates of the impact of human genetic polymorphisms on malaria incidence were performed. In all statistical tests, a P value of <0.05 was considered as significant. The prevalences of sickle cell haemoglobin trait, G6PD c.202 G>A (rs 1050828) and NOS2 -954 G>C (rs 1800482) variants were 26.6, 22.7 and 17.3%, respectively. Inducible nitric oxide synthase 2 (NOS2 -954 G>C; rs 1800482) heterozygosity was associated with lower incidence of malaria in all age groups {Adjusted incident rates ratio (aIRR) 0.59; 95% CI [0.386-0.887]; P = 0.012)}. About 4% of study subjects had co-existence of sickle cell Hb trait and G6PD deficiency. Sickle cell Hb heterozygotes (Hb AS) aged less than 1 year experienced significantly more malaria episodes annually than children with normal haemoglobin (Hb AA) {aIRR = 1.98; 95% CI [1.240-3.175]; P = 0.004}. There was no significant influence of the sickle cell trait on malaria incidence among older children of 1-9 years. Mutation (NOS2 -954 G>C; rs 1800482) of nitric oxide synthase 2 gene promoter was associated with a lower incidence of acute malaria. The normal haemoglobin (wild genotype; HbAA) was associated with reduced malaria incidence rates during the first year of life. More understanding of the interplay between host genetics and malaria susceptibility is required.

  4. [Analysis of the frequencies of genotype combinations of 4 polymorphisms of genes acting on the folate cycle in the Spanish population].

    PubMed

    Martínez-Frías, María Luisa; Bermejo, Eva; Pérez, Belén; Desviat, Lourdes R; Castro, Margarita; Leal, Fátima; Mansilla, Elena; Martínez-Fernández, María Luisa; Rodríguez-Pinilla, Elvira; Rodríguez, Laura; Ugarte, Magdalena

    2008-06-21

    Studies on different populations have shown a great variability of the frequencies of different polymorphisms in genes acting in the folate cycle. The present study was aimed to analyze the frequency in the Spanish population of each genotype combination of four polymorphisms, one of them -1561C-T of the glutamate carboxypeptidase II (GCPII) gene- being the first time that is studied in Spain. The study included a meta-analysis of the published data. Using the Spanish Collaborative Study of Congenital Malformations (ECEMC) Network, blood samples of 190 mother-child couples with newborns without any congenital defect, were obtained from 15 Spanish autonomous regions. The study polymorphisms were the 677C-T and 1298A-C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR), the 66A-G of the methionine synthase reductase (MTRR), and the 1561C-T polymorphism of the GCPII gene. To estimate the range for the population frequencies, 99% confidence intervals were calculated. The frequencies observed in our country were significantly different from others, being similar to those obtained in countries of the Mediterranean European area. The 1561C-T polymorphism of the GCPII gene has a frequency in Spain of 5.11%, which is also similar to the values observed in France (5%) and in Italy (6%). On the other hand, the frequency of the genotypes CTCC, TTAC is quite few, while the genotype TTCC was not observed in any mother or infants. A meta-analysis was performed for a big sample (23,612 individuals) and the results showed that with a 99% of probability the values for the genotype combinations CTCC, TTAC, and TTCC were within 0.10-0.24; 0.20-0.36; and 0.003-0.05, respectively. Our results are important to further analyze the relationship with some health problems and individual susceptibilities. Indeed, considering the published observations of the structure and function of the MTHFR enzyme, it is understandable that those genotype combinations that are quite little frequent, may be related to the embryo-fetal viability, and to the life style of each population.

  5. Arylamine N-Acetyltransferases in Mycobacteria

    PubMed Central

    Sim, Edith; Sandy, James; Evangelopoulos, Dimitrios; Fullam, Elizabeth; Bhakta, Sanjib; Westwood, Isaac; Krylova, Anna; Lack, Nathan; Noble, Martin

    2008-01-01

    Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure. PMID:18680471

  6. Genetic factors in fetal growth restriction and miscarriage.

    PubMed

    Yamada, Hideto; Sata, Fumihiro; Saijo, Yasuaki; Kishi, Reiko; Minakami, Hisanori

    2005-06-01

    Recently, several investigations concerning disadvantageous genetic factors in human reproduction have progressed. Inherited thrombophilia, such as factor V Leiden, prothrombin, and methylenetetrahydrofolate reductase mutations; gene polymorphisms of detoxification enzyme (CYP1A1); growth factors (insulin-like growth factor-I); and hormones such as angiotensinogen and CYP17 are involved in the pathogenesis of fetal growth restriction. The inherited thrombophilia, gene polymorphisms of coagulation and anticoagulation factor such as thrombomodulin, endothelial protein C receptor, plasminogen activator inhibitor 1, and factor XIII; human lymphocyte antigen (HLA-G); detoxification enzymes (glutathione- S-transferase M1); cytokines such as interleukin (IL) -1 and IL-6; hormones (CYP17); vasodilators (nitric oxide synthase 3); and vitamins (transcobalamin) are involved in the pathogenesis of sporadic and recurrent miscarriage. It is likely that a gene polymorphism or mutation susceptible to reproductive failure has a beneficial effect on the process of human reproduction with or without the environmental interaction. The factor V Leiden mutation has genetic advantages that are believed to be an improved implantation rate in in vitro fertilization and a reduction of maternal intrapartum blood loss. It has also been demonstrated that the CYP17 A2 allele has bidirectional effects on human reproduction, including increases in susceptibility to recurrent miscarriage and fetal growth enhancement.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, E.; Chen, G.; Gardiner, M.

    The etiological role of the gene for neuronal nitric oxide synthase (NOS1) in infantile pyloric stenosis (PS) was investigated by analysis of two intragenic polymorphisms (NOS1a and NOS1b) in 27 families. There was significant overall transmission disequilibrium between PS and NOS1a (P=.006). Consideration of each allele independently revealed a highly significant tendency for allele 7 (210 bp) to be preferentially transmitted to the affected offspring (P=.0006). These observations suggest that NOS1 is a susceptibility locus for PS. 38 refs., 1 fig., 3 tabs.

  8. Thymidylate synthase repeat polymorphisms and risk of neural tube defects in a population from the northern United Kingdom.

    PubMed

    Wilding, Craig S; Relton, Caroline L; Sutton, Matthew J; Jonas, Pat A; Lynch, Sally-Ann; Tawn, E Janet; Burn, John

    2004-07-01

    A 28-bp repeat polymorphism in the 5'UTR of the thymidylate synthase (TYMS) gene represents a candidate risk factor for neural tube defects (NTDs) due to involvement in folate-dependent homocysteine metabolism. Non-Hispanic, white, U.S. citizens carrying at least one 2x 28-bp repeat allele have recently been shown to be at a four-fold increased risk of spina bifida (SB). We investigated the association between this polymorphism and risk of NTD in families affected by NTDs and controls from the northern United Kingdom (UK). PCR was performed on genomic DNA extracted from blood or mouth swabs of family members affected by NTDs (mothers, fathers, and cases), and unaffected controls (mothers and infants) to determine the number of 28-bp repeat units within the promoter region of TYMS. Case-control and TDT analyses of the influence of TYMS genotype on risk of NTD, or NTD pregnancy, were conducted. Odds ratio (OR) analysis indicated that individuals carrying the 2x 28-bp repeat allele either in homozygous or heterozygous form, are not at increased risk of NTDs, or of having an NTD affected pregnancy. Control population allele frequencies are seen to be markedly different between the U.S. controls and those in this study. TYMS polymorphism appears to be not universally associated with NTD risk across Caucasian samples. The elevated risk of spina bifida in U.S. samples appears to be driven by an unusually low risk allele (2x 28 bp) frequency in control samples. Family based (TDT) testing of U.S. samples is therefore advocated.

  9. Inducible nitric oxide synthase gene polymorphisms are associated with a risk of nephritis in Henoch-Schönlein purpura children.

    PubMed

    Jiang, Jue; Duan, Wuqiong; Shang, Xu; Wang, Hua; Gao, Ya; Tian, Peijun; Zhou, Qi

    2017-08-01

    Henoch-Schönlein purpura (HSP) is the most common form of systemic small-vessel vasculitis in children, and HSP nephritis (HSPN) is a major complication of HSP and is the primary cause of morbidity and mortality. Previous studies have suggested that inducible nitric oxide synthase (iNOS) may play an important role in the pathogenesis of HSP. In this study, we performed a detailed analysis to investigate the potential association between iNOS polymorphisms and the risk of HSP and the tendency for children with HSP to develop HSPN in a Chinese Han population. A promoter pentanucleotide repeat (CCTTT)n and 10 functional single-nucleotide polymorphisms (SNPs) from 532 healthy controls and 513 children with HSP were genotyped using the MassARRAY system and GeneScan. The results suggested that the allelic and genotypic frequencies of the rs3729508 polymorphism were nominally associated with susceptibility to HSP. In addition, there was a significant difference in the allelic distribution of the (CCTTT)12 repeats and rs2297518 between the HSP children with and without nephritis; the HSP children with nephritis exhibited a significantly higher frequency of the (CCTTT)12 repeats and A allele of rs2297518 than the HSP children without nephritis (P FDR  = 0.033, OR = 1.624, 95% CI = 1.177-2.241 and P FDR  = 0.030, OR = 1.660, 95% CI = 1.187-2.321, respectively). Our results support that iNOS polymorphisms are associated with the risk of HSP and may strongly contribute to the genetic basis of individual differences in the progression to nephritis among children with HSP in the Chinese Han population. What is Known: • The etiology of HSP is unknown, but the genetic factors may play an important role in the pathogenesis of HSP. • iNOS could contribute to the development and clinical manifestations of HSP, and this has not been studied extensively so far. What is New: • Our results support that iNOS polymorphisms not only are associated with HSP risk but also strongly contribute to the genetic basis of individual differences in the progression of HSP to nephritis among Chinese Han children.

  10. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia.

    PubMed

    Giovannetti, Elisa; Ugrasena, Dewa G; Supriyadi, Eddy; Vroling, Laura; Azzarello, Antonino; de Lange, Desiree; Peters, Godefridus J; Veerman, Anjo J P; Cloos, Jacqueline

    2008-01-01

    Genetic variations in the polymorphic tandem repeat sequence of the enhancer region of the thymidylate synthase promoter (TSER), as well as in methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, influence methotrexate sensitivity. We studied these polymorphisms in children with acute lymphoblastic leukaemia (ALL) and in subjects without malignancy in Indonesia and Holland. The frequencies of TT and CT genotypes were two-fold higher in Dutch children. The TSER 3R/3R repeat was three-fold more frequent in the Indonesian children, while the 2R/2R repeat was only 1% compared to 21% in the Dutch children. No differences of these polymorphisms were found between ALL cells and normal blood cells, indicating an ethnic rather than leukemic origin. These results may have implications for treatment of Indonesian children with ALL.

  11. Tumor Necrosis Factor (TNF) –308G>A, Nitric Oxide Synthase 3 (NOS3) +894G>T Polymorphisms and Migraine Risk: A Meta-Analysis

    PubMed Central

    Chen, Min; Tang, Wenjing; Hou, Lei; Liu, Ruozhuo; Dong, Zhao; Han, Xun; Zhang, Xiaofei; Wan, Dongjun; Yu, Shengyuan

    2015-01-01

    Background and Objective Conflicting data have been reported on the association between tumor necrosis factor (TNF) –308G>A and nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine. We performed a meta-analysis of case-control studies to evaluate whether the TNF –308G>A and NOS3 +894G>T polymorphisms confer genetic susceptibility to migraine. Method We performed an updated meta-analysis for TNF –308G>A and a meta-analysis for NOS3 +894G>T based on studies published up to July 2014. We calculated study specific odds ratios (OR) and 95% confidence intervals (95% CI) assuming allele contrast, dominant model, recessive model, and co-dominant model as pooled effect estimates. Results Eleven studies in 6682 migraineurs and 22591 controls for TNF –308G>A and six studies in 1055 migraineurs and 877 controls for NOS3 +894G>T were included in the analysis. Neither indicated overall associations between gene polymorphisms and migraine risk. Subgroup analyses suggested that the “A” allele of the TNF –308G>A variant increases the risk of migraine among non-Caucasians (dominant model: pooled OR = 1.82; 95% CI 1.15 – 2.87). The risk of migraine with aura (MA) was increased among both Caucasians and non-Caucasians. Subgroup analyses suggested that the “T” allele of the NOS3 +894G>T variant increases the risk of migraine among non-Caucasians (co-dominant model: pooled OR = 2.10; 95% CI 1.14 – 3.88). Conclusions Our findings appear to support the hypothesis that the TNF –308G>A polymorphism may act as a genetic susceptibility factor for migraine among non-Caucasians and that the NOS3 +894G>T polymorphism may modulate the risk of migraine among non-Caucasians. PMID:26098763

  12. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms.

    PubMed

    Warren, R B; Smith, R L; Campalani, E; Eyre, S; Smith, C H; Barker, J N W N; Worthington, J; Griffiths, C E M

    2009-02-01

    The use of methotrexate is limited by interindividual variability in response. Previous studies in patients with either rheumatoid arthritis or psoriasis suggest that genetic variation across the methotrexate metabolic pathway might enable prediction of both efficacy and toxicity of the drug. To assess if single nucleotide polymorphisms (SNPs) across four genes that are relevant to methotrexate metabolism [folypolyglutamate synthase (FPGS), gamma-glutamyl hydrolase (GGH), methylenetetrahydrofolate reductase (MTHFR) and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC)] are related to treatment outcomes in patients with psoriasis. DNA was collected from 374 patients with psoriasis who had been treated with methotrexate. Data were available on individual outcomes to therapy, namely efficacy and toxicity. Haplotype-tagging SNPs (r(2) > 0.8) for the four genes with a minor allele frequency of > 5% were selected from the HAPMAP phase II data. Genotyping was undertaken using the MassARRAY spectrometric method (Sequenom). There were no significant associations detected between clinical outcomes in patients with psoriasis treated with methotrexate and SNPs in the four genes investigated. Genetic variation in four key genes relevant to the intracellular metabolism of methotrexate does not appear to predict response to methotrexate therapy in patients with psoriasis.

  13. Endothelial nitric oxide synthase polymorphisms and adaptation of parasympathetic modulation to exercise training.

    PubMed

    Silva, Bruno M; Neves, Fabricia J; Negrão, Marcelo V; Alves, Cleber R; Dias, Rodrigo G; Alves, Guilherme B; Pereira, Alexandre C; Rondon, Maria U; Krieger, José E; Negrão, Carlos E; DA Nóbrega, Antonio Claudio Lucas

    2011-09-01

    There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption (VO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min·day(-1), during 18 wk). Training increased VO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% ± 89% vs polymorphic (-786TC/CC) = -28% ± 60%, median ± quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% ± 67% vs polymorphic (894GT/TT) = -18% ± 59%, median ± quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles (-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% ± 56% vs -41% ± 50%, median ± quartile range, P = 0.04). The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.

  14. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation

    PubMed Central

    Battilana, Juri; Emanuelli, Francesco; Gambino, Giorgio; Gribaudo, Ivana; Gasperi, Flavia; Boss, Paul K.; Grando, Maria Stella

    2011-01-01

    Grape berries of Muscat cultivars (Vitis vinifera L.) contain high levels of monoterpenols and exhibit a distinct aroma related to this composition of volatiles. A structural gene of the plastidial methyl-erythritol-phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS), was recently suggested as a candidate gene for this trait, having been co-localized with a major quantitative trait locus for linalool, nerol, and geraniol concentrations in berries. In addition, a structured association study discovered a putative causal single nucleotide polymorphism (SNP) responsible for the substitution of a lysine with an asparagine at position 284 of the VvDXS protein, and this SNP was significantly associated with Muscat-flavoured varieties. The significance of this nucleotide difference was investigated by comparing the monoterpene profiles with the expression of VvDXS alleles throughout berry development in Moscato Bianco, a cultivar heterozygous for the SNP mutation. Although correlation was detected between the VvDXS transcript profile and the accumulation of free monoterpenol odorants, the modulation of VvDXS expression during berry development appears to be independent of nucleotide variation in the coding sequence. In order to assess how the non-synonymous mutation may enhance Muscat flavour, an in vitro characterization of enzyme isoforms was performed followed by in vivo overexpression of each VvDXS allele in tobacco. The results showed that the amino acid non-neutral substitution influences the enzyme kinetics by increasing the catalytic efficiency and also dramatically affects monoterpene levels in transgenic lines. These findings confirm a functional effect of the VvDXS gene polymorphism and may pave the way for metabolic engineering of terpenoid contents in grapevine. PMID:21868399

  15. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  16. [G894T (NOS3) and G1958A (MTHFD1) gene polymorphisms and risk of ischemic heart disease in Yucatan, Mexico].

    PubMed

    García-González, Igrid; Solís-Cárdenas, Alberto de Jesús; Flores-Ocampo, Jorge A; Alejos-Mex, Ricardo; Herrera-Sánchez, Luis Fernando; González-Herrera, Lizbeth Josefina

    2015-01-01

    Cardiovascular medicine is focused on the search for genetic risk markers with predictive and/or prognostic value. Among the genetic variants of interest are G894T endothelial nitric oxide synthase and G1958A methylenetetrahydrofolate dehydrogenase1 gene polymorphisms. The aim of this study was to determine the possible association between these polymorphisms and ischemic heart disease in patients from Southern of Mexico (Yucatán). Case-control study matched by age, sex and origin was designed. We studied 98 patients with coronary disease and 101 controls. Participants were evaluated for the usual risk factors. The polymorphisms were identified using the polymerase chain reaction/restriction fragment length polymorphism analysis. Informed consent was obtained from all participants. The G894T and G1958A polymorphisms were not associated with ischemic heart disease, however, the TT genotype (G894T) was associated with the angina (OR=10.2; 95%CI, 1.51-68.8; p=0.025). The genotype GT (G894T) was the most frequent in patients with family history of coronary artery disease. Multiple logistic regression analysis identified smoking (OR=5.21; 95%CI, 2.1-12.9; p=0.000), hypertension (OR=3.54; 95%CI, 1.47-8.56; p=0.005) and obesity (OR=1.16; 95%CI, 1.1-1.27; p=0.001) as risk factors predicting the ischemic heart disease. The G894T and G1958A polymorphisms showed not association with ischemic heart disease. However, homozygosis for the 894T allele (NOS3) confers at risk to develop angina on Yucatán. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  17. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle.

    PubMed

    Raza, Sayed Haidar Abbas; Gui, Linsheng; Khan, Rajwali; Schreurs, Nicola M; Xiaoyu, Wang; Wu, Sen; Mei, Chugang; Wang, Li; Ma, Xueyao; Wei, Dawei; Guo, Hongfang; Zhang, Song; Wang, Xingping; Kaleri, Hubdar Ali; Zan, Linsen

    2018-03-01

    Fatty acid synthase (FASN) is an enzyme involved with fat deposition and fatty acid composition in cattle. This study was conducted to detect single nucleotide polymorphisms (SNPs) of the FASN gene and explore their relationships with ultrasound carcass traits in order to assess the potential use of the FASN gene for the breeding selection of Qinchuan cattle for desirable carcass traits. The frequencies of SNP g.12740C>T, g.13192T>C and g.13232C>T were identified in 525 individual Qinchuan cattle which were also assessed for backfat depth, eye muscle area and intramuscular fat by ultrasound. According to the PIC values, g.13192T>C possessed an intermediate polymorphism (0.25T, g.12740C>T possessed low polymorphism (PIC<0.25). Chi-square tests showed that g.13192T>C were in Hardy-Weinberg disequilibrium (c2C was associated with a greater eye muscle area and the TT genotype at g.13232C>T was associated with greater intramuscular fat. When these genotypes were combined there was no difference in eye muscle area and intramuscular fat between the diplotypes. The H 2 H 2 diplotype was associated with carcass traits that are likely to provide economic advantage in Qinchuan cattle. Variations in the FASN genes and their corresponding genotypes may be considered as molecular markers for economic traits in cattle breeding. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Frequency of cystathionine beta-synthase 844INS68 polymorphism in Southern Iran.

    PubMed

    Senemar, Sara; Doroudchi, Mehrnoosh; Pezeshki, Abdul Mohammad; Bazrgar, Masood; Torab-Jahromi, Ardeshir; Ghaderi, Abbas

    2009-02-01

    Iranian population with an Indo-European origin is one of the oldest populations in the world. Historical evidence suggests the close similarity in the origin of Iranian, European and north Indian population. However, there are few anthropological and genetic evidences on this subject. This study, which is the first report from Iran, was performed to investigate the genetic origin of Iranian population using a polymorphism in Cystathionine beta synthase (CBS) gene known as 844INS68bp in this respect, genomic DNA was extracted from the whole blood of 480 healthy normal blood donors referred to Fars Blood Transfusion Center, using a salting out method. The fragment containing 844INS68bp was amplified, the normal fragment was 174 bp and the fragment containing the insertion was 242 bp in length. Results indicated that 418 (87.08%) out of 480 individuals had a normal (N/N) genotype, 59 (12.29%) individuals were heterozygote (N/I) and 3 (0.63%) had homozygote a mutated genotype (I/I). The total frequency of 844INS68bp allele was found 6.8% which is similar to with the reported in White Caucasians. Comparison of the genotype of this study with the polymorphism in other populations revealed that Southern Iranian population has a great similarity with other Caucasians populations' especially South Italy and North America while differed from East Asian and African populations. These results are in agreement with the result of other studied polymorphisms. Therefore, despite the great admixture of Iranian population with the neighboring non-Caucasian populations during the time, Iranian population still share a genetic background with other Caucasian populations.

  19. Correlation between TS, MTHFR, and ERCC1 gene polymorphisms and the efficacy of platinum in combination with pemetrexed first-line chemotherapy in mesothelioma patients.

    PubMed

    Powrózek, Tomasz; Kowalski, Dariusz M; Krawczyk, Paweł; Ramlau, Rodryg; Kucharczyk, Tomasz; Kalinka-Warzocha, Ewa; Knetki-Wróblewska, Magdalena; Winiarczyk, Kinga; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz

    2014-11-01

    The combination of pemetrexed and platinum compound represents the standard regimen for first-line chemotherapy in malignant pleural mesothelioma patients. Pemetrexed is a multitarget antifolate agent that inhibits folate-dependent enzymes (eg, thymidylate synthase [TS]) and thus synthesis of nucleotides and DNA. Expression of TS and folate availability, regulated by gene polymorphisms, have implications for effectiveness of chemotherapy and the outcome of mesothelioma patients. The aim of this retrospective multicenter study was to assess the correlation between TS, 5,10-methylenetetrahydrofolate reductase (MTHFR) and excision repair cross-complementing group 1 (ERCC1) gene polymorphisms and the efficacy of pemetrexed-based first-line chemotherapy of mesothelioma patients. Fifty-nine mesothelioma patients (31 men with a median age of 62 years) treated in first-line chemotherapy with platinum in combination with pemetrexed or pemetrexed monotherapy were enrolled. Genomic DNA was isolated from peripheral blood. Using polymerase chain reaction and high resolution melt methods, the variable number of tandem repeat, the G>C single nucleotide polymorphism (SNP) in these repeats, and 6-base pair (bp) insertion/deletion polymorphism of the TS gene, the SNP of 677C>T in MTHFR, and 19007C>T in the ERCC1 gene were analyzed and correlated with disease control rate, progression-free survival (PFS), and overall survival (OS) of mesothelioma patients. Greater risk of early disease progression (PD), and shortening of PFS and OS were associated with several clinical factors (eg, anemia for early PD and OS), weight loss (for PFS and OS), and previous surgical treatment (for early PD, PFS, and OS). Insertion of 6-bp in both alleles of the TS gene (1494del6) was the only genetic factor that increased the incidence of early progression (P = .028) and shortening of median PFS (P = .06) in patients treated with pemetrexed-based chemotherapy. In multivariate analysis, the 1494del6 in the 3' untranslated region (UTR) of the TS gene also had a predictive role for PFS (P = .0185; hazard ratio, 2.3258 for +6/+6 homozygotes) in analyzed mesothelioma patients. Most analyzed polymorphisms in TS, MTHFR, and ERCC1 genes failed to predict outcome in mesothelioma patients treated with pemetrexed-based chemotherapy. However, different variants of 1494del6 in the 3' UTR of the TS gene were associated with differences in disease control rate and PFS of our patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of aerobic exercise on the blood pressure, oxidative stress and eNOS gene polymorphism in pre-hypertensive older people.

    PubMed

    Zago, Anderson Saranz; Park, Joon-Young; Fenty-Stewart, Nicola; Silveira, Leonardo Reis; Kokubun, Eduardo; Brown, Michael D

    2010-11-01

    The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 ± 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 ± 1 μM) and G4 (14.2 ± 0.6 μM) and between G2 (20.1 ± 1.7 μM) and G4 (14.2 ± 0.6 μM). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 ± 1.2 μM) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.

  1. Genetic Polymorphisms and Phenotypic Profiles of Sulfadiazine-Resistant and Sensitive Toxoplasma gondii Isolates Obtained from Newborns with Congenital Toxoplasmosis in Minas Gerais, Brazil.

    PubMed

    Silva, Letícia Azevedo; Reis-Cunha, João Luís; Bartholomeu, Daniella Castanheira; Vítor, Ricardo Wagner Almeida

    2017-01-01

    Previous Toxoplasma gondii studies revealed that mutations in the dhps (dihydropteroate synthase) gene are associated with resistance to sulfonamides. Although Brazilian strains are genotypically different, very limited data are available regarding the susceptibility of strains obtained from human to sulfonamides. The aim of this study was to evaluate the efficacy of sulfadiazine (SDZ) against Brazilian isolates of T. gondii and verify whether isolates present polymorphisms in the dhps gene. We also investigated whether the virulence-phenotype and/or genotype were associated with the profile of susceptibility to SDZ. Five T. gondii isolates obtained from newborns with congenital toxoplasmosis were used to verify susceptibility. Mice were infected with 104 tachyzoites and orally treated with different doses of SDZ. The mortality curve was evaluated by the Log-rank test. The presence of polymorphisms in the dhps gene was verified using sequencing. A descriptive analysis for 11 Brazilian isolates was used to assess the association between susceptibility, genotype, and virulence-phenotype. Statistical analysis showed that TgCTBr03, 07, 08, and 16 isolates were susceptible to SDZ, whereas TgCTBr11 isolate presented a profile of resistance to SDZ. Nineteen polymorphisms were identified in dhps exons. Seven polymorphisms corresponded to non-synonymous mutations, with four being new mutations, described for the first time in this study. No association was found between the profile of susceptibility and the virulence-phenotype or genotype of the parasite. There is a high variability in the susceptibilities of Brazilian T. gondii strains to SDZ, with evidence of drug resistance. Despite the large number of polymorphisms identified, the profile of susceptibility to SDZ was not associated with any of the dhps variants identified in this study. Other genetic factors, not yet determined, may be associated with the resistance to SDZ; thus, further studies are needed as a basis for a more adequate toxoplasmosis treatment.

  2. Genetic Polymorphisms and Phenotypic Profiles of Sulfadiazine-Resistant and Sensitive Toxoplasma gondii Isolates Obtained from Newborns with Congenital Toxoplasmosis in Minas Gerais, Brazil

    PubMed Central

    Silva, Letícia Azevedo; Reis-Cunha, João Luís; Bartholomeu, Daniella Castanheira; Vítor, Ricardo Wagner Almeida

    2017-01-01

    Background Previous Toxoplasma gondii studies revealed that mutations in the dhps (dihydropteroate synthase) gene are associated with resistance to sulfonamides. Although Brazilian strains are genotypically different, very limited data are available regarding the susceptibility of strains obtained from human to sulfonamides. The aim of this study was to evaluate the efficacy of sulfadiazine (SDZ) against Brazilian isolates of T. gondii and verify whether isolates present polymorphisms in the dhps gene. We also investigated whether the virulence-phenotype and/or genotype were associated with the profile of susceptibility to SDZ. Methods Five T. gondii isolates obtained from newborns with congenital toxoplasmosis were used to verify susceptibility. Mice were infected with 104 tachyzoites and orally treated with different doses of SDZ. The mortality curve was evaluated by the Log-rank test. The presence of polymorphisms in the dhps gene was verified using sequencing. A descriptive analysis for 11 Brazilian isolates was used to assess the association between susceptibility, genotype, and virulence-phenotype. Results Statistical analysis showed that TgCTBr03, 07, 08, and 16 isolates were susceptible to SDZ, whereas TgCTBr11 isolate presented a profile of resistance to SDZ. Nineteen polymorphisms were identified in dhps exons. Seven polymorphisms corresponded to non-synonymous mutations, with four being new mutations, described for the first time in this study. No association was found between the profile of susceptibility and the virulence-phenotype or genotype of the parasite. Conclusions There is a high variability in the susceptibilities of Brazilian T. gondii strains to SDZ, with evidence of drug resistance. Despite the large number of polymorphisms identified, the profile of susceptibility to SDZ was not associated with any of the dhps variants identified in this study. Other genetic factors, not yet determined, may be associated with the resistance to SDZ; thus, further studies are needed as a basis for a more adequate toxoplasmosis treatment. PMID:28118394

  3. 4G/5G Variant of Plasminogen Activator Inhibitor-1 Gene and Severe Pregnancy-Induced Hypertension: Subgroup Analyses of Variants of Angiotensinogen and Endothelial Nitric Oxide Synthase

    PubMed Central

    Kobashi, Gen; Ohta, Kaori; Yamada, Hideto; Hata, Akira; Minakami, Hisanori; Sakuragi, Noriaki; Tamashiro, Hiko; Fujimoto, Seiichiro

    2009-01-01

    Background Pregnancy-induced hypertension (PIH) is a common cause of perinatal mortality. It is believed to result from the interaction of several factors, including those related to the blood coagulation system. We performed genotyping and subgroup analyses to determine if the 4G/5G genotypes of the plasminogen activator inhibitor-1 gene (PAI-1) play a role in the pathogenesis of PIH, and to evaluate possible interactions of the PAI-1 polymorphisms with those of the angiotensinogen gene (AGT) and the endothelial nitric oxide synthase gene (NOS3). Methods An association study of PAI-1 polymorphism, and subgroup analyses of common variants of AGT and NOS3, among 128 patients with PIH and 376 healthy pregnant controls. Results No significant differences were found between the cases and controls in the frequencies of allele 4G or the 4G/4G genotype. In subgroup analyses, after adjustment for multiple comparison, a significant association with the AGT TT genotype was found among women with the PAI-1 4G/4G genotype, and an association with the NOS3 GA+AA genotype was found among women with the 5G/5G or 4G/5G genotypes. Conclusions Our findings suggest that there are at least 2 pathways in the pathogenesis of severe PIH. However, with respect to early prediction and prevention of severe PIH, although the PAI-1 4G/4G genotype alone was not a risk factor for severe PIH, the fact that PAI-1 genotypes are associated with varying risks for severe PIH suggests that PAI-1 genotyping of pregnant women, in combination with other tests, may be useful in the development of individualized measures that may prevent severe PIH. PMID:19838007

  4. The Endothelial Nitric Oxide Synthase (NOS3–786T>C) Genetic Polymorphism in Chronic Heart Failure: Effects of Mutant -786C allele on Long-term Mortality

    PubMed Central

    Terzi, Sait; Emre, Ayşe; Yesilcimen, Kemal; Yazıcı, Selçuk; Erdem, Aysun; Sadik Ceylan, Ufuk; Ciloglu, Figen

    2017-01-01

    Background Nitric oxide plays an important role in the regulation of basal vascular tone and cardiac myocyte function. We investigated the NOS3–786T>C polymorphism in chronic heart failure (CHF) and its effects on long-term mortality. Methods Ninety-one patients with CHF who were referred to the Department of Cardiology of Siyami Ersek Cardiovascular and Thoracic Surgery Center for cardiopulmonary exercise testing between April 2001 and January 2004 and 30 controls were enrolled in this study. Patient were followed prospectively for a period of 1 to 12 years. Results Patients and controls were divided into three groups: TT, TC and CC, according to their NOS3–786T>C polymorphism. We noted that there was no significant difference in the genotype distribution between patients and controls. There was also no significant difference in endothelial nitric oxide synthase (eNOS) gene polymorphism between ischemic HF and nonischemic HF. During the follow-up period, 61 (67%) deaths occurred. The nonsurvivor group had lower left ventricular ejection fraction (LVEF) (p = 0.01), reduced peak oxygen consumption (p = 0.04) and were of older age (p = 0.001). Age, LVEF, peak oxygen consumption and genotype were found to be predictors of mortality (p < 0.05). Additionally, mortality was significantly increased in -786CC genotype patients compared to TT genotype patients (hazard ratio = 2.2; p = 0.03). By multivariate analysis, age and eNOS genotype were determined to be significant independent predictors of death. Additionally, Kaplan-Meier analysis confirmed that homozygote -786C genotype was associated with an increased risk of death (χ2 = 4.6, p = 0.03). Conclusions Our findings showed that the NOS3–786T>C polymorphism was associated with an increased risk of mortality in patients with CHF. PMID:29033513

  5. eNOS gene haplotype is indirectly associated with the recovery of cardiovascular autonomic modulation from exercise.

    PubMed

    Silva, Bruno M; Barbosa, Thales C; Neves, Fabricia J; Sales, Allan K; Rocha, Natalia G; Medeiros, Renata F; Pereira, Felipe S; Garcia, Vinicius P; Cardoso, Fabiane T; Nobrega, Antonio C L

    2014-12-01

    Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene decrease expression and activation of eNOS in vitro, which is associated with lower post-exercise increase in vasodilator reactivity in vivo. However, it is unknown whether such polymorphisms are associated with other eNOS-related phenotypes during recovery from exercise. Therefore, we investigated the impact of an eNOS haplotype containing polymorphic alleles at loci -786 and 894 on the recovery of cardiovascular autonomic function from exercise. Sedentary, non-obese, healthy subjects were enrolled [n = 107, age 32 ± 1 years (mean ± SEM)]. Resting autonomic modulation (heart rate variability, systolic blood pressure variability, and spontaneous baroreflex sensitivity) and vascular reactivity (forearm hyperemic response post-ischemia) were assessed at baseline, 10, 60, and 120 min after a maximal cardiopulmonary exercise test. Besides, autonomic function was assessed by heart rate recovery (HRR) immediately after peak exercise. Haplotype analysis showed that vagal modulation (i.e., HF n.u.) was significantly higher, combined sympathetic and vagal modulation (i.e., LF/HF) was significantly lower and total blood pressure variability was significantly lower post-exercise in a haplotype containing polymorphic alleles (H2) compared to a haplotype with wild type alleles (H1). HRR was similar between groups. Corroborating previous evidence, H2 had significantly lower post-exercise increase in vasodilator reactivity than H1. In conclusion, a haplotype containing polymorphic alleles at loci -786 and 894 had enhanced recovery of autonomic modulation from exercise, along with unchanged HRR, and attenuated vasodilator reactivity. Then, these results suggest an autonomic compensatory response of a direct deleterious effect of eNOS polymorphisms on the vascular function. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular Basis of the Waxy Endosperm Starch Phenotype in Broomcorn Millet (Panicum miliaceum L.)

    PubMed Central

    Hunt, Harriet V.; Denyer, Kay; Packman, Len C.; Jones, Martin K.; Howe, Christopher J.

    2010-01-01

    Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. Iodine staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals. Granule-bound starch synthase I (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI (Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules. We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L) shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the second causes a cysteine–tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function may result from the substitution of tyrosine for cysteine, although it could not be determined whether the cysteine isoform of L represents the functional type. This is the first characterization of mutations that occur in combination in a functionally polyploid species to give a fully waxy phenotype. PMID:20139147

  7. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes

    PubMed Central

    Zwart, Sara R.; Gregory, Jesse F.; Zeisel, Steven H.; Gibson, Charles R.; Mader, Thomas H.; Kinchen, Jason M.; Ueland, Per M.; Ploutz-Snyder, Robert; Heer, Martina A.; Smith, Scott M.

    2016-01-01

    Ophthalmic changes have occurred in a subset of astronauts on International Space Station missions. Visual deterioration is considered the greatest human health risk of spaceflight. Affected astronauts exhibit higher concentrations of 1-carbon metabolites (e.g., homocysteine) before flight. We hypothesized that genetic variations in 1-carbon metabolism genes contribute to susceptibility to ophthalmic changes in astronauts. We investigated 5 polymorphisms in the methionine synthase reductase (MTRR), methylenetetrahydrofolate reductase (MTHFR), serine hydroxymethyltransferase (SHMT), and cystathionine β-synthase (CBS) genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances. Preflight dehydroepiandrosterone was positively associated with cotton wool spots, and serum testosterone response during flight was associated with refractive change. Block regression showed that B-vitamin status and genetics were significant predictors of many of the ophthalmic outcomes that we observed. In one example, genetics trended toward improving (P = 0.10) and B-vitamin status significantly improved (P < 0.001) the predictive model for refractive change after flight. We document an association between MTRR 66 and SHMT1 1420 polymorphisms and spaceflight-induced vision changes. This line of research could lead to therapeutic options for both space travelers and terrestrial patients.—Zwart, S. R., Gregory, J. F., Zeisel, S. H., Gibson, C. R., Mader, T. H., Kinchen, J. M., Ueland, P. M., Ploutz-Snyder, R., Heer, M. A., Smith, S. M. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. PMID:26316272

  8. GLU298ASP and 4G/5G Polymorphisms and the Risk of Ischemic Stroke in Young Individuals.

    PubMed

    Esparza-García, Juan Carlos; Santiago-Germán, David; Guadalupe Valades-Mejía, María; Hernández-Juárez, Jesus; Aguilar-Sosa, Eberth; Leaños-Miranda, Alfredo; Alvarado-Moreno, Antonio; Majluf-Cruz, Abraham; Isordia-Salas, Irma

    2015-09-01

    Polymorphisms in the endothelial nitric oxide synthase (eNOS) and in the plasminogen activator inhibitor -1 (PAI-1) genes have been implicated in stroke pathogenesis but results are still controversial. The aim of this study was to examine the possible contribution of Glu298Asp in the eNOS and 4G/5G in the PAI-1polymorphisms with ischemic stroke in a young Mexican population. In a case-control study, conducted between January 2006 and June 2010, 204 patients ≤45 years of age with ischemic stroke and 204 controls matched by age and gender, were recruited. The Glu298Asp and 4G/5G polymorphisms were determined in all participants by polymerase chain reaction-restriction fragment length polymorphism. There was a significant difference in the Glu298Asp genotype distribution (P=0.001) and allele frequency between the two groups (P=0.001). The 4G/5G genotype distribution (P=0.40) and the allele frequency was similar between groups; (P=0.13). There were independent factors for ischemic stroke: Asp carriage (GluAsp+AspAsp) (P=0.02); smoking (P=0.01); hypertension (P=0.03), and familial history of atherothrombotic disease (P=0.04). The Asp allele from the Gu298Asp gene represents an independent risk factor for ischemic stroke in a young Mexican population. In contrast, the 4G/5G was not associated with an increased risk for this disease in the same group of patients, as previously has been demonstrated in other populations.

  9. Genetic and epigenetic influences on expression of spermine synthase and spermine oxidase in suicide completers.

    PubMed

    Fiori, Laura M; Turecki, Gustavo

    2010-07-01

    Alterations in the levels of spermine synthase (SMS) and spermine oxidase (SMOX), two enzymes involved in polyamine metabolism, have previously been observed in brains of suicide completers. To characterize the roles played by genetic and epigenetic factors in determining expression levels of these genes, as well as to identify potential mechanisms by which to explain our findings in suicide completers, we (1) assessed the role of promoter polymorphisms in determining expression in the brain and in vitro, and (2) examined CpG methylation and levels of methylated histone H3 lysine-27 in the promoter regions of these genes in the prefrontal cortex of suicide completers and healthy controls. We identified several promoter haplotypes in SMS and SMOX, but found no consistent effects of haplotype on expression levels in either the brain or in reporter gene assays performed in three different cell lines. We also found no overall effects of epigenetic factors in determining expression, with the exception of a relationship between CpG methylation at one site in the promoter of SMOX and its expression in Brodmann area 8/9. In conclusion, the genetic and epigenetic factors examined in this study show little influence on the expression levels of SMS and SMOX, and do not appear to be responsible for the dysregulated expression of these genes in suicide completers.

  10. Women with TT genotype for eNOS gene are more responsive in lowering blood pressure in response to exercise.

    PubMed

    Sponton, Carlos H G; Rezende, Tiago M; Mallagrino, Pamella A; Franco-Penteado, Carla F; Bezerra, Marcos André C; Zanesco, Angelina

    2010-12-01

    The aim of this study was to investigate whether -786T>C endothelial nitric oxide synthase (eNOS) gene polymorphism might influence the effect of long-term exercise training (ET) on the blood pressure and its relationship with NO production in healthy postmenopausal women. Longitudinal study. Fifty-five postmenopausal women were studied in a double-blinded design. ET was performed for 3 days a week, each session consisting of 60 min during 6 months, in an intensity of 50-70% VO2max. After that, eNOS genotype analysis was performed and women were divided into two groups: TC+CC (n=41) and TT (n=14) genotype. No changes were found in the anthropometric parameters after ET in both the groups. Systolic and diastolic BP values were significantly reduced in both the groups, but women with TT genotype were more responsive in lowering BP as compared with those with TC+CC genotype. Plasma nitrite/nitrate concentrations were similar at baseline in both the groups, but the magnitude of increment in NO production in response to ET was higher in women with TT genotype as compared with those with TC+CC genotype. Our study shows clearly that women with or without eNOS gene polymorphism had no differences in NO production at basal conditions, but when physical exercise is applied an evident difference is detected showing that the presence of -786T>C eNOS gene polymorphism had a significant impact in the health-promoting effect of aerobic physical training on the blood pressure in postmenopausal women.

  11. The Sucrose Synthase Gene Family in Chinese Pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution.

    PubMed

    Abdullah, Muhammad; Cao, Yungpeng; Cheng, Xi; Meng, Dandan; Chen, Yu; Shakoor, Awais; Gao, Junshan; Cai, Yongping

    2018-05-11

    Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis . However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear ( Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30 , PbSS24 , and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.

  12. Epistatic Interactions Among Herbicide Resistances in Arabidopsis thaliana: The Fitness Cost of Multiresistance

    PubMed Central

    Roux, Fabrice; Camilleri, Christine; Giancola, Sandra; Brunel, Dominique; Reboud, Xavier

    2005-01-01

    The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment. PMID:16020787

  13. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides.

    PubMed

    Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter

    2017-05-31

    Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.

  14. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides

    PubMed Central

    Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall’Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter

    2017-01-01

    Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome. PMID:28561789

  15. The association between the 844ins68 polymorphism in the CBS gene and breast cancer

    PubMed Central

    Figuera-Villanueva, Luis Eduardo; Ramos-Silva, Adriana; Salas-González, Efraín; Puebla-Pérez, Ana María; Peralta-Leal, Valeria; García-Ortiz, José Elías; Dávalos-Rodríguez, Ingrid Patricia; Zúñiga-González, Guillermo Moisés

    2014-01-01

    Introduction The cystathionine beta synthase (CBS) gene plays an important role in homocysteine metabolism because it catalyzes the first step of the transsulfuration pathway, during which homocysteine is converted to cystathionine. Polymorphisms of CBS have been associated with cancer. Material and methods We examined the role of the 844ins68 polymorphism by comparing the genotypes of 371 healthy Mexican women with the genotypes of 323 Mexican women with breast cancer (BC). Results The observed genotype frequencies for controls and BC patients were 1% and 2% for Ins/Ins, 13% and 26% for W/Ins, and 86% and 72% for W/W, respectively. We found that the odds ratio (OR) was 2.2, with a 95% confidence interval (95% CI) of 1.5–3.3, p = 0.0001. The association was also evident when comparing the distribution of the W/Ins-Ins/Ins genotypes in patients in the following categories: 1) menopause and high γ-glutamyltransferase (GGT) levels (OR of 2.17, 95% CI: 1.17–4.26, p = 0.02), 2) chemotherapy response and high lactate dehydrogenase (LDH) levels (OR 2.2, 95% CI: 1.08–4.4, p = 0.027), 3) chemotherapy response and high GGT levels (OR 2.46, 95% CI: 1.2–4.8, p = 0.007), and 4) body mass index (BMI) and III–IV tumor stage (OR 3.2, 95% CI: 1.2–8.3, p = 0.013). Conclusions We conclude that the genotypes W/Ins-Ins/Ins of the 844ins68 polymorphism in the CBS gene contribute significantly to BC susceptibility in the analyzed sample from the Mexican population. PMID:25624861

  16. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III

    PubMed Central

    Carpenter, Margaret A.; Joyce, Nigel I.; Genet, Russell A.; Cooper, Rebecca D.; Murray, Sarah R.; Noble, Alasdair D.; Butler, Ruth C.; Timmerman-Vaughan, Gail M.

    2015-01-01

    Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato. PMID:25806042

  17. Associations of the eNOS G894T gene polymorphism with target organ damage in children with newly diagnosed primary hypertension.

    PubMed

    Śladowska-Kozłowska, Joanna; Litwin, Mieczysław; Niemirska, Anna; Wierzbicka, Aldona; Roszczynko, Marta; Szperl, Małgorzata

    2015-12-01

    The endothelial nitric oxide synthase (eNOS) G894T gene polymorphism is associated with the risk of primary hypertension (PH) and vascular complications in adults with PH. We explored the associations of the G894T polymorphism with 24-h ambulatory blood pressure, left ventricular mass (LVM), carotid intima media thickness (cIMT), urinary albumin excretion, oxidative stress and inflammatory parameters in 126 children with newly diagnosed PH and in 83 healthy children. Among the 126 children with PH 92 (73%) had ambulatory hypertension and 34 (27%) had severe ambulatory hypertension. Left ventricular hypertrophy (LVH) was detected in 39 (31%) patients, cIMT of >2 standard deviation scores in 21 (16.6%) patients, albuminuria of >30 mg/24 h in 18 (14.3%) patients and metabolic syndrome (MS) in 22 (17.5%) patients. The frequency of the T allele was 52.4% in the PH group and 54.2% in the control group (not significant), and in both groups the frequency of the T allele was consistent with the Hardy-Weinberg equilibrium. Compared with G allele carriers, hypertensive T allele carriers had increased cIMT (p < 0.05) and more severe albuminuria (not significant, p = 0.1); there was no difference between the groups in hypertension severity and LVM. T and G allele distribution did not differ between patients with and without metabolic syndrome. No significant correlations between the assessed parameters and the eNOS G894T gene polymorphism were found in the controls, although T allele carriers tended to have an increased cIMT (p = 0.09). The eNOS T allele is not more prevalent among hypertensive children than among healthy ones, but it is associated with early vascular damage in children with PH, independent of metabolic abnormalities. No associations between the eNOS G894T polymorphism and metabolic abnormalities were found.

  18. eNOS Glu298Asp polymorphism and hypertension in a cohort study in Japanese.

    PubMed

    Kishimoto, Takuji; Misawa, Yumiko; Kaetu, Akihiko; Nagai, Maria; Osaki, Yoneatsu; Okamoto, Mikizoh; Yoshida, Soiti; Kurosawa, Yoichi; Fukumoto, Soji

    2004-11-01

    Some recent case-control association studies have suggested negative and positive relationship between Glu298Asp (the substitution of aspartic acid for glutamic acid at amino acid position 298) polymorphism of the endothelial nitric oxide synthase (eNOS) gene and hypertension. To investigate whether the Glu298Asp polymorphism of the eNOS gene affects the incidence of hypertension, a retrospective cohort study was performed. The baseline data among Japanese workers in Shimane Prefecture, Japan, were obtained at regular health examination in 1992, and a retrospective cohort study was performed to analyze the influence of Glu298Asp polymorphism on the incidence of hypertension in 1998. The incidences of Glu298Glu, Glu298Asp, and Asp298Asp genotypes in the subjects were 86.4%, 12.6% and 1.1%, respectively. The risk ratios of Glu298Asp and Asp298Asp against Glu298Glu for the incidence of hypertension by single variance analysis were 0.830 in total subjects [95% confidence interval (CI) 0.474-1.452], 0.596 in subjects 20-39 years old (95% CI; 0.207-1.717), and 0.915 in subjects 40-59 years old (95% CI; 0.464-1.805). The risk ratios of Glu298Asp and Asp298Asp against Glu298Glu for the incidence of hypertension by multiple variance analysis adjusted for sex, BMI, serum total cholesterol, serum high-density lipoprotein (HDL) cholesterol, fasting glucose, cigarette smoking, drinking habits, eating habits, and exercise in 1992 were 0.750 in total subjects (95% CI; 0.421-1.335), 0.505 in subjects 20-39 years old (95% CI; 0.170-1.496), and 0.873 in subjects 40-59 years old (95% CI; 0.434-1.757). These results suggested no association between the Glu298Asp gene polymorphism and the incidence of hypertension in this selected population.

  19. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain.

    PubMed

    Zhang, W; Dubcovsky, J

    2008-03-01

    A better understanding of the genetic factors controlling grain yellow pigment content (GYPC) is important for both pasta (high GYPC) and bread wheat (low GYPC) quality improvement. Quantitative trait loci (QTL) for GYPC have been mapped repeatedly on the distal regions of chromosome arms 7AL and 7BL in wheat, and the Phytoene synthase 1 (PSY-1) gene located in this region has been proposed as a candidate gene. We show here that PSY-E1, the tall wheatgrass orthologue, is completely linked to differences in GYPC, and that selection for white endosperm mutants in recombinant lines carrying this gene resulted in the identification of a mutation in a conserved amino acid of PSY-E1. These results, together with the association between GYPC and allelic differences in PSY-1 in hexaploid wheat, suggest that this gene plays an important role in the determination of GYPC. However, a second white endosperm mutant previously mapped to chromosome arm 7EL showed no mutations in PSY-E1 suggesting the existence of additional gene(s) affecting GYPC in this chromosome region. This hypothesis was further supported by the mapping of QTL for GYPC on 7AL proximal to PSY-1 in a cross between pasta wheat varieties UC1113 and Kofa. Interestingly, the Kofa PSY-B1 allele showed unusually high levels of polymorphisms as a result of a conversion event involving the PSY-A1 allele. In summary, our results support the hypothesis that allelic differences in PSY-1 and at least one additional gene in the distal region of the long arm of homoeologous group 7L are associated with differences in GYPC.

  20. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

    PubMed Central

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071

  1. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.

    PubMed

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.

  2. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses.

    PubMed

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.

  3. Gender-related associations of genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor with treadmill exercise test responses

    PubMed Central

    Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José

    2014-01-01

    Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related. PMID:25544888

  4. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  5. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival

    PubMed Central

    Ongaro, Alessia; De Mattei, Monica; Della Porta, Matteo Giovanni; Rigolin, GianMatteo; Ambrosio, Cristina; Di Raimondo, Francesco; Pellati, Agnese; Masieri, Federica Francesca; Caruso, Angelo; Catozzi, Linda; Gemmati, Donato

    2009-01-01

    Background The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. Design and Methods The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. Results Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13–21.95 and odds ratio 4.57, 95% confidence interval 1.01–20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38–33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00–36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46–8.45). Conclusions Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival. PMID:19648163

  6. The endothelial nitric oxide synthase -786 T>C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure.

    PubMed

    Augeri, Amanda L; Tsongalis, Gregory J; Van Heest, Jaci L; Maresh, Carl M; Thompson, Paul D; Pescatello, Linda S

    2009-06-01

    A polymorphism (-786 T>C) in the promoter region of the endothelial nitric oxide synthase gene (eNOS) has important functional characteristics. We examined the influence of eNOS -786 T>C (rs2070744) on the BP and NO response to acute dynamic exercise. Subjects (n=49, 43.7+/-1.4 yr) had pre- to Stage-1 hypertension (145.6+/-1.5/85.9+/-1.1 mmHg). Volunteers performed three experiments; a non-exercise control session, and two cycle exercise bouts at 40% (LIGHT) and 60% (MODERATE) of peak oxygen consumption. Subjects wore an ambulatory BP monitor upon leaving the laboratory. NO was measured by chemiluminescence assay before (baseline), during, and after the experiments. eNOS genotypes were determined by polymerase chain reaction and restriction enzyme digestion. Repeated measure ANOVA tested if BP and NO differed over time among experiments and by eNOS genotypes (n=25, TT; n=24, TC/CC). Among carriers of the eNOS C(786) allele, systolic BP (SBP) was reduced 5.3+/-2.4 mmHg after MODERATE versus non-exercise control over 9h compared to those with the eNOS T786T genotype (p<0.05). Under these conditions, SBP tended to be lower 4.6+/-2.9 mmHg after LIGHT (p=0.076). The exercise-induced diastolic BP and NO responses were not different from non-exercise control between eNOS genotype (p>0.05). Men who were carriers of the eNOS C(786) allele responded more favorably to the antihypertensive effects of aerobic exercise than men with the eNOS T786T genotype. The eNOS C(786) allele is associated with reduced eNOS gene transcription and promoter activity. Future work is needed to determine how exercise may override genetic predispositions to down regulate eNOS gene activity.

  7. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    PubMed

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  8. RETRACTED: Association of the ACE I/D gene polymorphism with sepsis susceptibility and sepsis progression.

    PubMed

    Yang, Chun-Hua; Zhou, Tian-Biao

    2015-12-01

    This article has been included in a multiple retraction: Chun-Hua Yang and Tian-Biao Zhou Association of the ACE I/D gene polymorphism with sepsis susceptibility and sepsis progression Journal of Renin-Angiotensin-Aldosterone System 1470320314568521, first published on February 3, 2015 doi: 10.1177/1470320314568521 This article has been retracted at the request of the Editors and the Publisher. After conducting a thorough investigation, SAGE found that the submitting authors of a number of papers published in the Journal of the Renin-Angiotensin Aldosterone System ( JRAAS) (listed below) had supplied fabricated contact details for their nominated reviewers. The Editors accepted these papers based on the reports supplied by the individuals using these fake reviewer email accounts. After concluding that the peer review process was therefore seriously compromised, SAGE and the journal Editors have decided to retract all affected articles. Online First articles (these articles will not be published in an issue) Wenzhuang Tang, Tian-Biao Zhou, and Zongpei Jiang Association of the angiotensinogen M235T gene polymorphism with risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563426, first published on December 18, 2014 doi: 10.1177/1470320314563426 Tian-Biao Zhou, Hong-Yan Li, Zong-Pei Jiang, Jia-Fan Zhou, Miao-Fang Huang, and Zhi-Yang Zhou Role of renin-angiotensin-aldosterone system inhibitors in radiation nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563424, first published on December 18, 2014 doi: 10.1177/1470320314563424 Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10.1177/1470320314566019 Tian-Biao Zhou, Xue-Feng Guo, Zongpei Jiang, and Hong-Yan Li Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population Journal of Renin-Angiotensin-Aldosterone System 1470320314563425, first published on February 1, 2015 doi: 10.1177/1470320314563425 Chun-Hua Yang and Tian-Biao Zhou Relationship between the angiotensinogen A1166C gene polymorphism and the risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314566221, first published on February 1, 2015 doi: 10.1177/1470320314566221 Chun-Hua Yang and Tian-Biao Zhou Association of the ACE I/D gene polymorphism with sepsis susceptibility and sepsis progression Journal of Renin-Angiotensin-Aldosterone System 1470320314568521, first published on February 3, 2015 doi: 10.1177/1470320314568521 Articles published in an issue Guohui Liu, Tian-Biao Zhou, Zongpei Jiang, and Dongwen Zheng Association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in a Caucasian population Journal of Renin-Angiotensin-Aldosterone System March 2015 16: 165-171, first published on November 14, 2014 doi: 10.1177/1470320314557849 Weiqiang Zhong, Zhongliang Huang, Yong Wu, Zongpei Jiang, and Tian-Biao Zhou Association of aldosterone synthase (CYP11B2) gene polymorphism with IgA nephropathy risk and progression of IgA nephropathy Journal of Renin-Angiotensin-Aldosterone System September 2015 16: 660-665, first published on August 20, 2014 doi: 10.1177/1470320314524011.

  9. RETRACTED: Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population.

    PubMed

    Zhou, Tian-Biao; Guo, Xue-Feng; Jiang, Zongpei; Li, Hong-Yan

    2015-12-01

    The following article has been included in a multiple retraction: Tian-Biao Zhou, Xue-Feng Guo, Zongpei Jiang, and Hong-Yan Li Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population Journal of Renin-Angiotensin-Aldosterone System 1470320314563425, first published on February 1, 2015 doi: 10.1177/1470320314563425 This article has been retracted at the request of the Editors and the Publisher. After conducting a thorough investigation, SAGE found that the submitting authors of a number of papers published in the Journal of the Renin-Angiotensin Aldosterone System ( JRAAS) (listed below) had supplied fabricated contact details for their nominated reviewers. The Editors accepted these papers based on the reports supplied by the individuals using these fake reviewer email accounts. After concluding that the peer review process was therefore seriously compromised, SAGE and the journal Editors have decided to retract all affected articles. Online First articles (these articles will not be published in an issue) Wenzhuang Tang, Tian-Biao Zhou, and Zongpei Jiang Association of the angiotensinogen M235T gene polymorphism with risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563426, first published on December 18, 2014 doi: 10.1177/1470320314563426 Tian-Biao Zhou, Hong-Yan Li, Zong-Pei Jiang, Jia-Fan Zhou, Miao-Fang Huang, and Zhi-Yang Zhou Role of renin-angiotensin-aldosterone system inhibitors in radiation nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563424, first published on December 18, 2014 doi: 10.1177/1470320314563424 Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10.1177/1470320314566019 Tian-Biao Zhou, Xue-Feng Guo, Zongpei Jiang, and Hong-Yan Li Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population Journal of Renin-Angiotensin-Aldosterone System 1470320314563425, first published on February 1, 2015 doi: 10.1177/1470320314563425 Chun-Hua Yang and Tian-Biao Zhou Relationship between the angiotensinogen A1166C gene polymorphism and the risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314566221, first published on February 1, 2015 doi: 10.1177/1470320314566221 Chun-Hua Yang and Tian-Biao Zhou Association of the ACE I/D gene polymorphism with sepsis susceptibility and sepsis progression Journal of Renin-Angiotensin-Aldosterone System 1470320314568521, first published on February 3, 2015 doi: 10.1177/1470320314568521 Articles published in an issue Guohui Liu, Tian-Biao Zhou, Zongpei Jiang, and Dongwen Zheng Association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in a Caucasian population Journal of Renin-Angiotensin-Aldosterone System March 2015 16: 165-171, first published on November 14, 2014 doi: 10.1177/1470320314557849 Weiqiang Zhong, Zhongliang Huang, Yong Wu, Zongpei Jiang, and Tian-Biao Zhou Association of aldosterone synthase (CYP11B2) gene polymorphism with IgA nephropathy risk and progression of IgA nephropathy Journal of Renin-Angiotensin-Aldosterone System September 2015 16: 660-665, first published on August 20, 2014 doi: 10.1177/1470320314524011.

  10. RETRACTED: Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population.

    PubMed

    Zhong, Weiqiang; Jiang, Zongpei; Zhou, Tian-Biao

    2015-12-01

    This article has been included in a multiple retraction: Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10.1177/1470320314566019 This article has been retracted at the request of the Editors and the Publisher. After conducting a thorough investigation, SAGE found that the submitting authors of a number of papers published in the Journal of the Renin-Angiotensin Aldosterone System ( JRAAS) (listed below) had supplied fabricated contact details for their nominated reviewers. The Editors accepted these papers based on the reports supplied by the individuals using these fake reviewer email accounts. After concluding that the peer review process was therefore seriously compromised, SAGE and the journal Editors have decided to retract all affected articles. Online First articles (these articles will not be published in an issue) Wenzhuang Tang, Tian-Biao Zhou, and Zongpei Jiang Association of the angiotensinogen M235T gene polymorphism with risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563426, first published on December 18, 2014 doi: 10.1177/1470320314563426 Tian-Biao Zhou, Hong-Yan Li, Zong-Pei Jiang, Jia-Fan Zhou, Miao-Fang Huang, and Zhi-Yang Zhou Role of renin-angiotensin-aldosterone system inhibitors in radiation nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314563424, first published on December 18, 2014 doi: 10.1177/1470320314563424 Weiqiang Zhong, Zongpei Jiang, and Tian-Biao Zhou Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population Journal of Renin-Angiotensin-Aldosterone System 1470320314566019, first published on January 26, 2015 doi: 10.1177/1470320314566019 Tian-Biao Zhou, Xue-Feng Guo, Zongpei Jiang, and Hong-Yan Li Relationship between the ACE I/D gene polymorphism and T1DN susceptibility/risk of T1DM developing into T1DN in the Caucasian population Journal of Renin-Angiotensin-Aldosterone System 1470320314563425, first published on February 1, 2015 doi: 10.1177/1470320314563425 Chun-Hua Yang and Tian-Biao Zhou Relationship between the angiotensinogen A1166C gene polymorphism and the risk of diabetes mellitus developing into diabetic nephropathy Journal of Renin-Angiotensin-Aldosterone System 1470320314566221, first published on February 1, 2015 doi: 10.1177/1470320314566221 Chun-Hua Yang and Tian-Biao Zhou Association of the ACE I/D gene polymorphism with sepsis susceptibility and sepsis progression Journal of Renin-Angiotensin-Aldosterone System 1470320314568521, first published on February 3, 2015 doi: 10.1177/1470320314568521 Articles published in an issue Guohui Liu, Tian-Biao Zhou, Zongpei Jiang, and Dongwen Zheng Association of ACE I/D gene polymorphism with T2DN susceptibility and the risk of T2DM developing into T2DN in a Caucasian population Journal of Renin-Angiotensin-Aldosterone System March 2015 16: 165-171, first published on November 14, 2014 doi: 10.1177/1470320314557849 Weiqiang Zhong, Zhongliang Huang, Yong Wu, Zongpei Jiang, and Tian-Biao Zhou Association of aldosterone synthase (CYP11B2) gene polymorphism with IgA nephropathy risk and progression of IgA nephropathy Journal of Renin-Angiotensin-Aldosterone System September 2015 16: 660-665, first published on August 20, 2014 doi: 10.1177/1470320314524011.

  11. Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients.

    PubMed

    Jekic, Biljana; Lukovic, Ljiljana; Bunjevacki, Vera; Milic, Vera; Novakovic, Ivana; Damnjanovic, Tatjana; Milasin, Jelena; Popovic, Branka; Maksimovic, Nela; Damjanov, Nemanja; Radunovic, Goran; Kovacevic, Ljiljana; Krajinovic, Maja

    2013-03-01

    Gamma-glutamyl hydrolase (GGH), cyclin D1 (CCND1) and thymidylate synthase (TS) genes encode enzymes that are involved in methotrexate (MTX) action. In a group of 184 RA patients treated with MTX, we have investigated whether selected polymorphisms in these genes modulate MTX efficacy and/or have impact on adverse drug effects (ADEs). The efficacy of the MTX therapy has been estimated using the disease activity score in 28 joints (DAS28-ESR) based on EULAR criteria and relative DAS28 values (rDAS28). All adverse drug events were recorded. Patients were genotyped for selected polymorphisms of the GGH (-354 G > T and 452 C > T), CCND1 (870 A > G) and TYMS (variable number of tandem repeats, VNTR, and G to C substitution of triple repeat, 3R allele) gene. Association studies have been performed between obtained genotypes and the efficacy and toxicity of MTX. According to the EULAR response criteria, 146 RA patients (79.3 %) were classified as responders (good/moderate response) and 38 (20.7 %) as non-responders (poor response). Higher frequency of the TYMS 3 G/3 G genotype has been found among non-responders as compared to individuals with remaining genotypes (p = 0.02). ADEs were recorded in 53 patients. Among those patients eight experienced bone marrow toxicity, all of them carried GGH -354GG genotype (p = 0.003). No other significant association were observed. The 3 G/3 G genotype of the TYMS gene may indicate predisposition of poor response to MTX and GG genotype of GGH -354 T > G polymorphism may have high predictive value for myelosuppression in RA patients.

  12. Association of methylenetetrahydrofolate reductase (MTHFR 677C>T) and thymidylate synthase (TSER and TS 1494del6) polymorphisms with premature ovarian failure in Korean women.

    PubMed

    Rah, HyungChul; Jeon, Young Joo; Choi, Youngsok; Shim, Sung Han; Yoon, Tae Ki; Choi, Dong Hee; Cha, Sun Hee; Kim, Nam Keun

    2012-11-01

    The aim of our study was to investigate whether methylenetetrahydrofolate reductase (MTHFR) gene variant (MTHFR 677C>T) and thymidylate synthase (TS) gene variants (TS enhancer region [TSER] and TS 1494del6) confer a risk for premature ovarian failure (POF). We genotyped 136 POF patients and 236 controls among Korean women for the three single nucleotide polymorphism sites using polymerase chain reaction restriction fragment length polymorphism analysis. Differences in the MTHFR 677C>T, TSER, and TS 1494del6 genotype frequencies between POF patients and controls were compared, and odds ratios (ORs) and 95% CIs were determined as a measure of the strength of the association between genotypes and POF. The MTHFR 677CT and CT + TT variant genotypes were more frequent in POF patients than in controls (OR, 2.249; 95% CI, 1.317-3.843; and OR, 2.132; 95% CI, 1.268-3.585, respectively). The combined genotype frequencies of MTHFR 677CT + TT/TSER 3R3R and 677CT + TT/TS 1494del6 del6/del6 were higher in patients than in controls (OR, 2.300; 95% CI, 1.219-4.337; and OR, 3.314; 95% CI, 1.623-6.767, respectively). The T-3R-del6 and T-2R-del6 (MTHFR 677C>T/TSER/TS 1494del6) haplotypes were more frequent in patients (OR, 1.450; 95% CI, 1.050-2.002; and OR, 2.911; 95% CI, 1.191-7.117, respectively), whereas the C-2R-del6 haplotype was less frequent in patients (OR, 0.372; 95% CI, 0.152-0.912). The T-del6 (MTHFR 677/TS 1494del6) haplotype frequency was higher among patients (OR, 1.653; 95% CI, 1.206-2.266), whereas the C-del6 haplotype frequency was lower among patients (OR, 0.700; 95% CI, 0.516-0.950). We did not find an association between TSER or TS 1494del6 polymorphisms and POF. Our data suggest that the MTHFR 677T allele may increase the risk for POF, which could lead to the development of novel genetic markers for predicting the risk of POF in patients.

  13. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus☆

    PubMed Central

    Banerjee, Monisha; Vats, Pushpank

    2013-01-01

    Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2−) has been found in a variety of predominating cellular enzyme systems including NAD(P)H oxidase, xanthine oxidase (XO), cyclooxygenase (COX), uncoupled endothelial nitric oxide synthase (eNOS) and myeloperoxidase (MPO). The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE) formation; activation of protein kinase C (PKC) isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), nitric oxide synthase (NOS) are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM. PMID:25460725

  14. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  15. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  16. Identification of KasA as the cellular target of an anti-tubercular scaffold

    PubMed Central

    Abrahams, Katherine A.; Chung, Chun-wa; Ghidelli-Disse, Sonja; Rullas, Joaquín; Rebollo-López, María José; Gurcha, Sudagar S.; Cox, Jonathan A. G.; Mendoza, Alfonso; Jiménez-Navarro, Elena; Martínez-Martínez, María Santos; Neu, Margarete; Shillings, Anthony; Homes, Paul; Argyrou, Argyrides; Casanueva, Ruth; Loman, Nicholas J.; Moynihan, Patrick J.; Lelièvre, Joël; Selenski, Carolyn; Axtman, Matthew; Kremer, Laurent; Bantscheff, Marcus; Angulo-Barturen, Iñigo; Izquierdo, Mónica Cacho; Cammack, Nicholas C.; Drewes, Gerard; Ballell, Lluis; Barros, David; Besra, Gurdyal S.; Bates, Robert H.

    2016-01-01

    Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis. PMID:27581223

  17. 3'-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women.

    PubMed

    Ahn, Tae-Keun; Kim, Jung Oh; Kim, Hyun Woo; Park, Han Sung; Shim, Jeong Hyun; Ropper, Alexander E; Han, In Bo; Kim, Nam Keun

    2018-03-12

    Postmenopausal osteoporosis is one of the most prominent diseases in postmenopausal women and it is increasing in prevalence with the aging population. Furthermore, osteoporosis and osteoporotic vertebral compression fractures (OVCFs) are related to mortality and decreased quality of life. Therefore, searching for biomarkers that are able to identify postmenopausal women who are at high risk of developing OVCFs is an effective strategy for improving the quality of life of patients and alleviating social and economic burdens. In this study, we investigated methylenetetrahydrofolate reductase ( MTHFR ) and thymidylate synthase ( TS ) gene polymorphisms in postmenopausal women with OVCF. We recruited 301 postmenopausal women and performed genotyping for the presence of MTHFR 2572C>A, 4869C>G and TS 1100C>T, 1170A>G. Genotyping was analyzed using the polymerization chain reaction restriction fragment length polymorphism assay. MTHFR 2572C>A and TS 1100C>T were associated with the prevalence of osteoporosis (MTHFR 2572CC versus CA+AA: odd ratio [OR] adjusted age, hypertention [HTN], and diabetes mellitus [DM] = 0.49, p = 0.012) and the occurrence of OVCFs (MTHFR 2572CC versus CA+AA: OR adjusted age, HTN, and DM = 0.38, p = 0.013; TS 1100CC versus CT+TT: OR adjusted age, HTN, and DM = 0.46, p = 0.02). Our novel finding is the identification of MTHFR and TS genetic variants that decrease susceptibility to OVCFs. Our findings suggest that polymorphisms in the MTHFR and TS genes are associated with susceptibility to osteoporosis and OVCFs in postmenopausal women.

  18. [Association of folate metabolism genes MTRR and MTHFR with complex congenital abnormalities among Chinese population in Shanxi Province, China].

    PubMed

    Zhang, Qin; Bai, Bao-Ling; Liu, Xiao-Zhen; Miao, Chun-Yue; Li, Hui-Li

    2014-08-01

    To explore the association of polymorphisms in folate metabolism genes, methionine synthase reductase (MTRR) gene and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, with complex congenital abnormalities and to further investigate its association with complex congenital abnormalities derived from three germ layers. A total of 250 cases of birth defects (with complex congenital abnormalities including congenital heart disease, neural tube defects, and craniofacial anomalies) in Shanxi Province, China were included in the study. MTRR single nucleotide polymorphism (SNP) (rs1801394) and MTHFR SNP (rs1801133) were genotyped by the SNaPshot method, and the genotyping results were compared with those of controls (n=420). SNPs rs1801394 and rs1801133 were associated with multiple birth defects. For the recessive model, individuals with GG genotype at rs1801394 and CC genotype at rs1801133 had a relatively low risk of developing birth defects, so the two genotypes were protective factors against birth defects. The homozygous recessive genotype at rs1801133, which served as a protective factor, was associated with ectoderm- or endoderm-derived complex congenital abnormalities, while the homozygous recessive genotype at rs1801394, which served as a protective factor, was associated with ectoderm-, mesoderm- or endoderm-derived complex congenital abnormalities. Among the Chinese population in Shanxi Province, the SNPs in folate metabolism genes (MTRR and MTHFR) are associated with complex congenital abnormalities and related to ectoderm, mesoderm or endoderm development.

  19. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    PubMed

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  20. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Maiko; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065; Ichihara, Masatoshi

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas frommore » melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.« less

  1. Polymorphism at the 3'-UTR of the thymidylate synthase gene: A potential predictor for outcomes in Caucasian patients with esophageal adenocarcinoma treated with preoperative chemoradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Zhongxing; Liu Hongji; Swisher, Stephen G.

    2006-03-01

    Purpose: To test the hypothesis that TS3'UTR polymorphisms predict outcomes in 146 Caucasian patients with esophageal adenocarcinoma treated with preoperative 5-fluorouracil-based chemoradiation. Methods and Materials: DNA was extracted from hematoxylin-and-eosin stained histologic slides of normal esophageal or gastric mucosa sections from paraffin blocks of esophagectomy specimens. Genotypes of the TS3'UTR polymorphism were determined by polymerase chain reaction for a 6-bp insertion. The genotype groups (0bp/0bp, 6bp/0bp, and 6bp/6bp) were compared for clinical features and overall survival, recurrence-free-survival, locoregional control (LRC), and distant metastasis control. Multivariable Cox regression analyses were performed to find independent predictors for the stated outcomes. Results: Theremore » was a trend of association between 6bp/6bp genotype and a decreased risk of local regional recurrence (hazards ratio = 0.211, 95% confidence interval = 0.041-1.095, p = 0.06) compared with other genotypes. There was a trend that patients with 6bp/6bp genotype had a higher 3-year probability of LRC compared with patients with the other two genotypes combined (p = 0.07); however, the difference was not statistically significant. Conclusions: The null hypotheses were not rejected in this study, probably owing to small sample size or the single gene examined. Prospective studies with adequate statistical power analyzing a family of genes involved in the 5-fluorouracil metabolism are needed to assess genetic determinants of treatment-related outcomes in esophageal adenocarcinoma.« less

  2. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit.

    PubMed

    Wang, Aide; Yamakake, Junko; Kudo, Hisayuki; Wakasa, Yuhya; Hatsuyama, Yoshimichi; Igarashi, Megumi; Kasai, Atsushi; Li, Tianzhong; Harada, Takeo

    2009-09-01

    Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5' flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 --> valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit.

  3. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.

    PubMed

    Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel

    2018-03-29

    Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.

  4. Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea.

    PubMed

    Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby

    2013-09-06

    Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation <92%. Control children were defined as non-snoring children with AHI <2/h TST (NOSA). Endothelial function was assessed using a modified post-occlusive hyperemic test. The time to peak reperfusion (Tmax) was considered as the indicator for normal endothelial function (NEF; Tmax<45 sec), or ED (Tmax ≥ 45 sec). Genomic DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular morbidity. Thus, analysis of genotype-phenotype interactions in children with OSA may assist in the formulation of categorical risk estimates.

  5. Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma.

    PubMed

    Kang, J H; Loomis, S J; Yaspan, B L; Bailey, J C; Weinreb, R N; Lee, R K; Lichter, P R; Budenz, D L; Liu, Y; Realini, T; Gaasterland, D; Gaasterland, T; Friedman, D S; McCarty, C A; Moroi, S E; Olson, L; Schuman, J S; Singh, K; Vollrath, D; Wollstein, G; Zack, D J; Brilliant, M; Sit, A J; Christen, W G; Fingert, J; Forman, J P; Buys, E S; Kraft, P; Zhang, K; Allingham, R R; Pericak-Vance, M A; Richards, J E; Hauser, M A; Haines, J L; Wiggs, J L; Pasquale, L R

    2014-06-01

    Vascular perfusion may be impaired in primary open-angle glaucoma (POAG); thus, we evaluated a panel of markers in vascular tone-regulating genes in relation to POAG. We used Illumina 660W-Quad array genotype data and pooled P-values from 3108 POAG cases and 3430 controls from the combined National Eye Institute Glaucoma Human Genetics Collaboration consortium and Glaucoma Genes and Environment studies. Using information from previous literature and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we compiled single-nucleotide polymorphisms (SNPs) in 186 vascular tone-regulating genes. We used the 'Pathway Analysis by Randomization Incorporating Structure' analysis software, which performed 1000 permutations to compare the overall pathway and selected genes with comparable randomly generated pathways and genes in their association with POAG. The vascular tone pathway was not associated with POAG overall or POAG subtypes, defined by the type of visual field loss (early paracentral loss (n=224 cases) or only peripheral loss (n=993 cases)) (permuted P≥0.20). In gene-based analyses, eight were associated with POAG overall at permuted P<0.001: PRKAA1, CAV1, ITPR3, EDNRB, GNB2, DNM2, HFE, and MYL9. Notably, six of these eight (the first six listed) code for factors involved in the endothelial nitric oxide synthase activity, and three of these six (CAV1, ITPR3, and EDNRB) were also associated with early paracentral loss at P<0.001, whereas none of the six genes reached P<0.001 for peripheral loss only. Although the assembled vascular tone SNP set was not associated with POAG, genes that code for local factors involved in setting vascular tone were associated with POAG.

  6. High polymorphism in Est-SSR loci for cellulose synthase and β-amylase of sugarcane varieties (Saccharum spp.) used by the industrial sector for ethanol production.

    PubMed

    Augusto, Raphael; Maranho, Rone Charles; Mangolin, Claudete Aparecida; Pires da Silva Machado, Maria de Fátima

    2015-01-01

    High and low polymorphisms in simple sequence repeats of expressed sequence tag (EST-SSR) for specific proteins and enzymes, such as β-amylase, cellulose synthase, xyloglucan endotransglucosylase, fructose 1,6-bisphosphate aldolase, and fructose 1,6-bisphosphatase, were used to illustrate the genetic divergence within and between varieties of sugarcane (Saccharum spp.) and to guide the technological paths to optimize ethanol production from lignocellulose biomass. The varieties RB72454, RB867515, RB92579, and SP813250 on the second stage of cutting, all grown in the state of Paraná (PR), and the varieties RB92579 and SP813250 cultured in the PR state and in Northeastern Brazil, state of Pernambuco (PE), were analyzed using five EST-SSR primers for EstC66, EstC67, EstC68, EstC69, and EstC91 loci. Genetic divergence was evident in the EstC67 and EstC69 loci for β-amylase and cellulose synthase, respectively, among the four sugarcane varieties. An extremely high level of genetic differentiation was also detected in the EstC67 locus from the RB82579 and SP813250 varieties cultured in the PR and PE states. High polymorphism in SSR of the cellulose synthase locus may explain the high variability of substrates used in pretreatment and enzymatic hydrolysis processes, which has been an obstacle to effective industrial adaptations.

  7. Nitric oxide system and diabetic nephropathy

    PubMed Central

    2014-01-01

    About 30% of patients with type 2 diabetes mellitus develop clinically overt nephropathy. Hyperglycemia is necessary, but not sufficient, to cause the renal damage that leads to kidney failure. Diabetic nephropathy (DN) is a multifactorial disorder that results from interaction between environmental and genetic factors. In the present article we will review the role of the nitric oxide synthase (NOS) in the pathogenesis of DN. Nitric oxide (NO) is a short-lived gaseous lipophilic molecule produced in almost all tissues, and it has three distinct genes that encode three NOS isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). The correct function of the endothelium depends on NO, participating in hemostasis control, vascular tone regulation, proliferation of vascular smooth muscle cells and blood pressure homeostasis, among other features. In the kidney, NO plays many different roles, including control of renal and glomerular hemodynamics. The net effect of NO in the kidney is to promote natriuresis and diuresis, along with renal adaptation to dietary salt intake. The eNOS gene has been considered a potential candidate gene for DN susceptibility. Three polymorphisms have been extensively researched: G894T missense mutation (rs1799983), a 27-bp repeat in intron 4, and the T786C single nucleotide polymorphism (SNP) in the promoter (rs2070744). However, the potential link between eNOS gene variants and the induction and progression of DN yielded contradictory results in the literature. In conclusion, NOS seems to be involve in the development and progression of DN. Despite the discrepant results of many studies, the eNOS gene is also a good candidate gene for DN. PMID:24520999

  8. Genetic polymorphisms in 5-Fluorouracil-related enzymes predict pathologic response after neoadjuvant chemoradiation for rectal cancer.

    PubMed

    Nelson, Bailey; Carter, Jane V; Eichenberger, Maurice R; Netz, Uri; Galandiuk, Susan

    2016-11-01

    Many patients with rectal cancer undergo preoperative neoadjuvant chemoradiation, with approximately 70% exhibiting pathologic downstaging in response to treatment. Currently, there is no accurate test to predict patients who are likely to be complete responders to therapy. 5-Fluorouracil is used regularly in the neoadjuvant treatment of rectal cancer. Genetic polymorphisms affect the activity of thymidylate synthase, an enzyme involved in 5-Fluorouracil metabolism, which may account for observed differences in response to neoadjuvant treatment between patients. Detection of genetic polymorphisms might identify patients who are likely to have a complete response to neoadjuvant therapy and perhaps allow them to avoid operation. DNA was isolated from whole blood taken from patients with newly diagnosed rectal cancer who received neoadjuvant therapy (n = 50). Response to therapy was calculated with a tumor regression score based on histology from the time of operation. Polymerase chain reaction was performed targeting the promoter region of thymidylate synthase. Polymerase chain reaction products were separated using electrophoresis to determine whether patients were homozygous for a double-tandem repeat (2R), a triple-tandem repeat (3R), or were heterozygous (2R/3R). A single nucleotide polymorphism, 3G or 3C, also may be present in the second repeat unit of the triple-tandem repeat allele. Restriction fragment length polymorphism assays were performed in patients with at least one 3R allele using HaeIII. Patients with at least 1 thymidylate synthase 3G allele were more likely to have a complete or partial pathologic response to 5-Fluorouracil neoadjuvant therapy (odds ratio 10.4; 95% confidence interval, 1.3-81.6; P = .01) than those without at least one 3G allele. Identification of rectal cancer patients with specific genetic polymorphisms in enzymes involved in 5-Fluorouracil metabolism seems to predict the likelihood of complete or partial pathologic response to preoperative neoadjuvant therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia.

    PubMed

    Kamel, Azza M; Moussa, Heba S; Ebid, Gamal T; Bu, Rong R; Bhatia, Kishor G

    2007-06-01

    ALL is the most common pediatric cancer. The causes of the majority of pediatric acute leukemia are unknown and are likely to involve an interaction between genetic and environmental factors. Therefore, unfavourable gene-environmental interactions might be involved in the genesis of ALL. The aim of this work was to evaluate, in a case-control study, whether the common polymorphisms in 5, 10-methylenetetrahydrofolate reductase (MTHFR) namely (C677T and A1298C) and methionine synthase (MS) (A2756G) genes may play a role in altering susceptibility to pediatric ALL as individual genes and in combination. DNA of 88 ALL patients (age < or = 18 years) and 311 healthy control subjects was analyzed for the polymorphisms of MTHFR and MS genes using PCR-RFLP method. The frequencies of the wild types of MTHFR 677CC, MTHFR 1298AA and MS 2756AA, the homozygous genotypes of MTHFR 677TT, MTHFR 1298CC and MS 2756GG and heterozygous genotypes of MTHFR 677CT and MS 2756AG showed no statistically significant differences between patients and controls. The frequency of the MTHFR 1298AC heterozygous genotype was 25% among patients compared to 45.0% among controls; the difference was found to be statistically significant (p value =0.001, O.R=0.382 & 95% C.I=0.222-0.658). The frequency of the MTHFR1298AC heterozygous genotype plus 1298CC homozygous genotype was 34% among patients compared to 54.3% among controls and the difference was statistically significant (p value =0.001). A synergistic effect of 677CT and1298AC (CTAC) was observed, (p value=0.002) with 3.65 fold protection (OR 0.273 & 95% C.I=0.155-0.9) compared to 2.6 folds for MTHFR 1298AC alone. This protective effect of CTAC polymorphism was abolished when combined with MS 2756AA or AG. The present study provided further evidence for the protective role of MTHFR 1298AC mutant alleles in acute lymphoblastic leukemia in children (2.6 fold protection). This suggests that folate and methionine metabolism play an important role in the pathogenesis of pediatric ALL. In contrast to the main bulk of literature, we did not find any protective role of either MTHFR C677T or MS A2756G polymorphisms. This may reflect the ethnic variation in both the polymorphism frequencies, variation in plasma level of folate, in addition to the possible role of gene-environment interaction mainly dietary availability of folate. The synergistic effect of MTHFR 1298AC and 677CT and its abolishment by MS 2756AA or AG further emphasizes that the interaction of genes, rather than the polymorphism in any single one, determines risk susceptibility to disease.

  10. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  11. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  12. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors

    PubMed Central

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-01-01

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (−786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles −786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2–5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue. PMID:27004986

  13. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  14. Genetic Variation of Methylenetetrahydrofolate Reductase (MTHFR) and Thymidylate Synthase (TS) Genes Is Associated with Idiopathic Recurrent Implantation Failure.

    PubMed

    Choi, Youngsok; Kim, Jung Oh; Shim, Sung Han; Lee, Yubin; Kim, Ji Hyang; Jeon, Young Joo; Ko, Jung Jae; Lee, Woo Sik; Kim, Nam Keun

    2016-01-01

    The one-carbon metabolism pathway disorder was important role in successful pregnancy. The MTHFR and TS protein were crucial factor in one-carbon metabolism. To investigate the association between recurrent implantation failure (RIF) and enzymes in the one-carbon metabolism pathway. A total of 120 women diagnosed with RIF and 125 control subjects were genotyped for MTHFR 677C>T, 1298A>C, TSER 2R/3R and TS 1494del/ins by a polymerase chain reaction-restriction fragment length polymorphism assay. According to the gene-gene combination analysis, the MTHFR 677/MTHFR 1298 (TT/AA) and MTHFR 677/TS 1494 (TT/6bp6bp) genetic combinations were associated with relatively higher risks [adjusted odds ratio (AOR), 2.764; 95% CI, 1.065-7.174; P = 0.037 and AOR, 3.186; 95% CI, 1.241-8.178; P = 0.016] in RIF patients compared to the CC/AA (MTHFR 677/MTHFR 1298) and TT/6bp6bp (MTHFR 677/TS 1494) combinations, respectively. The results suggested that the combined MTHFR 677/MTHFR 1298 genotype might be associated with increased risk of RIF. To the best of our knowledge, this study is the first to elucidate the potential association of MTHFR, TS and TSER polymorphisms with RIF risk in Korean patients.

  15. Association between PTGS1 polymorphisms and functional outcomes in Chinese patients with stroke during aspirin therapy: Interaction with smoking.

    PubMed

    Cai, Huan; Cai, Biyang; Sun, Lingli; Zhang, Hao; Zhou, Shuyu; Cao, Liping; Guo, Hongquan; Sun, Wen; Yan, Bernard; Davis, Stephen M; Zhang, Zhizhong; Liu, Xinfeng

    2017-05-15

    Prostaglandin-Endoperoxide Synthase 1 (PTGS1) and smoking may play important roles in aspirin nonresponsiveness, but the effect of their interaction on stroke outcomes remains largely unknown. We examined the effects of PTGS1 polymorphisms, smoking status, and their interaction on functional outcomes in a cohort of Chinese Han patients with stroke during aspirin therapy. A total of 617 ischemic stroke patients taking aspirin were enrolled. Three single nucleotide polymorphisms (SNPs) rs1330344, rs3842788, and rs5788 in PTGS1 were determined for genotyping. Poor functional outcomes were defined as a modified Rankin Scale (mRS) of 3-6 at 90-day follow-up. The influence of PTGS1 gene-smoking interaction on functional outcomes was examined. Poor functional outcomes occurred in 145 (23.5%) patients. When adjusting multiple factors by logistic regression, CC genotype of rs1330344 was associated with poor functional outcomes (risk ratio [RR]=1.73; 95% confidence interval [CI]: 1.17-2.37). A similar connection was found in the CGC haplotype (RR=1.40; 95% CI: 1.08-1.77). Furthermore, we found a significant interaction between rs1330344 and smoking status (P interaction =0.018); the interaction effect between the PTGS1 haplotype and smoking also showed statistical significance (P interaction =0.040). In Chinese Han stroke patients with aspirin therapy, the adverse effect of PTGS1 polymorphisms on functional outcomes may be modulated by the smoking status. PTGS1 gene-smoking interaction might in part reflect the heterogeneity in the prognosis of patients treated with aspirin. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The role of NOS2A -954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management.

    PubMed

    Porojan, Mihai Dumitru; Cătană, Andreea; Popp, Radu A; Dumitrascu, Dan L; Bala, Cornelia

    2015-01-01

    Type 2 diabetes mellitus (T2DM) remains one of the major health problems in Europe. Retinopathy is one of the major causes of morbidity in T2DM, strongly influencing the evolution and prognosis of these patients. In the last 2 decades, several studies have been conducted to identify the possible genetic susceptibility factors involved in the pathogenesis of the disease. However, there is little data related to the involvement of vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) gene polymorphisms in the T2DM Caucasian population. The objective of this study was to identify a possible connection between NOS2A -954G/C (rs2297518) and VEGF +936C/T (rs3025039) polymorphisms and the risk of developing T2DM and nonproliferative diabetic retinopathy in a Caucasian population group. We investigated 200 patients diagnosed with T2DM and 208 controls. Genotypes were determined by multiplex polymerase chain reaction-restriction fragment length polymorphism. Statistical and comparative analyses (Fisher's exact test) for dominant and recessive models of NOS2A -954G/C and VEGF +936C/T polymorphisms revealed an increased risk of T2DM (χ (2)=8.14, phi =0.141, P=0.004, odds ratio [OR] =2.795, 95% confidence interval [CI] =1.347-5.801; χ (2)=18.814, phi =0.215, P<0.001, OR =2.59, 95% CI =1.675-4.006, respectively). Also, comparative analysis for the recessive model (using Pearson's chi-square test [χ (2)] and the phi coefficient [phi]) reveals that the variant CC genotype of NOS2A gene is more frequently associated with T2DM without retinopathy (χ (2)=3.835, phi =-0.138, P=0.05, OR =0.447, 95% CI =0.197-1.015). In conclusion, the results of the study place VEGF +936C/T polymorphisms among the genetic risk factor for T2DM, whereas NOS2A -954G/C polymorphisms act like a protective individual factor for nonproliferative retinopathy.

  17. The role of NOS2A −954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management

    PubMed Central

    Porojan, Mihai Dumitru; Cătană, Andreea; Popp, Radu A; Dumitrascu, Dan L; Bala, Cornelia

    2015-01-01

    Type 2 diabetes mellitus (T2DM) remains one of the major health problems in Europe. Retinopathy is one of the major causes of morbidity in T2DM, strongly influencing the evolution and prognosis of these patients. In the last 2 decades, several studies have been conducted to identify the possible genetic susceptibility factors involved in the pathogenesis of the disease. However, there is little data related to the involvement of vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) gene polymorphisms in the T2DM Caucasian population. The objective of this study was to identify a possible connection between NOS2A −954G/C (rs2297518) and VEGF +936C/T (rs3025039) polymorphisms and the risk of developing T2DM and nonproliferative diabetic retinopathy in a Caucasian population group. We investigated 200 patients diagnosed with T2DM and 208 controls. Genotypes were determined by multiplex polymerase chain reaction-restriction fragment length polymorphism. Statistical and comparative analyses (Fisher’s exact test) for dominant and recessive models of NOS2A −954G/C and VEGF +936C/T polymorphisms revealed an increased risk of T2DM (χ2=8.14, phi =0.141, P=0.004, odds ratio [OR] =2.795, 95% confidence interval [CI] =1.347–5.801; χ2=18.814, phi =0.215, P<0.001, OR =2.59, 95% CI =1.675–4.006, respectively). Also, comparative analysis for the recessive model (using Pearson’s chi-square test [χ2] and the phi coefficient [phi]) reveals that the variant CC genotype of NOS2A gene is more frequently associated with T2DM without retinopathy (χ2=3.835, phi =−0.138, P=0.05, OR =0.447, 95% CI =0.197–1.015). In conclusion, the results of the study place VEGF +936C/T polymorphisms among the genetic risk factor for T2DM, whereas NOS2A −954G/C polymorphisms act like a protective individual factor for nonproliferative retinopathy. PMID:26664124

  18. SIRT1 Gene Polymorphisms Affect the Protein Expression in Cardiovascular Diseases

    PubMed Central

    Kilic, Ulkan; Gok, Ozlem; Bacaksiz, Ahmet; Izmirli, Muzeyyen; Elibol-Can, Birsen; Uysal, Omer

    2014-01-01

    Cardiovascular disease (CVD), the leading cause of death worldwide, is related to gene-environment interactions due to epigenetic factors. SIRT1 protein and its downstream pathways are critical for both normal homeostasis and protection from CVD-induced defects. The aim of this study was to investigate the association between SIRT1 single nucleotide polymorphisms (SNPs) (rs7895833 A>G in the promoter region, rs7069102 C>G in intron 4 and rs2273773 C>T in exon 5 silent mutation) and SIRT1 and eNOS (endothelial nitric oxide synthase) protein expression as well as total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) in CVD patients as compared to controls. The frequencies of mutant genotypes and alleles for rs7069102 and rs2273773 were significantly higher in patients with CVD compared to control group. The risk for CVD was increased by 2.4 times for rs7069102 and 1.9 times for rs2273773 in carriers of mutant allele compared with carriers of wild-type allele pointing the protective role of C allele for both SNPs against CVD. For rs7895833, there was no significant difference in genotype and allele distributions between groups. SIRT1 protein, TAS, TOS and OSI levels significantly increased in patients as compared to control group. In contrast, level of eNOS protein was considerably low in the CVD patients. An increase in the SIRT1 expression in the CVD patients carrying mutant genotype for rs7069102 and heterozygote genotype for all three SNPs was observed. This is the first study reporting an association between SIRT1 gene polymorphisms and the levels of SIRT1 and eNOS expressions as well as TAS, TOS and OSI. PMID:24587358

  19. Null Mutation of the MdACS3 Gene, Coding for a Ripening-Specific 1-Aminocyclopropane-1-Carboxylate Synthase, Leads to Long Shelf Life in Apple Fruit1[W][OA

    PubMed Central

    Wang, Aide; Yamakake, Junko; Kudo, Hisayuki; Wakasa, Yuhya; Hatsuyama, Yoshimichi; Igarashi, Megumi; Kasai, Atsushi; Li, Tianzhong; Harada, Takeo

    2009-01-01

    Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5′ flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 → valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit. PMID:19587104

  20. Variable association of reactive intermediate genes with systemic lupus erythematosus in populations with different African ancestry.

    PubMed

    Ramos, Paula S; Oates, James C; Kamen, Diane L; Williams, Adrienne H; Gaffney, Patrick M; Kelly, Jennifer A; Kaufman, Kenneth M; Kimberly, Robert P; Niewold, Timothy B; Jacob, Chaim O; Tsao, Betty P; Alarcón, Graciela S; Brown, Elizabeth E; Edberg, Jeffrey C; Petri, Michelle A; Ramsey-Goldman, Rosalind; Reveille, John D; Vilá, Luis M; James, Judith A; Guthridge, Joel M; Merrill, Joan T; Boackle, Susan A; Freedman, Barry I; Scofield, R Hal; Stevens, Anne M; Vyse, Timothy J; Criswell, Lindsey A; Moser, Kathy L; Alarcón-Riquelme, Marta E; Langefeld, Carl D; Harley, John B; Gilkeson, Gary S

    2013-06-01

    Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate-related genes biological candidates for disease susceptibility. We analyzed variation in reactive intermediate genes for association with SLE in 2 populations with African ancestry. A total of 244 single-nucleotide polymorphisms (SNP) from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls). Single-marker, haplotype, and 2-locus interaction tests were computed for these populations. The glutathione reductase gene GSR (rs2253409; p = 0.0014, OR 1.26, 95% CI 1.09-1.44) was the most significant single SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575; p = 0.0065, OR 2.10, 95% CI 1.23-3.59) and NO synthase gene NOS1 (rs561712; p = 0.0072, OR 0.62, 95% CI 0.44-0.88) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409; p = 0.00072, OR 1.26, 95% CI 1.10-1.44). Haplotype and 2-locus interaction analyses also uncovered different loci in each population. These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.

  1. Gastric cancer is associated with NOS2 -954G/C polymorphism and environmental factors in a Brazilian population

    PubMed Central

    2010-01-01

    Background Gastric cancer can progress from a chronic inflammation of the gastric mucosa resulting from Helicobacter pylori infection that activates the inflammatory response of the host. Therefore, polymorphisms in genes involved in the inflammatory response, such as inducible nitric oxide synthase (NOS2), have been implicated in gastric carcinogenesis. The aim of this study was to evaluate the association of NOS2 polymorphisms Ser608Leu (rs2297518) in exon 16, -954G/C and -1173C/T, both in the promoter region, with gastric cancer and chronic gastritis and the association of cancer with risk factors such as smoking, alcohol intake and H. pylori infection. Methods We conducted a population-based case-control study in 474 Southeast Brazilian individuals (150 with gastric cancer, 160 with chronic gastritis, and 164 healthy individuals), in which we performed NOS2 genotyping by PCR-RFLP. Results SNP Ser608Leu was not associated with risk of chronic gastritis or gastric cancer. The polymorphic allele -1173T was not found in the studied population. However, the frequency of -954GC+CC genotypes was significantly higher (p < 0.01) in the cancer group (48.7%) than in both the gastritis (28.1%) and the control (29.9%) groups. Multivariate logistic regression showed that the NOS2 SNP -954G/C was associated with higher risk of gastric cancer (OR = 1.87; 95% CI = 1.12-3.13). We also observed an association with risk factors such as smoking and alcohol intake in both the gastric cancer (OR = 2.68; 95% CI = 1.58-4.53; OR = 3.60; 95% CI = 2.05-6.32, respectively) and the chronic gastritis (OR = 1.93; 95% CI = 1.19-3.13; OR = 2.79; 95% CI = 1.55-5.02, respectively) groups. This is the first report of increased risk of gastric cancer in association with the -954G/C polymorphism. These findings show that several polymorphisms in the promoter region of the NOS2 gene may contribute to the susceptibility to gastric cancer. Conclusions Polymorphism NOS2 -954 G/C, along with alcohol intake and tobacco smoking, is associated with gastric cancer. However, the NOS2 Ser608Leu polymorphism was not associated with gastric carcinogenesis. The NOS2 -1173C/T polymorphism was absent in the studied population. PMID:20565800

  2. Evolution of Homospermidine Synthase in the Convolvulaceae: A Story of Gene Duplication, Gene Loss, and Periods of Various Selection Pressures[C][W][OA

    PubMed Central

    Kaltenegger, Elisabeth; Eich, Eckart; Ober, Dietrich

    2013-01-01

    Homospermidine synthase (HSS), the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, is known to have its origin in the duplication of a gene encoding deoxyhypusine synthase. To study the processes that followed this gene duplication event and gave rise to HSS, we identified sequences encoding HSS and deoxyhypusine synthase from various species of the Convolvulaceae. We show that HSS evolved only once in this lineage. This duplication event was followed by several losses of a functional gene copy attributable to gene loss or pseudogenization. Statistical analyses of sequence data suggest that, in those lineages in which the gene copy was successfully recruited as HSS, the gene duplication event was followed by phases of various selection pressures, including purifying selection, relaxed functional constraints, and possibly positive Darwinian selection. Site-specific mutagenesis experiments have confirmed that the substitution of sites predicted to be under positive Darwinian selection is sufficient to convert a deoxyhypusine synthase into a HSS. In addition, analyses of transcript levels have shown that HSS and deoxyhypusine synthase have also diverged with respect to their regulation. The impact of protein–protein interaction on the evolution of HSS is discussed with respect to current models of enzyme evolution. PMID:23572540

  3. Role of Key TYMS Polymorphisms on Methotrexate Therapeutic Outcome in Portuguese Rheumatoid Arthritis Patients

    PubMed Central

    Lima, Aurea; Seabra, Vítor; Bernardes, Miguel; Azevedo, Rita; Sousa, Hugo; Medeiros, Rui

    2014-01-01

    Background Therapeutic outcome of rheumatoid arthritis (RA) patients treated with methotrexate (MTX) can be modulated by thymidylate synthase (TS) levels, which may be altered by genetic polymorphisms in TS gene (TYMS). This study aims to elucidate the influence of TYMS polymorphisms in MTX therapeutic outcome (regarding both clinical response and toxicity) in Portuguese RA patients. Methods Clinicopathological data from 233 Caucasian RA patients treated with MTX were collected, outcomes were defined and patients were genotyped for the following TYMS polymorphisms: 1) 28 base pairs (bp) variable number tandem repeat (rs34743033); 2) single nucleotide polymorphism C>G (rs2853542); and 3) 6 bp sequence deletion (1494del6, rs34489327). Chi-square and binary logistic regression analyses were performed, using genotype and haplotype-based approaches. Results Considering TYMS genotypes, 3R3R (p = 0.005, OR = 2.34), 3RC3RG (p = 0.016, OR = 3.52) and 6bp− carriers (p = 0.011, OR = 1.96) were associated with non-response to MTX. Multivariate analysis confirmed the increased risk for non-response to MTX in 6bp− carriers (p = 0.016, OR = 2.74). Data demonstrated that TYMS polymorphisms were in linkage disequilibrium (p<0.00001). Haplotype multivariate analysis revealed that haplotypes harboring both 3R and 6bp− alleles were associated with non-response to MTX. Regarding MTX-related toxicity, no statistically significant differences were observed in relation to TYMS genotypes and haplotypes. Conclusion Our study reveals that TYMS polymorphisms could be important to help predicting clinical response to MTX in RA patients. Despite the potential of these findings, translation into clinical practice needs larger studies to confirm these evidences. PMID:25279663

  4. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide access to this chemodiversity for the discovery and synthesis of molecules with new bioactivities. The identification and successful cloning of the previously elusive hirsutene synthase from the S. hirsutum provide important insights and strategies for biosynthetic gene discovery in Basidiomycota. The finding of a terpene synthase-HMGS fusion, the discovery of other sesquiterpenoid biosynthetic gene clusters with dedicated HMGS genes, and HMGS gene duplications in fungal genomes give new importance to the role of HMGS as a key regulatory enzyme in isoprenoid and sterol biosynthesis that should be exploited for metabolic engineering. Copyright © 2018 American Society for Microbiology.

  5. Genes for elite power and sprint performance: ACTN3 leads the way.

    PubMed

    Eynon, Nir; Hanson, Erik D; Lucia, Alejandro; Houweling, Peter J; Garton, Fleur; North, Kathryn N; Bishop, David J

    2013-09-01

    The ability of skeletal muscles to produce force at a high velocity, which is crucial for success in power and sprint performance, is strongly influenced by genetics and without the appropriate genetic make-up, an individual reduces his/her chances of becoming an exceptional power or sprinter athlete. Several genetic variants (i.e. polymorphisms) have been associated with elite power and sprint performance in the last few years and the current paradigm is that elite performance is a polygenic trait, with minor contributions of each variant to the unique athletic phenotype. The purpose of this review is to summarize the specific knowledge in the field of genetics and elite power performance, and to provide some future directions for research in this field. Of the polymorphisms associated with elite power and sprint performance, the α-actinin-3 R577X polymorphism provides the most consistent results. ACTN3 is the only gene that shows a genotype and performance association across multiple cohorts of elite power athletes, and this association is strongly supported by mechanistic data from an Actn3 knockout mouse model. The angiotensin-1 converting enzyme insertion/deletion polymorphism (ACE I/D, registered single nucleotide polymorphism [rs]4646994), angiotensinogen (AGT Met235Thr rs699), skeletal adenosine monophosphate deaminase (AMPD1) Gln(Q)12Ter(X) [also termed C34T, rs17602729], interleukin-6 (IL-6 -174 G/C, rs1800795), endothelial nitric oxide synthase 3 (NOS3 -786 T/C, rs2070744; and Glu298Asp, rs1799983), peroxisome proliferator-activated receptor-α (PPARA Intron 7 G/C, rs4253778), and mitochondrial uncoupling protein 2 (UCP2 Ala55Val, rs660339) polymorphisms have also been associated with elite power performance, but the findings are less consistent. In general, research into the genetics of athletic performance is limited by a small sample size in individual studies and the heterogeneity of study samples, often including athletes from multiple-difference sporting disciplines. In the future, large, homogeneous, strictly defined elite power athlete cohorts need to be established though multinational collaboration, so that meaningful genome-wide association studies can be performed. Such an approach would provide unbiased identification of potential genes that influence elite athletic performance.

  6. Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder.

    PubMed

    Inkster, Becky; Nichols, Thomas E; Saemann, Philipp G; Auer, Dorothee P; Holsboer, Florian; Muglia, Pierandrea; Matthews, Paul M

    2009-07-01

    Indirect evidence suggests that the glycogen synthase kinase-3beta (GSK3beta) gene might be implicated in major depressive disorder (MDD). We evaluated 15 GSK3beta single-nucleotide polymorphisms (SNPs) to test for associations with regional gray matter (GM) volume differences in patients with recurrent MDD. We then used the defined regions of interest based on significant associations to test for MDD x genotype interactions by including a matched control group without any psychiatric disorder, including MDD. General linear model with nonstationary cluster-based inference. Munich, Germany. Patients with recurrent MDD (n = 134) and age-, sex-, and ethnicity-matched healthy controls (n = 143). Associations between GSK3beta polymorphisms and regional GM volume differences. Variation in GM volume was associated with GSK3beta polymorphisms; the most significant associations were found for rs6438552, a putative functional intronic SNP that showed 3 significant GM clusters in the right and left superior temporal gyri and the right hippocampus (P < .001, P = .02, and P = .02, respectively, corrected for multiple comparisons across the whole brain). Similar results were obtained with rs12630592, an SNP in high linkage disequilibrium. A significant SNP x MDD status interaction was observed for the effect on GM volumes in the right hippocampus and superior temporal gyri (P < .001 and P = .01, corrected, respectively). The GSK3beta gene may have a role in determining regional GM volume differences of the right hippocampus and bilateral superior temporal gyri. The association between genotype and brain structure was specific to the patients with MDD, suggesting that GSK3beta genotypes might interact with MDD status. We speculate that this is a consequence of regional neocortical, glial, or neuronal growth or survival. In considering core cognitive features of MDD, the association of GSK3beta polymorphisms with structural variation in the temporal lobe and hippocampus is of particular interest in the context of other evidence for structural and functional abnormalities in the hippocampi of patients with MDD.

  7. Distribution of Mutations Associated with Antifolate and Chloroquine Resistance among Imported Plasmodium vivax in the State of Qatar.

    PubMed

    Bansal, Devendra; Acharya, Anushree; Bharti, Praveen K; Abdelraheem, Mohamed H; Elmalik, Ashraf; Abosalah, Salem; Khan, Fahmi Y; ElKhalifa, Mohamed; Kaur, Hargobinder; Mohapatra, Pradyumna K; Sehgal, Rakesh; Idris, Mohammed A; Mahanta, Jagadish; Singh, Neeru; Babiker, Hamza A; Sultan, Ali A

    2017-12-01

    Plasmodium vivax is the most prevalent parasite worldwide, escalating by spread of drug resistance. Currently, in Qatar, chloroquine (CQ) plus primaquine are recommended for the treatment of P. vivax malaria. The present study examined the prevalence of mutations in dihydrofolate reductase ( dhfr ), dihydropteroate synthase ( dhps ) genes and CQ resistance transporter ( crt-o ) genes, associated with sulphadoxine-pyrimethamine (SP) and chloroquine resistance, among imported P. vivax cases in Qatar. Blood samples were collected from patients positive for P. vivax and seeking medical treatment at Hamad General Hospital, Doha, during 2013-2016. The Sanger sequencing method was performed to examine the single nucleotide polymorphisms in Pvdhfr , Pvdhps , and Pvcrt-o genes. Of 314 examined P. vivax isolates, 247 (78.7%), 294 (93.6%) and 261 (83.1%) were successfully amplified and sequenced for Pvdhfr , Pvdhps , and Pvcrt-o , respectively. Overall, 53.8% ( N = 133) carried mutant alleles (58R/117N) in Pvdhfr , whereas 77.2% ( N = 227) and 90% ( N = 235) isolates possessed wild type allele in Pvdhps and Pvcrt-o genes, respectively. In addition, a total of eleven distinct haplotypes were detected in Pvdhfr / Pvdhps genes. Interestingly, K10 insertion in the Pvcrt-o gene was observed only in patients originating from the Indian subcontinent. The results suggested that CQ remains an acceptable treatment regimen but further clinical data are required to assess the effectiveness of CQ and SP in Qatar to support the current national treatment guidelines. In addition, limited distribution of genetic polymorphisms associated with CQ and SP resistance observed in imported P. vivax infections, necessitates regular monitoring of drug resistant P. vivax malaria in Qatar.

  8. PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes.

    PubMed

    Wang, H-X; Chen, Y-Y; Ge, L; Fang, T-T; Meng, J; Liu, Z; Fang, X-Y; Ni, S; Lin, C; Wu, Y-Y; Wang, M-L; Shi, N-N; He, H-G; Hong, K; Shen, Y-M

    2013-07-01

    Ansamycins are a family of macrolactams that are synthesized by type I polyketide synthase (PKS) using 3-amino-5-hydroxybenzoic acid (AHBA) as the starter unit. Most members of the family have strong antimicrobial, antifungal, anticancer and/or antiviral activities. We aimed to discover new ansamycins and/or other AHBA-containing natural products from actinobacteria. Through PCR screening of AHBA synthase gene, we identified 26 AHBA synthase gene-positive strains from 206 plant-associated actinomycetes (five positives) and 688 marine-derived actinomycetes (21 positives), representing a positive ratio of 2·4-3·1%. Twenty-five ansamycins, including eight new compounds, were isolated from six AHBA synthase gene-positive strains through TLC-guided fractionations followed by repeated column chromatography. To gain information about those potential ansamycin gene clusters whose products were unknown, seven strains with phylogenetically divergent AHBA synthase genes were subjected to fosmid library construction. Of the seven gene clusters we obtained, three show characteristics for typical ansamycin gene clusters, and other four, from Micromonospora spp., appear to lack the amide synthase gene, which is unusual for ansamycin biosynthesis. The gene composition of these four gene clusters suggests that they are involved in the biosynthesis of a new family of hybrid PK-NRP compounds containing AHBA substructure. PCR screening of AHBA synthase is an efficient approach to discover novel ansamycins and other AHBA-containing natural products. This work demonstrates that the AHBA-based screening method is a useful approach for discovering novel ansamycins and other AHBA-containing natural products from new microbial resources. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  9. Polyketides, toxins and pigments in Penicillium marneffei.

    PubMed

    Tam, Emily W T; Tsang, Chi-Ching; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-30

    Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus.

  10. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  11. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  12. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    PubMed

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  13. Effects of atorvastatin and T-786C polymorphism of eNOS gene on plasma metabolic lipid parameters.

    PubMed

    Zago, Vanessa Helena de Souza; Santos, José Eduardo Tanus dos; Danelon, Mirian Regina Gardin; Silva, Roger Marcelo Mesquita da; Panzoldo, Natália Baratella; Parra, Eliane Soler; Alexandre, Fernanda; Virgínio, Vítor Wilson de Moura; Quintão, Eder Carlos Rocha; Faria, Eliana Cotta de

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) activity may be modulated by high-density lipoprotein cholesterol (HDL-C), statins or polymorphisms, such as the T-786C of eNOS. This study aimed at evaluating if the T-786C polymorphism is associated with changes of atorvastatin effects on the lipid profile, on the concentrations of metabolites of nitric oxide (NO) and of high sensitivity C-reactive protein (hsCRP). Thirty male volunteers, asymptomatic, aged between 18 and 56 years were genotyped and classified according to absence (TT, n = 15) or presence (CC, n = 15) of the polymorphism. They were randomly selected for the use of placebo or atorvastatin (10 mg/day/14 days). After each treatment lipids, lipoproteins, HDL2 and HDL3 composition, cholesteryl ester transfer protein (CETP) activity, metabolites of NO and hsCRP were evaluated. The comparisons between genotypes after placebo showed an increase in CETP activity in a polymorphism-dependent way (TT, 12±7; CC, 22±12; p < 0.05). The interaction analyses between treatments indicated that atorvastatin has an effect on cholesterol, LDL, nitrite and lipid-protein ratios (HDL2 and HDL3) (p < 0.001) in both genotypes. Interestingly, we observed genotype/drug interactions on CETP (p < 0.07) and lipoprotein (a) (Lp(a)) (p < 0.056), leading to a borderline decrease in CETP, but with no effect on Lp(a). HsCRP showed no alteration. These results suggest that statin treatment may be relevant for primary prevention of atherosclerosis in patients with the T-786C polymorphism of eNOS, considering the effects on lipid metabolism.

  14. Three 1-Aminocyclopropane-1-Carboxylate Synthase Genes Regulated by Primary and Secondary Pollination Signals in Orchid Flowers1

    PubMed Central

    Bui, Anhthu Q.; Neill, Sharman D. O'

    1998-01-01

    The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals. PMID:9449850

  15. Association of Nitric Oxide Levels and Endothelial Nitric Oxide Synthase G894T Polymorphism with Coronary Artery Disease in the Iranian Population

    PubMed Central

    Mahmoodi, Khalil; Nasehi, Leila; Karami, Elham; Soltanpour, Mohammad Soleiman

    2016-01-01

    Purpose: The endothelial nitric oxide synthase (eNOS) G894T polymorphism has been reported to cause endothelial dysfunction and may have a role in the development of coronary artery disease (CAD). The aim of the present study was to investigate the association of eNOS G894T genetic polymorphism and plasma levels of nitric oxide (NO) with CAD risk in an Iranian population. Materials and Methods: We studied 200 patients with angiographically documented CAD and 100 matched controls. Analysis of G894T genetic polymorphism of eNOS was performed by polymerase chain reaction-restriction fragment length polymorphism method. Plasma levels of NO were determined using Griess method. Biochemical analysis was conducted by routine colorimetric methods. Results: Plasma levels of NO were significantly lower in CAD patients than control subjects (41.60±12.70 vs. 55.48±16.57, P=0.001). Also, the mean plasma levels of NO were significantly lower in T allele carriers of eNOS G894T polymorphism than G allele carriers (P<0.001). The genotype distribution and minor T allele frequency of eNOS G894T polymorphism significantly differed between CAD patients and control subjects (P<0.05). However, no significant association was found between the eNOS G894T polymorphism and the severity of CAD (number of diseased vessel) or the lipid profile of CAD patients (P>0.05). Conclusion: Reduced plasma level of NO is associated with increased risk of CAD in our population. Moreover, eNOS G894T polymorphism is a significant risk factor for CAD development via reducing the plasma levels of NO. However, eNOS G894T polymorphism is not a contributing factor for the severity of CAD. PMID:27699157

  16. [Association between GSK3β polymorphisms and the smoking habits in young Japanese].

    PubMed

    Nagahori, Kenta; Iwahashi, Kazuhiko; Narita, Shin; Numajiri, Maki; Yoshihara, Eiji; Nishizawa, Daisuke; Ikeda, Kazutaka; Ishigooka, Jun

    2015-06-01

    Schizophrenia and bipolar disorder show high comorbidity with smoking dependence. Several previous studies reported that glycogen synthase kinase 3β (GSK3β), which is widely expressed in the brain including the dopamine projection areas such as the amygdala, nucleus accumbens and hippocampus, may play a role in neuropsychiatric disorders and dopamine- and serotonin-mediated behavior. In this study, we have analyzed the association of three single nucleotide polymorphisms (SNPs) within GSK3β gene (rs3755557, rs334558, rs6438552) with the smoking habits and age at smoking initiation in a sample of 384 young adult Japanese, which included 172 smokers and 212 non-smokers. As a result, rs334558 was significantly associated with smoking habits in genotype frequency and allelic frequency (P < 0.05). Furthermore, higher haplotype 3 (T-T-T) and haplotype 5 (A-T-C) frequencies were observed in non-smokers than smokers (P < 0.05). Three functional polymorphisms examined in this study reportedly increase transcriptional activity when they have a high-activation allele such as the A allele of -1727A/T (rs3755557), the T allele of -50T/C (rs334558) or T allele of -157T/C (rs6438552). Thus, it was suggested in this study that changes in GSK3β activity may have an impact on smoking habits.

  17. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp.)

    PubMed Central

    Zhang, Liwu; Li, Yanru; Tao, Aifen; Fang, Pingping; Qi, Jianmin

    2015-01-01

    Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively). The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute. PMID:26512891

  18. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.

    PubMed

    Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi

    2016-07-01

    To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.

  19. Insights into the Prostanoid Pathway in the Ovary Development of the Penaeid Shrimp Penaeus monodon

    PubMed Central

    Wimuttisuk, Wananit; Tobwor, Punsa; Deenarn, Pacharawan; Danwisetkanjana, Kannawat; Pinkaew, Decha; Kirtikara, Kanyawim; Vichai, Vanicha

    2013-01-01

    The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development. PMID:24116186

  20. Biochemical characterization of microbial type terpene synthases in two closely related species of hornworts, Anthoceros punctatus and Anthoceros agrestis.

    PubMed

    Xiong, Wangdan; Fu, Jianyu; Köllner, Tobias G; Chen, Xinlu; Jia, Qidong; Guo, Haobo; Qian, Ping; Guo, Hong; Wu, Guojiang; Chen, Feng

    2018-05-01

    Microbial terpene synthase-like (MTPSL) genes are a type of terpene synthase genes only recently identified in plants. In contrast to typical plant terpene synthase genes, which are ubiquitous in land plants, MTPSL genes appear to occur only in nonseed plants. Our knowledge of catalytic functions of MTPSLs is very limited. Here we report biochemical characterization of the enzymes encoded by MTPSL genes from two closely related species of hornworts, Anthoceros punctatus and Anthoceros agrestis. Seven full-length MTPSL genes were identified in A. punctatus (ApMTPSL1-7) based on the analysis of its genome sequence. Using homology-based cloning, the apparent orthologs for six of the ApMTPSL genes, except ApMTPSL2, were cloned from A. agrestis. They were designated AaMTPSL1, 3-7. The coding sequences for each of the 13 Anthoceros MTPSL genes were cloned into a protein expression vector. Escherichia coli-expressed recombinant MTPSLs from hornworts were assayed for terpene synthase activities. Six ApMTPSLs and five AaMTPSLs, except for ApMTPSL5 and AaMTPSL5, showed catalytic activities with one or more isoprenyl diphosphate substrates. All functional MTPSLs exhibited sesquiterpene synthase activities. In contrast, only ApMTPSL7 and AaMTPSL7 showed monoterpene synthase activity and only ApMTPSL2, ApMTPSL6 and AaMTPSL6 showed diterpene synthase activity. Most MTPSLs from Anthoceros contain uncanonical aspartate-rich motif in the form of either 'DDxxxD' or 'DDxxx'. Homology-based structural modeling analysis of ApMTPSL1 and ApMTPSL7, which contain 'DDxxxD' and 'DDxxx' motif, respectively, showed that 'DDxxxD' and 'DDxxx' motifs are localized in the similar positions as the canonical 'DDxxD' motif in known terpene synthases. To further understand the role of individual aspartate residues in the motifs, ApMTPSL1 and ApMTPSL7 were selected as two representatives for site-directed mutagenesis studies. No activities were detected when any of the conserved aspartic acid was mutated into alanine. This study provides new information about the catalytic functions of MTPSLs and the functionality of their uncanonical aspartate-rich motifs, and builds a knowledge base for studying the biological importance of MTPSL genes and their terpene products in nonseed plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens.

    PubMed

    Kaplan, J B; Merkel, W K; Nichols, B P

    1985-06-05

    The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.

  2. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  3. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  4. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer.

    PubMed

    Hyun, C; Kim, S S; Sohng, J K; Hahn, J; Kim, J; Suh, J

    2000-02-01

    Specifically designed PCR primers were applied to amplify a segment of dTDP-glucose synthase gene from six actinomycete strains. About 300-bp or 580-bp DNA fragments were obtained from all the organisms tested. By DNA sequence analysis, seven amplified fragments showed high homology with dTDP-glucose synthase genes that participate in the biosynthesis of secondary metabolites or in deoxy-sugar moieties in lipopolysaccharides. In addition, we have cloned a 45-kb region of DNA from Streptomyces spectabilis ATCC27741, a spectinomycin producer which contained the dTDP-glucose synthase and dTDP-glucose 4,6-dehydratase genes named spcD and spcE, respectively. The spcE gene was expressed in Escherichia coli and the activity was assayed in cell extracts. The enzyme showed substrate specificity only to dTDP-glucose.

  5. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis.

    PubMed

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-07-01

    Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population. These data circumscribe the influence of these polymorphisms in the clinical outcome of 5-FU and question their use for establishing 5-FU dosage, above all when additional genetic factors are not considered.

  6. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  7. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp; Matsuzaki, Masahiro; Kanazawa, Shiho

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that themore » production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with any of the typical substrates of B′-MTs. It was concluded that CTgSs have strict substrate specificity. The K{sub m} values of CTgS1 and CTgS2 were 121 and 184 μM with nicotinic acid as a substrate, and 68 and 120 μM with S-adenosyl-L-methionine as a substrate, respectively.« less

  8. Identification of genes associated with low furanocoumarin content in grapefruit.

    PubMed

    Chen, Chunxian; Yu, Qibin; Wei, Xu; Cancalon, Paul F; Gmitter, Fred G

    2014-10-01

    Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of fruit tissues was performed to identify the candidate gene(s) likely associated with low furanocoumarin content in grapefruit. Fifteen tentative differentially expressed fragments were cloned through the cDNA-AFLP analysis of the grapefruit variety Foster and its spontaneous low-furanocoumarin mutant Low Acid Foster. Sequence analysis revealed a cDNA-AFLP fragment, Contig 6, was homologous to a substrate-proved psoralen synthase gene, CYP71A22, and was part of citrus unigenes Cit.3003 and Csi.1332, and predicted genes Ciclev10004717m in mandarin and orange1.1g041507m in sweet orange. The two predicted genes contained the highly conserved motifs at one of the substrate recognition sites of CYP71A22. Digital gene expression profile showed the unigenes were expressed only in fruit and seed. Quantitative real-time PCR also proved Contig 6 was down-regulated in Low Acid Foster. These results showed the differentially expressed Contig 6 was related to the reduced furanocoumarin levels in the mutant. The identified fragment, homologs, unigenes, and genes may facilitate further furanocoumarin genetic study and grapefruit variety improvement.

  9. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches' broom disease of cacao.

    PubMed

    Souza, Catiane S; Oliveira, Bruno M; Costa, Gustavo G L; Schriefer, Albert; Selbach-Schnadelbach, Alessandra; Uetanabaro, Ana Paula T; Pirovani, Carlos P; Pereira, Gonçalo A G; Taranto, Alex G; Cascardo, Júlio Cézar de M; Góes-Neto, Aristóteles

    2009-08-01

    Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.

  10. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    PubMed

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.

  11. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    PubMed Central

    2011-01-01

    Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras. PMID:22183028

  12. Angiotensin converting enzyme gene polymorphism is associated with severity of coronary artery disease in men with high total cholesterol levels.

    PubMed

    Borzyszkowska, Joanna; Stanislawska-Sachadyn, Anna; Wirtwein, Marcin; Sobiczewski, Wojciech; Ciecwierz, Dariusz; Targonski, Radoslaw; Gruchala, Marcin; Rynkiewicz, Andrzej; Limon, Janusz

    2012-05-01

    This study examines whether renin-angiotensin-aldosterone system gene polymorphisms: ACE (encoding for angiotensin converting enzyme) c.2306-117_404 I/D, AGTR1 (encoding for angiotensin II type-1 receptor) c.1080*86A>C and CYP11B2 (encoding for aldosterone synthase) c.-344C>T are associated with the extension of coronary atherosclerosis in a group of 647 patients who underwent elective coronary angiography. The extension of CAD was evaluated using the Gensini score. The polymorphisms were determined by PCR and RFLP assays. The associations between genotypes and the extent of coronary atherosclerosis were tested by the Kruskal-Wallis test, followed by pairwise comparisons using Wilcoxon test. The population has been divided into groups defined by: sex, smoking habit, past myocardial infarction, BMI (>, ≤ 25), age (>, ≤ 55), diabetes mellitus, level of total cholesterol (>, ≤ 200 mg/dl), LDL cholesterol (>, ≤ 130 mg/dl), HDL cholesterol (>, ≤ 40 mg/dl), triglycerides (>, ≤ 150 mg/dl). Significant associations between the ACE c.2306-117_404 I/D polymorphism and the Gensini score in men with high total cholesterol levels (P(Kruskal-Wallis) = 0.008; P(adjusted) = 0.009), high level of LDL cholesterol (P(Kruskal-Wallis) = 0.016; P(adjusted) = 0.028) and low level of HDL cholesterol (P(Kruskal-Wallis) = 0.04; P(adjusted) = 0.055) have been found. No association between the AGTR1 c.1080*86A>C and CYP11B2 c.-344C>T and the Gensini score has been found. These results suggest that men who carry ACE c.2306-117_404 DD genotype and have high total cholesterol, high LDL cholesterol and low HDL cholesterol levels may be predisposed to the development of more severe CAD.

  13. Pathogenicity and phenotypic sulfadiazine resistance ofToxoplasma gondii isolates obtained from livestock in northeastern Brazil

    PubMed Central

    Oliveira, Claudio BS; Meurer, Ywlliane SR; Andrade, Joelma MA; Costa, Maria ESM; Andrade, Milena MC; Silva, Letícia A; Lanza, Daniel CF; Vítor, Ricardo WA; Andrade-Neto, Valter F

    2016-01-01

    Toxoplasma gondii is the causative protozoan agent of toxoplasmosis, which is a common infection that is widely distributed worldwide. Studies revealed stronger clonal strains in North America and Europe and genetic diversity in South American strains. Our study aimed to differentiate the pathogenicity and sulfadiazine resistance of three T. gondiiisolates obtained from livestock intended for human consumption. The cytopathic effects of the T. gondii isolates were evaluated. The pathogenicity was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using a CS3 marker and in a rodent model in vivo. Phenotypic sulfadiazine resistance was measured using a kinetic curve of drug activity in Swiss mice. IgM and IgG were measured by ELISA, and the dihydropteroate synthase (DHPS) gene sequence was analysed. The cytopathic effects and the PCR-RFLP profiles from chickens indicated a different infection source. The Ck3 isolate displayed more cytopathic effects in vitro than the Ck2 and ME49 strains. Additionally, the Ck2 isolate induced a differential humoral immune response compared to ME49. The Ck3 and Pg1 isolates, but not the Ck2 isolate, showed sulfadiazine resistance in the sensitivity assay. We did not find any DHPS gene polymorphisms in the mouse samples. These atypical pathogenicity and sulfadiazine resistance profiles were not previously reported and served as a warning to local health authorities. PMID:27276184

  14. Pathogenicity and phenotypic sulfadiazine resistance of Toxoplasma gondii isolates obtained from livestock in northeastern Brazil.

    PubMed

    Oliveira, Claudio Bs; Meurer, Ywlliane Sr; Andrade, Joelma Ma; Costa, Maria Esm; Andrade, Milena Mc; Silva, Letícia A; Lanza, Daniel Cf; Vítor, Ricardo Wa; Andrade-Neto, Valter F

    2016-06-03

    Toxoplasma gondii is the causative protozoan agent of toxoplasmosis, which is a common infection that is widely distributed worldwide. Studies revealed stronger clonal strains in North America and Europe and genetic diversity in South American strains. Our study aimed to differentiate the pathogenicity and sulfadiazine resistance of three T. gondii isolates obtained from livestock intended for human consumption. The cytopathic effects of the T. gondii isolates were evaluated. The pathogenicity was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using a CS3 marker and in a rodent model in vivo. Phenotypic sulfadiazine resistance was measured using a kinetic curve of drug activity in Swiss mice. IgM and IgG were measured by ELISA, and the dihydropteroate synthase (DHPS) gene sequence was analysed. The cytopathic effects and the PCR-RFLP profiles from chickens indicated a different infection source. The Ck3 isolate displayed more cytopathic effects in vitro than the Ck2 and ME49 strains. Additionally, the Ck2 isolate induced a differential humoral immune response compared to ME49. The Ck3 and Pg1 isolates, but not the Ck2 isolate, showed sulfadiazine resistance in the sensitivity assay. We did not find any DHPS gene polymorphisms in the mouse samples. These atypical pathogenicity and sulfadiazine resistance profiles were not previously reported and served as a warning to local health authorities.

  15. Association of eNOS polymorphisms with susceptibility to osteonecrosis of the femur head : A meta-analysis.

    PubMed

    Song, G G; Lee, Y H

    2017-04-01

    The aim of the present study was to determine whether polymorphisms of the endothelial nitric oxide synthase (eNOS) gene are associated with susceptibility to osteonecrosis of the femoral head (ONFH). We conducted a meta-analysis to assess the association between the 4b/a, G894T, and T786C polymorphisms of eNOS and the susceptibility to ONFH. A total of five studies, which included 566 cases and 833 controls, were included in the meta-analysis. Meta-analysis revealed a significant association between allele a of the 4b/a polymorphism and ONFH in all study subjects (odds ratio, OR 3.237; 95 % confidence interval, CI 2.036-5.148; P = 6.9 × 10 -7 ); stratification by ethnicity indicated an association between this allele and ONFH in Caucasians and Asians (OR 2.985; 95 % CI 1.592-5.597; P = 0.001 and OR 3.567; 95 % CI 1.793-7.095; P = 2.9 × 10 -4 , respectively). Meta-analysis stratified by ONFH type showed a significant association between allele a of the 4b/a polymorphism and idiopathic and secondary ONFH (OR 3.411; 95 % CI 2.049-5.679; P = 2.4 × 10 -6 and OR 3.163; 95 % CI 1.781-5.619, P = 8.6 × 10  -5 , respectively). However, the meta-analysis did not show any allelic association between the G894T and T786C polymorphisms and ONFH (OR 1.718; 95 % CI 0.796-3.707; P = 0.168 and OR 1.027; 95 % CI 0.191-5.517; P = 0.976, respectively). Our meta-analysis of published studies shows that the 4b/a polymorphism is associated with the development of idiopathic and secondary ONFH in Caucasians and Asians.

  16. Genetic Analysis of Comamonas acidovorans Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer

    PubMed Central

    Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu

    1998-01-01

    The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894

  17. Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins.

    PubMed Central

    Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A

    1993-01-01

    The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280

  18. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells

    PubMed Central

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-01-01

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467

  19. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  20. Association of SLC11A1 with tuberculosis interactions with NOS2A and TLR2 in African-Americans and Caucasians

    PubMed Central

    Velez, D.R.; Hulme, W.F.; Myers, J.L.; Stryjewski, M.E.; Abbate, E.; Estevan, R.; Patillo, S.G.; Gilbert, J.R.; Hamilton, C.D.; Scott, W.K.

    2010-01-01

    SETTING Host defense factors may influence the development of active tuberculosis (TB). OBJECTIVE To test variants in solute carrier family 11A, member 1 (SLC11A1), for an association with TB. METHODS A mixed case-control study of TB cases, relatives or close contact controls, consisting of 474 African-Americans (243 families) and 381 Caucasians (192 families), examined 13 SLC11A1 polymorphisms for association with pulmonary TB using generalized estimating equations adjusting for age and gender. RESULTS Two associations were observed in Caucasians (rs3731863, P = 0.03, and rs17221959, P = 0.04) and one in African-Americans (rs3731865, P = 0.05). Multilocus analyses between polymorphisms in SLC11A1 and 11 TB candidate genes detected interactions between SLC11A1 and inducible nitric oxide synthase (NOS2A) in Caucasians (rs3731863 [SLC11A1] × rs8073782 [NOS2A], P = 0.009; rs3731863 [SLC11A1] × rs17722851 [NOS2A], P = 0.007) and toll-like receptor 2 (TLR2) in African-Americans (rs3731865 [SLC11A1] x rs1816702, P = 0.005). CONCLUSIONS No association was detected with 5′(GT)n promoter polymorphism previously associated with lower SLC11A1 expression, rs17235409 (D543N), or rs17235416 (3′ TGTG insertion/deletion polymorphism). SLC11A1 polymorphism rs3731865 was associated with TB in African-Americans, consistent with previous findings in West Africans. These results suggest that variants in SLC11A1 increase susceptibility to pulmonary TB and interact with other variants that differ by race. PMID:19723394

  1. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis.

    PubMed

    Xoconostle-Cázares, B; Specht, C A; Robbins, P W; Liu, Y; León, C; Ruiz-Herrera, J

    1997-12-01

    A fragment corresponding to a conserved region of a fifth gene coding for chitin synthase in the plant pathogenic fungus Ustilago maydis was amplified by means of the polymerase chain reaction (PCR). The amplified fragment was utilized as a probe for the identification of the whole gene in a genomic library of the fungus. The predicted gene product of Umchs5 has highest similarity with class IV chitin synthases encoded by the CHS3 genes from Saccharomyces cerevisiae and Candida albicans, chs-4 from Neurospora crassa, and chsE from Aspergillus nidulans. Umchs5 null mutants were constructed by substitution of most of the coding sequence with the hygromycin B resistance cassette. Mutants displayed significant reduction in growth rate, chitin content, and chitin synthase activity, specially in the mycelial form. Virulence to corn plantules was also reduced in the mutants. PCR was also used to obtain a fragment of a sixth chitin synthase, Umchs6. It is suggested that multigenic control of chitin synthesis in U. maydis operates as a protection mechanism for fungal viability in which the loss of one activity is partially compensated by the remaining enzymes. Copyright 1997 Academic Press.

  2. Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases.

    PubMed

    Mitchell, Sabrina; Ellingson, Clint; Coyne, Thomas; Hall, Lynn; Neill, Meaghan; Christian, Natalie; Higham, Catherine; Dobrowolski, Steven F; Tuchman, Mendel; Summar, Marshall

    2009-01-01

    The urea cycle is the primary means of nitrogen metabolism in humans and other ureotelic organisms. There are five key enzymes in the urea cycle: carbamoyl-phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). Additionally, a sixth enzyme, N-acetylglutamate synthase (NAGS), is critical for urea cycle function, providing CPS1 with its necessary cofactor. Deficiencies in any of these enzymes result in elevated blood ammonia concentrations, which can have detrimental effects, including central nervous system dysfunction, brain damage, coma, and death. Functional variants, which confer susceptibility for disease or dysfunction, have been described for enzymes within the cycle; however, a comprehensive screen of all the urea cycle enzymes has not been performed. We examined the exons and intron/exon boundaries of the five key urea cycle enzymes, NAGS, and two solute carrier transporter genes (SLC25A13 and SLC25A15) for sequence alterations using single-stranded conformational polymorphism (SSCP) analysis and high-resolution melt profiling. SSCP was performed on a set of DNA from 47 unrelated North American individuals with a mixture of ethnic backgrounds. High-resolution melt profiling was performed on a nonoverlapping DNA set of either 47 or 100 unrelated individuals with a mixture of backgrounds. We identified 33 unarchived polymorphisms in this screen that potentially play a role in the variation observed in urea cycle function. Screening all the genes in the pathway provides a catalog of variants that can be used in investigating candidate diseases. Copyright 2008 Wiley-Liss, Inc.

  3. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  4. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China.

    PubMed

    Zhu, Yueming; Zhang, Jun; Wei, Dongsheng; Wang, Yufan; Chen, Xiaoyun; Xing, Laijun; Li, Mingchun

    2008-08-01

    A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose.

  5. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  6. Sulfonamide Resistance in Clinical Isolates of Campylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase

    PubMed Central

    Gibreel, Amera; Sköld, Ola

    1999-01-01

    The characterization of the genetic basis of sulfonamide resistance in Campylobacter jejuni was attempted. The resistance determinant from a sulfonamide-resistant strain of C. jejuni was cloned and was found to show 42% identity with the folP gene (which codes for dihydropteroate synthase, the target of sulfonamides) of the related bacterium Helicobacter pylori. The sequences of the areas surrounding the folP gene in C. jejuni showed similarity to those of the areas surrounding the corresponding gene in H. pylori. The folP gene of C. jejuni, which mediates the resistance, was observed to show particular features when it was compared to other known folP genes. One of these features is the presence of two pairs of direct repeats (15 and 27 bp) within the coding sequence of the gene. Comparison of the C. jejuni folP genes that mediate susceptibility and resistance revealed the occurrence of mutations that changed four amino acid residues. Resistance of C. jejuni to sulfonamides could be associated with one or several of these four mutational substitutions, which all occurred in the five different resistant isolates studied. The codon for one of these changed amino acids was found to be located in the second direct repeat within the coding sequence of the gene. The change made the repeat perfect. The transformation of both the resistance and the susceptibility variants of the gene into an Escherichia coli folP knockout mutant was found to complement the dihydropteroate synthase deficiency, confirming that the characterized sulfonamide resistance determinant codes for the C. jejuni dihydropteroate synthase enzyme. Kinetic measurements established different affinities of sulfonamide for the dihydropteroate synthase enzyme isolated from the resistant and susceptible strains. In conclusion, sulfonamide resistance in C. jejuni was shown to be associated with mutational changes in the chromosomally located gene for dihydropteroate synthase, the target of sulfonamides. PMID:10471557

  7. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  8. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet

    PubMed Central

    Curtin, Karen; Slattery, Martha L.; Ulrich, Cornelia M.; Bigler, Jeannette; Levin, Theodore R.; Wolff, Roger K.; Albertsen, Hans; Potter, John D.; Samowitz, Wade S.

    2008-01-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case–control study (916 incident colon cancer cases and 1972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP− or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B12 and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3–3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer. PMID:17449906

  9. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet.

    PubMed

    Curtin, Karen; Slattery, Martha L; Ulrich, Cornelia M; Bigler, Jeannette; Levin, Theodore R; Wolff, Roger K; Albertsen, Hans; Potter, John D; Samowitz, Wade S

    2007-08-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case-control study (916 incident colon cancer cases and 1,972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP- or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B(12) and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1,298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3-3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer.

  10. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase, dietary folate intake, and the risk of leukemia in adults.

    PubMed

    Liu, Ping; Zhang, Min; Xie, Xing; Jin, Jie; Holman, C D'Arcy J

    2016-03-01

    The 5,10-methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) are critical enzymes in folate metabolism. Previous studies have reported conflicting results on the associations between MTHFR/TS polymorphisms and adult leukemia risk, which may due to the lack of information on folate intake. We investigated the risks of adult leukemia with genetic polymorphisms of folate metabolic enzymes (MTHFR C677T, A1298C, and TS) and evaluated if the associations varied by dietary folate intake from a multicenter case-control study conducted in Chinese. This study comprised 442 incident adult leukemia cases and 442 outpatient controls, individually matched to cases by gender, birth quinquennium, and study site. Genotypes were determined by a polymerase chain reaction (PCR) or PCR-based restriction fragment length polymorphism assay. Dietary folate intake was assessed by face-to-face interviews using a validated food-frequency questionnaire. The MTHFR 677TT genotype conferred a significant higher risk of leukemia in males than in females and exhibited an increased risk of acute myeloid leukemia (AML) but a decreased risk of acute lymphoblastic leukemia (ALL). The MTHFR 1298AC genotype appeared to decrease the risks of leukemia in both genders, in AML and ALL. Stratified analysis by dietary folate intake showed the increased risks of leukemia with the MTHFR 677TT and TS 2R3R/2R2R genotypes were only significant in individuals with low folate intake. A significant interaction between TS polymorphism and dietary folate intake was observed (P = 0.03). This study suggests that dietary folate intake and gender may modify the associations between MTHFR/TS polymorphisms and adult leukemia risk.

  11. MAOA and TNF-β gene polymorphisms are associated with photophobia but not osmophobia in patients with migraine.

    PubMed

    Ishii, Masakazu; Usami, Shino; Hara, Hajime; Imagawa, Atsuko; Masuda, Yutaka; Shimizu, Shuniichi

    2014-06-01

    Photophobia and osmophobia are typical symptoms associated with migraine, but the contributions of gene polymorphisms to these symptoms are not fully elucidated. We investigated whether the gene polymorphisms are involved in photophobia and osmophobia in patients with migraine. Ninety-one migraine patients and 119 non-headache healthy volunteers were enrolled. The 12 gene polymorphisms were determined by polymerase-chain-reaction (PCR) and PCR restriction-fragment-length polymorphism analysis. Photophobia and osmophobia were observed in 49 (54%) and 31 patients (34%), respectively. Distributions of monoamine oxidase A (MAOA) T941G and tumour necrosis factor-β (TNF-β) G252A polymorphisms were significantly different between patients with photophobia and controls. However, no gene polymorphism differences were observed between patients with osmophobia and controls. The MAOA T941G and TNF-β G252A gene polymorphisms appear to contribute to photophobia but not to osmophobia. We propose that different gene polymorphisms are responsible for photophobia and osmophobia symptoms during migraine.

  12. Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference.

    PubMed

    Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi

    2015-01-01

    Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path.

  13. Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference

    PubMed Central

    Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi

    2015-01-01

    Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path. PMID:26544851

  14. The gender-specific association of rs334558 in GSK3β with major depressive disorder.

    PubMed

    Liu, Sha; Wang, Le; Sun, Ning; Yang, Chunxia; Liu, Zhifen; Li, Xinrong; Cao, Xiaohua; Xu, Yong; Zhang, Kerang

    2017-01-01

    Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses with a heritability ranging from 40% to 50%. The single nucleotide polymorphism (SNP) rs334558 on the glycogen synthase kinase-3β (GSK3β) gene has been identified as a genetic risk loci associated with schizophrenia and bipolar disorder. However, results from replication studies examining the association between rs334558 and MDD remain inconsistent.In the present study, first, we conducted a meta-analysis of the association between rs334558 and MDD by combining 5 available case-control samples totaling 2311 cases and 2535 controls. Second, genotyping data from patients with MDD at our institution, after further stratification by gender, were analyzed to determine the association between rs334558 and MDD.All studies retrieved and included in the meta-analysis were from Korea and China. The meta-analysis suggested that the functional polymorphism rs334558 within the GSK3β promoter region was associated with MDD risk (P < 0.05). The associations were observed both in the allelic and genetic models. Analysis of the genotyping data extracted from our hospital database revealed that rs334558 exhibited exclusive association with MDD in female patients (P=0.015).Our findings suggest that GSK3β rs334558 polymorphisms might be a potential risk for MDD, and females with GSK3β rs334558 polymorphisms might have higher penetrance of MDD. If validated in larger scale samples and in different ethnic populations, these findings might be of value as diagnostic references for MDD.

  15. A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Mellado, E; Aufauvre-Brown, A; Specht, C A; Robbins, P W; Holden, D W

    1995-02-06

    Two approaches were used to isolate fragments of chitin synthase genes from the opportunistic human pathogen Aspergillus fumigatus. Firstly, regions of amino acid conservation in chitin synthases of Saccharomyces cerevisiae were used to design degenerate primers for amplification of portions of related genes, and secondly, a segment of the S. cerevisiae CSD2 gene was used to screen an A. fumigatus lambda genomic DNA library. the polymerase chain reaction (PCR)-based approach led to the identification of five different genes, designated chsA, chsB, chsC, chsD and chsE. chsA, chsB, and chsC fall into Classes I, II and III of the 'zymogen type' chitin synthases, respectively. The chsD fragment has approximately 35% amino acid sequence identity to both the zymogen type genes and the non-zymogen type CSD2 gene. chsF appears to be a homologue of CSD2, being 80% identical to CSD2 over 100 amino acids. An unexpected finding was the isolation by heterologous hybridization of another gene (chsE), which also has strong sequence similarity (54% identity at the amino acid level over the same region as chsF) to CSD2. Reverse transcriptase-PCR was used to show that each gene is expressed during hyphal growth in submerged cultures.

  16. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus.

    PubMed

    Mellado, E; Specht, C A; Robbins, P W; Holden, D W

    1996-09-15

    A chitin synthase-like gene (chsD) was isolated from an Aspergillus fumigatus genomic DNA library. Comparisons with the predicted amino acid sequence from chsD reveals low but significant similarity to chitin synthases, to other N-acetylglucosaminyltransferases (NodC from Rhizopus spp., HasA from Streptococcus spp. and DG42 from vertebrates. A chsD- mutant strain constructed by gene disruption has a 20% reduction in total mycelial chitin content; however, no differences between the wild-type strain and the chsD- strain were found with respect to morphology, chitin synthase activity or virulence in a neutropenic murine model of aspergillosis. The results show that the chsD product has an important but inessential role in the synthesis of chitin in A. fumigatus.

  17. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  18. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  19. Environmental Adaptation Contributes to Gene Polymorphism across the Arabidopsis thaliana Genome

    PubMed Central

    Lee, Cheng-Ruei

    2012-01-01

    The level of within-species polymorphism differs greatly among genes in a genome. Many genomic studies have investigated the relationship between gene polymorphism and factors such as recombination rate or expression pattern. However, the polymorphism of a gene is affected not only by its physical properties or functional constraints but also by natural selection on organisms in their environments. Specifically, if functionally divergent alleles enable adaptation to different environments, locus-specific polymorphism may be maintained by spatially heterogeneous natural selection. To test this hypothesis and estimate the extent to which environmental selection shapes the pattern of genome-wide polymorphism, we define the "environmental relevance" of a gene as the proportion of genetic variation explained by environmental factors, after controlling for population structure. We found substantial effects of environmental relevance on patterns of polymorphism among genes. In addition, the correlation between environmental relevance and gene polymorphism is positive, consistent with the expectation that balancing selection among heterogeneous environments maintains genetic variation at ecologically important genes. Comparison of the gene ontology annotations shows that genes with high environmental relevance are enriched in unknown function categories. These results suggest an important role for environmental factors in shaping genome-wide patterns of polymorphism and indicate another direction of genomic study. PMID:22798389

  20. Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    PubMed Central

    Bacon, David J.; Tang, Doug; Salas, Carola; Roncal, Norma; Lucas, Carmen; Gerena, Lucia; Tapia, Lorena; Llanos-Cuentas, A. Alejandro; Garcia, Coralith; Solari, Lelv; Kyle, Dennis; Magill, Alan J.

    2009-01-01

    Background Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. Methodology and Finding We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35–166 nM), 582 nM (49-6890- nM) and 4909 (3575–6741 nM) nM for sulfadoxine and 33 nM (22–51 nM), 81 nM (19–345 nM), and 215 nM (176–262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 – 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 – 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 – 7.46] compared to patients having both wild forms (I164 and K540). Conclusions In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E. Trial Registration ClinicalTrials.gov NCT00951106 NCT00951106 PMID:19707564

  1. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    PubMed

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  2. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  3. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa)

    PubMed Central

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O.

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus. PMID:19443619

  4. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  5. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  6. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    PubMed

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Folate and Breast Cancer: Role of Intake, Blood Levels, and Metabolic Gene Polymorphisms

    DTIC Science & Technology

    2006-06-01

    polymorphisms . The specific aims are 1) methodological training in the analysis of gene - gene and gene -environment interactions by studying folate...evaluation of folate intake, plasma folate, and metabolic gene polymorphisms in relation to breast cancer risk: Months 1-19. b. Prepare blood samples...isolated for the folate and gene polymorphism assays among the 184 cases and matched controls. The folate assays are on-going at this time and over

  8. [CCR5, CCR2, apoe, p53, ITGB3 and HFE gene polymorphism in Western Siberia long-livers].

    PubMed

    Ivanoshchuk, D E; Mikhaĭlova, S V; Kulikov, I V; Maksimov, V N; Voevoda, M I; Romashchenko, A G

    2012-01-01

    In order to estimate the distribution of some polymorphisms for the CCR5, CCR2, apoE, p53, ITGB3, and HFE genes in Russian long-livers from Western Siberia, a sample of 271 individuals (range 90-105 years) was examined. It was demonstrated that carriage of the delta32 polymorphism for the CCR5 gene, V64/polymorphism for the CCR2 gene, e2/e3/e4 for the apoE gene, L33P for the ITGB3 gene, as well as H63D and S65C polymorphisms for the HFE gene does not influence on predisposition to the longevity; carriage of the 282 Y allele for the HFE gene negatively influences on the longevity; carriage of the heterozygous genotype for the R72P polymorphism for the p53 gene correlates with the longevity of elderly people.

  9. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud).

    PubMed

    Liu, Chan; Zeng, Liangbin; Zhu, Siyuan; Wu, Lingqing; Wang, Yanzhou; Tang, Shouwei; Wang, Hongwu; Zheng, Xia; Zhao, Jian; Chen, Xiaorong; Dai, Qiuzhong; Liu, Touming

    2017-11-15

    Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  11. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism. PMID:12954080

  12. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces

    PubMed Central

    Arrach, Nabil; Fernández-Martín, Rafael; Cerdá-Olmedo, Enrique; Avalos, Javier

    2001-01-01

    Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces. PMID:11172012

  13. Chitin synthase III: synthetic lethal mutants and "stress related" chitin synthesis that bypasses the CSD3/CHS6 localization pathway.

    PubMed

    Osmond, B C; Specht, C A; Robbins, P W

    1999-09-28

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Delta, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that "stress response" chitin synthesis proceeds through an alternate Chs3p targeting pathway.

  14. Chitin synthase III: Synthetic lethal mutants and “stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway

    PubMed Central

    Osmond, Barbara C.; Specht, Charles A.; Robbins, Phillips W.

    1999-01-01

    We screened Saccharomyces strains for mutants that are synthetically lethal with deletion of the major chitin synthase gene CHS3. In addition to finding, not surprisingly, that mutations in major cell wall-related genes such as FKS1 (glucan synthase) and mutations in any of the Golgi glycosylation complex genes (MNN9 family) are lethal in combination with chs3Δ, we found that a mutation in Srv2p, a bifunctional regulatory gene, is notably lethal in the chs3 deletion. In extending studies of fks1-chitin synthase 3 interactions, we made the surprising discovery that deletion of CSD3/CHS6, a gene normally required for Chs3p delivery and activity in vivo, was not lethal with fks1 and, in fact, that lack of Csd3p/Chs6p did not decrease the high level of stress-related chitin made in the fks1 mutant. This finding suggests that “stress response” chitin synthesis proceeds through an alternate Chs3p targeting pathway. PMID:10500155

  15. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.

    PubMed

    Shulse, Christine N; Allen, Eric E

    2011-01-01

    Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

  16. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  17. Genetic Risk Score of NOS Gene Variants Associated with Myocardial Infarction Correlates with Coronary Incidence across Europe

    PubMed Central

    Carreras-Torres, Robert; Kundu, Suman; Zanetti, Daniela; Esteban, Esther

    2014-01-01

    Coronary artery disease (CAD) mortality and morbidity is present in the European continent in a four-fold gradient across populations, from the South (Spain and France) with the lowest CAD mortality, towards the North (Finland and UK). This observed gradient has not been fully explained by classical or single genetic risk factors, resulting in some cases in the so called Southern European or Mediterranean paradox. Here we approached population genetic risk estimates using genetic risk scores (GRS) constructed with single nucleotide polymorphisms (SNP) from nitric oxide synthases (NOS) genes. These SNPs appeared to be associated with myocardial infarction (MI) in 2165 cases and 2153 controls. The GRSs were computed in 34 general European populations. Although the contribution of these GRS was lower than 1% between cases and controls, the mean GRS per population was positively correlated with coronary incidence explaining 65–85% of the variation among populations (67% in women and 86% in men). This large contribution to CAD incidence variation among populations might be a result of colinearity with several other common genetic and environmental factors. These results are not consistent with the cardiovascular Mediterranean paradox for genetics and support a CAD genetic architecture mainly based on combinations of common genetic polymorphisms. Population genetic risk scores is a promising approach in public health interventions to develop lifestyle programs and prevent intermediate risk factors in certain subpopulations with specific genetic predisposition. PMID:24806096

  18. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Novel cystathionine β-synthase gene mutations in a Filipino patient with classic homocystinuria.

    PubMed

    Silao, Catherine Lynn T; Fabella, Terence Diane F; Rama, Kahlil Izza D; Estrada, Sylvia C

    2015-10-01

    Classic homocystinuria due to cystathionine β-synthase (CBS) deficiency is an autosomal recessive disorder of sulfur metabolism. Clinical manifestations include mental retardation, dislocation of the optic lens (ectopia lentis), skeletal abnormalities and a tendency to thromboembolic episodes. We present the first mutational analysis of CBS in a Filipino patient with classic homocystinuria. Genomic DNA was extracted from peripheral blood collected from a diagnosed Filipino patient with classic homocystinuria. The entire coding region of CBS (17 exons) was amplified using polymerase chain reaction and bidirectionally sequenced using standard protocols. The patient was found to be compound heterozygous for two novel mutations, g.13995G>A [c.982G>A; p.D328K] and g.15860-15868dupGCAGGAGCT [c.1083-1091dupGCAGGAGCT; p. Q362-L364dupQEL]. Four known single-nucleotide polymorphisms (rs234706, rs1801181, rs706208 and rs706209) were also detected in the present patient's CBS. The patient was heterozygous for all the identified alleles. This is the first mutational analysis of CBS done in a Filipino patient with classic homocystinuria who presented with a novel duplication mutation and a novel missense mutation. Homocystinuria due to CBS deficiency is a heterogeneous disorder at the molecular level. © 2015 Japan Pediatric Society.

  20. [Association of methionine synthase reductase gene polymorphism with unexplained recurrent spontaneous abortion].

    PubMed

    Guo, Qian-nan; Liao, Shi-xiu; Kang, Bing; Zhang, Ju-xin; Wang, Rui-li; Ding, Xue-bing; Zhang, Wei-hua

    2012-10-01

    To explore the relationship between the polymorphism of methionine synthase reductase (MTRR) A66G and the susceptibility to unexplained repeated spontaneous abortion (URSA). Total of 200 Henan Han couples with URSA (URSA group) and 76 Henan Han healthy couples without URSA (control group) were enrolled in this study. Their MTRR A66G genotypes were determined by PCR restriction fragment length polymorphism (PCR-RFLP). (1) The allele frequencies of MTRR A66G: the frequencies of allele A and allele G in URSA group were 76.5% (153/200) in husband and 72.8% (146/200) in wife, 23.5% (47/200) in husband and 27.2% (54/200) in wife, respectively. The frequencies of allele A and allele G in control group were 78.9% (60/76) in husband and 78.3% (59/76) in wife, 21.1% (16/76) in husband and 21.7% (16/76) in wife, respectively. The frequencies of allele A and allele G were not significantly different between female and male subjects within the same experimental group (P > 0.05), and also there were not significantly different between the same gender subjects at URAS and control groups (P > 0.05). (2) The genotype frequencies of MTRR A66G: the frequencies of genotype AA, AG and GG in URSA group were 57.0% (114/200) in husband and 52.0% (104/200) in wife, 39.0% (78/200) in husband and 41.5% (83/200) in wife, 4.0% (8/200) in husband and 6.5% (13/200) in wife, prepectively. The frequencies of genotype AA, AG and GG in control group were 59.2% (45/76) in husband and 59.2% (50/76) in wife, 39.5% (30/76) in husband and 38.2% (29/76) in wife; 1.3% (1/76) in husband and 2.6% (2/76) in wife, prepectively. The frequencies of genotype AA, AG and GG were not significantly different between female and male subjects within the same group (P > 0.05), and also there were not significantly different between the same gender subjects at URSA and control groups (P > 0.05).(3)Combined genotype of couples: the combined genotype frequencies of GG + GG, GG + AG, GG + AA, AG + AG, AG + AA and AA + AA in URSA group were 1.0% (2/200), 2.5% (5/200), 6.0% (12/200), 20.0% (40/200), 38.0% (76/200), and 32.5% (65/200), prepectively; the combined genotype frequencies in control group were 0, 1.3% (1/76), 2.6% (2/76), 17.1% (13/76), 42.1% (32/76), 36.8% (28/76), prepectively. The combined genotype analysis between the two groups were also not significantly different (P > 0.05). The polymorphism of MTRR A66G gene was not associated with the susceptibility to URSA (P > 0.05), and so it was not the inherited genetic risk factor of URSA.

  1. New insights into mitogenomic phylogeny and copy number in eight indigenous sheep populations based on the ATP synthase and cytochrome c oxidase genes.

    PubMed

    Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T

    2017-11-16

    The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.

  2. Identification of possible genetic polymorphisms involved in cancer cachexia: a systematic review.

    PubMed

    Tan, Benjamin H L; Ross, James A; Kaasa, Stein; Skorpen, Frank; Fearon, Kenneth C H

    2011-04-01

    Cancer cachexia is a polygenic and complex syndrome. Genetic variations in regulation of the inflammatory response, muscle and fat metabolic pathways, and pathways in appetite regulation are likely to contribute to the susceptibility or resistance to developing cancer cachexia. A systematic search of Medline and EmBase databases, covering 1986-2008 was performed for potential candidate genes/genetic polymorphisms relating to cancer cachexia. Related genes were then identified using pathway functional analysis software. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Genes with variants which had functional or clinical associations with cachexia and replicated in at least one study were entered into pathway analysis software to reveal possible network associations between genes. A total of 184 polymorphisms with functional or clinical relevance to cancer cachexia were identified in 92 candidate genes. Of these, 42 polymorphisms (in 33 genes) were replicated in more than one study with 13 polymorphisms found to influence two or more hallmarks of cachexia (i.e. inflammation, loss of fat mass and/or lean mass and reduced survival). Thirty-three genes were found to be significantly interconnected in two major networks with four genes (ADIPOQ, IL6, NFKB1 and TLR4) interlinking both networks. Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides an initial framework to select genes/polymorphisms for further study in cancer cachexia, and to develop their potential as susceptibility biomarkers of developing cachexia.

  3. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii

    PubMed Central

    Sutton, Kristin A.; Breen, Jennifer; Russo, Thomas A.; Schultz, L. Wayne; Umland, Timothy C.

    2016-01-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301–Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  4. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.

  5. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  6. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    PubMed

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    PubMed Central

    Ak, Duygu Gezen; Kahraman, Hakkí; Dursun, Erdinç; Duman, Belgin Süsleyici; Erensoy, Nevin; Alagöl, Faruk; Tanakol, Refik; Yılmazer, Selma

    2005-01-01

    Vitamin D receptor (VDR) gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD) and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08). Also no association between biochemical data and VDR gene polymorphisms was observed. PMID:16403954

  8. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars.

    PubMed

    Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko

    2016-04-01

    A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.

  9. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    USDA-ARS?s Scientific Manuscript database

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  10. Influence of Combined Methionine Synthase (MTR 2756A > G) and Methylenetetrahydrofolate Reductase (MTHFR 677C > T) Polymorphisms to Plasma Homocysteine Levels in Korean Patients with Ischemic Stroke

    PubMed Central

    Kim, Ok Joon; Hong, Sun Pyo; Ahn, Jung Yong; Hong, Seung Ho; Hwang, Tae Sun; Kim, Soo Ok; Yoo, Wangdon; Oh, Doyeun

    2007-01-01

    Purpose Methionine synthase (MTR) and 5,10-methylenetetrahydrofolate reductase (MTHFR) are the main regulatory enzymes for homocysteine metabolism. The present case-control study was conducted to determine whether there is an association between the MTR 2756A > G or MTHFR 677C > T polymorphism and plasma homocysteine concentration in Korean subjects with ischemic stroke. Materials and Methods DNA samples of 237 patients who had an ischemic stroke and 223 age and sex-matched controls were studied. MTR 2756A > G and MTHFR 677C > T genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Frequencies of mutant alleles for MTR and MTHFR polymorphisms were not significantly different between the controls and cases. The patient group, however, had significantly higher homocysteine concentrations of the MTR 2756AA and MTHFR 677TT genotypes than the control group (p = 0.04 for MTR, p = 0.01 for MTHFR). The combined MTR 2756AA and MTHFR 677TT genotype (p = 0.04) and the homocysteine concentrations of the patient group were also higher than those of the controls. In addition, the genotype distribution was significant in the MTHFR 677TT genotype (p = 0.008) and combined MTR 2756AA and MTHFR 677TT genotype (p = 0.03), which divided the groups into the top 20% and bottom 20% based on their homocysteine levels. Conclusion The results of the present study demonstrate that the MTR 2756A > G and MTHFR 677C > T polymorphisms interact with elevated total homocysteine (tHcy) levels, leading to an increased risk of ischemic stroke. PMID:17461517

  11. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].

    PubMed

    Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou

    2002-01-01

    To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.

  13. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies.

    PubMed

    Johns, N; Tan, B H; MacMillan, M; Solheim, T S; Ross, J A; Baracos, V E; Damaraju, S; Fearon, K C H

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and to develop their potential as susceptibility biomarkers of cachexia.

  14. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure.

    PubMed

    Hartmann, Fanny E; Rodríguez de la Vega, Ricardo C; Brandenburg, Jean-Tristan; Carpentier, Fantin; Giraud, Tatiana

    2018-04-01

    Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.

  15. Gene Presence–Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure

    PubMed Central

    Rodríguez de la Vega, Ricardo C; Brandenburg, Jean-Tristan; Carpentier, Fantin; Giraud, Tatiana

    2018-01-01

    Abstract Gene presence–absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence–absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence–absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence–absence polymorphism in the two species. Genes displaying presence–absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence–absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence–absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies. PMID:29722826

  16. [Effect of physical activity and t-786C polymorphism in blood pressure and blood flow in the elderly].

    PubMed

    Zago, Anderson Saranz; Kokubun, Eduardo; Fenty-Stewart, Nicola; Park, Joon-Young; Attipoe, Selasi; Hagberg, James; Brown, Michael

    2010-10-01

    the T-786C polymorphism of the gene for endothelial nitric oxide synthase (eNOS) and superoxide anion production may reduce production and bioavailability of nitric oxide, affecting the degree of vasodilation. This effect can be reversed by exercise. to investigate the influence of aerobic training and T-786C polymorphism in the concentrations of nitric oxide metabolites (NOx) in blood flow (BF) and blood pressure (BP). thirty-two elderly pre-hypertensive women (59 ± 6 years old) were divided into two groups according to the T-786C polymorphism (TT and TC + CC). We analyzed the concentrations of NOx (plasma) and blood flow by venous occlusion plethysmography at rest, 1, 2 and 3 minutes post-occlusion (BF-0, BF-1 BF-2 BF-3, respectively). Evaluations were performed before and after 6 months of a program of aerobic exercise. In the pre-training evaluations, NOx levels were lower in TC + CC group than in TT group. The TT group showed correlations between NOx and BF-0 (r = 0.6) and diastolic blood pressure (DBP) and BF-0 (r = -0.7), but no correlation was found in TC + CC group. In the post-training evaluations, there were correlations between NOx and BF-0 (r = 0.6) and the changes in NOx and DBP (r = -0.6) in TT group. There were also correlations between DBP and BF-1 (r = -0.8), DBP, and BF-2 (r = -0.6), DBP, and BF-3 (r = -0.6), in the changes between NOx and BF-1 (r = 0.8) and changes in NOx and DBP (r = -0.7) in TC + CC group. it was concluded that 6 months of aerobic exercise can increase the relationship between NO, BP and BF in elderly of allele C carriers.

  17. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery.

    PubMed

    Stafford-Smith, Mark; Podgoreanu, Mihai; Swaminathan, Madhav; Phillips-Bute, Barbara; Mathew, Joseph P; Hauser, Elizabeth H; Winn, Michelle P; Milano, Carmelo; Nielsen, Dahlia M; Smith, Mike; Morris, Richard; Newman, Mark F; Schwinn, Debra A

    2005-03-01

    Post-cardiac surgery renal dysfunction is a common, serious, multifactorial disorder, with interpatient variability predicted poorly by preoperative clinical, procedural, and biological markers. Therefore, we tested the hypothesis that selected gene variants are associated with acute renal injury, reflected by a serum creatinine level increase after cardiac surgery. One thousand six hundred seventy-one patients undergoing aortocoronary surgery were studied. Clinical covariates were recorded. DNA was isolated from preoperative blood; mass spectrometry was used for genotype analysis. A model was developed relating clinical and genetic factors to postoperative acute renal injury. A race effect was found; therefore, Caucasians and African Americans were analyzed separately. Overall, clinical factors alone account poorly for postoperative renal injury, although more so in African Americans than Caucasians. When 12 candidate polymorphisms were assessed, 2 alleles (interleukin 6 -572C and angiotensinogen 842C) showed a strong association with renal injury in Caucasians (P < 0.0001; >50% decrease in renal filtration when they present together). Using less stringent criteria for significance (0.01 > P > 0.001), 4 additional polymorphisms are identified (apolipoproteinE 448C [4], angiotensin receptor1 1166C, and endothelial nitric oxide synthase [eNOS] 894T in Caucasians; eNOS 894T and angiotensin-converting enzyme deletion and insertion in African Americans). Adding genetic to clinical factors resulted in the best model, with overall ability to explain renal injury increasing approximately 4-fold in Caucasians and doubling in African Americans (P < 0.0005). In this study, we identify genetic polymorphisms that collectively provide 2- to 4-fold improvement over preoperative clinical factors alone in explaining post-cardiac surgery renal dysfunction. From a mechanistic perspective, most identified genetic variants are associated with increased renal inflammatory and/or vasoconstrictor responses.

  18. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium.

    PubMed

    Majdi, Mohammad; Abdollahi, Mohammad Reza; Maroufi, Asad

    2015-11-01

    Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase.

  19. An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis

    PubMed Central

    Abdeltawab, Nourtan F.; Aziz, Ramy K.; Kansal, Rita; Rowe, Sarah L.; Su, Yin; Gardner, Lidia; Brannen, Charity; Nooh, Mohammed M.; Attia, Ramy R.; Abdelsamed, Hossam A.; Taylor, William L.; Lu, Lu; Williams, Robert W.; Kotb, Malak

    2008-01-01

    Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases. PMID:18421376

  20. Genes affecting novel seed constituents in Limnanthes alba Benth: transcriptome analysis of developing embryos and a new genetic map of meadowfoam

    PubMed Central

    Cooper, Laurel D.; Kishore, Venkata K.; Knapp, Steven J.; Kling, Jennifer G.

    2015-01-01

    The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop. PMID:26038713

  1. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    PubMed

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  2. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  3. Only One of the Five Ralstonia solanacearum Long-Chain 3-Ketoacyl-Acyl Carrier Protein Synthase Homologues Functions in Fatty Acid Synthesis

    PubMed Central

    Cheng, Juanli; Ma, Jincheng; Lin, Jinshui; Fan, Zhen-Chuan; Cronan, John E.

    2012-01-01

    Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C16:0), palmitoleic (C16:1) and cis-vaccenic (C18:1) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I. PMID:22194290

  4. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.

    PubMed

    Kato, Misako; Kitao, Naoko; Ishida, Mariko; Morimoto, Hanayo; Irino, Fumi; Mizuno, Kouichi

    2010-01-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid that is present in high concentrations in the tea plant Camellia sinensis. Caffeine synthase (CS, EC 2.1.1.160) catalyzes the S-adenosyl-L-methionine-dependent N-3- and N-1-methylation of the purine base to form caffeine, the last step in the purine alkaloid biosynthetic pathway. We studied the expression profile of the tea caffeine synthase (TCS) gene in developing leaves and flowers by means of northern blot analysis, and compared it with those of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone synthase (CHS, EC 2.3.1.74), and S-adenosyl-L-methionine synthase (SAMS, EC 2.5.1.6). The amount of TCS transcripts was highest in young leaves and declined markedly during leaf development, whereas it remained constant throughout the development of the flower. Environmental stresses other than heavy metal stress and plant hormone treatments had no effect on the expression of TCS genes, unlike the other three genes. Drought stress suppressed TCS gene expression in leaves, and the expression pattern mirrored that of the dehydrin gene. The amounts of TCS transcripts increased slightly on supply of a nitrogen source. We discuss the regulation of TCS gene expression.

  5. Selection with Gene-Cytoplasm Interactions. I. Maintenance of Cytoplasm Polymorphisms

    PubMed Central

    Gregorius, H. R.; Ross, M. D.

    1984-01-01

    General conditions for the protectedness of gene-cytoplasm polymorphisms are considered for a biallelic model with two cytoplasm types and under the assumption that nuclear polymorphisms cannot be maintained in the presence of only one cytoplasm type. Analytical results involving male fertilities, female fertilities, viabilities and selfing rates are obtained, and numerical results show spiral and cyclic behavior of population trajectories. It is shown that a maternally inherited cytoplasmic polymorphism cannot be maintained in the absence of a nuclear polymorphism, and that a gene-cytoplasm polymorphism can only be maintained if the population shows sexual asymmetry, i.e. , if the ratio of male to female fertility varies among genotypes. Thus, the classical viability selection model does not allow gene-cytoplasm polymorphisms. PMID:17246213

  6. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis

    PubMed Central

    de Lima, Júlio C.; de Costa, Fernanda; Füller, Thanise N.; Rodrigues-Corrêa, Kelly C. da Silva; Kerber, Magnus R.; Lima, Mariano S.; Fett, Janette P.; Fett-Neto, Arthur G.

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(−)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  7. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis.

    PubMed

    de Lima, Júlio C; de Costa, Fernanda; Füller, Thanise N; Rodrigues-Corrêa, Kelly C da Silva; Kerber, Magnus R; Lima, Mariano S; Fett, Janette P; Fett-Neto, Arthur G

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(-)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers.

  8. Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach.

    PubMed

    Tai, Yen Teng; Foong, Choon Pin; Najimudin, Nazalan; Sudesh, Kumar

    2016-04-01

    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. The Joint Effects of Body Mass Index and MAOA Gene Polymorphism on Depressive Symptoms.

    PubMed

    Liu, Yangyang

    2015-07-01

    The objective of the present study was to examine the joint effects of the body mass index and the MAOA gene polymorphism on depressive symptoms. In two independent Chinese samples, we measured adolescents' depressive symptoms and body mass index and collected their DNA. The results indicated that the main effects of the MAOA gene polymorphism on depressive symptoms were significant. However, the main effects of body mass index and the interaction of the MAOA gene polymorphism and body mass index on depressive symptoms were not significant. By using Chinese adolescents, this study confirmed that the MAOA gene polymorphism directly influenced adolescents' depressive symptoms.

  10. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    PubMed

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Association of interleukins genes polymorphisms with multi-drug resistant tuberculosis in Ukrainian population.

    PubMed

    Butov, Dmytro O; Kuzhko, Mykhaylo M; Makeeva, Natalia I; Butova, Tetyana S; Stepanenko, Hanna L; Dudnyk, Andrii B

    2016-01-01

    Multi-drug resistant tuberculosis (MDR TB) is a significant health problem in some parts of the world. Three major cytokines involved in TB immunopathogenesis include IL-2, IL-4 and IL-10. The susceptibility to MDR TB may be genetically determined. The aim of the study was to assess the association of IL-2, IL-4, IL-10 gene polymorphisms with multi-drug resistant tuberculosis (MDR TB) in Ukrainian population. We observed 140 patients suffering from infiltrative pulmonary tuberculosis (PT) and 30 apparently healthy subjects. The patients were assigned to two groups whether they suffer or do not suffer from pulmonary MDR TB. Interleukin gene (IL) polymorphisms, particularly T330G polymorphism in the IL-2 gene, C589T polymorphism in the IL-4 gene and G1082A polymorphism in the IL-10 gene were studied through polymerase chain reaction. Circulating levels of IL-2, IL-4 and IL-10 in venous blood were estimated using ELISA. Prior to treatment, patients with PT showed significant increase of IL-2 levels and decrease of IL-4 and IL-10 levels compared to apparently healthy subjects. Circulating IL-4 and IL-10 levels were significantly decreased whilst serum IL-2 level was significantly increased in patients with MDR TB compared to non-MDR TB. Low IL-4 and IL-10 secretion and considerable IL-2 alterations were shown to be significantly associated with mutations of homozygous and heterozygous genotypes affecting C589T polymorphism in the IL-4 gene, G1082A polymorphism in the IL-10 gene and T330G polymorphism in the IL-2 gene in patients with PT. Heterozygous genotype and mutations homozygous genotypes gene in polymorphisms determining specified cytokines' production is a PT risk factor and may lead to disease progression into chronic phase. Heterozygous genotype of aforementioned cytokine genetic polymorphisms was significantly the most frequent in patients with MDR TB.

  12. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Biomarkers for Response to Neoadjuvant Chemoradiation for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuremsky, Jeffrey G.; UNC Doris Duke Clinical Research Fellowship Program, Chapel Hill, NC; Tepper, Joel E.

    2009-07-01

    Locally advanced rectal cancer (LARC) is currently treated with neoadjuvant chemoradiation. Although approximately 45% of patients respond to neoadjuvant therapy with T-level downstaging, there is no effective method of predicting which patients will respond. Molecular biomarkers have been investigated for their ability to predict outcome in LARC treated with neoadjuvant chemotherapy and radiation. A literature search using PubMed resulted in the initial assessment of 1,204 articles. Articles addressing the ability of a biomarker to predict outcome for LARC treated with neoadjuvant chemotherapy and radiation were included. Six biomarkers met the criteria for review: p53, epidermal growth factor receptor (EGFR), thymidylatemore » synthase, Ki-67, p21, and bcl-2/bax. On the basis of composite data, p53 is unlikely to have utility as a predictor of response. Epidermal growth factor receptor has shown promise as a predictor when quantitatively evaluated in pretreatment biopsies or when EGFR polymorphisms are evaluated in germline DNA. Thymidylate synthase, when evaluated for polymorphisms in germline DNA, is promising as a predictive biomarker. Ki-67 and bcl-2 are not useful in predicting outcome. p21 needs to be further evaluated to determine its usefulness in predicting outcome. Bax requires more investigation to determine its usefulness. Epidermal growth factor receptor, thymidylate synthase, and p21 should be evaluated in larger prospective clinical trials for their ability to guide preoperative therapy choices in LARC.« less

  14. Estimation of the relationship between the polymorphisms of selected genes: ACE, AGTR1, TGFβ1 and GNB3 with the occurrence of primary vesicoureteral reflux.

    PubMed

    Życzkowski, Marcin; Żywiec, Joanna; Nowakowski, Krzysztof; Paradysz, Andrzej; Grzeszczak, Władyslaw; Gumprecht, Janusz

    2017-03-01

    Etiopathogenesis of VUR is composite and not fully understood. Many data indicate the importance of genetic predisposition. The aim of this study was to establish the relationship of selected polymorphisms: 14094 polymorphism of the ACE, polymorphism rs1800469 of TGFβ-1, rs5443 gene polymorphism of the GNB3 and receptor gene polymorphism rs5186 type 1 AGTR1 with the occurrence of the primary vesicoureteral reflux. The study included 190 children: 90 with the primary VUR confirmed with the voiding cystourethrogram and excluded secondary VUR and a control group of 100 children without a history of the diseases of the genitourinary tract. The study was planned in the scheme: "tested case versus control." Genomic DNA was isolated from the leukocytes of peripheral blood samples. The results were statistically analyzed in the Statistica 10 using χ 2 test and analysis of the variance Anova. Any of the four studied polymorphisms showed no difference in the distribution of genotypes between patients with primary vesicoureteral reflux and the control group. In patients with VUR and TT genotype polymorphism rs5443 GNB3 gene, the glomerular filtration rate was significantly higher than in patients with genotype CC or CT. (1) No relationship was found between the studied polymorphisms (14094 ACE gene, rs1800469 gene TGFβ1, GNB3 gene rs5443, rs5186 AGTR1 gene) and the occurrence of primary vesicoureteral reflux. (2) TT genotype polymorphism rs5443 GNB3 gene may be a protective factor for the improved renal function in patients with primary vesicoureteral reflux in patients with genotype CC or CT.

  15. Association of Calpain (CAPN) 10 (UCSNP-43, rs3792267) gene polymorphism with elevated serum androgens in young women with the most severe phenotype of polycystic ovary syndrome (PCOS).

    PubMed

    Anastasia, Karela; Koika, Vasiliki; Roupas, Nikolaos D; Armeni, Anastasia; Marioli, Dimitra; Panidis, Dimitrios; George, Adonakis; Georgopoulos, Neoklis A

    2015-01-01

    To highlight a possible association of Calpain (CAPN 10) gene UCSNP-43 polymorphism with hormonal and metabolic traits of young women with different phenotypes of polycystic ovary syndrome (PCOS). PCOS women were genotyped for the CAPN 10 gene UCSNP-43 polymorphism. A comparison of clinical and biochemical features of women with PCOS stratified on the basis of the CAPN 10 gene UCSNP-43 variants was assessed. Anthropometric, hormonal and biochemical measurements were carried out in 668 PCOS women and 200 healthy controls. Subjects were also genotyped for the CAPN 10 gene UCSNP-43 polymorphism. The genotype frequency distributions between groups and controls were compared using the chi-square test. The association of the polymorphism with the clinical and biochemical features of the study cohort was estimated as well. No association of the frequency of CAPN 10 gene UCSNP-43 polymorphism with PCOS was detected. No association of the polymorphism with the anthropometric, biochemical and hormonal features was detected both in PCOS and control women. The polymorphism was associated with serum Δ4 androstenedione (p = 0.018), as well as with 17-OH progesterone (17-hydroxyprogesterone) among women with PCOS phenotype A (p = 0.012). CAPN 10 gene polymorphism UCSNP-43 is deprived of a metabolic contribution to cardiovascular disease (CVD). However, due to its association with androgen excess in phenotype A, CAPN 10 gene polymorphism UCSNP-43 could be used as a genetic marker for CVD in young PCOS women.

  16. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  17. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis

    PubMed Central

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen responses may play important roles in regulating the yield of oleoresin. These DEGs are worthy of special attention in future studies. PMID:26167875

  18. Association of TNFα-308, IFNγ+874, and IL10-1082 gene polymorphisms and the risk of non-small cell lung cancer in the population of the South Indian state of Telangana.

    PubMed

    Peddireddy, Vidyullatha; Badabagni, Siva Prasad; Sulthana, Shehnaz; Kolla, Venkata Karunakar; Gundimeda, Sandhya Devi; Mundluru, Hemaprasad

    2016-10-01

    Cytokine-mediated inflammation is important in the pathogenesis of non-small cell lung cancer (NSCLC). Genetic polymorphisms in cytokine genes and their association with lung cancer in the Indian population have not been reported. For the first time, we analyzed genetic polymorphisms of TNFα -308 , IFNγ +874 , and IL10 -1082 genes in 246 NSCLC patients and 250 healthy controls in the South Indian population from Telangana using ARMS PCR. IFNγ +874 A/T and IL10 -1082 G/G gene polymorphisms were found to be significantly associated with NSCLC with 1.56- and 1.68-fold disease risk, respectively. There was no association between the risk of NSCLC and TNFα -308 polymorphism. Gene polymorphisms stratified according to smoking revealed that IFNγ +874 A/T polymorphisms in smokers increased the disease risk by 2.91 fold. IL10 -1082 G/G polymorphisms showed 2-fold increased risk among patients who were smokers when compared to the controls. However, there was no association between TNFα -308 , IFNγ +874 , and IL10 -1082 gene polymorphism and the stage of the NSCLC patients. The overall risk associated with the combination of these polymorphisms indicated that the TNFα -308 G/A + IFNγ +874 A/T + IL10 -1082 G/G genotype increased the risk by 1.5 fold. The results of our study indicate an association between cytokine gene polymorphisms and the risk of NSCLC in an Indian population.

  19. Are "functionally related polymorphisms" of renin-angiotensin-aldosterone system gene polymorphisms associated with hypertension?

    PubMed

    Hahntow, Ines N; Mairuhu, Gideon; van Valkengoed, Irene Gm; Koopmans, Richard P; Michel, Martin C

    2010-06-02

    Genotype-phenotype association studies are typically based upon polymorphisms or haplotypes comprised of multiple polymorphisms within a single gene. It has been proposed that combinations of polymorphisms in distinct genes, which functionally impact the same phenotype, may have stronger phenotype associations than those within a single gene. We have tested this hypothesis using genes encoding components of the renin-angiotensin-aldosterone system and the high blood pressure phenotype. Our analysis is based on 1379 participants of the cross-sectional SUNSET study randomly selected from the population register of Amsterdam. Each subject was genotyped for the angiotensinogen M235T, the angiotensin-converting enzyme insertion/deletion and the angiotensin II type 1 receptor A1166C polymorphism. The phenotype high blood pressure was defined either as a categorical variable comparing hypertension versus normotension as in most previous studies or as a continuous variable using systolic, diastolic and mean blood pressure in a multiple regression analysis with gender, ethnicity, age, body-mass-index and antihypertensive medication as covariates. Genotype-phenotype relationships were explored for each polymorphism in isolation and for double and triple polymorphism combinations. At the single polymorphism level, only the A allele of the angiotensin II type 1 receptor was associated with a high blood pressure phenotype. Using combinations of polymorphisms of two or all three genes did not yield stronger/more consistent associations. We conclude that combinations of physiologically related polymorphisms of multiple genes, at least with regard to the renin-angiotensin-aldosterone system and the hypertensive phenotype, do not necessarily offer additional benefit in analyzing genotype/phenotype associations.

  20. Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica napus var. oleifera)

    PubMed Central

    Marconi, Gianpiero; Pace, Roberta; Traini, Alessandra; Raggi, Lorenzo; Lutts, Stanley; Chiusano, Marialuisa; Guiducci, Marcello; Falcinelli, Mario; Benincasa, Paolo; Albertini, Emidio

    2013-01-01

    Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis. PMID:24086583

  1. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  2. Molecular identification of sulfadoxine-pyrimethamine resistance in malaria infected women who received intermittent preventive treatment in the Democratic Republic of Congo.

    PubMed

    Ruh, Emrah; Bateko, Jean Paul; Imir, Turgut; Taylan-Ozkan, Aysegul

    2018-01-09

    Point mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes which confer resistance to sulfadoxine-pyrimethamine (SP) occur at increasing rates. The present study aimed to identify Pfdhfr and Pfdhps mutations in P. falciparum isolates recovered from women who received two doses of SP during pregnancy in Bandundu, the Democratic Republic of Congo (DRC). A total of 48 women with confirmed P. falciparum infection were enrolled in the study. Finger-prick blood samples that were collected on filter paper at the time of delivery were used for DNA isolation. Pfdhfr and Pfdhps genes were amplified by a nested PCR protocol. DNA sequencing was performed on both strands, and the point mutations were analysed. All of the 48 (100.0%) P. falciparum isolates carried at least one polymorphism in both genes. The wild-type haplotypes of Pfdhfr (CNCSI [C50, N51, C59, S108, I164]) and Pfdhps (SAKAA [S436, A437, K540, A581, A613]) were not observed in the study. In Pfdhfr, N51I (85.4%), C59R (60.4%), and S108N (100.0%) polymorphisms were detected. Triple mutation (CIRNI) (mutant amino acids are underlined) was the most prevalent (47.9%) Pfdhfr haplotype. In the study, all P. falciparum isolates (100.0%) harboured the A437G allele in Pfdhps gene. Also, K540E and A581G polymorphisms were observed in one (2.1%) isolate. Single mutant haplotype (SGKAA) was detected in 97.9% of the isolates. Mutant Pfdhfr and Pfdhps allele combinations revealed quintuple (CICNI-SGEGA; 2.1%), quadruple (CIRNI-SGKAA; 47.9%), triple (CICNI-SGKAA; 35.4%, CNRNI-SGKAA; 12.5%), and double (CNCNI-SGKAA; 2.1%) haplotypes. In the study, the rate of SGEGA haplotype was low (2.1%). Although K540E and A581G alleles are more common in Eastern Africa, a distinct lineage of SGEGA is also present in the DRC, which is located in Central Africa. This haplotype is associated with decreased efficacy of SP in pregnant women and infants, therefore, it should be carefully considered in the DRC and SP resistance should be routinely monitored.

  3. Folate and Breast Cancer: Role of Intake, Blood Levels, and Metabolic Gene Polymorphisms

    DTIC Science & Technology

    2005-07-01

    folate, and metabolic gene polymorphisms in relation to breast cancer risk: Months 1-19. b. Prepare blood samples for relevant assays: Months 1-19... gene polymorphism assays among the 184 cases and matched controls. The folate assays are on-going at this time. DNA assays will commence in the... methotrexate . Ann Oncol 13: 1915–1918, 2002 13. Toffoli G, Veronesi A, Boiocchi M, Crivellari D: MTHFR gene polymorphism and severe toxicity during

  4. Polymorphisms of three genes (ACE, AGT and CYP11B2) in the renin-angiotensin-aldosterone system are not associated with blood pressure salt sensitivity: A systematic meta-analysis.

    PubMed

    Sun, Jiahong; Zhao, Min; Miao, Song; Xi, Bo

    2016-01-01

    Many studies have suggested that polymorphisms of three key genes (ACE, AGT and CYP11B2) in the renin-angiotensin-aldosterone system (RAAS) play important roles in the development of blood pressure (BP) salt sensitivity, but they have revealed inconsistent results. Thus, we performed a meta-analysis to clarify the association. PubMed and Embase databases were searched for eligible published articles. Fixed- or random-effect models were used to pool odds ratios and 95% confidence intervals based on whether there was significant heterogeneity between studies. In total, seven studies [237 salt-sensitive (SS) cases and 251 salt-resistant (SR) controls] for ACE gene I/D polymorphism, three studies (130 SS cases and 221 SR controls) for AGT gene M235T polymorphism and three studies (113 SS cases and 218 SR controls) for CYP11B2 gene C344T polymorphism were included in this meta-analysis. The results showed that there was no significant association between polymorphisms of these three polymorphisms in the RAAS and BP salt sensitivity under three genetic models (all p > 0.05). The meta-analysis suggested that three polymorphisms (ACE gene I/D, AGT gene M235T, CYP11B2 gene C344T) in the RAAS have no significant effect on BP salt sensitivity.

  5. A GYS1 gene mutation is highly associated with polysaccharide storage myopathy in Cob Normand draught horses.

    PubMed

    Herszberg, B; McCue, M E; Larcher, T; Mata, X; Vaiman, A; Chaffaux, S; Chérel, Y; Valberg, S J; Mickelson, J R; Guérin, G

    2009-02-01

    Glycogen storage diseases or glycogenoses are inherited diseases caused by abnormalities of enzymes that regulate the synthesis or degradation of glycogen. Deleterious mutations in many genes of the glyco(geno)lytic or the glycogenesis pathways can potentially cause a glycogenosis, and currently mutations in fourteen different genes are known to cause animal or human glycogenoses, resulting in myopathies and/or hepatic disorders. The genetic bases of two forms of glycogenosis are currently known in horses. A fatal neonatal polysystemic type IV glycogenosis, inherited recessively in affected Quarter Horse foals, is due to a mutation in the glycogen branching enzyme gene (GBE1). A second type of glycogenosis, termed polysaccharide storage myopathy (PSSM), is observed in adult Quarter Horses and other breeds. A severe form of PSSM also occurs in draught horses. A mutation in the skeletal muscle glycogen synthase gene (GYS1) was recently reported to be highly associated with PSSM in Quarter Horses and Belgian draught horses. This GYS1 point mutation appears to cause a gain-of-function of the enzyme and to result in the accumulation of a glycogen-like, less-branched polysaccharide in skeletal muscle. It is inherited as a dominant trait. The aim of this work was to test for possible associations between genetic polymorphisms in four candidate genes of the glycogen pathway or the GYS1 mutation in Cob Normand draught horses diagnosed with PSSM by muscle biopsy.

  6. HOTAIR gene polymorphisms contribute to increased neuroblastoma susceptibility in Chinese children.

    PubMed

    Yang, Xu; He, Jing; Chang, Yitian; Luo, Annie; Luo, Ailing; Zhang, Jiao; Zhang, Ruizhong; Xia, Huimin; Xu, Ling

    2018-06-15

    Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children. Previous studies have shown that single-nucleotide polymorphisms in some genes are associated with the risk of multiple cancers, including neuroblastoma. Although Hox transcript antisense intergenic RNA (HOTAIR) gene polymorphisms have been investigated in a variety of cancers, to the authors' knowledge the relationships between HOTAIR gene polymorphisms and neuroblastoma susceptibility have not been reported to date. The objective of the current study was to evaluate the correlation between HOTAIR gene polymorphisms and neuroblastoma risk in Chinese children. The authors genotyped 6 polymorphisms (rs920778 A>G, rs12826786 C>T, rs4759314 A>G, rs7958904 G>C, rs874945 C>T, and rs1899663 C>A) of the HOTAIR gene in 2 Chinese populations including 393 neuroblastoma cases and 812 healthy controls. The strength of the associations was evaluated using odds ratios and 95% confidence intervals. Further stratification analyses were conducted to explore the association between the HOTAIR gene polymorphisms rs12826786 C>T, rs874945 C>T, and rs1899663 C>A with neuroblastoma susceptibility in terms of age, sex, clinical stage of disease, and sites of origin. The authors found that the rs12826786 C>T (P =.013), rs874945 C>T (P =.020), and rs1899663 C>A (P =.029) polymorphisms were significantly associated with increased neuroblastoma risk. In stratification analyses, these associations were more predominant in females and among patients with tumor in the retroperitoneal region or mediastinum. The remaining 3 polymorphisms were not found to be related to neuroblastoma susceptibility. The results of the current study verified that HOTAIR gene polymorphisms are associated with increased neuroblastoma risk and suggest that HOTAIR gene polymorphisms might be a potential biomarker for neuroblastoma susceptibility. Cancer 2018;124:2599-606. © 2018 American Cancer Society. © 2018 American Cancer Society.

  7. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.

  8. Association of ACE Gene I/D polymorphism with migraine in Kashmiri population.

    PubMed

    Wani, Irfan Yousuf; Sheikh, Saleem; Shah, Zafar Amin; Pandith, Arshid A; Wani, Mushtaq; Asimi, Ravouf; Wani, Maqbool; Sheikh, Shahnawaz; Mehraj, Iqra

    2016-01-01

    Migraine is a complex, recurrent headache disorder that is one of the most common complaints in neurology practice. The role of various genes in its pathogenesis is being studied. We did this study to see whether an association exists between ACE gene I/D polymorphism and migraine in our region. The study included 100 patients diagnosed with migraine and 121 healthy controls. The study subject were age and gender matched. The analysis was based on Polymerase Chain Reaction (PCR) and included following steps: DNA extraction from blood, PCR and Restriction Fragment Length Polymorphism (RFLP). Out of 100 cases, 69 were females and 31 were males. Fifty-seven were having migraine without aura and 43 had migraine with aura. 45 of the cases had II polymorphism, 40 had ID polymorphism and 15 had DD polymorphism in ACE gene. We were not able to find a statistically significant association between ACE gene I/D polymorphism with migraine. The reason for difference in results between our study and other studies could be because of different ethnicity in study populations. So a continuous research is needed in this regard in order to find the genes and different polymorphism that increase the susceptibility of Kashmiri population to migraine.

  9. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  10. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage

    USDA-ARS?s Scientific Manuscript database

    Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose-phosphate synthase (SPS), soluble acid (SAI) and cell-wall invertase (CWI) are importan...

  11. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    PubMed Central

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  12. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).

    PubMed

    Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi

    2014-10-01

    Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.

  13. Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus

    PubMed Central

    Banerjee, Monisha; Vats, Pushpank

    2014-01-01

    Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor (IR) dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) with lipids, proteins and other molecules of the human body. Production of RMs mainly superoxides (•O2−) has been found in a variety of predominating cellular enzyme systems including nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, cyclooxygenase, endothelial nitric oxide synthase (eNOS) and myeloperoxidase. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product formation; activation of protein kinase C isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in the pathogenesis of T2DM. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiates stress related pathways thereby leading to IR and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM. PMID:24959009

  14. A Single Nucleotide Polymorphism Associates With the Response of Muscle ATP Synthesis to Long-Term Exercise Training in Relatives of Type 2 Diabetic Humans

    PubMed Central

    Kacerovsky-Bielesz, Gertrud; Kacerovsky, Michaela; Chmelik, Marek; Farukuoye, Michaela; Ling, Charlotte; Pokan, Rochus; Tschan, Harald; Szendroedi, Julia; Schmid, Albrecht Ingo; Gruber, Stephan; Herder, Christian; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael

    2012-01-01

    OBJECTIVE Myocellular ATP synthesis (fATP) associates with insulin sensitivity in first-degree relatives of subjects with type 2 diabetes. Short-term endurance training can modify their fATP and insulin sensitivity. This study examines the effects of moderate long-term exercise using endurance or resistance training in this cohort. RESEARCH DESIGN AND METHODS A randomized, parallel-group trial tested 16 glucose-tolerant nonobese relatives (8 subjects in the endurance training group and 8 subjects in the resistance training group) before and after 26 weeks of endurance or resistance training. Exercise performance was assessed from power output and oxygen uptake (Vo2) during incremental tests and from maximal torque of knee flexors (MaxTflex) and extensors (MaxText) using isokinetic dynamometry. fATP and ectopic lipids were measured with 1H/31P magnetic resonance spectroscopy. RESULTS Endurance training increased power output and Vo2 by 44 and 30%, respectively (both P < 0.001), whereas resistance training increased MaxText and MaxTflex by 23 and 40%, respectively (both P < 0.001). Across all groups, insulin sensitivity (382 ± 90 vs. 389 ± 40 mL ⋅ min−1 ⋅ m−2) and ectopic lipid contents were comparable after exercise training. However, 8 of 16 relatives had 26% greater fATP, increasing from 9.5 ± 2.3 to 11.9 ± 2.4 μmol ⋅ mL−1 ⋅ m−1 (P < 0.05). Six of eight responders were carriers of the G/G single nucleotide polymorphism rs540467 of the NDUFB6 gene (P = 0.019), which encodes a subunit of mitochondrial complex I. CONCLUSIONS Moderate exercise training for 6 months does not necessarily improve insulin sensitivity but may increase ATP synthase flux. Genetic predisposition can modify the individual response of the ATP synthase flux independently of insulin sensitivity. PMID:22190678

  15. Genetic polymorphisms in the microRNA binding-sites of the thymidylate synthase gene predict risk and survival in gastric cancer.

    PubMed

    Shen, Rong; Liu, Hongliang; Wen, Juyi; Liu, Zhensheng; Wang, Li-E; Wang, Qiming; Tan, Dongfeng; Ajani, Jaffer A; Wei, Qingyi

    2015-09-01

    Thymidylate synthase (TYMS) plays a crucial role in folate metabolism as well as DNA synthesis and repair. We hypothesized that functional polymorphisms in the 3' UTR of TYMS are associated with gastric cancer risk and survival. In the present study, we tested our hypothesis by genotyping three potentially functional (at miRNA binding sites) TYMS SNPs (rs16430 6bp del/ins, rs2790 A>G and rs1059394 C>T) in 379 gastric cancer patients and 431 cancer-free controls. Compared with the rs16430 6bp/6bp + 6bp/0bp genotypes, the 0bp/0bp genotype was associated with significantly increased gastric cancer risk (adjusted OR = 1.72, 95% CI = 1.15-2.58). Similarly, rs2790 GG and rs1059394 TT genotypes were also associated with significantly increased risk (adjusted OR = 2.52, 95% CI = 1.25-5.10 and adjusted OR = 1.57, 95% CI = 1.04-2.35, respectively), compared with AA + AG and CC + CT genotypes, respectively. In the haplotype analysis, the T-G-0bp haplotype was associated with significantly increased gastric cancer risk, compared with the C-A-6bp haplotype (adjusted OR = 1.34, 95% CI = 1.05-1.72). Survival analysis revealed that rs16430 0bp/0bp and rs1059394 TT genotypes were also associated with poor survival in gastric cancer patients who received chemotherapy treatment (adjusted HR = 1.61, 95% CI = 1.05-2.48 and adjusted HR = 1.59, 95% CI = 1.02-2.48, respectively). These results suggest that these three variants in the miRNA binding sites of TYMS may be associated with cancer risk and survival of gastric cancer patients. Larger population studies are warranted to verify these findings. © 2014 Wiley Periodicals, Inc.

  16. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  17. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

    PubMed

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F

    2006-01-01

    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  18. Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses

    PubMed Central

    Pazouki, Leila; Kanagendran, Arooran; Li, Shuai; Kännaste, Astrid; Memari, Hamid Rajabi; Bichele, Rudolf; Niinemets, Ülo

    2018-01-01

    Plants frequently experience heat ramps of various severities, but how and to what degree plant metabolic activity recovers from mild and severe heat stress is poorly understood. In this study, we exposed the constitutive terpene emitter, Solanum. lycopersicum leaves to mild (37 and 41 °C), moderate (46 °C) and severe (49 °C) heat ramps of 5 min. and monitored foliage photosynthetic activity, lipoxygenase pathway volatile (LOX), and mono- and sesquiterpene emissions and expression of two terpene synthase genes, β-phellandrene synthase and (E)-β-caryophyllene/α-humulene synthase, through a 24 h recovery period upon return to pre-stress conditions. Leaf monoterpene emissions were dominated by β-phellandrene and sesquiterpene emissions by (E)-β-caryophyllene, and thus, these two terpene synthase genes were representative for the two volatile terpene classes. Photosynthetic characteristics partly recovered under moderate heat stress, and very limited recovery was observed under severe stress. All stress treatments resulted in elicitation of LOX emissions that declined during recovery. Enhanced mono- and sesquiterpene emissions were observed immediately after the heat treatment, but the emissions decreased even to below the control treatment during recovery between 2-10 h, and raised again by 24 h. The expression of β-phellandrene and (E)-β-caryophyllene synthase genes decreased between 2-10 h after heat stress, and recovered to pre-stress level in mild heat stress treatment by 24 h. Overall, this study demonstrates a highly sensitive heat response of terpenoid synthesis that is mainly controlled by gene level responses under mild stress, while severe stress leads to non-recoverable declines in foliage physiological and gene expression activities. PMID:29367791

  19. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  20. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.

    PubMed

    Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F

    2017-08-01

    Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.

  1. Hyaluronan Synthase 3 Variant and Anthracycline-Related Cardiomyopathy: A Report From the Children's Oncology Group

    PubMed Central

    Wang, Xuexia; Liu, Wei; Sun, Can-Lan; Armenian, Saro H.; Hakonarson, Hakon; Hageman, Lindsey; Ding, Yan; Landier, Wendy; Blanco, Javier G.; Chen, Lu; Quiñones, Adolfo; Ferguson, Daniel; Winick, Naomi; Ginsberg, Jill P.; Keller, Frank; Neglia, Joseph P.; Desai, Sunil; Sklar, Charles A.; Castellino, Sharon M.; Cherrick, Irene; Dreyer, ZoAnn E.; Hudson, Melissa M.; Robison, Leslie L.; Yasui, Yutaka; Relling, Mary V.; Bhatia, Smita

    2014-01-01

    Purpose The strong dose-dependent association between anthracyclines and cardiomyopathy is further exacerbated by the co-occurrence of cardiovascular risk factors (diabetes and hypertension). The high morbidity associated with cardiomyopathy necessitates an understanding of the underlying pathogenesis so that targeted interventions can be developed. Patients and Methods By using a two-stage design, we investigated host susceptibility to anthracycline-related cardiomyopathy by using the ITMAT/Broad CARe cardiovascular single nucleotide polymorphism (SNP) array to profile common SNPs in 2,100 genes considered relevant to de novo cardiovascular disease. Results By using a matched case-control design (93 cases, 194 controls), we identified a common SNP, rs2232228, in the hyaluronan synthase 3 (HAS3) gene that exerts a modifying effect on anthracycline dose-dependent cardiomyopathy risk (P = 5.3 × 10−7). Among individuals with rs2232228 GG genotype, cardiomyopathy was infrequent and not dose related. However, in individuals exposed to high-dose (> 250 mg/m2) anthracyclines, the rs2232228 AA genotype conferred an 8.9-fold (95% CI, 2.1- to 37.5-fold; P = .003) increased cardiomyopathy risk compared with the GG genotype. This gene-environment interaction was successfully replicated in an independent set of 76 patients with anthracycline-related cardiomyopathy. Relative HAS3 mRNA levels measured in healthy hearts tended to be lower among individuals with AA compared with GA genotypes (P = .09). Conclusion Hyaluronan (HA) produced by HAS3 is a ubiquitous component of the extracellular matrix and plays an active role in tissue remodeling. In addition, HA is known to reduce reactive oxygen species (ROS) –induced cardiac injury. The high cardiomyopathy risk associated with AA genotype could be due to inadequate remodeling and/or inadequate protection of the heart from ROS-mediated injury on high anthracycline exposure. PMID:24470002

  2. [Prevalence of gene polymorphisms associated with immune-dependent diseases in the populations of North Eurasia].

    PubMed

    Cherednichenko, A A; Trifonova, E A; Vagaitseva, K V; Bocharova, A V; Varzari, A M; Radzhabov, M O; Stepanov, V A

    2015-01-01

    The data on distribution of genetic diversity in gene polymorphisms associated with autoimmune and allergic diseases and with regulation of immunoglobulin E and cytokines levels in 26 populations of the Northern Eurasia is presented. Substantial correlation between the values of average expected heterozygosity by 44 gene polymorphisms with climatic and geographical factors has not been revealed. Clustering of population groups in correspondence with their geographic locations is observed. The degree of gene differentiation among populations and the selective neutrality of gene polymorphisms have been assessed. The results of our work evidence the substantial genetic diversity and differentiation of human populations by studied genes.

  3. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.

  4. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    PubMed

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  5. No association of the neuropeptide Y (Leu7Pro) and ghrelin gene (Arg51Gln, Leu72Met, Gln90Leu) single nucleotide polymorphisms with eating disorders.

    PubMed

    Kindler, Jochen; Bailer, Ursula; de Zwaan, Martina; Fuchs, Karoline; Leisch, Friedrich; Grün, Bettina; Strnad, Alexandra; Stojanovic, Mirjana; Windisch, Julia; Lennkh-Wolfsberg, Claudia; El-Giamal, Nadja; Sieghart, Werner; Kasper, Siegfried; Aschauer, Harald

    2011-06-01

    Genetic factors likely contribute to the biological vulnerability of eating disorders. Case-control association study on one neuropeptide Y gene (Leu7Pro) polymorphism and three ghrelin gene (Arg51Gln, Leu72Met and Gln90Leu) polymorphisms. 114 eating disorder patients (46 with anorexia nervosa, 30 with bulimia nervosa, 38 with binge eating disorder) and 164 healthy controls were genotyped. No differences were detected between patients and controls for any of the four polymorphisms in allele frequency and genotype distribution (P > 0.05). Allele frequencies and genotypes had no significant influence on body mass index (P > 0.05) in eating disorder patients. Positive findings of former case-control studies of associations between ghrelin gene polymorphisms and eating disorders could not be replicated. Neuropeptide Y gene polymorphisms have not been investigated in eating disorders before.

  6. A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa.

    PubMed

    Nowrousian, Minou

    2009-04-01

    During fungal fruiting body development, hyphae aggregate to form multicellular structures that protect and disperse the sexual spores. Analysis of microarray data revealed a gene cluster strongly upregulated during fruiting body development in the ascomycete Sordaria macrospora. Real time PCR analysis showed that the genes from the orthologous cluster in Neurospora crassa are also upregulated during development. The cluster encodes putative polyketide biosynthesis enzymes, including a reducing polyketide synthase. Analysis of knockout strains of a predicted dehydrogenase gene from the cluster showed that mutants in N. crassa and S. macrospora are delayed in fruiting body formation. In addition to the upregulated cluster, the N. crassa genome comprises another cluster containing a polyketide synthase gene, and five additional reducing polyketide synthase (rpks) genes that are not part of clusters. To study the role of these genes in sexual development, expression of the predicted rpks genes in S. macrospora (five genes) and N. crassa (six genes) was analyzed; all but one are upregulated during sexual development. Analysis of knockout strains for the N. crassa rpks genes showed that one of them is essential for fruiting body formation. These data indicate that polyketides produced by RPKSs are involved in sexual development in filamentous ascomycetes.

  7. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC.

    PubMed

    Essar, D W; Eberly, L; Crawford, I P

    1990-02-01

    Pseudomonas putida possesses seven structural genes for enzymes of the tryptophan pathway. All but one, trpG, which encodes the small (beta) subunit of anthranilate synthase, have been mapped on the circular chromosome. This report describes the cloning and sequencing of P. putida trpE, trpG, trpD, and trpC. In P. putida and Pseudomonas aeruginosa, DNA sequence analysis as well as growth and enzyme assays of insertionally inactivated strains indicated that trpG is the first gene in a three-gene operon that also contains trpD and trpC. In P. putida, trpE is 2.2 kilobases upstream from the trpGDC cluster, whereas in P. aeruginosa, they are separated by at least 25 kilobases (T. Shinomiya, S. Shiga, and M. Kageyama, Mol. Gen. Genet., 189:382-389, 1983). The DNA sequence in P. putida shows an open reading frame on the opposite strand between trpE and trpGDC; this putative gene was not characterized. Evidence is also presented for sequence similarities in the 5' untranslated regions of trpE and trpGDC in both pseudomonads; the function of these regions is unknown, but it is possible that they play some role in regulation of these genes, since all the genes respond to repression by tryptophan. The sequences of the anthranilate synthase genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthranilate synthase genes of those organisms; however, no requirement for p-aminobenzoate was found in the Pseudomonas mutants created in this study.

  8. Interactive effects of the ACE DD polymorphism with the NOS III homozygous G849T (Glu298-->Asp) variant in determining endothelial function in coronary artery disease.

    PubMed

    Schmidt, Michael A; Chakrabarti, Anjan K; Kehrer, Chris; Pfeninnger, Dana; Brook, Robert D; Kaciroti, Niko; Duvernoy, Claire; Killeen, Anthony A; Rajagopalan, Sanjay

    2003-01-01

    The products of nitric oxide synthase (NOS) and angiotensin-converting enzyme (ACE) play a critical role in determining vessel wall structure and function. Polymorphisms in both genes have been independently demonstrated to influence propensity to cardiovascular events. The purpose of this study was to determine the influence of the homozygous G849T (Glu298-->Asp) polymorphism in NOS III on peripheral conduit artery endothelial function and to elucidate the modifier role, if any, of a common ACE polymorphism. Three hundred and ninety-seven consecutive subjects presenting to the cardiac catheterization laboratory of the University of Michigan over a period of 18 months were recruited. DNA was extracted and polymerase chain reaction (PCR) analysis for ACE and NOS polymorphisms performed. Patients with homozygosity for G849T at both loci (TT) who belong to DD and II ACE genotype (groups 1 and 2) and those who are negative for this polymorphism (GG) and belong to either DD or II genotype (groups 3 and 4) were identified. The four groups then underwent determination of conduit endothelial function. Heterozygosity of Glu298-Asp or the ID variant of the ACE were not studied. Median FMD value in the TT-DD group was 0.20 (-3.17, 2.01) compared with 2.23% (-0.29, 4.17) in the GG-II group. Median values in the TT-II and the GG-DD groups were 3.04 (-1.16, 6.61) and 2.46% (-1.83, 6.52) respectively. These values were not statistically significant (p > 0.05 by one-way ANOVA). Median nitroglycerin-mediated dilation in the four groups did not differ between the four groups (p = NS by ANOVA). Atherosclerosis burdens as assessed by angiography were not different across the groups. In conclusion, the homozygous NOS III variant (GG) status does not seem to interact additively with the ACE homozygous DD genotype in determining flow-mediated vasodilation in individuals with established atherosclerosis and pre-existent endothelial dysfunction.

  9. ESTs from Seeds to Assist the Selective Breeding of Jatropha curcas L. for Oil and Active Compounds

    PubMed Central

    Gomes, Kleber A; Almeida, Tiago C; Gesteira, Abelmon S; Lôbo, Ivon P; Guimarães, Ana Carolina R; de Miranda, Antonio B; Van Sluys, Marie-Anne; da Cruz, Rosenira S; Cascardo, Júlio CM; Carels, Nicolas

    2010-01-01

    We report here on the characterization of a cDNA library from seeds of Jatropha curcas L. at three stages of fruit maturation before yellowing. We sequenced a total of 2200 clones and obtained a set of 931 non-redundant sequences (unigenes) after trimming and quality control, ie, 140 contigs and 791 singlets with PHRED quality ≥10. We found low levels of sequence redundancy and extensive metabolic coverage by homology comparison to GO. After comparison of 5841 non-redundant ESTs from a total of 13193 reads from GenBank with KEGG, we identified tags with nucleotide variations among J. curcas accessions for genes of fatty acid, terpene, alkaloid, quinone and hormone pathways of biosynthesis. More specifically, the expression level of four genes (palmitoyl-acyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B, lysophosphatidic acid acyltransferase and geranyl pyrophosphate synthase) measured by real-time PCR proved to be significantly different between leaves and fruits. Since the nucleotide polymorphism of these tags is associated to higher level of gene expression in fruits compared to leaves, we propose this approach to speed up the search for quantitative traits in selective breeding of J. curcas. We also discuss its potential utility for the selective breeding of economically important traits in J. curcas. PMID:26217103

  10. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    Isopentenyl diphosphate isomerase (idi) and farnesyl diphosphate synthase (ispA) genes were overexpressed in Escherichia coli. The resulting transformant showed 6.8-fold higher production of farnesol (389 microg/l). In a similar manner, overexpression of idi and mutated ispA led to high production of geranylgeraniol (128 microg/l).

  11. Hemorheological alterations in sickle cell anemia and their clinical consequences - The role of genetic modulators.

    PubMed

    Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula

    2016-01-01

    Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.

  12. [Association of muscle segment homeobox gene 1 polymorphisms with nonsyndromic cleft lip with or without cleft palate].

    PubMed

    Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng

    2008-06-01

    Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.

  13. Association of neonatal necrotizing enterocolitis with myeloid differentiation-2 and GM2 activator protein genetic polymorphisms.

    PubMed

    Zhou, Wei; Yuan, Weiming; Huang, Longguang; Wang, Ping; Rong, Xiao; Tang, Juan

    2015-07-01

    The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.

  14. Association study of interferon gamma (IFN-γ) +874T/A gene polymorphism in patients with paranoid schizophrenia.

    PubMed

    Paul-Samojedny, Monika; Owczarek, Aleksander; Suchanek, Renata; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Borkowska, Paulina; Kucia, Krzysztof; Kowalski, Jan

    2011-03-01

    Schizophrenia is a multifactorial disease with changes affecting the immune system. Dysregulation of the cytokine network in schizophrenia has been well documented. Such changes may occur due to disturbances in cytokine levels that are linked to polymorphisms of cytokine genes. However, research in the role of cytokine gene polymorphisms in schizophrenia has been surprisingly scanty. The aim of this study was to identify, in a case control study, whether polymorphism of IFN-γ gene is a risk factor for the development of paranoid schizophrenia. To the best of our knowledge, this is the first study that examines the association between the IFN-γ gene polymorphism and psychopathological symptoms in patients with paranoid schizophrenia. Polymorphism of IFN-γ (+874T/A, rs 62559044) in schizophrenic patients (n=179), as well as healthy individuals (n=196), both Polish residents, was genotyped using AS-PCR method. Of note, when analyzing the results, we took into consideration the gender of studied individuals. Surprisingly, a single-nucleotide polymorphism in the first intron of the IFN-γ gene was found to be associated with paranoid schizophrenia in males, but not in females. The presence of allele A at position +874 in the IFN-γ gene correlates with 1.66-fold higher risk of paranoid schizophrenia development in males. Differences in the genotypes may have an important role in determining the level of I gene transcription. Because other polymorphisms have been demonstrated to influence IFN-γ transcription, further analysis is necessary to clarify the role of this gene in the pathogenesis of paranoid schizophrenia.

  15. Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk.

    PubMed

    Sarginson, Jane E; Deakin, J F William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-11-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.

  16. Neuronal Nitric Oxide Synthase (NOS1) Polymorphisms Interact with Financial Hardship to Affect Depression Risk

    PubMed Central

    Sarginson, Jane E; Deakin, JF William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-01-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression. PMID:24917196

  17. Clinical study on gastric cancer susceptibility genes IL-10-1082 and TNF-α.

    PubMed

    Yu, T; Lu, Q; Ou, X L; Cao, D Z; Yu, Q

    2014-12-19

    TNF 308 gene polymorphism and IL-10 polymorphism provided evidence in diagnosing some types of cancer. We aimed to explore the relation of gene polymorphism with gastric cancer. A total of 360 cases of gastric cancer patients were included in the study. The genotypes GG, GA, and AA of the interleukin-10-1082 gene (IL-10-1082) and the tumor necrosis factor-alpha gene (TNF-α) 308 polymorphism were examined by chromogenic detection. Three hundred healthy individuals' gene as control group were also examined. The GA 308 genotype of TNF-α differed significantly between the control group and the gastric cancer group (X(2) = 9.32, P < 0.05). Genotype frequencies of A/A (17.2%), A/G (26.2%), and G/G (9.1%) of the IL-10-1082 gene polymorphism in the gastric cancer group differed significantly compared to those of the control group (X(2) = 20.32, P < 0.05). The IL-10-1082 gene and the GA 308 genotype of the TNF-α gene were found to be susceptibility genes for gastric cancer.

  18. Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species

    PubMed Central

    Lin, Shu-Hsi; Yoshimoto, Miwa; Lyu, Ping-Chiang; Tang, Chuan-Yi; Arita, Masanori

    2012-01-01

    Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK. PMID:22844193

  19. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS

    PubMed Central

    von Wettstein-Knowles, Penny

    2017-01-01

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue–grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase—the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols. PMID:28698520

  20. Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis.

    PubMed

    Li, Chunhong; Ng, Ailing; Xie, Lifen; Mao, Huizhu; Qiu, Chengxiang; Srinivasan, Ramachandran; Yin, Zhongchao; Hong, Yan

    2016-01-01

    Casbene is a precursor to phorbol esters and down-regulating casbene synthase effectively reduces phorbol ester biosynthesis. Seed-specific reduction of phorbol ester (PE) helps develop Jatropha seed cake for animal nutrition. Phorbol esters (PEs) are diterpenoids present in some Euphorbiaceae family members like Jatropha curcas L. (Jatropha), a tropical shrub yielding high-quality oil suitable as feedstock for biodiesel and bio jet fuel. Jatropha seed contains up to 40 % of oil and can produce oil together with cake containing high-quality proteins. However, skin-irritating and cancer-promoting PEs make Jatropha cake meal unsuitable for animal nutrition and also raise some safety and environmental concerns on its planting and processing. Two casbene synthase gene (JcCASA163 and JcCASD168) homologues were cloned from Jatropha genome and both genes were highly expressed during seed development. In vitro functional analysis proved casbene synthase activity of JcCASA163 in converting geranylgeranyl diphosphate into casbene which has been speculated to be the precursor to PEs. A seed-specific promoter driving inverted repeats for RNAi interference targeting at either JcCASA163 or both genes could effectively down-regulate casbene synthase gene expression with concurrent marked reduction of PE level (by as much as 85 %) in seeds with no pleiotropic effects observed. Such engineered low PE in seed was heritable and co-segregated with the transgene. Our work implicated casbene synthase in Jatropha PE biosynthesis and provided evidence for casbene being the precursor for PEs. The success in reducing seed PE content through down-regulation of casbene synthase demonstrates the feasibility of intercepting PE biosynthesis in Jatropha seed to help address safety concerns on Jatropha plantation and seed processing and facilitate use of its seed protein for animal nutrition.

  1. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  2. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.

    PubMed

    Zhao, Q; Davis, M E; Hines, H C

    2004-08-01

    The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.

  3. Chitin synthases are required for survival, fecundity and egg-hatch in the red flour beetle, Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    The synthesis of chitin, the Beta-1,4-linked polymer of N-acetylglucosamine, is catalyzed by chitin synthase (CHS). Chitin is essential for the structural integrity of the exoskeletal cuticle and midgut peritrophic membrane (PM) of insects. To study the functions of the two chitin synthase genes, ...

  4. Identifying disease polymorphisms from case-control genetic association data.

    PubMed

    Park, L

    2010-12-01

    In case-control association studies, it is typical to observe several associated polymorphisms in a gene region. Often the most significantly associated polymorphism is considered to be the disease polymorphism; however, it is not clear whether it is the disease polymorphism or there is more than one disease polymorphism in the gene region. Currently, there is no method that can handle these problems based on the linkage disequilibrium (LD) relationship between polymorphisms. To distinguish real disease polymorphisms from markers in LD, a method that can detect disease polymorphisms in a gene region has been developed. Relying on the LD between polymorphisms in controls, the proposed method utilizes model-based likelihood ratio tests to find disease polymorphisms. This method shows reliable Type I and Type II error rates when sample sizes are large enough, and works better with re-sequenced data. Applying this method to fine mapping using re-sequencing or dense genotyping data would provide important information regarding the genetic architecture of complex traits.

  5. Functional analysis of regulatory single-nucleotide polymorphisms.

    PubMed

    Pampín, Sandra; Rodríguez-Rey, José C

    2007-04-01

    The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.

  6. Association between ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133), FTO (rs9939609) Genes Polymorphism and Type 2 Diabetes with Dyslipidemia.

    PubMed

    Raza, Syed Tasleem; Abbas, Shania; Siddiqi, Zeba; Mahdi, Farzana

    2017-01-01

    Diabetic dyslipidemia is one of the leading causes of coronary artery disease (CAD) death. Genetic and environmental factors play an important role in the development of type 2 diabetes mellitus (T2DM) and dyslipidemia. The present study was aimed to investigate the association of ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133) and FTO (rs9939609) genes polymorphism in T2DM with dyslipidemia. Totally, 559 subjects including 221 T2DM cases with dyslipidemia, 158 T2DM without dyslipidemia and 180 controls were enrolled. ACE genes polymorphism was evaluated by polymerase chain reaction (PCR), while MTHFR , FABP2 , FTO genes polymorphisms were evaluated by PCR and restriction fragment length polymorphism (RFLP). Significant association of ACE and MTHFR genes polymorphisms were found in both group of cases [T2DM with dyslipidemia (P<0.001, and P=0.008, respectively) and T2DM without dyslipidemia (P=0.003, and P=0.010, respectively)] while FABP2 and FTO genes polymorphisms were significantly associated with T2DM without dyslipidemia (P=0.038, and P= 0.019, respectively). This study concludes that ACE , FABP2 , FTO and MTHFR genes are associated with T2DM. Additionally, it also seems that ACE and MTHFR genes might be further associated with the development of dyslipidemia in T2DM cases.

  7. A meta-analysis evaluating the relationship between IL-18 gene promoter polymorphisms and an individual's susceptibility to HCV infection.

    PubMed

    Chen, W; Jing, M; Zhang, Q; Yuan, R; Jing, S

    2018-01-01

    Several observational studies have investigated interleukin-18 (IL-18) gene polymorphisms with regard to susceptibility to hepatitis C virus (HCV) infection, but the results have been inconsistent. To evaluate the relationships between functional polymorphisms in the IL-18 gene and an individual's susceptibility to HCV infection, a meta-analysis was performed. Methods: A literature search was conducted using the PubMed, EMBASE, Web of Science and China BioMedicine databases to investigate the correlation between IL-18 gene polymorphisms and susceptibility to HCV infection. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. The polymorphisms IL-18-607 C>A and -137 G>C were correlated with susceptibility to HCV infection in Asian populations. However, there was no evidence indicating a correlation between either of these polymorphisms and susceptibility to HCV infection in Caucasian populations. Our current meta-analysis suggests that the -607 C>A and -137 G>C polymorphisms in the IL-18 gene promoter play important roles in determining the response to HCV in Asian populations. More studies with larger sample sizes are needed to evaluate the associations between IL-18 genetic polymorphisms and HCV infection risk. © Acta Gastro-Enterologica Belgica.

  8. Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population.

    PubMed

    Park, Chul-Soo; Park, So-Young; Lee, Chul-Soon; Sohn, Jin-Wook; Hahn, Gyu-Hee; Kim, Bong-Jo

    2006-06-01

    Family, twin, and adoption studies have demonstrated that genes play an important role in the development of alcoholism. We investigated the association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. The genotype of the GABAA receptor gene polymorphisms were determined by performing polymerase chain reaction genotyping for 172 normal controls and 162 male alcoholics who are hospitalized in alcoholism treatment institute. We found a significant association between the genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene and alcoholism. The GG genotype of the GABAA alpha1 receptor gene was associated with the onset age of alcoholism and alcohol withdrawal symptoms, and a high score on the Korean version of the ADS. However, there was no association between the genetic polymorphisms of the GABAA beta2 and gamma2 receptor gene and alcoholisms. Our finding suggest that genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene may be associated with the development of alcoholism and that the GG genotype of the GABAA alpha1 receptor gene play an important role in the development of the early onset and the severe type of alcoholism.

  9. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products.

    PubMed

    Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong

    2015-01-27

    In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

  10. No association between catechol-O-methyltransferase polymorphisms and neurotic disorders among mainland Chinese university students.

    PubMed

    Kou, Changgui; Meng, Xiangfei; Xie, Bing; Shi, Jieping; Yu, Qiong; Yu, Yaqin; D'Arcy, Carl

    2012-07-30

    This study investigates the genetic association between catechol-O-methyltransferase (COMT) gene polymorphisms and neurotic disorders. Data were derived from a case-control association study of 255 undergraduates affected by neurotic disorders and 269 matched healthy undergraduate controls. The polymorphisms of eight tag single nucleotide polymorphisms (SNPs) on the COMT gene were tested using polymerase chain reaction (PCR)-based Ligase Detection Reaction (PCR-LDR). The eight tag SNPs on the COMT gene assessed were not associated with neurotic disorders. Our finding suggests that the COMT gene may not be a susceptibility gene for neurotic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Association of -604G/A and -501A/C Ghrelin and Obestatin Prepropeptide Gene Polymorphisms with Polycystic Ovary Syndrome.

    PubMed

    Ghaleh, Talaat Dabbaghi; Skandari, Somayeh Saadat; Najafipour, Reza; Rashvand, Zahra; Darabi, Masoud; Sahmani, Mehdi

    2018-04-01

    Ghrelin hormone has an important role in a wide range of metabolic and non-metabolic processes. Polymorphisms of ghrelin gene could be associated with a large number of diseases. The aim of this study was to evaluate the association of -604G/A and -501A/C polymorphisms in ghrelin and obestatin prepropeptide gene (GHRL) with polycystic ovary syndrome (PCOS) in a sample of Iranian women. One hundred and fifty-two women with PCOS and 162 age-matched apparently healthy women as control group were enrolled in this study. The study subjects were genotyped for polymorphisms in the ghrelin gene using polymerase chain reaction-restriction fragment length polymorphism-based methods. Biochemical parameters, serum prolactin, luteinizing hormone, follicle stimulating hormone, estradiol, and testosterone were estimated by chemiluminescence assay. Serum lipids and lipoproteins were determined by standard enzymatic methods. The association between the risk of PCOS and ghrelin gene polymorphisms was examined using Multivariate analysis. The frequency of the -604G/A and -501A/C polymorphisms was not statistically different between patients and the control group of women (p = 0.12 and p = 0.21, respectively). A significantly higher level of LDL-C was found in the wild-type AA genotype compared with CC genotype of -501A/C polymorphism (p = 0.02). Our findings indicate that neither -604G/A and nor -501A/C polymorphisms of ghrelin gene are associated with PCOS, but suggest a relation between the presence of polymorphic allele of -501A/C polymorphism and LDL-C level in a sample of Iranian women.

  12. Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.

    PubMed

    Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir

    2005-08-01

    To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.

  13. Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics.

    PubMed

    Duconge, Jorge; Cadilla, Carmen L; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Seip, Richard L; Bogaard, Kali; Renta, Jessica Y; Piovanetti, Paola; D'Agostino, Darrin; Santiago-Borrero, Pedro J; Ruaño, Gualberto

    2009-01-01

    Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Luminex x-MAP technology. The polymorphism frequencies were 6.52%, 5.43% and 28.8% for CYP2C9 *2, *3 and VKORC1-1639 C>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphism, and the remaining 40% were non-carriers for either gene. Based on a published warfarin dosing algorithm, single, double and triple carriers of functionally deficient polymorphisms predict reductions of 1.0-1.6, 2.0-2.9, and 2.9-3.7 mg/day, respectively, in warfarin dose. Overall, 60% of the population carried at least a single polymorphism predicting deficient warfarin metabolism or responsiveness and 13% were double carriers with polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin among patients with gene polymorphisms, potentially reducing the risk of stroke or bleeding.

  14. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    PubMed

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Vitamin D receptor gene Alw I, Fok I, Apa I, and Taq I polymorphisms in patients with urinary stone.

    PubMed

    Seo, Ill Young; Kang, In-Hong; Chae, Soo-Cheon; Park, Seung Chol; Lee, Young-Jin; Yang, Yun Sik; Ryu, Soo Bang; Rim, Joung Sik

    2010-04-01

    To evaluate vitamin D receptor (VDR) gene polymorphisms in Korean patients so as to identify the candidate genes associated with urinary stones. Urinary stones are a multifactorial disease that includes various genetic factors. A normal control group of 535 healthy subjects and 278 patients with urinary stones was evaluated. Of 125 patients who presented stone samples, 102 had calcium stones on chemical analysis. The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms were evaluated using the polymerase chain reaction-restriction fragment length polymorphism analysis. Allelic and genotypic frequencies were calculated to identify associations in both groups. The haplotype frequencies of the VDR gene polymorphisms for multiple loci were also determined. For the VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms, there was no statistically significant difference between the patients with urinary stones and the healthy controls. There was also no statistically significant difference between the patients with calcium stones and the healthy controls. A novel haplotype (Ht 4; CTTT) was identified in 13.5% of the patients with urinary stones and in 8.3% of the controls (P = .001). The haplotype frequencies were significantly different between the patients with calcium stones and the controls (P = .004). The VDR gene Alw I, Fok I, Apa I, and Taq I polymorphisms does not seem to be candidate genetic markers for urinary stones in Korean patients. However, 1 novel haplotype of the VDR gene polymorphisms for multiple loci might be a candidate genetic marker. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Association study of interleukin-4 polymorphisms with paranoid schizophrenia in the Polish population: a critical approach.

    PubMed

    Fila-Danilow, Anna; Kucia, Krzysztof; Kowalczyk, Malgorzata; Owczarek, Aleksander; Paul-Samojedny, Monika; Borkowska, Paulina; Suchanek, Renata; Kowalski, Jan

    2012-08-01

    Changes in immunological system are one of dysfunctions reported in schizophrenia. Some changes based on an imbalance between Th1 and Th2 cytokines results from cytokine gene polymorphisms. Interleukin-4 gene (IL4) is considered as a potential candidate gene in schizophrenia association studies. The aim of the current case-control study was to examine whether the -590C/T (rs2243250) and -33C/T (rs2070874) IL4 gene polymorphisms are implicated in paranoid schizophrenia development in the Polish population. Genotyping of polymorphisms was performed by using PCR-RFLP technique. The genotypes and alleles distribution of both SNPs were analysed in patients (n = 182) and healthy individuals constituted the control group (n = 215). The connection between some clinical variables and studied polymorphisms has been examined as well. We did not revealed any association between the -590C/T and -33C/T polymorphisms and paranoid schizophrenia. In case of both SNPs the homozygous TT genotype was extremely rare. Both polymorphic sites of the IL4 gene were found to be in a very strong linkage disequilibrium. However we did not identify a haplotype predispose to paranoid schizophrenia. No associations were also observed between the clinical course and psychopathology of the disease and the genotypes of both analysed polymorphisms. Our results suggest that the polymorphisms -590C/T in IL4 gene promoter region and -33C/T in the 5'-UTR are not involved in the pathophysiology of paranoid schizophrenia in Polish residents.

  17. Polymorphisms in candidate genes for type 2 diabetes mellitus in a Mexican population with metabolic syndrome findings.

    PubMed

    Sánchez-Corona, J; Flores-Martínez, S E; Machorro-Lazo, M V; Galaviz-Hernández, C; Morán-Moguel, M C; Perea, F J; Mújica-López, K I; Vargas-Ancona, L; Laviada-Molina, H A; Fernández, V; Pardío, J; Arroyo, P; Barrera, H; Hanson, R L

    2004-01-01

    The metabolic or insulin resistance syndrome, characterized by hypertension, dyslipidemia, glucose intolerance and hyperinsulinemia, may have genetic determinants. The insulin gene (INS), insulin receptor gene (INSR) and insulin receptor substrate 1 gene (IRS1) have been proposed as candidate genes. We examined eight polymorphisms in these genes in 163 individuals from Yucatan, Mexico; this population has a high prevalence of obesity, type 2 diabetes mellitus and dyslipidemia. Subjects were evaluated for body mass index (BMI) and blood pressure. Blood samples were collected to determine glucose, insulin, triglycerides and cholesterol levels, as well as for DNA isolation. Restriction fragment length polymorphisms in INS, INSR and IRS1 were identified by polymerase chain reaction and digestion with selected restriction enzymes. Among the eight polymorphisms analyzed, the PstI polymorphism in INS was significantly associated with hypertriglyceridemia and with the presence of at least one abnormality related to the metabolic syndrome (P=0.007 and 0.004, respectively). The MaeIII polymorphism in INS was associated with fasting hyperinsulinemia (P=0.045). In multilocus analyses including both INS polymorphisms, significant associations were seen with hypertriglyceridemia (P=0.006), hypercholesterolemia (P=0.031) and with presence of at least one metabolic abnormality (P=0.009). None of the polymorphisms in INSR or IRS1 was associated with any of these traits. These findings suggest that the insulin gene may be an important determinant of metabolic syndrome, and particularly of dyslipidemia, in this population.

  18. Interleukin-1 gene polymorphisms in chronic gastritis patients infected with Helicobacter pylori as risk factors of gastric cancer development.

    PubMed

    Hnatyszyn, Andrzej; Wielgus, Karolina; Kaczmarek-Rys, Marta; Skrzypczak-Zielinska, Marzena; Szalata, Marlena; Mikolajczyk-Stecyna, Joanna; Stanczyk, Jerzy; Dziuba, Ireneusz; Mikstacki, Adam; Slomski, Ryszard

    2013-12-01

    Epidemiological investigations indicated association of the Helicobacter pylori infections with the occurrence of inflammatory conditions of the gastric mucosa and development of chronic gastritis and intestinal type of gastric cancer. IL1A and IL1B genes have been proposed as key factors in determining risk of gastritis and malignant transformation. The aim of this paper was to evaluate association of interleukin-1 gene polymorphisms with chronic gastritis, atrophy, intestinal metaplasia, dysplasia and intestinal type of gastric cancer in H. pylori-infected patients. Patients subjected to analysis represent group of 144 consecutive cases that suffered from dyspepsia with coexisting infection of H. pylori and chronic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia or gastric cancer. Molecular studies involved analysis of -889C>T polymorphism of IL1A gene and +3954C>T polymorphism of IL1B gene. Statistical analysis of association of polymorphism -889C>T of gene IL1A with changes in gastric mucosa showed lack of significance, whereas +3954C>T polymorphism of IL1B gene showed significant association. Frequency of allele T of +3954C>T polymorphism of IL1B gene was higher in group of patients with chronic gastritis, atrophy, intestinal metaplasia, dysplasia or intestinal type of gastric cancer (32.1 %) as compared with population group (23 %), χ(2) = 4.61 and p = 0.03. This corresponds to odds ratio: 1.58, 95 % CI: 1.04-2.4. Our results indicate that +3954C>T polymorphism of IL1B gene increase susceptibility to inflammatory response of gastric mucosa H. pylori-infected patients and plays a significant role in the development of chronic gastritis, atrophy, intestinal metaplasia, dysplasia and the initiation of carcinogenesis.

  19. Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2008-09-01

    Squalene synthase inhibitors significantly accelerate the production of farnesol by various microorganisms. However, farnesol production by Saccharomyces cerevisiae ATCC 64031, in which the squalene synthase gene is deleted, was not affected by the inhibitors, indicating that farnesol accumulation is enhanced in the absence of squalene synthase activity. The combination of diphenylamine as an inhibitor of carotenoid biosynthesis and a squalene synthase inhibitor increases geranylgeraniol production by a yeast, Rhodotorula rubra NBRC 0870. An ent-kauren synthase inhibitor also enhances the production of farnesol and geranylgeraniol by a filamentous fungus, Gibberella fujikuroi NBRC 30336. These results indicate that the inhibition of downstream enzymes from prenyl diphosphate synthase leads to the production of farnesol and geranylgeraniol.

  20. chs-4, a class IV chitin synthase gene from Neurospora crassa.

    PubMed

    Din, A B; Specht, C A; Robbins, P W; Yarden, O

    1996-02-05

    In Saccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by the CSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized as CSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomycete Neurospora crassa and have used a "reverse genetics" approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of a N. crassa gene(designated chs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those of S. cerevisiae and Candida albicans. N. crassa strains in which chs-4 had been inactivated by the Repeat-Induced point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in the chs-4RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme in N. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.

  1. Polymorphisms of the lipoprotein lipase gene as genetic markers for stroke in colombian population: a case control study.

    PubMed

    Velásquez Pereira, Leydi Carolina; Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo

    2016-12-30

    To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used.

  2. The Expression of Type-1 and Type-2 Nitric Oxide Synthase in Selected Tissues of the Gastrointestinal Tract during Mixed Mycotoxicosis

    PubMed Central

    Gajęcka, Magdalena; Stopa, Ewa; Tarasiuk, Michał; Zielonka, Łukasz; Gajęcki, Maciej

    2013-01-01

    The aim of the study was to verify the hypothesis that intoxication with low doses of mycotoxins leads to changes in the mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes in tissues of the gastrointestinal tract and the liver. The experiment involved four groups of immature gilts (with body weight of up to 25 kg) which were orally administered zearalenone in a daily dose of 40 μg/kg BW (group Z, n = 18), deoxynivalenol at 12 μg/kg BW (group D, n = 18), zearalenone and deoxynivalenol (group M, n = 18) or placebo (group C, n = 21) over a period of 42 days. The lowest mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes were noted in the sixth week of the study, in particular in group M. Our results suggest that the presence of low mycotoxin doses in feed slows down the mRNA expression of both nitric oxide synthase isomers, which probably lowers the concentrations of nitric oxide, a common precursor of inflammation. PMID:24284830

  3. [Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.)].

    PubMed

    Galinovskiĭ, D V; Anisimova, N V; Raĭskiĭ, A P; Leont'ev, V N; Titok, V V; Hotyleva, L V

    2014-01-01

    Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the "rapid growth" stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants, and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.

  4. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae.

    PubMed

    Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S

    1991-12-01

    o-Fluoro-DL-phenylalanine (OFP)-resistant mutants which overproduce beta-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5-3 fold more than did wild-type cells. Its 3-deoxy-D-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.

  5. Lack of association between deletion polymorphism of BIM gene and in vitro drug sensitivity in B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Huang, Meixian; Miyake, Kunio; Kagami, Keiko; Abe, Masako; Shinohara, Tamao; Watanabe, Atsushi; Somazu, Shinpei; Oshiro, Hiroko; Goi, Kumiko; Goto, Hiroaki; Minegishi, Masayoshi; Iwamoto, Shotaro; Kiyokawa, Nobutaka; Sugita, Kanji; Inukai, Takeshi

    2017-09-01

    A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal. Copyright © 2017. Published by Elsevier Ltd.

  6. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Huys, Geert; Vandamme, Peter; De Vuyst, Luc; Vancanneyt, Marc

    2007-07-01

    A polyphasic taxonomic study of the lactic acid bacteria (LAB) population in three traditional Belgian sourdoughs, sampled between 2002 and 2004, revealed a group of isolates that could not be assigned to any recognized LAB species. Initially, sourdough isolates were screened by means of (GTG)(5)-PCR fingerprinting. Four isolates displaying unique (GTG)(5)-PCR patterns were further investigated by means of phenylalanyl-tRNA synthase (pheS) gene sequence analysis and represented a bifurcated branch that could not be allocated to any LAB species present in the in-house pheS database. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and showed that the four sourdough isolates belong to the Lactobacillus plantarum group with Lactobacillus mindensis, Lactobacillus farciminis and Lactobacillus nantensis as closest relatives. Further genotypic and phenotypic studies, including whole-cell protein analysis (SDS-PAGE), amplified fragment length polymorphism (AFLP) fingerprinting, DNA-DNA hybridization, DNA G+C content analysis, growth characteristics and biochemical features, demonstrated that the new sourdough isolates represent a novel Lactobacillus species for which the name Lactobacillus crustorum sp. nov. is proposed. The type strain of the new species is LMG 23699(T) (=CCUG 53174(T)).

  7. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    PubMed Central

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  8. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  9. Modification of the association between early adversity and obsessive-compulsive disorder by polymorphisms in the MAOA, MAOB and COMT genes.

    PubMed

    McGregor, N W; Hemmings, S M J; Erdman, L; Calmarza-Font, I; Stein, D J; Lochner, C

    2016-12-30

    The monoamine oxidases (MAOA/B) and catechol-O-methyltransferase (COMT) enzymes break down regulatory components within serotonin and dopamine pathways, and polymorphisms within these genes are candidates for OCD susceptibility. Childhood trauma has been linked OCD psychopathology, but little attention has been paid to the interactions between genes and environment in OCD aetiology. This pilot study investigated gene-by-environment interactions between childhood trauma and polymorphisms in the MAOA, MAOB and COMT genes in OCD. Ten polymorphisms (MAOA: 3 variants, MAOB: 4 variants, COMT: 3 variants) were genotyped in a cohort of OCD patients and controls. Early-life trauma was assessed using the Childhood Trauma Questionnaire (CTQ). Gene-by-gene (GxG) and gene-by-environment interactions (GxE) of the variants and childhood trauma were assessed using logistic regression models. Significant GxG interactions were found between rs362204 (COMT) and two independent polymorphisms in the MAOB gene (rs1799836 and rs6651806). Haplotype associations for OCD susceptibility were found for MAOB. Investigation of GxE interactions indicated that the sexual abuse sub-category was significantly associated with all three genes in haplotype x environment interaction analyses. Preliminary findings indicate that polymorphisms within the MAOB and COMT genes interact resulting in risk for OCD. Childhood trauma interacts with haplotypes in COMT, MAOA and MAOB, increasing risk for OCD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population.

    PubMed

    Miyasaka, K; Hosoya, H; Sekime, A; Ohta, M; Amono, H; Matsushita, S; Suzuki, K; Higuchi, S; Funakoshi, A

    2006-09-01

    Eating disorders (EDs) have a highly heterogeneous etiology and multiple genetic factors might contribute to their pathogenesis. Ghrelin, a novel growth hormone-releasing peptide, enhances appetite and increases food intake, and human ghrelin plasma levels are inversely correlated with body mass index. In the present study, we examined the 171T/C polymorphism of the ghrelin receptor (growth hormone secretagogue receptor, GHSR) gene in patients diagnosed with EDs, because the subjects having ghrelin gene polymorphism (Leu72Met) was not detected in a Japanese population, previously. In addition, beta3 adrenergic receptor gene polymorphism (Try64Arg) and cholecystokinin (CCK)-A receptor (R) gene polymorphism (-81A/G, -128G/T), which are both associated with obesity, were investigated. The subjects consisted of 228 Japanese patients with EDs [96 anorexia nervosa (AN), 116 bulimia nervosa (BN) and 16 not otherwise specified (NOS)]. The age- and gender-matched control group consisted of 284 unrelated Japanese subjects. The frequency of the CC type of the GHSR gene was significantly higher in BN subjects than in control subjects (chi(2) = 4.47, p = 0.035, odds ratio = 2.05, Bonferroni correction: p = 0.070), while the frequency in AN subjects was not different from that in controls. The distribution of neither beta3 adrenergic receptor gene nor CCK-AR polymorphism differed between EDs and control subjects. Therefore, the CC type of GHSR gene polymorphism (171T/C) is a risk factor for BN, but not for AN.

  11. Genetic association of cyclooxygenase-2 gene polymorphisms with Parkinson's disease susceptibility in Chinese Han population.

    PubMed

    Dai, Yi; Wu, Yuquan; Li, Yansheng

    2015-01-01

    The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.

  12. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta-thujone was not transcriptionally regulated. 2010 Elsevier GmbH. All rights reserved.

  13. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance.

    PubMed

    Roach, Christopher R; Hall, Dawn E; Zerbe, Philipp; Bohlmann, Jörg

    2014-08-22

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (-)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (-)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (-)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Associations between the rs6010620 polymorphism in RTEL1 and risk of glioma: a meta-analysis of 20,711 participants.

    PubMed

    Wu, Yao; Tong, Xiang; Tang, Ling-Li; Zhou, Kai; Zhong, Chuan-Hong; Jiang, Shu

    2014-01-01

    Associations between the rs6010620 polymorphism in the regulator of telomere elongation helicase1 (RTEL1) gene and glioma have been widely reported but the results were not inconclusive. The aim of the current study was to investigate the association between the rs6010620 polymorphism in RTEL1 gene and risk of glioma by meta-analysis. We searched PubMed, Embase, Wanfang Weipu and CNKI (China National Knowledge Infrastructure) databases, which included all research published 05 May 2014. A total of 8,292 cases and 12,419 controls from 14 case-control studies involving the rs6010620 polymorphism in the RTEL1 gene were included. Statistical analysis was performed using STATA 12.0 software. The results indicated that the rs6010620 polymorphism in RTEL1 gene was indeed associated with risk of glioma (OR=1.474, 95%CI=1.282-1.694, p<0.001). On subgroup analysis by ethnicity, we found associations between the rs6010620 polymorphism in the RTEL1 gene and risk of glioma in both Caucasians and Asians. The current meta-analysis suggested that the rs6010620 polymorphism in the RTEL1 gene might increase risk of glioma. In future, larger case-control studies are needed to confirm our results.

  15. Polymorphism at codon 36 of the p53 gene.

    PubMed

    Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A

    1994-01-01

    A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.

  16. Synthesis of 'cineole cassette' monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis.

    PubMed

    Fähnrich, Anke; Brosemann, Anne; Teske, Laura; Neumann, Madeleine; Piechulla, Birgit

    2012-08-01

    The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.

  17. Large-Scale Phylogenetic Classification of Fungal Chitin Synthases and Identification of a Putative Cell-Wall Metabolism Gene Cluster in Aspergillus Genomes

    PubMed Central

    Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto

    2014-01-01

    The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134

  18. PREVALENCE OF COMBINATORIAL CYP2C9 AND VKORC1 GENOTYPES IN PUERTO RICANS: IMPLICATIONS FOR WARFARIN MANAGEMENT IN HISPANICS

    PubMed Central

    Duconge, Jorge; Cadilla, Carmen L.; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Seip, Richard L.; Bogaard, Kali; Renta, Jessica Y.; Piovanetti, Paola; D’Agostino, Darrin; Santiago-Borrero, Pedro J.; Ruaño, Gualberto

    2010-01-01

    Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Luminex® x-MAP technology. The polymorphism frequencies were 6.52%, 5.43% and 28.8% for CYP2C9 *2, *3 and VKORC1-1639 G>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphism, and the remaining 40% were non-carriers for either gene. Based on a published warfarin dosing algorithm, single, double and triple carriers of functionally deficient polymorphisms predict reductions of 1.0–1.6, 2.0–2.9, and 2.9–3.7 mg/day, respectively, in warfarin dose. Overall, 60% of the population carried at least a single polymorphism predicting deficient warfarin metabolism or responsiveness and 13% were double carriers with polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin among patients with gene polymorphisms, potentially reducing the risk of stroke or bleeding. PMID:20073138

  19. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance.

    PubMed

    Ragia, Georgia; Giannakopoulou, Efstathia; Karaglani, Makrina; Karantza, Ioanna-Maria; Tavridou, Anna; Manolopoulos, Vangelis G

    2014-01-01

    The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.

  20. Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases

    NASA Technical Reports Server (NTRS)

    Lopez, J. C.; Ryan, S.; Blankenship, R. E.

    1996-01-01

    The sequence of the Chloroflexus aurantiacus open reading frame thought to be the C. aurantiacus homolog of the Rhodobacter capsulatus bchG gene is reported. The BchG gene product catalyzes esterification of bacteriochlorophyllide a by geranylgeraniol-PPi during bacteriochlorophyll a biosynthesis. Homologs from Arabidopsis thaliana, Synechocystis sp. strain PCC6803, and C. aurantiacus were identified in database searches. Profile analysis identified three related polyprenyltransferase enzymes which attach an aliphatic alcohol PPi to an aromatic substrate. This suggests a broader relationship between chlorophyll synthases and other polyprenyltransferases.

  1. A Polyketide Synthase Encoded by the Gene An15g07920 Is Involved in the Biosynthesis of Ochratoxin A in Aspergillus niger.

    PubMed

    Zhang, Jian; Zhu, Liuyang; Chen, Haoyu; Li, Min; Zhu, Xiaojuan; Gao, Qiang; Wang, Depei; Zhang, Ying

    2016-12-28

    The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.

  2. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    PubMed

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Prolactin receptor gene polymorphism and the risk of recurrent pregnancy loss: a case-control study.

    PubMed

    Kim, Jin Ju; Choi, Young Min; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan; Han, Ae Ra; Hwang, Kyu Ri; Hong, Min A

    2018-02-01

    Since the first study was published reporting the candidate association between the prolactin receptor gene intron C/T polymorphism (rs37389) and recurrent miscarriage, no replication study has been performed. In this study, we investigated the role of the prolactin receptor gene C/T polymorphism in 311 Korean women with recurrent pregnancy loss and 314 controls. Genotyping for prolactin receptor gene intron C/T polymorphism was performed using a TaqMan assay. The significance of difference in the genotype distribution was assessed using a chi-square test, and continuous variables were compared using a Student's t-test. The genotype distribution of the prolactin receptor gene C/T polymorphism in the recurrent pregnancy loss group did not differ from that in the control group (CC/CT/TT rates were 49.8%/41.5%/8.7% and 52.5%/37.6%/9.9% for the recurrent pregnancy loss patient and control groups, respectively, p = .587). When the analysis was restricted to patients with three or more consecutive spontaneous miscarriages or patients without prior live birth, there were also no differences in the genotype distribution between these subgroups and controls. In conclusion, the findings of the current study suggest that the prolactin receptor gene intron C/T polymorphism is not a major determinant of the development of recurrent pregnancy loss. Impact statement What is already known: Many studies have investigated whether there is a genetic component for the risk of recurrent pregnancy loss. Recently, one study investigated whether genetic polymorphisms involved in the regulation of the hypothalamic-pituitary-ovarian axis would be associated with recurrent miscarriage. Among 35 polymorphisms in 20 candidate genes, genotype distribution with regard to the prolactin receptor gene intron C/T polymorphism (rs37389) differed between the recurrent miscarriage and the control groups. Since this study reporting the candidate association between the prolactin receptor gene and recurrent miscarriage, no replication study has been performed. What the results of this study add: The genotype distribution of the prolactin receptor gene C/T polymorphism in the recurrent miscarriage group did not differ from that in the control group. What the implications are of these findings: Our study may be useful in that it is the first replication study since the initial report of the association of prolactin receptor gene polymorphism with recurrent miscarriage. Although no association was found, the potential role of prolactin in pregnancy loss needs to be further investigated because prolactin and its receptor have been postulated to play an important role in the maintenance of normal pregnancy.

  4. The Folate Pathway and Nonsyndromic Cleft Lip and Palate

    PubMed Central

    Blanton, Susan H.; Henry, Robin R.; Yuan, Quiping; Mulliken, John B.; Stal, Samuel; Finnell, Richard H.; Hecht, Jacqueline T.

    2013-01-01

    Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth malformation caused by genetic, environmental and gene-environment interactions. Periconceptional supplementation with folic acid, a key component in DNA synthesis and cell division, has reduced the birth prevalence of neural tube defects (NTDs) and may similarly reduce the birth prevalence of other complex birth defects including NSCLP. Past studies investigating the role of two common methylenetetrahydrofolate reductase (MTHFR) SNP polymorphisms, C677T (rs1801133) and A1298C (rs1801131), in NSCLP have produced conflicting results. Most studies of folate pathway genes have been limited in scope, as few genes/SNPs have been interrogated. In this study, we asked whether variations in a more comprehensive group of folate pathway genes were associated with NSCLP and, if so, were there detectable interactions between these genes and environmental exposures. In addition, we evaluated the data for a sex effect. Fourteen folate metabolism related genes were interrogated using eighty-nine SNPs in multiplex and simplex non-Hispanic White (NHW) (317) and Hispanic (128) NSCLP families. Evidence for a risk association between NSCLP and SNPs in nitrous oxide 3 (NOS3) and thymidylate synthetase (TYMS) was detected in the NHW group, whereas associations with methionine synthase (MTR), betaine-homocysteine methyltransferase (BHMT2), MTHFS and SLC19A1 were detected in the Hispanic group. Evidence for over-transmission of haplotypes and gene interactions in the methionine arm was detected. These results suggest that perturbations of the genes in the folate pathway may contribute to NSCLP. There was evidence for an interaction between several SNPs and maternal smoking, and for one SNP with sex of the offspring. These results provide support for other studies that suggest that high maternal homocysteine levels may contribute to NSCLP and should be further investigated. PMID:21254359

  5. SNP-by-fitness and SNP-by-BMI interactions from seven candidate genes and incident hypertension after 20 years of follow-up: the CARDIA Fitness Study.

    PubMed

    Sarzynski, M A; Rankinen, T; Sternfeld, B; Fornage, M; Sidney, S; Bouchard, C

    2011-08-01

    The association of single nucleotide polymorphisms (SNPs) from seven candidate genes, including genotype-by-baseline fitness and genotype-by-baseline body mass index (BMI) interactions, with incident hypertension over 20 years was investigated in 2663 participants (1301 blacks, 1362 whites) of the Coronary Artery Risk Development in Young Adults Study (CARDIA). Baseline cardiorespiratory fitness was determined from duration of a modified Balke treadmill test. A total of 98 SNPs in blacks and 89 SNPs in whites from seven candidate genes were genotyped. Participants that became hypertensive (295 blacks and 146 whites) had significantly higher blood pressure and BMI (both races), and lower fitness (blacks only) at baseline than those who remained normotensive. Markers at the peroxisome proliferative activated receptor gamma coactivator 1α (PPARGC1A) and bradykinin β2 receptor (BDKRB2) genes were nominally associated with greater risk of hypertension, although one marker each at the BDKRB2 and endothelial nitric oxide synthase-3 (NOS3) genes were nominally associated with lower risk. The association of baseline fitness with risk of hypertension was nominally modified by genotype at markers within the angiotensin converting enzyme, angiotensinogen, BDKRB2 and NOS3 genes in blacks and the BDKRB2, endothelin-1 and PPARGC1A genes in whites. BDKRB2 rs4900318 showed nominal interactions with baseline fitness on the risk of hypertension in both races. The association of baseline BMI with risk of hypertension was nominally modified by GNB3 rs2301339 genotype in whites. None of the above associations were statistically significant after correcting for multiple testing. We found that SNPs in these candidate genes did not modify the association between baseline fitness or BMI and risk of hypertension in CARDIA participants.

  6. WDR1 and CLNK gene polymorphisms correlate with serum glucose and high-density lipoprotein levels in Tibetan gout patients.

    PubMed

    Lan, Bing; Chen, Peng; Jiri, Mutu; He, Na; Feng, Tian; Liu, Kai; Jin, Tianbo; Kang, Longli

    2016-03-01

    Current evidence suggests heredity and metabolic syndrome contributes to gout progression. Specifically, the WDR1 and CLNK genes may play a role in gout progression in European ancestry populations. However, no studies have focused on Chinese populations, especially Tibetan individuals. This study aims to determine whether variations in these two genes correlate with gout-related indices in Chinese-Tibetan gout patients. Eleven single-nucleotide polymorphisms in the WDR1 and CLNK genes were detected in 319 Chinese-Tibetan gout patients and 318 controls. We used one-way analysis of variance to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators, such as albumin, glucose (GLU), triglycerides, cholesterol, high-density lipoproteins (HDL-C), creatinine, and uric acid, from fasting venous blood samples. All p values were Bonferroni corrected. Polymorphisms of the WDR1 and CLNK genes affected multiple risk factors for gout development. Significant differences in serum GLU levels were detected between different genotypic groups with WDRI polymorphisms rs4604059 (p = 0.005) and rs12498927 (p = 0.005). In addition, significant differences in serum HDL-C levels were detected between different genotypic groups with the CLNK polymorphism rs2041215 (p = 0.001). Polymorphisms of CLNK also affected levels of albumin, triglycerides, and creatinine. This study is the first to investigate and identify positive correlations between WDR1 and CLNK gene polymorphisms in Chinese-Tibetan populations. Our findings provide significant evidence for the effect of genetic polymorphisms on gout-related factors in Chinese-Tibetan populations.

  7. Tumor Necrosis Factor-Alpha Gene Promoter Region Polymorphism and the Risk of Coronary Heart Disease

    PubMed Central

    Asifa, Gul Zareen; Kazmi, Syed Ali Raza; Javed, Qamar

    2013-01-01

    Background. Tumor necrosis factor-alpha (TNF-α) gene polymorphisms have been implicated in the manifestation of atherosclerosis. Controversy exists regarding the link between the cytokine's variant genotype and CHD among different ethnic groups. There have been fewer studies on the TNF-α gene −1031T>C and −863C>A polymorphisms in relation to CHD. Therefore, the current study was designed to investigate the association of the TNF-α gene −1031T>C and −863C>A polymorphisms with CHD in a Pakistani population. Methods. Patients with CHD (n = 310) and healthy individuals (n = 310) were enrolled in this study. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results. A significant difference was observed in the −863C>A polymorphism between patients with CHD and control subjects (P < 0.0001). CHD risk was positively associated with the variant allele −863A (P < 0.0001) in the study subjects. There was no significant link between the −1031T>C polymorphism and CHD risk in the study population. Haplotypes A-T and A-C of the TNF-alpha gene loci at −863 and −1031 showed higher frequency in the patient group compared with controls (P < 0.05). Conclusion. The TNF-α  −863C>A gene polymorphism was associated with the pathogenesis of CHD while the −1031T>C polymorphism did not show any link with the disease in a Pakistani population. PMID:24381514

  8. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p.

    PubMed

    Hellmuth, K; Grosjean, H; Motorin, Y; Deinert, K; Hurt, E; Simos, G

    2000-12-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S. cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export.

  9. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    PubMed Central

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  10. Matrix-Gla Protein rs4236 [A/G] gene polymorphism and serum and GCF levels of MGP in patients with subgingival dental calculus.

    PubMed

    Doğan, Gülnihal Emrem; Demir, Turgut; Aksoy, Hülya; Sağlam, Ebru; Laloğlu, Esra; Yildirim, Abdulkadir

    2016-10-01

    Matrix-Gla Protein (MGP) is one of the major Gla-containing protein associated with calcification process. It also has a high affinity for Ca 2+ and hydroxyapatite. In this study we aimed to evaluate the MGP rs4236 [A/G] gene polymorphism in association with subgingival dental calculus. Also a possible relationship between MGP gene polymorphism and serum and GCF levels of MGP were examined. MGP rs4236 [A/G] gene polymorphism was investigated in 110 patients with or without subgingival dental calculus, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. Additionally, serum and GCF levels of MGP of the patients were compared according to subgingival dental calculus. Comparison of patients with and without subgingival dental calculus showed no statistically significant difference in MGP rs4236 [A/G] gene polymorphism (p=0.368). MGP concentrations in GCF of patients with subgingival dental calculus were statistically higher than those without subgingival dental calculus (p=0.032). However, a significant association was not observed between the genotypes of AA, AG and GG of the MGP rs4236 gene and the serum and GCF concentrations of MGP in subjects. In this study, it was found that MGP rs4236 [A/G] gene polymorphism was not to be associated with subgingival dental calculus. Also, that GCF MGP levels were detected higher in patients with subgingival dental calculus than those without subgingival dental calculus independently of polymorphism, may be the effect of adaptive mechanism to inhibit calculus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population.

    PubMed

    Chang, Y T; Liu, H N; Yu, C W; Lin, M W; Huang, C H; Chen, C C; Liu, M T; Lee, D D; Wang, W J; Tsai, S F

    2006-01-01

    Bullous pemphigoid (BP) is an autoimmune bullous disease mostly associated with autoantibodies to the hemidesmosomal BP autoantigens BP180 and BP230. High levels of interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma have been detected in skin lesions or sera of patients with BP. Cytokine gene polymorphisms may affect cytokine production and contribute to susceptibility to autoimmune diseases. Until now, no cytokine gene polymorphism study has been conducted on patients with BP. We aimed to determine whether the genetic polymorphisms of the cytokine genes might influence the development of BP. DNA samples were obtained from 96 BP patients and 174 control subjects. Using direct sequencing and microsatellite genotyping, we examined 23 polymorphisms in 11 cytokine genes including the IL-1alpha, IL-1beta, IL-1 receptor antagonist, IL-4, IL-6, IL-8, IL-10, IL-13, IL-4 receptor, TNF-alpha and IFN-gamma genes. Although the BP patients were more likely to carry the -511T and -31C alleles of the IL-1beta gene (P = 0.04), the significance disappeared after correction for multiple testing (Pc). There was complete linkage disequilibrium between the -511T and -31C alleles of the IL-1beta gene. In female patients with BP, the associations with IL-1beta (-511T) and (-31C) alleles were much stronger (68% vs. 40.6%, odds ratio = 3.11, Pc = 0.006). No significantly different allelic and genotypic distributions of other cytokine gene polymorphisms could be found between the patients with BP and controls. Moreover, no association with the extent of disease involvement (localized or generalized) was observed. The IL-1beta (-511) and (-31) polymorphisms were significantly associated with BP in women. The other genetic polymorphisms of cytokine genes that we analysed do not appear to be associated with BP susceptibility in our Chinese population.

  12. Association between estrogen receptora gene (ESR1) PvuII (T/C) and XbaI (A/G) polymorphisms and premature ovarian failure risk: evidence from a meta-analysis.

    PubMed

    He, Meirong; Shu, Jingcheng; Huang, Xing; Tang, Hui

    2015-02-01

    Genetic factors are important in the pathogenesis of Premature ovarian failure (POF). Notably, estrogen receptor-a (ESR1) has been suggested as a possible candidate gene for POF; however, published studies of ESR1 gene polymorphisms have been hampered by small sample sizes and inconclusive or ambiguous results. The aim of this meta analysis is to investigate the associations between two novel common ESR1 polymorphisms (intron 1 polymorphisms PvuII-rs2234693: T.C and XbaI-rs9340799: A.G) and POF. A comprehensive search was conducted to identify all studies on the association of ESR1 gene polymorphisms with POF up to August 2014. Pooled odds ratio (OR) and corresponding 95 % confidence interval (CI) were calculated using fixed-or random-effects model in the meta-analysis. Three studies covering 1396 subjects were identified. Pooled data showed significant association between ESR1 gene PvuII polymorphism and risk of POF: [allele model: Cvs. T, OR = 0.735, 95%CI: 0.624 ~ 0.865, p = 0.001; co-dominant models: CCvs.TT, OR = 0.540, 95%CI: 0.382 ~ 0.764, p = 0.001, CTvs.TT, OR = 0.735, 95%CI: 0.555 ~ 0.972, p = 0.031; dominant model: CT + CCvs.TT, OR = 0.618, 95%CI: 0.396 ~ 0.966, p = 0.035; recessive model: CCvs.TT + CT, OR = 0.659, 95%CI: 0.502 ~ 0.864, p = 0.003]. Subgroup analyses showed a significant association in all models in Asian population, but no significant association in any model in European population. For the XbaI polymorphism, overall, no significant association was observed under any genetic models. However, under dominant model, ESR1 gene XbaI polymorphism is significantly association with risk of POF in Asian population. The present meta-analysis suggests that ESR1gene PvuII polymorphism is significantly associated with an increased risk of POF. And ESR1gene XbaI polymorphism is not association with risk of POF overall. However, under dominant model, ESR1gene XbaI polymorphism is significantly association with risk of POF in Asian population. Further large and well-designed studies are needed to confirm the association.

  13. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2009-10-01

    Nonribosomally by Bacteria Gene depH is depicted as one of the three post- nonribosomal peptide synthetase (NRPS; dark red)/ polyketide synthase (PKS... polyketide synthase -NRPS pathway for FK228 biosynthesis in C. violaceum no. 968 (Cheng et al., 2007). This pathway would lead to the production of an imme...biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem. Biol. 11, 33–45

  14. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis.

    PubMed

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-04-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mt(FVB/N) mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). At baseline conditions, C57BL/6J-mt(FVB/N) mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mt(FVB/N) mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH.

  15. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    PubMed Central

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. PMID:27069868

  16. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    PubMed

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  18. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.

    PubMed

    Rand, D M; Kann, L M

    1996-07-01

    Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.

  19. Molecular evolution of flavonoid dioxygenases in the family Apiaceae.

    PubMed

    Gebhardt, Yvonne; Witte, Simone; Forkmann, Gert; Lukacin, Richard; Matern, Ulrich; Martens, Stefan

    2005-06-01

    Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.

  20. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  1. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene.

    PubMed

    Negrao, Marcelo V; Alves, Cleber R; Alves, Guilherme B; Pereira, Alexandre C; Dias, Rodrigo G; Laterza, Mateus C; Mota, Gloria F; Oliveira, Edilamar M; Bassaneze, Vinícius; Krieger, Jose E; Negrao, Carlos E; Rondon, Maria Urbana P B

    2010-09-01

    Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 ± 1 yr) and CT+CC (n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT+CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.

  2. Association of NOS1 gene polymorphisms with cerebral palsy in a Han Chinese population: a case-control study.

    PubMed

    Yu, Ting; Xia, Lei; Bi, Dan; Wang, Yangong; Shang, Qing; Zhu, Dengna; Song, Juan; Wang, Yong; Wang, Xiaoyang; Zhu, Changlian; Xing, Qinghe

    2018-06-25

    Cerebral palsy (CP) is the leading cause of motor disability in children; however, its pathogenesis is unknown in most cases. Growing evidence suggests that Nitric oxide synthase 1 (NOS1) is involved in neural development and neurologic diseases. The purpose of this study was to determine whether genetic variants of NOS1 contribute to CP susceptibility in a Han Chinese population. A case-control study involving 652 CP patients and 636 healthy controls was conducted. Six SNPs in the NOS1 gene (rs3782219, rs6490121, rs2293054, rs10774909, rs3741475, and rs2682826) were selected, and the MassARRAY typing technique was applied for genotyping. Data analysis was conducted using SHEsis online software, and multiple test corrections were performed using SNPSpD online software. There were no significant differences in genotype and allele frequencies between patients and controls for the SNPs except rs6490121, which deviated from Hardy-Weinberg equilibrium and was excluded from further analyses. Subgroup analysis revealed differences in genotype frequencies between the CP with neonatal encephalopathy group (CP + NE) and control group for rs10774909, rs3741475, and rs2682826 (after SNPSpD correction, p = 0.004, 0.012, and 0.002, respectively). The T allele of NOS1 SNP rs3782219 was negatively associated with spastic quadriplegia (OR = 0.742, 95% CI = 0.600-0.918, after SNPSpD correction, p = 0.023). There were no differences in allele or genotype frequencies between CP subgroups and controls for the other genetic polymorphisms. NOS1 is associated with CP + NE and spastic quadriplegia, suggesting that NOS1 is likely involved in the pathogenesis of CP and that it is a potential therapeutic target for treatment of cerebral injury.

  3. Renin-Angiotensin-Aldosterone Genotype Influences Ventricular Remodeling in Infants with Single Ventricle

    PubMed Central

    Mital, Seema; Chung, Wendy K.; Colan, Steven D.; Sleeper, Lynn A.; Manlhiot, Cedric; Arrington, Cammon B.; Cnota, James F.; Graham, Eric M.; Mitchell, Michael E.; Goldmuntz, Elizabeth; Li, Jennifer S.; Levine, Jami C.; Lee, Teresa M.; Margossian, Renee; Hsu, Daphne T.

    2011-01-01

    Background We investigated the effect of polymorphisms in the renin-angiotensin-aldosterone system (RAAS) genes on ventricular remodeling, growth, renal function and response to enalapril in infants with single ventricle. Methods and Results Single ventricle infants enrolled in a randomized trial of enalapril were genotyped for polymorphisms in 5 genes: angiotensinogen, angiotensin-converting enzyme, angiotensin II type 1 receptor, aldosterone synthase, and chymase. Alleles associated with RAAS upregulation were classified as risk alleles. Ventricular mass, volume, somatic growth, renal function using estimated glomerular filtration rate (eGFR), and response to enalapril were compared between patients with ≥2 homozygous risk genotypes (high-risk), and those with <2 homozygous risk genotypes (low-risk) at two time points - before the superior-cavopulmonary-connection (pre-SCPC) and at age 14 months. Of 230 trial subjects, 154 were genotyped: 38 were high-risk, 116 were low-risk. Ventricular mass and volume were elevated in both groups pre-SCPC. Ventricular mass and volume decreased and eGFR increased after SCPC in the low-risk (p<0.05) but not the high-risk group. These responses were independent of enalapril treatment. Weight and height z-scores were lower at baseline and height remained lower in the high-risk group at 14 months especially in those receiving enalapril (p<0.05). Conclusions RAAS-upregulation genotypes were associated with failure of reverse remodeling after SCPC surgery, less improvement in renal function, and impaired somatic growth, the latter especially in patients receiving enalapril. RAAS genotype may identify a high-risk subgroup of single ventricle patients who fail to fully benefit from volume unloading surgery. Follow-up is warranted to assess longterm impact. Clinical Trial Registration Clinical Trials.gov Identifier NCT00113087 PMID:21576655

  4. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence.

    PubMed

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development.

  5. Developmentally Regulated Sphingolipid Synthesis in African Trypanosomes

    PubMed Central

    Sutterwala, Shaheen S.; Hsu, Fong Fu; Sevova, Elitza S.; Schwartz, Kevin J.; Zhang, Kai; Key, Phillip; Turk, John; Beverley, Stephen M.; Bangs, James D.

    2008-01-01

    Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labeling confirmed stage specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased >3-fold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian SM synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites. PMID:18699867

  6. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.

    1994-06-01

    Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less

  7. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    PubMed

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

  8. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases.

    PubMed

    Kracht, Octavia Natascha; Ammann, Ann-Christin; Stockmann, Julia; Wibberg, Daniel; Kalinowski, Jörn; Piotrowski, Markus; Kerr, Russell; Brück, Thomas; Kourist, Robert

    2017-04-01

    Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.

    PubMed Central

    Gojković, Z; Sandrini, M P; Piskur, J

    2001-01-01

    beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes. PMID:11454750

  10. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants

    DOE PAGES

    Jia, Qidong; Li, Guanglin; Köllner, Tobias G.; ...

    2016-10-10

    Here, the vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii. The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like ( MTPSL) genes inmore » other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich “DDxxD” motif. The third group has a “DDxxxD” motif, and the fourth group has only the first two “DD” conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.« less

  11. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qidong; Li, Guanglin; Köllner, Tobias G.

    Here, the vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii. The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like ( MTPSL) genes inmore » other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich “DDxxD” motif. The third group has a “DDxxxD” motif, and the fourth group has only the first two “DD” conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.« less

  12. The correlation of leptin/leptin receptor gene polymorphism and insulin-like growth factor-1 and their impact on childhood growth hormone deficiency.

    PubMed

    He, J-S; Lian, C-W; Zhou, H-W; Lin, X-F; Yang, H-C; Ye, X-L; Zhu, S-B

    2016-09-01

    Growth hormone deficiency (GHD) is the most common cause for childhood dwarfism. Currently, the significance of insulin-like growth factor-1 (IGF-1) in diagnosis of GHD is still debatable. Due to the possible correlation between leptin (LEP) and GHD pathogenesis, this study investigated the gene polymorphism of LEP and its receptor (LEPR) genes, along with serum IGF-1 and LEP levels in GHD patients. This study attempted to illustrate the correlation between gene polymorphism and GHD pathogenesis. A case-control study was performed using 180 GHD children in addition to 160 healthy controls. PCR-DNA sequencing method was employed for genotyping various polymorphism loci of LEP and LEPR genes in both GHD and healthy individuals. Serum IGF-1 and LEP levels were also determined. Results revealed a statistically significant difference between the levels of IGF-1 and LEP in the serum samples collected from patients in the GHD and the control groups. Both IGF-1 and LEP levels were found to be correlated with polymorphism at rs7799039 loci of LEP gene, in which GG and GA genotypes carriers had higher serum IGF-1 levels when compared to AA genotype carriers. GHD pathogenesis is well correlated with the LEP and IGF-1 levels in the both of which were mediated by the gene polymorphism at rs7799039 loci of LEP gene.

  13. Association analysis of the functional MAOA gene promoter and MAOB gene intron 13 polymorphisms in tension type headache patients.

    PubMed

    Edgnülü, Tuba G; Özge, Aynur; Erdal, Nurten; Kuru, Oktay; Erdal, Mehmet E

    2014-01-01

    Monoamine oxidase (MAO) enzymes play an important role in the etiology of many neurological diseases. Tension type headache (TTH) treatments contain inhibitors for selective re-uptake of serotonin and monoamine oxidase inhibitors. MAO (EC 1.4.3.4) has two isoenzymes known as MAOA and MAOB. A promoter polymorphism of a variable number of tandem repeats (VNTR) in the MAOA gene seems to affect MAOA transcriptional activity in vitro. Also, G/A polymorphism in intron 13 (rs1799836) of the MAOB gene have been previously found to be associated with the variability of MAOB enzyme activity. The aim of our study was to investigate a possible association of monoamine oxidase (MAOA and MAOB) gene polymorphisms in tension type headache. MAO gene polymorphisms were examined in a group of 120 TTH patients and in another 168 unrelated healthy volunteers (control group). MAOA promoter and MAOB intron 13 polymorphisms were genotyped using PCR-based methods. An overall comparison between the genotype of MAOA and MAOB genes and allele frequencies of the patients and the control group did not reveal any statistically significant difference between the patients and the control group (p=0.162). Factors like estrogen dosage, the limited number of male patients and other genes' neurotransmitters involved in the etiology of TTH could be responsible for our non-significant results.

  14. Cloning and expression of VB12-independent methionine synthase gene responsive to alkaline stress in rice.

    PubMed

    Xie, Guo-Sheng; Liu, Shen-Kui; Takano, Tetsuo; You, Zong-Bin; Zhang, Duan-Pin

    2002-12-01

    VB12-independent methionine synthase is present in higher plants, and catalyzes the methylation of C-homocysteine to form methionine, which is very important for methylation reactions and syntheses of polyamines and ethylene. Under the alkaline condition, using cDNA-RAPD method, a new VB12-independent methionine synthase gene has been cloned and characterized for the first time in rice in this study. The results exhibited that, the cDNA gene entailed 2740 bp, had single copy in the rice genome and encoded peptide of 765 amino acids, the peptide showed 92% and 83% identity with that from Mesembryanthemum cystallinum (U84889) and Cathararanthus roseus (X83499), respectively. It enhanced the transcription more greatly after sodium carbonate treatment for 12 h and 24 h than that of sodium chloride treatment, and then obviously reduced in 48 h later, suggesting that it is related to this stress tolerance in rice.

  15. Angiotensin converting enzyme DD genotype is associated with development of rheumatic heart disease in Egyptian children.

    PubMed

    Morsy, Mohamed-Mofeed Fawaz; Abdelaziz, Nada Abdelmohsen Mohamed; Boghdady, Ahmed Mohamed; Ahmed, Hydi; Abu Elfadl, Essam Mohamed; Ismail, Mohamed Ali

    2011-01-01

    Angiotensin converting enzyme (ACE) gene polymorphism was previously studied in some cardiovascular diseases. There are only few studies which investigated this polymorphism in patients with rheumatic heart disease (RHD). The results of these investigations are inconsistent. Furthermore, gene polymorphism distribution is different in various ethnic populations. We conducted this study to demonstrate this gene polymorphism in Egyptian children with RHD. Leukocytes DNA was extracted from 139 patients with RHD and 79 healthy control children. After amplification by the PCR, the products were separated by electrophoresis in 6% polyacrylamide gel and visualized after ethidium bromide staining with UV light. The PCR product is a 190-bp fragment in the absence of the insertion (D allele) and a 490-bp fragment in the presence of the insertion (I allele). Gene polymorphism was as follows: DD gene when lane contains only 190-bp fragment, II gene when lane contains only 490-bp fragment and ID gene when lane contains both fragments. We found that gene polymorphism in both control and patients groups followed the following order of distribution from highest to lowest: ID, II, DD gene. The frequency in control group was 49.4, 36.7, and 13.9%, respectively. In patients groups, the gene frequency was 42.5, 30.9, and 26.6%, respectively. DD gene frequency differs significantly between the two groups. We concluded that patients with RHD have a higher ACE-DD genotype than normal control. ACE-DD genotype may be a risk factor for RHD in Egyptian children.

  16. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars.

    PubMed

    Dhandapani, R; Singh, V P; Arora, A; Bhattacharya, R C; Rajendran, Ambika

    2017-12-01

    An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two-three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran , a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase ( MaPsy ) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms ( MaPsy1 and MaPsy2 ) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.

  17. Association of -330 interleukin-2 gene polymorphism with oral cancer.

    PubMed

    Singh, Prithvi Kumar; Kumar, Vijay; Ahmad, Mohammad Kaleem; Gupta, Rajni; Mahdi, Abbas Ali; Jain, Amita; Bogra, Jaishri; Chandra, Girish

    2017-12-01

    Cytokines play an important role in the development of cancer. Several single-nucleotide polymorphisms (SNPs) of cytokine genes have been reported to be associated with the development and severity of inflammatory diseases and cancer predisposition. This study was undertaken to evaluate a possible association of interleukin 2 (IL-2) (- 330A>C) gene polymorphisms with the susceptibility to oral cancer. The SNP in IL-2 (-330A>C) gene was genotyped in 300 oral cancer patients and in similar number of healthy volunteers by polymerase chain reaction (PCR)-restriction fragment length polymorphism and the association of the gene with the disease was evaluated. IL-2 (-330A>C) gene polymorphism was significantly associated with oral cancer whereas it was neither associated with clinicopathological status nor with cancer pain. The AC heterozygous genotype was significantly associated with oral cancer patients as compared to controls [odds ratio (OR): 3.0; confidence interval (CI): 2.14-4.20; P<0.001]. The C allele frequency was also significantly associated with oral cancer (OR: 1.80; CI: 1.39-2.33; P<0.001). IL-2 (-330A>C) gene polymorphism was also associated with oral cancer in tobacco smokers and chewers. Our results showed that oral cancer patients had significantly higher frequency of AA genotype but significantly lower frequency of AC genotype and C allele compared to controls. The IL-2 AC genotype and C allele of IL-2 (-330A>C) gene polymorphisms could be potential protective factors and might reduce the risk of oral cancer in Indian population.

  18. Influences of the G2350A polymorphism in the ACE Gene on cardiac structure and function of ball game players

    PubMed Central

    2012-01-01

    Background Except for the I/D polymorphism in the angiotensin I-converting enzyme (ACE) gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes. Thus, we investigated whether the G2350A polymorphism in the ACE gene is associated with the changes in cardiac structure and function of ball game players. Total 85 healthy ball game players were recruited in this study, and they were composed of 35 controls and 50 ball game players, respectively. Cardiac structure and function were measured by 2-D echocardiography, and the G2350A polymorphism in the ACE gene analyzed by the SNaPshot method. Results There were significant differences in left ventricular mass index (LVmassI) value among each sporting discipline studied. Especially in the athletes of basketball disciplines, indicated the highest LVmassI value than those of other sporting disciplines studied (p < 0.05). However, there were no significant association between any echocardiographic data and the G2350A polymorphism in the ACE gene in the both controls and ball game players. Conclusions Our data suggests that the G2350A polymorphism in the ACE gene may not significantly contribute to the changes in cardiac structure and function of ball game players, although sporting disciplines of ball game players may influence the changes in LVmassI value of these athletes. Further studies using a larger sample size and other genetic markers in the ACE gene will be needed. PMID:22239999

  19. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  20. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  1. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population.

    PubMed

    Azimzadeh, Pedram; Romani, Sara; Mohebbi, Seyed Reza; Mahmoudi, Touraj; Vahedi, Mohsen; Fatemi, Seyed Reza; Zali, Narges; Zali, Mohammad Reza

    2012-10-01

    MicroRNAs (miRNAs) are agents of post-transcriptional gene expression, and they can affect many functions of an individual cell or tissue from extracellular matrix production to inflammatory processes and tumor development. We aimed to determine the possible role of miRNA-binding site polymorphisms located in five cancer-related genes: IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4 in colorectal cancer (CRC) risk modification in an Iranian population. This study was performed on 643 individuals (249 CRC cases and 394 healthy controls). We selected five cancer-related genes (IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4) and investigated the genotypes of the 3' untranslated region miRNA-binding site polymorphisms in these genes in our study population. The restriction fragment length polymorphism results were confirmed by a direct sequencing method. We found a statistically significant difference between the rs1131445 polymorphism of the IL-16 gene and CRC. The frequencies of the genotypes TT, CT, and CC in controls were 51%, 40.4%, and 8.6%, respectively, and in cases were 41.4%, 44.1%, and 14.5%, respectively, which shows a significant association between the CC genotype of the rs1131445 polymorphism and CRC (P = 0.004). The frequency of the C allele in the CRC group was higher than in the controls, and the C allele of the rs1131445 polymorphism was found to be in association with CRC (P = 0.009). These associations remained significant after Bonferroni's correction for multiple testing. We found that the AA genotype of the rs743554 polymorphism in the ITGB4 gene and the T allele of the rs1051208 polymorphism of the RAF1 gene were associated with the risk of CRC in females; however, after Bonferroni's correction we found that they were non-significant. Finally, we can conclude that a significant relationship exists between the miRNA-binding site polymorphism of the IL-16 gene and CRC risk in the Iranian population. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  3. Molecular regulation of santalol biosynthesis in Santalum album L.

    PubMed

    Rani, Arti; Ravikumar, Puja; Reddy, Manjunatha Damodara; Kush, Anil

    2013-09-25

    Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013.

  4. Cobalamin-Independent Methionine Synthase Distribution and its Influence on Vitamin B12 Growth Requirements in Marine Diatoms

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Cohen, N.; Moreno, C.; Marchetti, A.

    2016-02-01

    The requirement for cobalamin (vitamin B12) in microalgae is primarily a function of the type of methionine synthase present within their gene repertoires. This study validates this concept through analysis of the distribution of B12-independent methionine synthase in ecologically relevant diatom genera, including the closely related bloom-forming diatoms Pseudo-nitzschia and Fragilariopsis. Growth and gene expression analysis of the vitamin B12-requiring version of the methionine synthase enzyme, MetH, and the B12-independent version, MetE, demonstrate that it is the presence of the MetE gene which allows Fragilariopsis cylindrus to grow in the absence of B12, while P. granii's lack of a functional MetE gene means that it cannot survive without the vitamin. Through phylogenetic analysis, we further substantiate a lack of obvious grouping in MetE presence among diatom clades. In addition, we also show how this trend may have a biogeographical basis, particularly in High-Nutrient, Low-Chlorophyll (HNLC) regions such as the Southern Ocean where B12 concentrations may be consistently low. These results are paired with field experiments showing patterns of MetE and MetH gene expression in natural phytoplankton communities under a matrix of iron and B12 limitations in the HNLC NE Pacific. Our findings demonstrate the important role vitamins can play in diatom community dynamics within areas where vitamin supply may be variable and limiting.

  5. MTHFR, TS and XRCC1 genetic variants may affect survival in patients with myelodysplastic syndromes treated with supportive care or azacitidine.

    PubMed

    Visani, G; Loscocco, F; Ruzzo, A; Galimberti, S; Graziano, F; Voso, M T; Giacomini, E; Finelli, C; Ciabatti, E; Fabiani, E; Barulli, S; Volpe, A; Magro, D; Piccaluga, P; Fuligni, F; Vignetti, M; Fazi, P; Piciocchi, A; Gabucci, E; Rocchi, M; Magnani, M; Isidori, A

    2017-12-05

    We evaluated the impact of genomic polymorphisms in folate-metabolizing, DNA synthesis and DNA repair enzymes on the clinical outcome of 108 patients with myelodysplastic syndromes (MDS) receiving best supportive care (BSC) or azacitidine. A statistically significant association between methylenetetrahydrofolate reductase (MTHFR) 677T/T, thymidylate synthase (TS) 5'-untranslated region (UTR) 3RG, TS 3'-UTR -6 bp/-6 bp, XRCC1 399G/G genotypes and short survival was found in patients receiving BSC by multivariate analysis (P<0.001; P=0.026; P=0.058; P=0.024). MTHFR 677T/T, TS 3'-UTR -6 bp/-6 bp and XRCC1 399G/G genotypes were associated with short survival in patients receiving azacitidine by multivariate analysis (P<0.001; P=0.004; P=0.002). We then performed an exploratory analysis to evaluate the effect of the simultaneous presence of multiple adverse variant genotypes. Interestingly, patients with ⩾1 adverse genetic variants had a short survival, independently from their International Prognostic Scoring System (IPSS) and therapy received. To our knowledge, this is the first study showing that polymorphisms in folate-metabolizing pathway, DNA synthesis and DNA repair genes could influence survival of MDS patients.The Pharmacogenomics Journal advance online publication, 5 December 2017; doi:10.1038/tpj.2017.48.

  6. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    PubMed

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (P<0.001). These findings suggest that the GABRB2 and GAD1 genes alone and the combined effects of the polymorphisms in the four GABAergic system genes may confer susceptibility to the development of schizophrenia in the Chinese population.

  7. Novel Association of WNK4 Gene, Ala589Ser Polymorphism in Essential Hypertension, and Type 2 Diabetes Mellitus in Malaysia.

    PubMed

    Ghodsian, Nooshin; Ismail, Patimah; Ahmadloo, Salma; Heidari, Farzad; Haghvirdizadeh, Polin; Ataollahi Eshkoor, Sima; Etemad, Ali

    2016-01-01

    With-no-lysine (K) Kinase-4 (WNK4) consisted of unique serine and threonine protein kinases, genetically associated with an autosomal dominant form of hypertension. Argumentative consequences have lately arisen on the association of specific single nucleotide polymorphisms of WNK4 gene and essential hypertension (EHT). The aim of this study was to determine the association of Ala589Ser polymorphism of WNK4 gene with essential hypertensive patients in Malaysia. WNK4 gene polymorphism was specified utilizing mutagenically separated polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method in 320 subjects including 163 cases and 157 controls. Close relation between Ala589Ser polymorphism and elevated systolic and diastolic blood pressure (SBP and DBP) was recognized. Sociodemographic factors including body mass index (BMI), age, the level of fasting blood sugar (FBS), low density lipoprotein (LDL), and triglyceride (TG) in the cases and healthy subjects exhibited strong differences (p < 0.05). The distribution of allele frequency and genotype of WNK4 gene Ala589Ser polymorphism showed significant differences (p < 0.05) between EHT subjects with or without type 2 diabetes mellitus (T2DM) and normotensive subjects, statistically. The WNK4 gene variation influences significantly blood pressure increase. Ala589Ser probably has effects on the enzymic activity leading to enhanced predisposition to the disorder.

  8. Methods for detection of ataxia telangiectasia mutations

    DOEpatents

    Gatti, Richard A.

    2005-10-04

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  9. Modified SSCP method using sequential electrophoresis of multiple nucleic acid segments

    DOEpatents

    Gatti, Richard A.

    2002-10-01

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  10. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, and GSTP1) in Egyptian pediatric patients with sickle cell disease.

    PubMed

    Shiba, Hala Fathy; El-Ghamrawy, Mona Kamal; Shaheen, Iman Abd El-Mohsen; Ali, Rasha Abd El-Ghani; Mousa, Somaia Mohammed

    2014-01-01

    Sickle cell disease (SCD) complications are associated with oxidative stress. Glutathione S-transferases (GSTs) are a group of enzymes that protect against oxidative stress. The aims of this study was to evaluate the prevalence of GSTM1, GSTT1, and GSTP1 gene polymorphisms among homozygous sickle cell anemia patients and to investigate the possible association between the presence of these polymorphisms and SCD severity and complications. Genotyping the polymorphisms in GSTT1 and GSTM1 genes was performed using the multiplex polymerase chain reaction (PCR) method. The GSTP1 ILe105Val polymorphism was determined using PCR-restriction fragment length polymorphism. GSTM1 null genotype was significantly associated with increased risk of severe vaso-occlusive crises (VOC) (odds ratio  =  1.52, 95% confidence interval  =  0.42-5.56, P  =  0.005). We found no significant association between GST genotypes and frequency of sickle cell-related pain, transfusion frequency, disease severity, or hydroxyurea treatment. GSTM1 gene polymorphism may be associated with risk of severe VOC among Egyptian SCD patients.

  11. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  12. A polymorphism (rs1042522) in TP53 gene is a risk factor for Down Syndrome in Sicilian mothers.

    PubMed

    Salemi, Michele; Barone, Concetta; Salluzzo, Maria Grazia; Giambirtone, Mariaconcetta; Scillato, Francesco; Galati Rando, Rosanna; Romano, Carmelo; Morale, Maria Concetta; Ridolfo, Federico; Romano, Corrado

    2017-11-01

    Trisomy 21 is the most frequent genetic cause of intellectual disability. Tumor Protein 53 (TP53) gene down-regulation triggers chromosomal instability. A TP53 gene polymorphism c.215G > C (rs1042522) is associated with accumulation of aneuploid cells. We analyzed the TP53 c.215G > C (rs1042522) polymorphism in Sicilian mothers of subjects with Down Syndrome (DS) within a case-control study. Nucleotide polymorphism was detected by pyrosequencing technology. The distribution of TP53 c.215G > C polymorphism showed significant difference between mothers of subjects with DS and controls. Our data show that TP53 c.215G > C polymorphism is a risk factor for DS in Sicilian mothers.

  13. Relation between glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) polymorphisms and clinical manifestations of sickle cell disease in Egyptian patients.

    PubMed

    Ellithy, Hend N; Yousri, Sherif; Shahin, Gehan H

    2015-12-01

    Clinical manifestations of sickle cell disease (SCD) result from sickling of Hb S due to oxidation, which is augmented by accumulation of oxygen-free radicals. Deficiencies in normal antioxidant protective mechanism might lead to clinical manifestations of SCD like vaso-occlusive crisis (VOC) and acute chest syndrome (ACS). The glutathione system plays an important role in the removal of endogenous products of peroxidation of lipids, thus protecting cells and tissue against damage from oxidative stress. Impairment of the glutathione system due to genetic polymorphisms of glutathione S-transferase (GST) genes is expected to increase the severity of SCD manifestations. This report describes a case control study aimed at studying the ethnic-dependent variation in the frequency of GST gene polymorphisms among participants selected from the Egyptian population and to find out the association between GST gene polymorphisms and the severity of SCD manifestations. We measured the frequency distribution of the three GSTs gene polymorphisms in 100 Egyptian adult SCD patients and 80 corresponding controls. GSTM1 and GSTT1 genotypes were determined by multiplex polymerase chain reaction (PCR). GSTP1 genotyping was conducted with a PCR-restriction fragment length polymorphism assay. The GSTM1 null genotype was significantly associated with ACS and VOC (P = 0.03 and 0.01, respectively). The GSTT1 null genotype was associated with significantly increased requirement of blood transfusion (P = 0.01). Absence of both GSTM1 and GSTT1 genes was significantly associated with pulmonary hypertension (P = 0.04). The non-wild-type GSTP1 polymorphism was not associated with clinical manifestations of SCD. Some GST gene polymorphisms were significantly associated with the worsening of the clinical manifestations of SCD.

  14. Impact of DNA repair genes polymorphism (XPD and XRCC1) on the risk of breast cancer in Egyptian female patients.

    PubMed

    Hussien, Yousry Mostafa; Gharib, Amal F; Awad, Hanan A; Karam, Rehab A; Elsawy, Wael H

    2012-02-01

    The genes involved in DNA repair system play a crucial role in the protection against mutations. It has been hypothesized that functional deficiencies in highly conserved DNA repair processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer (BC). The aim of the present study was to evaluate the association of genetic polymorphisms in 2 DNA repair genes, XPD (Asp312Asn) and XRCC1 (A399G), with BC susceptibility. We further investigated the potential combined effect of these DNA repair variants on BC risk. Both XPD (xeroderma pigmentosum group D) and XRCC1 (X-ray repair cross-complementing group 1) polymorphisms were characterized in 100 BC Egyptian females and 100 healthy women who had no history of any malignancy by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) method and PCR with confronting two-pair primers (PCR-CTPP), using DNA from peripheral blood in a case control study. Our results revealed that the frequencies of AA genotype of XPD codon 312 polymorphism were significantly higher in the BC patients than in the normal individuals (P ≤ 0.003), and did not observe any association between the XRCC1 Arg399Gln polymorphism and risk of developing BC. Also, no association between both XPD Asp312Asn and XRCC1 A399G polymorphisms and the clinical characteristics of disease. Finally, the combination of AA(XPD) + AG(XRCC1) were significantly associated with BC risk. Our results suggested that, XPD gene is an important candidate gene for susceptibility to BC. Also, gene-gene interaction between XPD(AA) + XRCC1(AG) polymorphism may be associated with increased risk of BC in Egyptian women.

  15. New polymorphisms of Xeroderma Pigmentosum DNA repair genes in myelodysplastic syndrome.

    PubMed

    Santiago, Sabrina Pinheiro; Junior, Howard Lopes Ribeiro; de Sousa, Juliana Cordeiro; de Paula Borges, Daniela; de Oliveira, Roberta Taiane Germano; Farias, Izabelle Rocha; Costa, Marília Braga; Maia, Allan Rodrigo Soares; da Nóbrega Ito, Mayumi; Magalhães, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2017-07-01

    The association between Xeroderma Pigmentosum DNA repair genes (XPA rs1800975, XPC rs2228000, XPD rs1799793 and XPF rs1800067) polymorphisms and myelodysplastic syndrome (MDS) have not been reported. To assess the functional role between these polymorphisms and MDS, we evaluated 189 samples stratified in two groups: 95 bone marrow samples from MDS patients and 94 from healthy elderly volunteers used as controls. Genotypes for all polymorphisms were identified in DNA samples in an allelic discrimination experiment by real-time polymerase chain reaction (qPCR). We also studied the mRNA expression of XPA and XPC genes to evaluate if its polymorphisms were functional in 53 RNAm MDS patients by qPCR methodologies. To the rs2228000 polymorphism, the CT and TT polymorphic genotype were associated with increased odds ratio (OR) of more profound cytopenia (hemoglobin and neutrophils count). To the rs1799793 polymorphism, we found that the GG homozygous wild-type genotype was associated with a decreased chance of developing MDS. We observed low expression of XPA in younger patients, in hypoplastic MDS and patients with abnormal karyotype when presented AG or AA polymorphic genotypes. We also found that there was a statistically significant interaction between the presence of micromegakaryocyte on down regulation of XPC regarding the CT heterozygous genotype of the rs1800975 polymorphism. Our results suggest that new functional polymorphisms of Xeroderma Pigmentosum DNA repair genes in MDS are related to its pathogenesis and prognosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings.

    PubMed

    Perikleous, Evanthia; Steiropoulos, Paschalis; Tzouvelekis, Argyris; Nena, Evangelia; Koffa, Maria; Paraskakis, Emmanouil

    2018-01-01

    Obstructive sleep apnea (OSA) is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3) DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS) gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.

  17. Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases

    PubMed Central

    Gobert, Alain P.; Wilson, Keith T.

    2017-01-01

    The innate immune response is a critical hallmark of Helicobacter pylori infection. Epithelial and myeloid cells produce effectors, including the chemokine CXCL8, reactive oxygen species (ROS), and nitric oxide (NO), in response to bacterial components. Mechanistic and epidemiologic studies have emphasized that dysregulated and persistent release of these products leads to the development of chronic inflammation and to the molecular and cellular events related to carcinogenesis. Moreover, investigations in H. pylori-infected patients about polymorphisms of the genes encoding CXCL8 and inducible NO synthase, and epigenetic control of the ROS-producing enzyme spermine oxidase, have further proven that overproduction of these molecules impacts the severity of gastric diseases. Lastly, the critical effect of the crosstalk between the human host and the infecting bacterium in determining the severity of H. pylori-related diseases has been supported by phylogenetic analysis of the human population and their H. pylori isolates in geographic areas with varying clinical and pathologic outcomes of the infection. PMID:28124148

  18. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo

    PubMed Central

    Taylor, Steve M.; Antonia, Alejandro L.; Parobek, Christian M.; Juliano, Jonathan J.; Janko, Mark; Emch, Michael; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Tshefu, Antoinette K.; Meshnick, Steven R.

    2013-01-01

    Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains. PMID:23372922

  19. No association between polymorphisms in the DDC gene and paranoid schizophrenia in a northern Chinese population.

    PubMed

    Zhang, Boyu; Jia, Yanbin; Yuan, Yanbo; Yu, Xin; Xu, Qi; Shen, Yucun; Shen, Yan

    2004-09-01

    Several lines of evidence suggest that dysfunctions of neurotransmitters are associated with schizophrenia. DOPA decarboxylase (DDC) is an enzyme involved directly in the synthesis of dopamine and serotonin, and indirectly in the synthesis of noradrenaline. Therefore, the DDC gene can be considered a candidate gene for schizophrenia. We performed an association study between three single nucleotide polymorphisms in the DDC gene and paranoid schizophrenia. However, in our study no significant differences were found in the genotype distributions and allele frequencies between 80 paranoid schizophrenics and 108 controls for any of the polymorphisms. Neither did the haplotypes of the single nucleotide polymorphisms show any association with paranoid schizophrenia. Therefore, we conclude that the polymorphisms studied do not play a major role in paranoid schizophrenia pathogenesis in the population investigated.

  20. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    PubMed Central

    Lind, Abigail L.; Wisecaver, Jennifer H.; Lameiras, Catarina; Wiemann, Philipp; Palmer, Jonathan M.; Keller, Nancy P.; Rodrigues, Fernando; Goldman, Gustavo H.

    2017-01-01

    Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns. PMID:29149178

  1. Genomic organization of plant aminopropyl transferases.

    PubMed

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin. 2010 Elsevier Masson SAS. All rights reserved.

  2. Association analysis of a polymorphism of the monoamine oxidase B gene with Parkinson`s disease in a Japanese population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morimoto, Yuji; Murayama, Nobuhiro; Kuwano, Akira

    1995-12-18

    The polymorphic allele of the monoamine oxidase B (MAO-B) gene detected by polymerase chain reaction (PCR) and single-stranded conformation polymorphism (SSCP) was associated with Parkinson`s disease (PD) in Caucasians. We characterized this polymorphic allele, allele 1, of the MAO-B gene using direct sequencing of PCR products. A single DNA substitution (G-A), resulting gain of Mae III restriction site was detected in intron 13 of the MAO-B gene. The allele associated with PD in Caucasians was twice as frequent as in healthy Japanese, but the association of the allele of the MAO-B gene was not observed in Japanese patients with PD.more » 7 refs., 2 figs., 1 tab.« less

  3. Differential expression of heat shock protein (HSP) 70-2 gene polymorphism in benign and malignant pancreatic disorders and its relationship with disease severity and complications.

    PubMed

    Srivastava, Puja; Shafiq, Nusrat; Bhasin, Deepak Kumar; Rana, Surinder Singh; Pandhi, Promila; Behera, Arunanshu; Kapoor, Rakesh; Malhotra, Samir; Gupta, Rajesh

    2012-07-10

    The role of heat shock protein (HSP) 70-2 gene polymorphism (at position 1267, A to G transition) in patients with pancreatic disorders is not clear. To evaluate HSP 70-2 gene polymorphism (at position 1267, A to G transition) in patients with acute and chronic pancreatitis as well as pancreatic carcinoma, and to find any association of this polymorphism with disease complications and severity. One-hundred and fifty patients (50 each of acute, chronic pancreatitis, and pancreatic carcinoma) and 50 healthy blood donors as controls were prospectively studied. Three alleles (AA, AG and GG) of HSP 70-2 gene determined by PstI restriction fragment length polymorphism. There was a statistically significant difference in the distribution pattern of HSP 70-2 gene polymorphism in patients with acute pancreatitis (P=0.001) and pancreatic carcinoma (P<0.001) as compared to controls. The frequency of mutant allele (G allele) was significantly higher in diseased group as compared to control group (19% in control group, 40% in acute pancreatitis, 33% in chronic pancreatitis and 45% in pancreatic carcinoma). No association of this polymorphism was found with disease severity in patients with acute and chronic pancreatitis or pancreatic carcinoma. In our patient sample the frequency of mutant allele (G allele) of HSP 70-2 gene is significantly higher in patients with acute pancreatitis and pancreatic carcinoma compared to controls (50 healthy blood donors). However, this polymorphism was not associated with disease severity and complications.

  4. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    PubMed

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.

  5. A novel, non-functional, COL1A1 polymorphism is not associated with lumbar disk disease in young male Greek subjects unlike that of the Sp1 site

    PubMed Central

    Bei, Thalia; Tilkeridis, Constantinos; Garantziotis, Stavros; Boikos, Sosipatros A.; Kazakos, Konstantinos; Simopoulos, Constantinos; Stratakis, Constantine A.

    2011-01-01

    OBJECTIVE We recently reported the association of the Sp1 site polymorphism of the COL1A1 gene with lumbar disk disease (LDD). In the present study we searched for a different polymorphism of the COL1A1 gene (which is usually not in linkage disequilibrium with the Sp1 site) in subjects with LDD. DESIGN Blood was collected from 24 Greek army recruits, aged 29±7.6 years, with LDD, and 66 healthy men, aged 26±4.38 years, matched for body mass index (BMI) and age, with normal BMD and with no history of trauma or fractures, who served as controls. DNA was extracted and the COL1A1 gene was sequenced. Of the control subjects, 12 were army recruits and 54 were selected from the general population. RESULTS The four base-pair insertion polymorphism in the COL1A1 gene analyzed by polymerase chain reaction amplification of DNA produces two different fragments (alleles A1 and A2): 14 patients (58.3%) were homozygous for A2A2, versus 35 controls (53%), while 3 patients (12.5%) were A1A1, and 8 of the control subjects (12%) had this genotype. There were no statistically significant differences in the presence of the two alleles of this polymorphism between patients with LDD and control subjects. CONCLUSIONS A four base-pair insertion polymorphism of the COL1A1 gene is not associated with the presence of LDD in young males, unlike the Sp1 site polymorphism of the same gene. These data reinforce the association between LDD and the functional polymorphisms of the Sp1 site by showing that other polymorphic sites of the of the COL1A1 gene in the same population of patients are not linked to the disease. PMID:18694864

  6. Biosynthesis of Diterpenoids in Tripterygium Adventitious Root Cultures1[OPEN

    PubMed Central

    Inabuy, Fainmarinat S.; Fischedick, Justin T.; Lange, Iris; Xu, Meimei

    2017-01-01

    Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli. Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide. PMID:28751314

  7. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  8. [Study on association of CTLA4 gene polymorphism with Grave's disease in Guangxi Zhuang nationality population].

    PubMed

    Liang, Xing-huan; Qin, Ying-fen; Ma, Yan; Xie, Xin-rong; Xie, Kai-qing; Luo, Zuo-jie

    2006-06-01

    To investigate the relationship between the polymorphic (AT)n repeats in 3ountranslated region of exon 4 of CTLA4 gene [CTLA4(AT)n] and Graveso disease (GD) in Zhuang nationality population of Guangxi province. The studied groups comprised 48 patients with GD and 44 normal controls. Amplification of target DNA was carried out by polymerase chain reaction (PCR). The amplified products were run by 8% polyacrylamide gel electrophoresis, and then followed by 0.1% silver staining. Some of amplified products were sequenced directly. Nineteen alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals. The 106 bp long allele was apparently increased in patients with GD of Zhuang nationality but not in healthy controls (P< 0.05). CTLA4 gene microsatellite polymorphism is strongly associated with Graveso disease in Zhuang nationality population of Guangxi province. CTLA4(AT)n 106 bp may be the susceptible gene in GD patients of Zhuang nationality in Guangxi; 19 alleles of CTLA4 gene microsatellite polymorphism were found in Guangxi Zhuang nationality individuals.

  9. Vitiligo susceptibility and catalase gene (CAT) polymorphisms in sicilian population.

    PubMed

    Caputo, Valentina; Niceta, Marcello; Fiorella, Santi; La Vecchia, Marco; Bastonini, Emanuela; Bongiorno, Maria R; Pistone, Giuseppe

    2017-02-15

    Catalase gene (CAT) polymorphisms were analyzed as responsible for the deficiency of catalase enzyme activity and concomitant accumulation of excessive hydrogen peroxide in Vitiligo patients. Catalase is a well known oxidative stress regulator that could play an important role in the pathogenesis of Vitiligo. This study was conducted to evaluate three CAT gene polymorphisms (-89A/T, 389C/T, 419C/T) and their association with Vitiligo susceptibility in Sicilian population. 60 out of 73 Sicilian patients with Vitiligo were enrolled and submitted to CAT gene analysis. Contrary to the Northern part of Europe but likewise to the Mediterranean area, the frequency of the CAT genotypes in Sicily is equally distributed. Out of all CAT genotypes, only CAT -89 T/T frequency was found to be significantly higher amongst Vitiligo patients than controls. Despite the involvement of the CAT enzyme in the pathogenesis of Vitiligo, the biological significance of CAT gene polymorphisms is still controversial. With the only exception for CAT variant -89A/T, the other studied CAT gene polymorphisms (389C/T and 419C/T) might not to be associated with Vitiligo in Sicilian population.

  10. Angiotensin-converting enzyme gene insertion/deletion polymorphism studies in Asian Indian pregnant women biochemically identifies gestational diabetes mellitus.

    PubMed

    Khan, Imran A; Jahan, Parveen; Hasan, Qurratulain; Rao, Pragna

    2014-12-01

    Gestational diabetes mellitus (GDM) is defined as glucose intolerance first recognized during pregnancy. Insertion/deletion (I/D) polymorphism of a 287 bp Alu repetitive sequence in intron 16 of the angiotensin-converting enzyme (ACE) gene has been widely investigated in Asian Indian populations with different ethnic origins. The present study examined possible association between I/D polymorphism of the ACE gene and GDM in Asian Indian pregnant women. A total of 200 pregnant women (100 GDM and 100 non-GDM) were recruited in this study and I/D polymorphism of a 287 bp Alu1 element inside intron 16 of the ACE gene was examined by polymerase chain reaction (PCR)-based gel electrophoresis. The distribution of the variants like II, ID, and DD genotypes of ACE gene showed differences between normal GDM versus non-GDM subjects, and the frequency of the ID+ DD Vs II genotype was significant (p=0.0002) in the GDM group. ACE gene polymorphism was associated with GDM in Asian Indian pregnant women. © The Author(s) 2013.

  11. IL-10 and IL-12B gene polymorphisms in a multiethnic Malaysian population.

    PubMed

    Sam, S S; Teoh, B T; AbuBakar, S

    2015-04-13

    Inheritance of polymorphisms in the interleukin (IL)-10 promoter and IL-12B genes, which influence cytokine production and activities, may define the balance in T helper response in infection and autoimmune diseases. In the present study, we investigated the distribution of the IL-10 promoter and IL-12B gene polymorphisms in a multiethnic Malaysian population. Overall, our findings suggest that the IL-12B and IL-10 -592 genotypes were distributed homogenously across all major ethnic groups, including Malays, Chinese, and Indians, except for polymorphisms at IL-10 -1082. At this gene locus, the ethnic Chinese showed a significantly lower allele frequency of -1082G (2.1%) compared to the Malay (12.2%) and Indian (15.3%) populations. Results for the IL-12B and IL-10 gene polymorphisms were consistent with those reported for the Asian population, but markedly different from those of the African and Caucasian populations. Our findings suggest that there are specific genetic variations between different ethnic groups, which should be examined in all gene population-based association studies.

  12. DD genotype of ACE gene I/D polymorphism is associated with Behcet disease in a Turkish population.

    PubMed

    Yigit, Serbülent; Tural, Sengül; Rüstemoglu, Aydin; Inanir, Ahmet; Gul, Ulker; Kalkan, Goknur; Akkanet, Songul; Karakuş, Nevin; Ateş, Omer

    2013-01-01

    Behcet's disease (BD) is a chronic, multi-systemic and inflammatory disorder. The local renin-angiotensin system (RAS) in the vessel wall plays a role in the endothelial control and contributes to inflammatory processes. Angiotensin-converting enzyme (ACE) is the regulatory component of the RAS. This study was conducted in Turkish patients with BD to determine the frequency of I/D polymorphism genotypes of ACE gene. Genomic DNA obtained from 566 persons (266 patients with BD and 300 healthy controls). ACE gene I/D polymorphism genotypes were determined using polymerase chain reaction using I and D allele-specific primers. There was statistically significant difference between the groups with respect to genotype distribution (p < 0.001). This study is the largest study in Turkish population that ACE gene I/D polymorphism investigated in BD. As a result of this study, ACE gene I/D polymorphism DD genotype could be a genetic marker in BD in Turkish study population.

  13. Association between plasminogen activator inhibitor-1 4G/5G gene polymorphism and immunoglobulin A nephropathy susceptibility.

    PubMed

    Zhou, Tian-Biao; Jiang, Zong-Pei

    2015-02-01

    The association between plasminogen activator inhibitor-1 (PAI-1) 4 G/5 G gene polymorphism and immunoglobulin A nephropathy (IgAN) risk is still controversial. A meta-analysis was performed to evaluate the association between PAI-1 4 G/5 G gene polymorphism and IgAN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Four articles were identified for the analysis of association between PAI-1 4 G/5 G gene polymorphism and IgAN risk. 4 G allele was not associated with IgAN susceptibility in overall populations and in Asians. Furthermore, 4 G/4 G and 5 G/5 G genotype were not associated with IgAN for overall populations, Asians. In conclusion, PAI-1 4 G/5 G gene polymorphism was not associated with IgAN risk in overall populations and in Asians. However, more studies should be performed in the future.

  14. Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd.

    PubMed

    Jin, Mei Lan; Lee, Woo Moon; Kim, Ok Tae

    2017-11-15

    Oxidosqualene cyclases (OSCs) are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA), RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated) were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG) values calculated by fragments per kilobase million (FPKM). In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1 , and PtCAS2 , were found, in addition to the PtBS (β-amyrin synthase) gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia . All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.

  15. Are genes associated with energy metabolism important in asthma and BMI?

    PubMed

    Szczepankiewicz, Aleksandra; Breborowicz, Anna; Sobkowiak, Paulina; Popiel, Anna

    2009-02-01

    Increased serum leptin levels have been observed in asthmatic patients. Leptin, via proliferation and activation of Th2 cells, may induce inflammation in asthma. It has also been demonstrated that leptin mRNA expression and protein levels increase in response to inflammatory stimuli. We hypothesized that polymorphisms in the leptin receptor, leptin and ghrelin genes, may affect their expression and, therefore, be responsible for altered response to increased leptin levels observed in asthma. To our knowledge, there were no studies on a potential role of LEPR, LEP, and GHRL polymorphisms in asthma. We analyzed 129 pediatric patients with asthma and 114 healthy children from the control group ranging from 6 to 18 years of age. The diagnosis of allergic asthma was based on clinical symptoms, the lung function test, and the positive skin prick test and/or increased immunoglobulin E (IgE) levels. Polymorphisms were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Statistical analyses were performed with Statistica v.7.1 software (Statistica, StatSoft, Poland; available free at http://www.broad.mit.edu/mpg/haploview/index.php). Linkage disequilibrium analysis was performed with Haploview v.4.0. We observed a statistically significant association of the 3'UTR A/G and the -2549A/G polymorphisms of the leptin gene with asthma. No association with asthma was observed for the K109R and the Q223R polymorphisms of the LEPR gene and the Met72Leu polymorphism of the ghrelin gene. In the analysis of body mass index (BMI) stratified by genotype, we found an association of the -2549A/G LEP, but not of LEPR and GHRL polymorphisms, with higher BMI values in asthmatic patients. We found suggestive evidence for linkage between the two polymorphisms of the LEPR gene (D' = 0.84 CI: 0.71-0.92; r(2) = 0.29) in linkage disequilibrium analysis: The GG haplotype was more frequent in the control healthy group (p = 0.057). No linkage disequilibrium was detected between LEP polymorphisms. Polymorphisms of the leptin gene may be associated with asthma and higher BMI in asthmatic patients. Polymorphisms of the LEPR and GHRL seem unlikely to be associated with asthma or BMI in our sample. The results of haplotype analysis for the LEPR gene may suggest a protective role of the GG haplotype against asthma; however, studies on larger groups are necessary to confirm the observed trend towards association.

  16. Association of ACE, FABP2 and GST genes polymorphism with essential hypertension risk among a North Indian population.

    PubMed

    Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana

    2015-01-01

    Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.

  17. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review.

    PubMed

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-07-01

    Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  18. [Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides].

    PubMed

    Bukowski, Karol; Woźniak, Katarzyna

    2018-03-09

    Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Epistatic interaction between FCRL3 and NFκB1 genes in Spanish patients with rheumatoid arthritis

    PubMed Central

    Martínez, A; Sánchez, E; Valdivia, A; Orozco, G; López‐Nevot, M A; Pascual‐Salcedo, D; Balsa, A; Fernández‐Gutiérrez, B; de la Concha, E G; García‐Sánchez, A; Koeleman, B P C; Urcelay, E; Martín, J

    2006-01-01

    Background A Japanese study has described a strong association between rheumatoid arthritis and several polymorphisms located in the Fc receptor‐like 3 (FCRL3) gene, a member of a family of genes related to Fc receptors located on chromosome 1q21–23. Objectives To evaluate the association between rheumatoid arthritis and FCLR3 polymorphisms in a large cohort of Caucasian patients with rheumatoid arthritis and healthy controls of Spanish origin. Owing to the described functional link between the FCRL3 polymorphisms and the transcription factor nuclear factor κB (NFκB), a functional polymorphism located in the NFκB1 gene was included. Methods 734 patients with rheumatoid arthritis from Madrid and Granada, Spain, were included in the study, along with 736 healthy controls. Polymorphisms in the FCRL3 gene were studied by TaqMan technology. The −94ins/delATTG NFκB1 promoter polymorphism was analysed by fragment analysis after polymerase chain reaction with labelled primers. Genotypes were compared using 3×2 contingency tables and χ2 values. Results No overall differences were found in any of the FCRL3 polymorphisms and in the NFκB1 promoter polymorphism when patients were compared with controls. However, when stratified according to NFκB1 genotypes, a susceptibility effect of FCRL3 polymorphisms was observed in patients who were heterozygotes for NFκB1 (pc = 0.003). Conclusions The FCRL3 polymorphisms associated with rheumatoid arthritis in a Japanese population are not associated per se with rheumatoid arthritis in a Spanish population. A genetic interaction was found between NFκB1 and FCRL3 in Spanish patients with rheumatoid arthritis. These findings may provide a general rationale for divergent genetic association results in different populations. PMID:16476711

  20. Polymorphisms in the ghrelin gene are associated with serum high-density lipoprotein cholesterol level and not with type 2 diabetes mellitus in Koreans.

    PubMed

    Choi, Hyung Jin; Cho, Young Min; Moon, Min Kyong; Choi, Hye Hun; Shin, Hyoung Doo; Jang, Hak Chul; Kim, Seong Yeon; Lee, Hong Kyu; Park, Kyong Soo

    2006-11-01

    Ghrelin is known to play a role in glucose metabolism and in beta-cell function. There are controversies regarding the role of ghrelin polymorphisms in diabetes and diabetes-related phenotypes. The objective of this study was to examine polymorphisms of the ghrelin gene in a Korean cohort and investigate associations between them and susceptibility to type 2 diabetes and its related phenotypes. The ghrelin gene was sequenced to identify polymorphisms in 24 DNA samples. Common variants were then genotyped in 760 type 2 diabetic patients and 641 nondiabetic subjects. Genetic associations with diabetes-related phenotypes were also analyzed. Nine polymorphisms were identified, and four common polymorphisms [g.-1500C>G, g.-1062G > C, g.-994C > T, g.+408C > A (Leu72Met)] were genotyped in a larger study. The genotype distributions of these four common polymorphisms in type 2 diabetes patients were similar to those of normal nondiabetic controls. However, these four common polymorphisms were variably associated with several diabetes-related phenotypes, such as high-density lipoprotein (HDL) cholesterol, fasting plasma glucose, and homeostasis model assessment of insulin resistance. In particular, subjects harboring g.-1062C were associated with a lower serum HDL cholesterol level after adjusting for other variables (P = 0.0004 or 0.01 after Bonferroni correction for 24 tests). The aforementioned four common polymorphisms in the ghrelin gene were not found to be significantly associated with susceptibility to type 2 diabetes mellitus in the Korean population. However, the common polymorphism g.-1062G > C in the promoter region of the ghrelin gene was found to be significantly associated with serum HDL cholesterol levels.

  1. One-Carbon Metabolism and Breast Cancer Survival in a Population-Based Study

    DTIC Science & Technology

    2007-06-01

    methylation patterns; gene promoter methylation pattern and overall survival; and one-carbon polymorphisms and treatment regimen in relation to survival... treatment strategy. BODY Task 1. To genotype polymorphisms in one-carbon-metabolizing genes on 1087 BC cases (Months 1- 24) Genotyping...modifying effect of one-carbon gene polymorphisms on chemotherapy response in relation to breast cancer survival. Results were summarized in Table 2. The

  2. Association of vitamin D receptor BsmI (rs1544410) gene polymorphism with the chronic kidney disease susceptibility.

    PubMed

    Zhou, Tian-Biao; Jiang, Zong-Pei; Huang, Miao-Fang

    2015-02-01

    Association of vitamin D receptor (VDR) BsmI (rs1544410) gene polymorphism with the chronic kidney disease (CKD) susceptibility from the published reports are still conflicting. This meta-analysis was performed to evaluate the relationship between VDR BsmI (rs1544410) gene polymorphism and the risk of CKD. The association studies were identified from PubMed, Cochrane Library and China Biological Medicine Database on 1 March 2014, and eligible investigations were included and synthesized using meta-analysis method. Nine reports were recruited into this meta-analysis for the association of VDR BsmI gene polymorphism with CKD susceptibility. In this meta-analysis for overall populations, the BsmI B allele BB genotype and bb genotype were not associated with the risk of CKD (B allele: OR = 1.12, 95% CI: 0.88-1.44, p = 0.36; BB genotype: OR = 1.15, 95% CI: 0.81-1.62, p = 0.43; bb genotype: OR = 0.86, 95% CI: 0.61-1.20, p = 0.36). Furthermore, VDR BsmI gene polymorphism was not associated with CKD susceptibility in Asians and in Caucasians. In conclusion, the BsmI gene polymorphism was not associated with CKD susceptibility in overall populations, in Asians and in Caucasians. However, more studies should be conducted to confirm it.

  3. Relationship of interleukin-1B gene promoter region polymorphism with Helicobacter pylori infection and gastritis.

    PubMed

    Ramis, Ivy Bastos; Vianna, Júlia Silveira; Halicki, Priscila Cristina Bartolomeu; Lara, Caroline; Tadiotto, Thássia Fernanda; da Silva Maciel, João Batista; Gonçalves, Carla Vitola; von Groll, Andrea; Dellagostin, Odir Antônio; da Silva, Pedro Eduardo Almeida

    2015-09-29

    Helicobacter pylori infection is associated with gastritis, peptic ulcer disease and gastric carcinoma. The severity of damage is determined by the interplay between environmental/behavioral factors, bacterial pathogenicity genes and host genetic polymorphisms that can influence the secretion levels of inflammatory cytokines. Accordingly, this study aimed to identify polymorphisms in the IL-1B and IL-1RN genes and their associations with H. pylori infection, cagA gene of H. pylori, and gastroduodenal diseases. Gastric biopsy samples from 151 patients infected with H. pylori and 76 uninfected individuals were analyzed. H. pylori infection was diagnosed by histology and PCR. Polymorphisms at positions -511, -31 and +3954 of the IL-1B gene were detected by PCR-RFLP, and an analysis of the VNTR polymorphism of the IL-1RN gene was performed by PCR. It was observed that the presence of the T/T genotype at position -511 and the C/C genotype at position -31 were associated with H. pylori infection and with an increased risk of gastritis in H. pylori-positive patients. Additionally, strains from patients H. pylori-positive carrying the cagA gene was significantly related with the T/T genotype at position -511 of IL-1B.  No association of polymorphisms at position +3954 of IL-1B and in the IL-1RN with H. pylori infection and with risk of severe gastric diseases was found. We demonstrated that polymorphisms in the promoter region of the IL-1B gene (at positions -511 and -31) are associated with an enhanced risk of H. pylori infection as well as gastritis in H. pylori-positive patients.

  4. Apolipoprotein gene polymorphisms and plasma levels in healthy Tunisians and patients with coronary artery disease

    PubMed Central

    Bahri, Raoudha; Esteban, Esther; Moral, Pedro; Hassine, Mohsen; Hamda, Khaldoun Ben; Chaabani, Hassen

    2008-01-01

    Aim To analyze apolipoprotein gene polymorphisms in the Tunisian population and to check the relation of these polymorphisms and homocysteine, lipid and apolipoprotein levels to the coronary artery disease (CAD). Methods In healthy blood donors and in patients with CAD complicated by myocardial infarction (MI) four apolipoprotein gene polymorphisms [APO (a) PNR, APO E, APO CI and APO CII] were determined and plasma levels of total homocysteine, total cholesterol (TC), triglycerides (TG), HDL-cholesterol (HLD-C) and apolipoproteins (apo A-I, Apo B, Apo E) were measured. Results Analysis of the four apolipoprotein gene polymorphisms shows a relative genetic homogeneity between Tunisian population and those on the other side of Mediterranean basin. Compared to controls, CAD patients have significantly higher main concentrations of TC, TG, LDL-C, apo B and homocysteine, and significantly lower ones of HDL-C, apo A-I and apo E. The four apolipoprotein gene polymorphisms have not showed any significant differences between patients and controls. However, the APO E4 allele appears to be associated to the severity of CAD and to high levels of atherogenic parameters and low level of apo E, which has very likely an anti-atherogenic role. Conclusion Although APO (a) PNR, APO CI and APO CII genes are analyzed in only few populations, they show a frequency distribution, which is not at variance with that of APO E gene and other widely studied genetic markers. In the Tunisian population the APO E 4 appears to be only indirectly involved in the severity of CAD. In the routine practice, in addition of classic parameters, it will be useful to measure the concentration of apo E and that of Homocysteine and if possible to determine the APO E gene polymorphism. PMID:19014618

  5. Translating Mendelian and complex inheritance of Alzheimer's disease genes for predicting unique personal genome variants

    PubMed Central

    Regan, Kelly; Wang, Kanix; Doughty, Emily; Li, Haiquan; Li, Jianrong; Lee, Younghee; Kann, Maricel G

    2012-01-01

    Objective Although trait-associated genes identified as complex versus single-gene inheritance differ substantially in odds ratio, the authors nonetheless posit that their mechanistic concordance can reveal fundamental properties of the genetic architecture, allowing the automated interpretation of unique polymorphisms within a personal genome. Materials and methods An analytical method, SPADE-gen, spanning three biological scales was developed to demonstrate the mechanistic concordance between Mendelian and complex inheritance of Alzheimer's disease (AD) genes: biological functions (BP), protein interaction modeling, and protein domain implicated in the disease-associated polymorphism. Results Among Gene Ontology (GO) biological processes (BP) enriched at a false detection rate <5% in 15 AD genes of Mendelian inheritance (Online Mendelian Inheritance in Man) and independently in those of complex inheritance (25 host genes of intragenic AD single-nucleotide polymorphisms confirmed in genome-wide association studies), 16 overlapped (empirical p=0.007) and 45 were similar (empirical p<0.009; information theory). SPAN network modeling extended the canonical pathway of AD (KEGG) with 26 new protein interactions (empirical p<0.0001). Discussion The study prioritized new AD-associated biological mechanisms and focused the analysis on previously unreported interactions associated with the biological processes of polymorphisms that affect specific protein domains within characterized AD genes and their direct interactors using (1) concordant GO-BP and (2) domain interactions within STRING protein–protein interactions corresponding to the genomic location of the AD polymorphism (eg, EPHA1, APOE, and CD2AP). Conclusion These results are in line with unique-event polymorphism theory, indicating how disease-associated polymorphisms of Mendelian or complex inheritance relate genetically to those observed as ‘unique personal variants’. They also provide insight for identifying novel targets, for repositioning drugs, and for personal therapeutics. PMID:22319180

  6. Polymorphisms in genes encoding dopamine signalling pathway and risk of alcohol dependence: a systematic review.

    PubMed

    Bhaskar, Lakkakula V K S; Kumar, Shanmugasundaram Arun

    2014-04-01

    Alcohol dependence (AD) is one of the major elements that significantly influence drinking pattern that provoke the alcohol-induced organ damage. The structural and neurophysiologic abnormalities in the frontal lobes of chronic alcoholics were revealed by magnetic resonance imaging scans. It is well known that candidate genes involved in dopaminergic pathway are of immense interest to the researchers engaged in a wide range of addictive disorders. Dopaminergic pathway gene polymorphisms are being extensively studied with respect to addictive and behavioral disorders. From the broad literature available, the current review summarizes the specific polymorphisms of dopaminergic genes that play a role in alcohol dependence. No evidence indicating any strong association between AD and polymorphisms of dopamine pathway genes has emerged from the literature. Further studies are warranted, considering a range of alcohol-related traits to determine the genes that influence alcohol dependence.

  7. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.

    PubMed

    Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia

    2015-01-01

    Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology. © 2015 Elsevier Ltd. All rights reserved.

  8. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-02-26

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility.

  9. [Aldose reductase gene polymorphism and rate of appearance of retinopathy in non insulin dependent diabetics].

    PubMed

    Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A

    1999-04-01

    Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.

  10. [Influence of leptin receptor gene K109R polymorphism on the risk of nonalcoholic fatty liver disease and its interaction with PNPLA3 I148M polymorphism].

    PubMed

    An, B Q; Jiang, M; Cheng, Y T; Yuan, C; Lu, L L; Xin, Y N; Xuan, S Y

    2016-05-20

    To investigate the influence of leptin receptor (LEPR) gene K109R polymorphism on the risk of nonalcoholic fatty liver disease (NAFLD) and its interaction with PNPLA3 I148M polymorphism in the Han Chinese population in Qingdao, China. Blood samples were collected from 296 NAFLD patients and 321 healthy controls, and the genotypes of these patients were determined by PCR and genotyping. Related statistical analyses were performed to compare genotypes, alleles, and clinical data between the two groups. Generalized multifactor dimensionality reduction (GMDR) was used to investigate the interaction between LEPR K109R and PNPLA3 I148M genes. The distribution of LEPR K109R genotypes and alleles showed no significant differences between the NAFLD group and the control group (P > 0.05). PNPLA3 I148M gene polymorphisms were closely associated with the risk of NAFLD, and the risk of NAFLD in G mutant gene carriers was 2.07 times that in patients who did not carry this gene (OR = 2.07, 95% CI 1.423-3.013, P < 0.001). The joint action of LEPR K109R and PNPLA3 I148M significantly increased the risk of NAFL (OR = 3.393, 95% CI 1.856-6.201, P < 0.001). In the Han Chinese population in Qingdao, LEPR K109R gene polymorphism is not associated with the risk of NAFLD, but its interaction with PNPLA3 I148M polymorphism can significantly increase the risk of NAFLD.

  11. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis.

    PubMed

    Yamamura, Yoshimi; Kurosaki, Fumiya; Lee, Jung-Bum

    2017-03-07

    Scoparia dulcis biosynthesize bioactive diterpenes, such as scopadulcic acid B (SDB), which are known for their unique molecular skeleton. Although the biosynthesis of bioactive diterpenes is catalyzed by a sequence of class II and class I diterpene synthases (diTPSs), the mechanisms underlying this process are yet to be fully identified. To elucidate these biosynthetic machinery, we performed a high-throughput RNA-seq analysis, and de novo assembly of clean reads revealed 46,332 unique transcripts and 40,503 two unigenes. We found diTPSs genes including a putative syn-copalyl diphosphate synthase (SdCPS2) and two kaurene synthase-like (SdKSLs) genes. Besides them, total 79 full-length of cytochrome P450 (CYP450) genes were also discovered. The expression analyses showed selected CYP450s associated with their expression pattern of SdCPS2 and SdKSL1, suggesting that CYP450 candidates involved diterpene modification. SdCPS2 represents the first predicted gene to produce syn-copalyl diphosphate in dicots. In addition, SdKSL1 potentially contributes to the SDB biosynthetic pathway. Therefore, these identified genes associated with diterpene biosynthesis lead to the development of genetic engineering focus on diterpene metabolism in S. dulcis.

  12. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis

    PubMed Central

    Yamamura, Yoshimi; Kurosaki, Fumiya; Lee, Jung-Bum

    2017-01-01

    Scoparia dulcis biosynthesize bioactive diterpenes, such as scopadulcic acid B (SDB), which are known for their unique molecular skeleton. Although the biosynthesis of bioactive diterpenes is catalyzed by a sequence of class II and class I diterpene synthases (diTPSs), the mechanisms underlying this process are yet to be fully identified. To elucidate these biosynthetic machinery, we performed a high-throughput RNA-seq analysis, and de novo assembly of clean reads revealed 46,332 unique transcripts and 40,503 two unigenes. We found diTPSs genes including a putative syn-copalyl diphosphate synthase (SdCPS2) and two kaurene synthase-like (SdKSLs) genes. Besides them, total 79 full-length of cytochrome P450 (CYP450) genes were also discovered. The expression analyses showed selected CYP450s associated with their expression pattern of SdCPS2 and SdKSL1, suggesting that CYP450 candidates involved diterpene modification. SdCPS2 represents the first predicted gene to produce syn-copalyl diphosphate in dicots. In addition, SdKSL1 potentially contributes to the SDB biosynthetic pathway. Therefore, these identified genes associated with diterpene biosynthesis lead to the development of genetic engineering focus on diterpene metabolism in S. dulcis. PMID:28266568

  13. Bactericidal/permeability increasing protein gene polymorphism and inflammatory bowel diseases: meta-analysis of five case-control studies.

    PubMed

    Fan, Lijuan; Fu, Guoning; Ding, Yuanyuan; Lv, Peng; Li, Hongyun

    2017-03-01

    Bactericidal/permeability increasing protein (BPI) gene polymorphisms have been extensively investigated in terms of their associations with inflammatory bowel disease (IBD), with contradictory results. The aim of this meta-analysis was to evaluate associations between BPI gene polymorphisms and the risk of IBD, Crohn's disease (CD), and ulcerative colitis (UC). Eligible studies from PubMed, Embase, and Cochrane library databases were identified. Ten studies (five CD and five UC) published in five papers were included in this meta-analysis. G645A polymorphism was associated with a decreased risk of UC in allele model, dominant model, and homozygous model. Our data suggested that BPI G645A polymorphism was associated with a decreased risk of UC; the BPI G645A polymorphism was not associated with the risk of CD.

  14. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    PubMed

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    PubMed

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase.

    PubMed

    Ng, Lee-Mei; Sudesh, Kumar

    2016-11-01

    Aquitalea sp. USM4 (JCM 19919) was isolated from a freshwater sample at Lata Iskandar Waterfall in Perak, Malaysia. It is a rod-shaped, gram-negative bacterium with high sequence identity (99%) to Aquitalea magnusonii based on 16S rRNA gene analysis. Aquitalea sp. USM4 also possessed a PHA synthase gene (phaC), which had amino acid sequence identity of 77-78% to the PHA synthase of Chromobacterium violaceum ATCC12472 and Pseudogulbenkiania sp. NH8B. PHA biosynthesis results showed that wild-type Aquitalea sp. USM4 was able to accumulate up to 1.5 g/L of poly(3-hydroxybutyrate), [P(3HB)]. The heterologous expression of the PHA synthase gene of Aquitalea sp. USM4 (phaC Aq ) in Cupriavidus necator PHB - 4 had resulted in PHA accumulation up to 3.2 g/L of P(3HB). It was further confirmed by 1 H nuclear magnetic resonance (NMR) analysis that Aquitalea sp. USM4 and C. necator PHB - 4 transformant were able to produce PHA containing 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxy-4-methylvalerate (3H4MV) monomers from suitable precursor substrates. Interestingly, relatively high PHA synthase activity of 863 U/g and 1402 U/g were determined in wild-type Aquitalea sp. USM4 and C. necator PHB - 4 transformant respectively. This is the first report on the member of genus Aquitalea as a new PHA producer as well as in vitro and in vivo characterization of a novel PHA synthase from Aquitalea sp. USM4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Characterization of the Biosynthetic Genes for 10,11-Dehydrocurvularin, a Heat Shock Response-Modulating Anticancer Fungal Polyketide from Aspergillus terreus

    PubMed Central

    Xu, Yuquan; Espinosa-Artiles, Patricia; Schubert, Vivien; Xu, Ya-ming; Zhang, Wei; Lin, Min; Gunatilaka, A. A. Leslie; Süssmuth, Roderich

    2013-01-01

    10,11-Dehydrocurvularin is a prevalent fungal phytotoxin with heat shock response and immune-modulatory activities. It features a dihydroxyphenylacetic acid lactone polyketide framework with structural similarities to resorcylic acid lactones like radicicol or zearalenone. A genomic locus was identified from the dehydrocurvularin producer strain Aspergillus terreus AH-02-30-F7 to reveal genes encoding a pair of iterative polyketide synthases (A. terreus CURS1 [AtCURS1] and AtCURS2) that are predicted to collaborate in the biosynthesis of 10,11-dehydrocurvularin. Additional genes in this locus encode putative proteins that may be involved in the export of the compound from the cell and in the transcriptional regulation of the cluster. 10,11-Dehydrocurvularin biosynthesis was reconstituted in Saccharomyces cerevisiae by heterologous expression of the polyketide synthases. Bioinformatic analysis of the highly reducing polyketide synthase AtCURS1 and the nonreducing polyketide synthase AtCURS2 highlights crucial biosynthetic programming differences compared to similar synthases involved in resorcylic acid lactone biosynthesis. These differences lead to the synthesis of a predicted tetraketide starter unit that forms part of the 12-membered lactone ring of dehydrocurvularin, as opposed to the penta- or hexaketide starters in the 14-membered rings of resorcylic acid lactones. Tetraketide N-acetylcysteamine thioester analogues of the starter unit were shown to support the biosynthesis of dehydrocurvularin and its analogues, with yeast expressing AtCURS2 alone. Differential programming of the product template domain of the nonreducing polyketide synthase AtCURS2 results in an aldol condensation with a different regiospecificity than that of resorcylic acid lactones, yielding the dihydroxyphenylacetic acid scaffold characterized by an S-type cyclization pattern atypical for fungal polyketides. PMID:23335766

  18. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  19. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

    PubMed

    Toyomasu, Tomonobu; Miyamoto, Koji; Shenton, Matthew R; Sakai, Arisa; Sugawara, Chizu; Horie, Kiyotaka; Kawaide, Hiroshi; Hasegawa, Morifumi; Chuba, Masaru; Mitsuhashi, Wataru; Yamane, Hisakazu; Kurata, Nori; Okada, Kazunori

    2016-11-18

    Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida.

    PubMed

    Kontturi, Juha; Osama, Raisa; Deng, Xianbao; Bashandy, Hany; Albert, Victor A; Teeri, Teemu H

    2017-02-01

    The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta.

    PubMed

    Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J

    2002-11-01

    Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.

  2. Associations of SAA1 gene polymorphism with lipid lelvels and osteoporosis in Chinese women.

    PubMed

    Feng, Zheng-Ping; Li, Xiao-Yu; Jiang, Rong; Deng, Hua-Cong; Yang, Mei; Zhou, Qin; Que, Wen-Jun; Du, Jia

    2013-03-22

    The development of osteoporosis is associated with several risk factors, such as genetic polymorphisms and enviromental factors. This study assessed the correlation between SAA1 gene rs12218 polymorphism and HDL-C lelvels and osteoporosis in a population of Chinese women. A total of 387 postmenopausal female patients who were diagnosed with osteoporosis (case group) based on bone mineral density measurements via dual-energy x-ray absorptiometry and 307 females with no osteoporosis (control group) were included in this study. Correlations between SAA1 gene rs12218 polymorphism and osteoporosis and HDL-C level were investigated through the identification of SAA1 gene rs12218 polymorphism genotypes using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The TT genotype of rs12218 was more frequently in osteoporosis patients than in control subjects (P <0.001). And the rs12218 was found to be associated with plasma TG, HDL-C, LDL-C, and BMD levels in osteoporosis patients (P<0.05). The present results indicate that both osteoporosis and lipids levels are associated with the TT genotype of rs12218 in the human SAA1 gene.

  3. Associations of SAA1 gene polymorphism with Lipid lelvels and osteoporosis in Chinese women

    PubMed Central

    2013-01-01

    Background The development of osteoporosis is associated with several risk factors, such as genetic polymorphisms and enviromental factors. This study assessed the correlation between SAA1 gene rs12218 polymorphism and HDL-C lelvels and osteoporosis in a population of Chinese women. Methods A total of 387 postmenopausal female patients who were diagnosed with osteoporosis (case group) based on bone mineral density measurements via dual-energy x-ray absorptiometry and 307 females with no osteoporosis (control group) were included in this study. Correlations between SAA1 gene rs12218 polymorphism and osteoporosis and HDL-C level were investigated through the identification of SAA1 gene rs12218 polymorphism genotypes using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results The TT genotype of rs12218 was more frequently in osteoporosis patients than in control subjects (P <0.001). And the rs12218 was found to be associated with plasma TG, HDL-C, LDL-C, and BMD levels in osteoporosis patients (P<0.05). Conclusions The present results indicate that both osteoporosis and lipids levels are associated with the TT genotype of rs12218 in the human SAA1 gene. PMID:23522429

  4. [The value of 5-HTT gene polymorphism for the assessment and prediction of male adolescence violence].

    PubMed

    Yu, Yue; Liu, Xiang; Yang, Zhen-xing; Qiu, Chang-jian; Ma, Xiao-hong

    2012-08-01

    To establish an adolescent violence crime prediction model, and to assess the value of serotonin transporter (5-HTT) gene polymorphism for the assessment and prediction of violent crime. Investigative tools were used to analyze the difference in personality dimensions, social support, coping styles, aggressiveness, impulsivity, and family condition scale between 223 adolescents with violence behavior and 148 adolescents without violence behavior. The distribution of 5-HTT gene polymorphisms (5-HTTLPR and 5-HTTVNTR) was compared between the two groups. The role of 5-HTT gene polymorphism on adolescent personality, impulsion and aggression scale also was also analyzed. Stepwise logistic regression was used to establish a predictive model for adolescent violent crime. Significant difference was found between the violence group and the control group on multiple dimensions of psychology and environment scales. However, no statistical difference was found with regard to the 5-HTT genotypes and alleles between adolescents with violent behaviors and normal controls. The rate of prediction accuracy was not significantly improved when 5-HTT gene polymorphism was taken into the model. The violent crime of adolescents was closely related with social and environmental factors. No association was found between 5-HTT polymorphisms and adolescent violence criminal behavior.

  5. Toward optimal set of single nucleotide polymorphism investigation before IVF.

    PubMed

    Ivanov, A V; Dedul, A G; Fedotov, Y N; Komlichenko, E V

    2016-10-01

    At present, the patient preparation for IVF needs to undergo a series of planned tests, including the genotyping of single nucleotide polymorphism (SNP) alleles of some genes. In former USSR countries, such investigation was not included in overwhelming majority of health insurance programs and paid by patient. In common, there are prerequisites to the study of more than 50 polymorphisms. An important faced task is to determine the optimal panel for SNP genotyping in terms of price/number of SNP. During 2009-2015 in the University Hospital of St. Petersburg State University, blood samples were analyzed from 550 women with different reproductive system disorders preparing for IVF and 46 healthy women in control group. In total, 28 SNP were analyzed in the genes of thrombophilia factors, folic acid cycle, detoxification system, and the renin-angiotensin system. The method used was real-time PCR. A significant increase in the frequency of pathological alleles of some polymorphisms in patients with habitual failure of IVF was shown, compared with the control group. As a result, two options defined panels for optimal typing SNP before IVF were composed. Standard panel includes 8 SNP, 5 in thromborhilic factors, and 3 in folic acid cycle genes. They are 20210 G > A of FII gene, R506Q G > A of FV gene (mutation Leiden), -675 5G > 4G of PAI-I gene, L33P T > C of ITGB3 gene, -455 G > A of FGB gene, 667 C > T of MTHFR gene, 2756 A > G of MTR gene, and 66 A > G of MTRR gene. Extended panel of 15 SNP also includes 807 C > T of ITGA2 gene, T154M C > T of GP1BA gene, second polymorphism 1298 A > C in MTHFR gene, polymorphisms of the renin-angiotensin gene AGT M235T T > C and -1166 A > C of AGTR1 gene, polymorphisms I105V A > G and A114V C > T of detoxification system gene GSTP. The results of SNP genotyping can be adjusted for treatment tactics and IVF, and also medical support getting pregnant. The success rate of IVF is increased as the result, especially in the group with the usual failure of IVF.

  6. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women.

    PubMed

    Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi

    2014-10-01

    Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.

  7. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality.

    PubMed

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing; Zeng, Qiang

    2017-12-01

    Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI - spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sex steroid-related genes and male-to-female transsexualism.

    PubMed

    Henningsson, Susanne; Westberg, Lars; Nilsson, Staffan; Lundström, Bengt; Ekselius, Lisa; Bodlund, Owe; Lindström, Eva; Hellstrand, Monika; Rosmond, Roland; Eriksson, Elias; Landén, Mikael

    2005-08-01

    Transsexualism is characterised by lifelong discomfort with the assigned sex and a strong identification with the opposite sex. The cause of transsexualism is unknown, but it has been suggested that an aberration in the early sexual differentiation of various brain structures may be involved. Animal experiments have revealed that the sexual differentiation of the brain is mainly due to an influence of testosterone, acting both via androgen receptors (ARs) and--after aromatase-catalyzed conversion to estradiol--via estrogen receptors (ERs). The present study examined the possible importance of three polymorphisms and their pairwise interactions for the development of male-to-female transsexualism: a CAG repeat sequence in the first exon of the AR gene, a tetra nucleotide repeat polymorphism in intron 4 of the aromatase gene, and a CA repeat polymorphism in intron 5 of the ERbeta gene. Subjects were 29 Caucasian male-to-female transsexuals and 229 healthy male controls. Transsexuals differed from controls with respect to the mean length of the ERbeta repeat polymorphism, but not with respect to the length of the other two studied polymorphisms. However, binary logistic regression analysis revealed significant partial effects for all three polymorphisms, as well as for the interaction between the AR and aromatase gene polymorphisms, on the risk of developing transsexualism. Given the small number of transsexuals in the study, the results should be interpreted with the utmost caution. Further study of the putative role of these and other sex steroid-related genes for the development of transsexualism may, however, be worthwhile.

  9. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    PubMed

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR.

  10. Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions.

    PubMed

    Galindo-González, Leonardo; Mhiri, Corinne; Grandbastien, Marie-Angèle; Deyholos, Michael K

    2016-12-07

    Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant impact of the insertion on gene expression. We demonstrated that specific Ty1-copia families have been active since breeding commenced in flax. The retrotransposon-derived polymorphism can be used to separate flax types, and the close association of many insertions with genes defines a good source of potential mutations that could be associated with phenotypic changes, resulting in diversification processes.

  11. Differential Expression of Biphenyl Synthase Gene Family Members in Fire-Blight-Infected Apple ‘Holsteiner Cox’ 1[W][OA

    PubMed Central

    Chizzali, Cornelia; Gaid, Mariam M.; Belkheir, Asma K.; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger

    2012-01-01

    Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple ‘Golden Delicious’, nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple ‘Holsteiner Cox,’ heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple ‘Cox Orange,’ expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells. PMID:22158676

  12. Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower.

    PubMed

    Ruocco, Michelina; Baroncelli, Riccardo; Cacciola, Santa Olga; Pane, Catello; Monti, Maurilia Maria; Firrao, Giuseppe; Vergara, Mariarosaria; Magnano di San Lio, Gaetano; Vannacci, Giovanni; Scala, Felice

    2018-01-06

    The early phases of Diaporthe helianthi pathogenesis on sunflower are characterized by the production of phytotoxins that may play a role in host colonisation. In previous studies, phytotoxins of a polyketidic nature were isolated and purified from culture filtrates of virulent strains of D. helianthi isolated from sunflower. A highly aggressive isolate (7/96) from France contained a gene fragment of a putative nonaketide synthase (lovB) which was conserved in a virulent D. helianthi population. In order to investigate the role of polyketide synthases in D. helianthi 7/96, a draft genome of this isolate was examined. We were able to find and phylogenetically analyse 40 genes putatively coding for polyketide synthases (PKSs). Analysis of their domains revealed that most PKS genes of D. helianthi are reducing PKSs, whereas only eight lacked reducing domains. Most of the identified PKSs have orthologs shown to be virulence factors or genetic determinants for toxin production in other pathogenic fungi. One of the genes (DhPKS1) corresponded to the previously cloned D. helianthi lovB gene fragment and clustered with a nonribosomal peptide synthetase (NRPS) -PKS hybrid/lovastatin nonaketide like A. nidulans LovB. We used DhPKS1 as a case study and carried out its disruption through Agrobacterium-mediated transformation in the isolate 7/96. D. helianthi DhPKS1 deleted mutants were less virulent to sunflower compared to the wild type, indicating a role for this gene in the pathogenesis of the fungus. The PKS sequences analysed and reported here constitute a new genomic resource that will be useful for further research on the biology, ecology and evolution of D. helianthi and generally of fungal plant pathogens.

  13. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    PubMed

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    PubMed Central

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-01-01

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211

  15. Association of vdr, cyp27b1, cyp24a1 and mthfr gene polymorphisms with oral lichen planus risk.

    PubMed

    Kujundzic, Bojan; Zeljic, Katarina; Supic, Gordana; Magic, Marko; Stanimirovic, Dragan; Ilic, Vesna; Jovanovic, Barbara; Magic, Zvonko

    2016-05-01

    The current study investigated the association between VDR EcoRV (rs4516035), FokI (rs2228570), ApaI (rs7975232) and TaqI (rs731236), CYP27B1 (rs4646536), CYP24A1 (rs2296241), and MTHFR (rs1801133) gene polymorphisms and risk of oral lichen planus (OLP) occurrence. The study group consisted of 65 oral lichen planus patients and 100 healthy blood donors in the control group. Single nucleotide polymorphisms were genotyped by real time PCR or PCR-restriction fragment length polymorphism (RFLP) method. Heterozygous as well as mutated genotype of vitamin D receptor (VDR) FokI (rs2228570) polymorphism was associated with increased oral lichen planus risk in comparison with wild type genotype (odds ratio (OR) = 3.877, p = 0.017, OR = 38.153, p = 0.001, respectively). A significantly decreased OLP risk was observed for heterozygous genotype of rs2296241 polymorphism in CYP24A1 gene compared with the wild type form (OR = 0.314, p = 0.012). VDR gene polymorphisms ApaI and TaqI were in linkage disequilibrium (D' = 0.71, r(2) = 0.22). Identified haplotype AT was associated with decreased OLP risk (OR = 0.592, p = 0.047). Our results highlight the possible important role of VDR FokI (rs2228570) and CYP24A1 rs2296241 gene polymorphisms for oral lichen planus susceptibility. Identification of new molecular biomarkers could potentially contribute to determination of individuals with OLP predisposition.

  16. [Gene IL6 G(-174)C and gene IL10 G(-1082)A polymorphisms are associated with unfavourable outcomes in patients with acute coronary syndrome].

    PubMed

    Blagodatskikh, K A; Evdokimova, M A; Agapkina, Iu V; Nikitin, A G; Brovkin, A N; Pushkov, A A; Blagodatskikh, E G; Kudriasheva, O Iu; Osmolovskaia, V S; Minushkina, L O; Kochkina, M S; Selezneva, N D; Dankovtseva, E N; Chumakova, O S; Baklanova, T N; Talyzin, P A; Reznichenko, N E; Donetskaia, O P; Tereshchenko, S N; Krasil'nikova, E S; Dzhaiani, N A; Akatova, E V; Glezer, M G; Galiavich, A S; Zakirova, V B; Kaziolova, N A; Timofeeva, I V; Iagoda, A V; Boeva, O I; Katel'nitskaia, L I; Khorolets, E V; Shlyk, S V; Volkova, É G; Margarian, M P; Guz', O I; Konstantinov, V O; Timofeeva, N V; Sidorenko, B A; Zateĭshchikov, D A; Nosikov, V V

    2010-01-01

    We investigated the association of gene IL6 G(-174)C polymorphism and gene IL10 G(-1082)A polymorphism with coronary artery disease (CAD) in the Russian population. A total of 1145 patients with CAD diagnose on the basis of clinical studies in cardiological hospitals of Moscow, St -Petersburg, Kazan, Chelyabinsk, Perm, Stavropol and Rostov-on-Don. Supervision term was 9.10 +/- 5.03 months (the maximum term 18 months). In case of gene IL10 G(-1082)A polymorphism we determined that patients with CAD diagnose and A alleles gene IL10 had unfavorable outcome more often than patients with homozygous G alleles. Survival time from end point from carrier genotype GA and AA is 11.68 +/- 0.67 months against 12.69 +/- 0.65 months from carrier phenotype GG gene IL10 (chi2 = 4.13, p = 0.042). The group studied do not differ significantly with respect to the distributions of gene IL6 G(-174)C alleles and genotypes. However in case combined group studies of gene IL10 G(-1082)A polymorphism and IL6 G(-174)C polymorphism we determined that patients with CAD diagnose and carrier genotype GG gene IL6 and genotype GA and AA gene IL10 had unfavorable outcome more often (survival time 11.01 +/- 1.24 months) than patients with genotype CC and CG gene IL6 and genotype GG gene IL10 (survival time 13.28 +/- 0.83 months) chi2 = 10.23, p = 0.017. The obtained data allows assuming the important role of the IL6 and IL10 genes which are responsible for functioning of inflammation system, in the accelerated formation of failures at the patients who had a coronary syndrome.

  17. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p

    PubMed Central

    Hellmuth, Klaus; Grosjean, Henri; Motorin, Yuri; Deinert, Karina; Hurt, Ed; Simos, George

    2000-01-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S.cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export. PMID:11095668

  18. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum)

    PubMed Central

    Gaffoor, Iffa; Brown, Daren W.; Plattner, Ron; Proctor, Robert H.; Qi, Weihong; Trail, Frances

    2005-01-01

    Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism. PMID:16278459

  19. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts

    PubMed Central

    Dron, Michel; Clouse, Steven D.; Dixon, Richard A.; Lawton, Michael A.; Lamb, Christopher J.

    1988-01-01

    To investigate the mechanisms underlying activation of plant defenses against microbial attack we have studied elicitor regulation of a chimeric gene comprising the 5′ flanking region of a defense gene encoding the phytoalexin biosynthetic enzyme chalcone synthase fused to a bacterial chloramphenicol acetyltransferase gene. Glutathione or fungal elicitor caused a rapid, marked but transient expression of the chimeric gene electroporated into soybean protoplasts. The response closely resembled that of endogenous chalcone synthase genes in suspension cultured cells. Functional analysis of 5′ deletions suggests that promoter activity is determined by an elicitor-regulated activator located between the “TATA box” and nucleotide position -173 and an upstream silencer between -173 and -326. These cis-acting elements function in the transduction of the elicitation signal to initiate elaboration of an inducible defense response. Images PMID:16593981

  20. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) wemore » developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.« less

Top