Alcohol synthesis in a high-temperature slurry reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, G.W.; Marquez, M.A.; McCutchen, M.S.
1995-12-31
The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system canmore » be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1993-02-01
The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less
The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor
Palanisamy, Barath; Paul, Brian; Chang, Chih -hung
2015-01-21
A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less
Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
Toh, Ren Wei; Li, Jie Sheng; Wu, Jie
2018-01-04
A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.
Applying flow chemistry: methods, materials, and multistep synthesis.
McQuade, D Tyler; Seeberger, Peter H
2013-07-05
The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
2015-01-01
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours. PMID:26722622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayton, David C
2010-03-24
Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technicalmore » breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested. Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frame, R.R.; Gala, H.B.
1992-12-31
The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more thanmore » 4%, and the conversion loss per week is not to exceed 1%. Contract Tasks are as follows: 1.0--Catalyst development, 1.1--Technology assessment, 1.2--Precipitated catalyst preparation method development, 1.3--Novel catalyst preparation methods investigation, 1.4--Catalyst pretreatment, 1.5--Catalyst characterization, 2.0--Catalyst testing, 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.« less
Metabolic modeling of synthesis gas fermentation in bubble column reactors.
Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A
2015-01-01
A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.
Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trewyn, Brian G.; Smith, Ryan G.
2016-06-01
Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C 2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H 2) from bio-oil generatedmore » from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C 2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid foundation for the future production of syngas from biomass and the development of heterogeneous catalysts for the syngas to C 2-oxygenate process and for the commercialization of this process. Potential future directions for this research are also discussed within the report.« less
Technology development for iron Fischer-Tropsch catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Brien, R.J.; Raje, A.; Keogh, R.A.
1995-12-31
The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alphamore » iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.« less
A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.
Emenike, Victor N; Schenkendorf, René; Krewer, Ulrike
2018-05-01
Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design. The proposed concept is based on the elementary process functions (EPF) methodology to select an optimal reactor configuration from existing state-of-the-art reactor types or can possibly lead to the design of novel reactors. As a conceptual study, this work summarizes the essential steps in adapting the EPF approach to optimal reactor design problems in the field of API syntheses. Practically, the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene was analyzed as a case study of pharmaceutical relevance. Here, a small-scale tubular coil reactor with controlled heating was identified as the optimal set-up reducing the residence time by 33% in comparison to literature values. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Wenping; Zhu, Xuefeng; Chen, Shuguang; Yang, Weishen
2016-07-18
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2 /N2 and H2 /CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic-electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2 S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The chemical energy unit partial oxidation reactor operation simulation modeling
NASA Astrophysics Data System (ADS)
Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.
2018-01-01
The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).
Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article)
An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...
Flow photochemistry: Old light through new windows
Knowles, Jonathan P; Elliott, Luke D
2012-01-01
Summary Synthetic photochemistry carried out in classic batch reactors has, for over half a century, proved to be a powerful but under-utilised technique in general organic synthesis. Recent developments in flow photochemistry have the potential to allow this technique to be applied in a more mainstream setting. This review highlights the use of flow reactors in organic photochemistry, allowing a comparison of the various reactor types to be made. PMID:23209538
NASA Astrophysics Data System (ADS)
Abdiwe, Ramadan; Haider, Markus
2017-06-01
In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.
NASA Astrophysics Data System (ADS)
Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.
2016-02-01
The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.
Development and characterization of lubricants for use near nuclear reactors in space vehicles
NASA Technical Reports Server (NTRS)
Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.
1972-01-01
The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.
2015-05-16
synthesis of iron magnetic nanoparticles is being investigated (Appendix A; Scheme IV). In the first step, precursor iron(III) chloride nanoparticles...and other methods. Currently, we are developing a two-step scheme for the synthesis of esters that will require distillation and/or column...recognize the link between them. We are developing for the above purpose, the microwave-assisted, two-step synthesis of high boiling point esters. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L.
An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10{sup −3} to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph andmore » a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al{sub 2}O{sub 3} overcoats, and evaluation of catalyst propylene hydrogenation activity.« less
Real-time LMR control parameter generation using advanced adaptive synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.W.; Mott, J.E.
1990-01-01
The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less
Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul
2015-06-08
Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.
Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan
2014-07-09
Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.
Ohmic Heating: An Emerging Concept in Organic Synthesis.
Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S
2017-06-12
The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis
Buesser, B.; Gröhn, A.J.
2013-01-01
Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992
Multiphase organic synthesis in microchannel reactors.
Kobayashi, Juta; Mori, Yuichiro; Kobayashi, Shū
2006-07-17
"Miniaturization" is one of the most important aspects in today's technology. Organic chemistry is no exception. The search for highly effective, controllable, environmentally friendly methods for preparing products is of prime importance. The development of multiphase organic reactions in microchannel reactors has gained significant importance in recent years to allow novel reactivity, and has led to many fruitful results that are not attainable in conventional reactors. This Focus Review aims to shed light on how effectively multiphase organic reactions can be conducted with microchannel reactors by providing examples of recent remarkable studies, which have been grouped on the basis of the phases involved.
GREEN REACTION CHEMISTRIES PERFORMED IN THE SST REACTOR
The U. S. Environmental Protection Agency (USEPA) and Kreido Laboratories have established a Cooperative Research and Development Agreement (CRADA) collaboration, to develop and commercialize green and sustainable chemistries in the area of industrial chemical synthesis. Uti...
NASA Astrophysics Data System (ADS)
Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya
The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun
2015-07-15
The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less
GREEN REACTION CHEMISTRIES PERFORMED IN THE SPINNING TUBE-IN-TUBE (STT) REACTOR
The U. S. Environmental Protection Agency (USEPA) and Kreido Laboratories have established a Cooperative Research and Development Agreement (CRADA) collaboration, to develop and commercialize green and sustainable chemistries in the area of industrial chemical synthesis. Utilizi...
Fischer-Tropsch Wastewater Utilization
Shah, Lalit S.
2003-03-18
The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
PROCESS INTENSIFIED GREEN REACTION CHEMISTRIES PERFORMED IN THE SPINNING TUBE-IN-TUBE (STT®) REACTOR
The U. S. Environmental Protection Agency (USEPA) and Kreido Laboratories have established a Cooperative Research and Development Agreement (CRADA) collaboration, to develop and commercialize green and sustainable chemistries in the area of industrial chemical synthesis. Utilizi...
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.
2016-09-27
A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1994-05-06
Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
Vapor phase synthesis of compound semiconductors, from thin films to nanoparticles
NASA Astrophysics Data System (ADS)
Sarigiannis, Demetrius
A counterflow jet reactor was developed to study the gas-phase decomposition kinetics of organometallics used in the vapor phase synthesis of compound semiconductors. The reactor minimized wall effects by generating a reaction zone near the stagnation point of two vertically opposed counterflowing jets. Smoke tracing experiments were used to confirm the stability of the flow field and validate the proposed heat, mass and flow models of the counterflow jet reactor. Transport experiments using ethyl acetate confirmed the overall mass balance for the system and verified the ability of the model to predict concentrations at various points in the reactor under different flow conditions. Preliminary kinetic experiments were performed with ethyl acetate and indicated a need to redesign the reactor. The counterflow jet reactor was adapted for the synthesis of ZnSe nanoparticles. Hydrogen selenide was introduced through one jet and dimethylzinc-triethylamine through the other. The two precursors reacted in a region near the stagnation zone and polycrystalline particles of zinc selenide were reproducibly synthesized at room temperature and collected for analysis. Raman spectroscopy confirmed that the particles were crystalline zinc selenide, Morphological analysis using SEM clearly showed the presence of aggregates of particles, 40 to 60 nanometers in diameter. Analysis by TEM showed that the particles were polycrystalline in nature and composed of smaller single crystalline nanocrystallites, five to ten nanometers in diameter. The particles in the aggregate had the appearance of being sintered together. To prevent this sintering, a split inlet lower jet was designed to introduce dimethylzinc through the inner tube and a surface passivator through the outer one. This passivating agent appeared to prevent the particles from agglomerating. An existing MOVPE reactor for II-VI thin film growth was modified to grow III-V semiconductors. A novel new heater was designed and built around an easily replaceable, economical, 650-watt, tungsten-halogen lamp. The heater was successfully tested to temperatures up to 1500°F. The deposition reactor was successfully tested by growing a thin film of GaP on GaAs <100>. The film surface was imperfect but the experiments proved that the reactor was ready for service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, G.K.; Liu, Y.A.; Squires, A.M.
1986-10-01
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less
Ion transport membrane reactor systems and methods for producing synthesis gas
Repasky, John Michael
2015-05-12
Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.
Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis
NASA Astrophysics Data System (ADS)
Wen, Zhuqing; Petera, Jerzy
2016-06-01
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.
NASA Astrophysics Data System (ADS)
Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.
2017-04-01
The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.
Nanocrystal synthesis in microfluidic reactors: where next?
Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C
2014-09-07
The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.
Molybdenum-base cermet fuel development
NASA Astrophysics Data System (ADS)
Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.
Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.
Versatile in situ gas analysis apparatus for nanomaterials reactors.
Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole
2014-09-02
We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.
NASA Astrophysics Data System (ADS)
Fazlali, Farnaz; Mahjoub, Ali reza; Abazari, Reza
2015-10-01
This study has sought to draw a comparison among the nickel oxide nanostructures (NSs) with multiple shapes in terms of their photocatalytic properties. These NSs have been synthesized using a set of wet chemical methods (thermal-decomposition, sol-gel, hydrothermal, and emulsion nano-reactors), for which a similar precursor has been considered. For evaluation of the photocatalytic properties of the suggested NSs, methyl orange (MeO) solution photocatalytic degradation has been estimated based on UV-Vis spectroscopy. As shown by our results, the photocatalytic efficiency of the prepared NSs is highly dependent upon the shape of the corresponding structures. In this context, the emulsion nano-reactors (ENRs) method has been developed for the synthesis of pure nickel oxide nanoparticles (NPs) with unaggregated, quite spherical, and homogeneous NPs at environmental conditions. Compared with the other methods in this work, ENRs method shows high photocatalytic efficiency in the MeO dye decomposition.
NASA Astrophysics Data System (ADS)
Dreyer, Bradon Justin
2007-12-01
The research presented in this thesis develops an understanding of a clean energy process technology, catalytic partial oxidation (CPO). CPO is a process in which a carbon containing fuel, such as a hydrocarbon, is passed over a noble metal catalyst (e.g. rhodium and platinum) to efficiently generate synthesis gas (H2 and CO) and olefins (e.g. ethylene and propylene) in millisecond contact times. Chapter 1 introduces CPO and compares this technology with conventional methods for synthesis gas and olefin production. CPO has several advantages over the traditional synthesis gas and olefin production methods. One advantage includes autothermal operation, requiring no external heat input from furnaces or heat exchangers. Autothermal operation allows these reactors to be built compactly. The short contact-times associated with CPO further enable for high throughput in relatively small reactor systems, and more compact reactors typically translate to faster response times if transient operation is required. Nobel metal based CPO catalysts are also resistant to deactivation, resulting in less catalyst replacement, regeneration, and maintenance, and an increase in operating efficiency. An overview of the many applications of the chemicals produced from CPO is also presented in Chapter 1. The chemicals produced are crucial in generating valuable chemical intermediates that are eventually incorporated in consumer products, medical devices, building structures, and fertilizers. Additionally, H2 can be used as a source of energy in mobile fuel applications. Fuel cells convert H2 and O2 into electricity and water at higher efficiencies than thermal engine generators. Due to the difficulties in H2 storage, these more efficient energy generators are dependent on hydrogen obtained from synthesis gas production in compact, portable fuel reformers, such as CPO reactors. Furthermore, H2 and CO can be used in reducing environmentally harmful emissions. Particularly, the implementation of NOx traps and hydrogen into diesel engines has shown potential in reducing NOx emissions into the environment. Both concepts are dependent on synthesis gas generated from portable, compact fuel reformers, such as CPO reactors. Chapter 1 also reviews previous research in CPO, along with several important experimental parameters, and outlines the remaining research directions in the remaining chapters. In Chapter 2, steam addition to the CPO of higher hydrocarbons was explored over rhodium-coated ceramic foam supports at millisecond contact times. Steam addition to the CPO of n-decane and n-hexadecane in air produced considerably higher H2 and CO2 and lower olefin and CO selectivities than traditional CPO. For steam to carbon feed ratios from 0.0 to 4.0, the reactor operated autothermally, and the H2 to CO product ratio increased from ˜1.0 to ˜4.0, which is essentially the equilibrium product composition near synthesis gas stoichiometry (C/O ˜1) at contact times of ˜7 milliseconds. In fuel-rich feeds exceeding the synthesis gas ratio (C/O > 1), steam addition suppressed olefins, promoted synthesis gas and water-gas shift products, and reduced catalyst surface carbon. Furthermore, steam addition to the CPO of the military fuel JP-8 was performed successfully, also increasing H2 and suppressing olefins. (Abstract shortened by UMI.)
Integrated production of fuel gas and oxygenated organic compounds from synthesis gas
Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.
1995-01-01
An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.
NASA Astrophysics Data System (ADS)
Kapychev, V.; Davydov, D.; Gorokhov, V.; Ioltukhovskiy, A.; Kazennov, Yu; Tebus, V.; Frolov, V.; Shikov, A.; Shishkov, N.; Kovalenko, V.; Shishkin, N.; Strebkov, Yu
2000-12-01
This paper surveys the modules and materials of blanket tritium-breeding zones developed in the Russian Federation for fusion reactors. Synthesis of lithium orthosilicate, metasilicate and aluminate, fabrication of ceramic pellets and pebbles and experimental reactor units are described. Results of tritium extraction kinetics under irradiation in a water-graphite reactor at a thermal neutron flux of 5×10 13 neutron/(s cm2) are considered. At the present time, development and fabrication of lithium orthosilicate-beryllium modules of the tritium-breeding zone (TBZ), have been carried out within the framework of the ITER and DEMO projects. Two modules containing orthosilicate pellets, porous beryllium and beryllium pebbles are suggested for irradiation tests in the temperature range of 350-700°C. Technical problems associated with manufacturing of the modules are discussed.
Method and apparatus for producing synthesis gas
Hemmings, John William; Bonnell, Leo; Robinson, Earl T.
2010-03-03
A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.
Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis
ERIC Educational Resources Information Center
Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.
2015-01-01
Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…
Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhuqing; Petera, Jerzy
A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reactionmore » species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk’s spinning speed, gap size and flow rates at inlets are evaluated.« less
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications
NASA Astrophysics Data System (ADS)
Petermann, Nils; Schneider, Tom; Stötzel, Julia; Stein, Niklas; Weise, Claudia; Wlokas, Irenäus; Schierning, Gabi; Wiggers, Hartmut
2015-08-01
The utilization of microwave-based plasma systems enables a contamination-free synthesis of highly specific nanoparticles in the gas phase. A reactor setup allowing stable, long-term operation was developed with the support of computational fluid dynamics. This paper highlights the prospects of gas-phase plasma synthesis to produce specific materials for bulk thermoelectrics. Taking advantage of specific plasma reactor properties such as Coulomb repulsion in combination with gas temperatures considerably higher than 1000 K, spherical and non-aggregated nanoparticles of multiple compositions are accessible. Different strategies towards various nanostructured composites and alloys are discussed. It is shown that, based on doped silicon/germanium alloys and composites, thermoelectric materials with zT values up to almost unity can be synthesized in one step. First experimental results concerning silicon/tungsten silicide thermoelectrics applying the nanoparticle-in-alloy idea are presented indicating that this concept might work. However, it is found that tungsten silicides show a surprising sinter activity more than 1000 K below their melting temperature.
Generation of plasmas in supercritical xenon inside microcapillaries for synthesis of diamondoid
NASA Astrophysics Data System (ADS)
Oshima, Fumito; Ishii, Chikako; Stauss, Sven; Terashima, Kazuo
2012-10-01
Diamondoids are series of sp^3 hybridized carbon nanomaterials that could be applied in various fields such as pharmacy and optoelectronics. In our previous studies, higher order diamondoids were synthesized in supercritical fluid (SCF) plasmas in a batch-type reactor using adamantane (C10H16), the smallest diamondoid, as a precursor and seed. However the yield was low and the selectivity was difficult to control. We have developed a continuous flow SCF microplasma reactor that allows discharge volume and residence time to be adjusted. The electrodes consist of a tungsten wire inserted into a fused silica capillary and a sputtered silver outside of the capillary. We dissolved adamantane in supercritical xenon near critical point, and then generated DBDs inside the capillary using a nominal constant xenon flow rate of 0˜2.3 mL min-1. Micro-Raman spectra of the synthesized products show peaks that are characteristic of hydrocarbons possessing sp^3 hybridized bonds while gas-chromatography/mass spectrometry spectra indicate the synthesis of diamantane (C14H20) and possibly isomers of diamondoids consisting of up to nine cages, nonamantane. It is suggested that this type of SCF microplasma reactor might be effective not only for synthesis of diamondoids, but also other nanomaterials.
NASA Astrophysics Data System (ADS)
Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing
2013-12-01
In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.
Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip
Kimura, Hiroyuki; Tomatsu, Kenji; Saiki, Hidekazu; Arimitsu, Kenji; Ono, Masahiro; Kawashima, Hidekazu; Iwata, Ren; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo
2016-01-01
In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted radiosynthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) via a three-step procedure using a microreactor. We examined individual steps for [18F]SFB using a batch reactor and microreactor and developed a new continuous-flow synthetic method with a single microfluidic chip to achieve rapid and efficient radiosynthesis of [18F]SFB. In the synthesis of [18F]SFB using this continuous-flow method, the three-step reaction was successfully completed within 6.5 min and the radiochemical yield was 64 ± 2% (n = 5). In addition, it was shown that the quality of [18F]SFB synthesized on this method was equal to that synthesized by conventional methods using a batch reactor in the radiolabeling of bovine serum albumin with [18F]SFB. PMID:27410684
Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham
2017-06-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.
Navarrete, Alexander; Muñoz, Sergio; Sanz-Moral, Luis M; Brandner, Juergen J; Pfeifer, Peter; Martín, Ángel; Dittmeyer, Roland; Cocero, María J
2015-01-01
A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a means to introduce renewable energy into the economy. The development of the new reactor concept involved the synthesis of a new composite capable of plasmonic activation with light, the development of an impregnation method to create a single catalyst reactor entity, and finally the assembly of a reaction system to test the reaction. The composite developed was based on a Cu/ZnO catalyst dispersed into transparent aerogels. This allows efficient light transmission and a high surface area for the catalyst. An effective yet simple impregnation method was developed that allowed introduction of the composites into glass microchannels. The activation of the reaction was made using LEDs that covered all the sides of the reactor allowing a high power delivery. The results of the reaction show a stable process capable of low temperature transformations.
Systematic process synthesis and design methods for cost effective waste minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.
We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.
Combustion synthesis continuous flow reactor
Maupin, G.D.; Chick, L.A.; Kurosky, R.P.
1998-01-06
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.
Combustion synthesis continuous flow reactor
Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.
1998-01-01
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.
Synthesis of Carbon Nanotubes in Thermal Plasma Reactor at Atmospheric Pressure.
Szymanski, Lukasz; Kolacinski, Zbigniew; Wiak, Slawomir; Raniszewski, Grzegorz; Pietrzak, Lukasz
2017-02-18
In this paper, a novel approach to the synthesis of the carbon nanotubes (CNTs) in reactors operating at atmospheric pressure is presented. Based on the literature and our own research results, the most effective methods of CNT synthesis are investigated. Then, careful selection of reagents for the synthesis process is shown. Thanks to the performed calculations, an optimum composition of gases and the temperature for successful CNT synthesis in the CVD (chemical vapor deposition) process can be chosen. The results, having practical significance, may lead to an improvement of nanomaterials synthesis technology. The study can be used to produce CNTs for electrical and electronic equipment (i.e., supercapacitors or cooling radiators). There is also a possibility of using them in medicine for cancer diagnostics and therapy.
Aerosol Route Synthesis and Applications of Doped Nanostructured Materials
NASA Astrophysics Data System (ADS)
Sahu, Manoranjan
Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.
The effect of reactor geometry on the synthesis of graphene materials in plasma jets
NASA Astrophysics Data System (ADS)
Shavelkina, M. B.; Amirov, R. H.; Shatalova, T. B.
2017-05-01
The possibility of synthesis of graphene and graphane (hydrogenated graphene) using the decomposition of hydrocarbons by thermal plasma has been investigated. Investigations of the influence of the plasma-forming gas on the efficiency of synthesis and the morphology of graphene materials were carried out. The synthesis products have been characterized by the methods of scanning microscopy, Raman spectroscopy and thermal analysis. It is found that the morphology of graphene materials is affected by the geometry of the reactor. It was demonstrated that the obtained graphene materials are uniformly distributed in the volume of plastic based on cyanate ester resins under mixing.
Studies in organic and physical photochemistry - an interdisciplinary approach.
Oelgemöller, Michael; Hoffmann, Norbert
2016-08-21
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole
2017-03-01
The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task 1 is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extender and octane enhancers. Task 1 is subdivided into three separate subtasks: laboratory and equipment setup; catalysis research; and reaction engineering and modeling. Research at West Virginia University (WVU) is focused on molybdenum-based catalysts for higher alcohol synthesis. Parallel research carried out at Union Carbide Corporation (UCC) is focused on transition-metal-oxide catalysts. During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products whenmore » reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction spectra for C- supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS{sub 2}/C catalyst. We have compared the results of methanol synthesis using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalysts has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less
Oxygen transport membrane reactor based method and system for generating electric power
Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan
2017-02-07
A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.
Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios
2015-02-17
CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.
Synthesis gas method and apparatus
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles
2015-11-06
A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.
Synthesis gas method and apparatus
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles
2013-01-08
A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.
Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor
Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...
System Modeling for Ammonia Synthesis Energy Recovery System
NASA Astrophysics Data System (ADS)
Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team
2015-11-01
An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.
One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor
Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher
2013-01-01
Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407
Development of attrition resistant iron-based Fischer-Tropsch catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-09-20
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.« less
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.
A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reactionmore » wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5« less
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles
2014-01-07
A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.
Lange, Paul P; James, Keith
2012-10-08
A novel methodology for the synthesis of druglike heterocycle libraries has been developed through the use of flow reactor technology. The strategy employs orthogonal modification of a heterocyclic core, which is generated in situ, and was used to construct both a 25-membered library of druglike 3-aminoindolizines, and selected examples of a 100-member virtual library. This general protocol allows a broad range of acylation, alkylation and sulfonamidation reactions to be performed in conjunction with a tandem Sonogashira coupling/cycloisomerization sequence. All three synthetic steps were conducted under full automation in the flow reactor, with no handling or isolation of intermediates, to afford the desired products in good yields. This fully automated, multistep flow approach opens the way to highly efficient generation of druglike heterocyclic systems as part of a lead discovery strategy or within a lead optimization program.
Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
1999-01-01
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.
Attrition Resistant Iron-Based Fischer-Tropsch Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jothimurugesan, K.; Goodwin, J.G.; Spivey, J.J.
1997-03-26
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less
Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.
1997-09-22
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a seriousmore » problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less
Integrated process of distillation with side reactors for synthesis of organic acid esters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri
An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.
Ullah, Farman; Zang, Qin; Javed, Salim; Zhou, Aihua; Knudtson, Christopher A.; Bi, Danse; Hanson, Paul R.; Organ, Michael G.
2013-01-01
A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy. PMID:24244871
The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...
Process assessment of small scale low temperature methanol synthesis
NASA Astrophysics Data System (ADS)
Hendriyana, Susanto, Herri; Subagjo
2015-12-01
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 106 IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor
Singleton, A.H.; Oukaci, R.; Goodwin, J.G.
1999-08-17
Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.
A review and assessment of hydrodynamic cavitation as a technology for the future.
Gogate, Parag R; Pandit, Aniruddha B
2005-01-01
In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.
pyrolysis vapors Catalytic depolymerization of biomass Process scale-up for catalyst synthesis and testing continuous flow reactors (gas & liquid phases) Catalyst synthesis: zeolites, supported metals, and
Machine‐Assisted Organic Synthesis
Fitzpatrick, Daniel E.; Myers, Rebecca M.; Battilocchio, Claudio; Ingham, Richard. J.
2015-01-01
Abstract In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies. PMID:26193360
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
Ultrarapid Multimode Microwave Synthesis of Nano/Submicron β-SiC
Johnson, Michael; He, Wenzhi; Li, Guangming; Zhao, Chen; Yu, Luling; Huang, Juwen; Zhu, Haochen
2018-01-01
This paper presents the design, development and realization of a fast and novel process for the synthesis of 3C silicon carbide (β-SiC) nanorods and submicron powder. Using SiO2 (or Si) and activated carbon (AC), this process allows β-SiC to be synthesized with almost 100% purity in timeframes of seconds or minutes using multimode microwave rotary tube reactors under open-air conditions. The synthesis temperature used was 1460 ± 50 °C for Si + AC and 1660 ± 50 °C for SiO2 + AC. The shortest β-SiC synthesis time achieved was about 20 s for Si + AC and 100 s for SiO2 + AC. This novel synthesis method allows for scaled-up flow processes in the rapid industrial-scale production of β-SiC, having advantages of time/energy saving and carbon dioxide emission reduction over comparable modern processes. PMID:29470417
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
NASA Astrophysics Data System (ADS)
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-01
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-17
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
Spatial height directed microfluidic synthesis of transparent inorganic upconversion nano film
NASA Astrophysics Data System (ADS)
Liu, Xiaoxia; Zhu, Cheng; Liao, Wei; Jin, Junyang; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi
2017-11-01
A microfluidic-based synthesis of an inorganic upconversion nano film has been developed with a large area of dense-distributed NaYF4 crystal grains in a silica glass micro-reactor and the film exhibits high transparence, strong upconversion luminescence and robust adhesion with the substrate. The spatial heights of micro-reactors are tuned between 31 and 227 mm, which can regulate flow regimes. The synergistic effect of spatial height and fluid regime is put forward, which influences diffusion paths and assembly ways of different precursor molecules and consequently directs final distributions and morphologies of crystal grains, as well as optical properties due to diversity of surface and thickness of films. The spatial height of 110 mm is advantageous for high transmittance of upconversion film due to the flat surface and appropriate film thickness of 67 nm. The height of 150 mm is in favor of uniform distribution of upconversion fluorescence and achieving the strongest fluorescence due to minimized optical loss. Such a transparent upconversion film with a large area of uniform distribution is promising to promote the application of upconversion materials and spatial height directed microfluidic regime have a certain significance on many microfluidic synthesis.
Cell-free protein synthesis in PDMS-glass hybrid microreactor
NASA Astrophysics Data System (ADS)
Yamamoto, Takatoki; Fujii, Teruo; Nojima, Takahiko; Hong, Jong W.; Endo, Isao
2000-08-01
A living cell has numerous kinds of proteins while only thousands of that have been identified as of now. In order to discover and produce various proteins that are applicable to biotechnological, pharmaceutical and medical applications, cell-free protein synthesis is one of the most useful and promising techniques. In this study, we developed an inexpensive microreactor with temperature control capability for protein synthesis. The microreactor consists of a sandwich of glass-based chip and PDMS(polydimethylsiloxane) chip. The thermo control system, which is composed of a heater and a temperature sensor, is fabricated with an ITO (Indium Tin Oxide) resistive material on a glass substrate by ordinary microfabrication method based on photolithography and etching techniques. The reactor chamber and flow channels are fabricated by injection micromolding of PDMS. Since one can use thermo control system on a glass substrate repeatedly by replacing only the easily-fabricated and low-cost PDMS reactor chamber, this microreactor is quite cost effective. As a demonstration, a DNA template of a GFP (Green Fluorescent Protein) is transcribed and translated using cell-free extract prepared from Escherichia coli. As a result, GFP was successfully synthesized in the present microreactor.
Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang
2017-01-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor.more » The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhitonov, Y.A.
2008-07-01
The prospects for development of nuclear power are intimately associated with solving the problem of safe management and removal from the biosphere of generated radioactive wastes. The most suitable material for fission products and actinides immobilization is the crystalline ceramics. By now numerous literature data are available concerning the synthesis of a large range of various materials with zirconium-based products. It worth mentioning that zirconium is only one of fission products accumulated in the fuel in large amounts. The development of new materials intended for HLW immobilization will allow increasing of radionuclides concentration in solidified product so providing costs reductionmore » at the stage of subsequent storage. At the same time the idea to use for synthesis of compounds, suitable as materials for long-term storage or final disposal of rad-wastes some fission products occurring in spent fuel in considerable amount and capable to form insoluble substances seems to be rather attractive. In authors opinion in the nearest future one can expect the occurrence of publications proposing the techniques allowing the use of 'reactor's zirconium, molybdenum or, perhaps, technetium as well, with the aim of preparing materials suitable for long-lived radionuclides storage or final disposal. The other element, which is generated in the reactor and worth mentioning, is palladium. The prospects for using palladium are defined not only by its higher generation in the reactor, but by a number of its chemical properties as well. It is evident that the use of natural palladium with the purpose of radionuclides immobilization is impossible due to its high cost and deficiency). In author's opinion such materials could be used as targets for long-lived radionuclides transmutation as well. The object of present work was the study on methods that could allow to use 'reactor' palladium with the aim of long-lived radionuclides such as I-129 and TUE immobilization. In the paper the results of experiments on synthesis of matrices with TUE oxides and PdI{sub 2} on palladium base are presented. (authors)« less
Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli
2016-12-20
The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.
Adam, Zachary R
2016-06-01
Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.
Attrition resistant bulk iron catalysts and processes for preparing and using same
Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC
2007-08-21
An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.
Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins
Hui Pan; Todd F. Shupe; Chung-Yun Hse
2008-01-01
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three-necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac-type liquefied wood/phenol/...
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm
NASA Astrophysics Data System (ADS)
Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Tien-Dung, Vu; Kim-Trung, Nguyen
2017-09-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone. The optimal problem requires the maximization of a multivariable objective function which subjects to a number of equality constraints involving the solution of coupled differential equations and also inequality constraints. The solution of an optimization problem can be found through, among others, deterministic or stochastic approaches. The stochastic methods, such as evolutionary algorithm (EA), which is based on natural phenomenon, can overcome the drawbacks such as the requirement of the derivatives of the objective function and/or constraints, or being not efficient in non-differentiable or discontinuous problems. Genetic algorithm (GA) which is a class of EA, exceptionally simple, robust at numerical optimization and is more likely to find a true global optimum. In this study, the genetic algorithm is employed to find the optimum profit of the process. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results showed that the presented numerical method could be applied to model the ammonia synthesis reactor. The optimum economic profit obtained from this study are also compared to the results from the literature. It suggests that the process should be operated at higher temperature of feed gas in catalyst zone and the reactor length is slightly longer.
High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine
Telang, Nakul S; Kong, Caleb J; Verghese, Jenson; Gilliland III, Stanley E; Ahmad, Saeed; Dominey, Raymond N
2018-01-01
Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria. PMID:29623120
Harnessing Thin-Film Continuous-Flow Assembly Lines.
Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L
2016-07-25
Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hanford Laboratories Operation monthly activities report, August 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1959-09-15
This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.
Hanford Laboratories Operation monthly activities report, September 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1961-10-16
This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Towards microfluidic reactors for cell-free protein synthesis at the point-of-care
Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; ...
2015-12-22
Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less
Towards microfluidic reactors for cell-free protein synthesis at the point-of-care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.
Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less
Evaluation of enzymatic reactors for large-scale panose production.
Fernandes, Fabiano A N; Rodrigues, Sueli
2007-07-01
Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.
Plasma characterization studies for materials processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfender, E.; Heberlein, J.
New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torchmore » model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Ayman M.; Al Hasan, Naila M.; Ivanov, Sergei A.
2015-06-11
In this paper we show that the temporal separation of nucleation and growth is not a necessary condition for the colloidal synthesis of monodisperse nanoparticles. The synthesis mechanism of Pd nanoparticles was determined by in situ XAFS and SAXS in a microfluidic reactor capable of millisecond up to an hour time resolution. The SAXS results showed two autocatalytic growth phases, a fast growth phase followed by a very slow growth phase. The steady increase in the number of particles throughout the two growth phases indicates the synthesis is limited by slow continuous nucleation. The transition from fast to slow growthmore » was caused by rapid increase in bonding with the capping agent as shown by XAFS. Based on this fundamental understanding of the synthesis mechanism, we show that 1 nm monodisperse Pd nanoparticles can be synthesized at low temperature using a strong binding capping agent such as trioctylphosphine (TOP).« less
Ortiz de Solorzano, Isabel; Prieto, Martín; Mendoza, Gracia; Alejo, Teresa; Irusta, Silvia; Sebastian, Victor; Arruebo, Manuel
2016-08-24
The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.
Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.
Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W
2015-03-06
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.
Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor
Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.
2015-01-01
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
2006 Global Demilitarization Symposium Volume 1 Presentations
2006-05-04
produce inorganic crystals in continuous-reaction mode: Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor, Hongzhi...crystallize lead azide nanoparticles , and to grow them into dextrinated microparticles; Point of Application Microfluidic Synthesis of Sensitive...National Laboratory Point of Application Synthesis of Sensitive Explosive Mr. Karl Wally, Sandia National Laboratories Session III- A Session
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
NASA Astrophysics Data System (ADS)
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Bunquin, Jeffrey; Shou, Heng; Aich, Payoli
An integrated atomic layer deposition-catalysis (I-ALD-CAT) tool was developed, combining an ALD manifold with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT system can deliver gaseous reagents comprised of 12 different metal ALD precursors, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10-3–1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unitmore » for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the ALD of platinum active sites and Al2O3 overcoats, and evaluation of catalyst propylene hydrogenation activity.« less
Biological processing in oscillatory baffled reactors: operation, advantages and potential
Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.
2013-01-01
The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509
Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.
2016-09-27
A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices.
Kitson, Philip J; Rosnes, Mali H; Sans, Victor; Dragone, Vincenza; Cronin, Leroy
2012-09-21
We utilise 3D design and 3D printing techniques to fabricate a number of miniaturised fluidic 'reactionware' devices for chemical syntheses in just a few hours, using inexpensive materials producing reliable and robust reactors. Both two and three inlet reactors could be assembled, as well as one-inlet devices with reactant 'silos' allowing the introduction of reactants during the fabrication process of the device. To demonstrate the utility and versatility of these devices organic (reductive amination and alkylation reactions), inorganic (large polyoxometalate synthesis) and materials (gold nanoparticle synthesis) processes were efficiently carried out in the printed devices.
NASA Astrophysics Data System (ADS)
Jin, Hyung Dae
Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18eV at 300K can be used for IR photodetectors, laser diodes, and thermophotovoltaic energy converters. First continuous synthesis of shape-controlled SnTe nanocrystals were also accomplished in this work. SnCl2, and TOPTe were used as reactants successfully in coordinating OA and TOP solvents. Both rod shape and dot shape SnTe nanocrystals with uniform size distributions could be obtained. A blue shift was observed from these SnTe nanocrystals. Production rate at about 5mg/min (300mg/hr) was achieved using a microreactor at a size of 1.78cm3.
The economic production of alcohol fuels from coal-derived synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.
1995-12-31
The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less
Synthesis and sintering of UN-UO2 fuel composites
NASA Astrophysics Data System (ADS)
Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Püschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.
2015-11-01
The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN - UO2 composite pellets were sintered in Ar - (0-1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar - 100 ppm N2 to assess the effects of temperature (1700-2000 °C) on the final grain morphology and phase concentration.
Combined synthesis and in situ coating of nanoparticles in the gas phase
NASA Astrophysics Data System (ADS)
Lähde, Anna; Raula, Janne; Kauppinen, Esko I.
2008-12-01
Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.
Wu, Lingtian; Xu, Cen; Li, Sha; Liang, Jinfeng; Xu, Hong; Xu, Zheng
2017-06-01
In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.
Strativnov, Eugene V
2015-12-01
One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.
Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.
Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying
2013-08-01
Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.
Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.
2017-12-01
Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.
2017-01-01
We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513
ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN
1998-09-17
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C{sub 5}{sup +} selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation.« less
NASA Astrophysics Data System (ADS)
Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun
2017-07-01
In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.
2015-04-27
from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon
Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y
2001-01-01
The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.
Attrition resistant catalysts for slurry-phase Fischer-Tropsch process
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Jothimurugesan
1999-11-01
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process lowmore » H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.« less
High temperature ceramic-tubed reformer
NASA Astrophysics Data System (ADS)
Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.
1990-03-01
The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.
The search for "Green" alternative processes for the oxidation of hydrocarbons selectively to partial oxygenates has been the subject of intense chemical research for many years. The USEPA is currently investigating an alternative synthesis pathway for the production of alcoho...
The search for "Green" alternative processes for the oxidation of hydrocarbons selectively to partial oxygenates has been the subject of intense chemical research for many years. The USEPA is currently investigating an alternative synthesis pathway for the production of alcoho...
Solar-thermal reaction processing
Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy
2014-03-18
In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins
ERIC Educational Resources Information Center
Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines
2011-01-01
A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…
Continuous flow synthesis of ZSM-5 zeolite on the order of seconds
Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru
2016-01-01
The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823
Salvi, Harshada M; Kamble, Manoj P; Yadav, Ganapati D
2018-02-01
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.
Diels–Alder reactions of myrcene using intensified continuous-flow reactors
Álvarez-Diéguez, Miguel Á; Kohl, Thomas M; Tsanaktsidis, John
2017-01-01
This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times. PMID:28228853
Synthesis of biodiesel from waste cooking oil using sonochemical reactors.
Hingu, Shishir M; Gogate, Parag R; Rathod, Virendra K
2010-06-01
Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol-oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 degrees C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated. (c) 2010 Elsevier B.V. All rights reserved.
Design of Nanomaterial Synthesis by Aerosol Processes
Buesser, Beat; Pratsinis, Sotiris E.
2013-01-01
Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598
Design of nanomaterial synthesis by aerosol processes.
Buesser, Beat; Pratsinis, Sotiris E
2012-01-01
Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
The formation of pyruvaldehyde from triose sugars was catalyzed by poly-L-lysine contained in a small dialyzer (100 MWCO) suspended in a much larger triose substrate reservoir. The polylysine confined in the dialyzer functioned as a catalytic flow reactor that constantly brought in triose from the substrate reservoir by diffusion to offset the drop in triose concentration within the reactor caused by its conversion to pyruvaldehyde. A 400 mM solution of poly-L-lysine contained in a 0.35 ml dialyzer placed in a 120 ml solution of triose substrate (pH 5.5, 40 C) generated pyruvaldehyde 11 -times faster than an a control reaction without the catalytic dialyzer. However, since the catalytic dialyzer's volume was 343-times smaller than the control reaction, the synthetic intensity (rate/volume) of pyruvaldehyde synthesis within the catalytic dialyzer was 3400-times greater than that of the control reaction and substrate solution. A similar result was obtained using a dialyzer with a 500 MWCO value. Acting as a catalytic flow reactor the polylysine catalytic dialyzer synthesized about 3.5 molecules of pyruvaldehyde per lysine residue in 7 days -- an amount of triose equal to twice the weight of the catalyst. At 7 days the catalytic activity of polylysine was 16% of its initial value, a result indicating catalyst-poisoning caused by reaction of pyruvaldehyde with the e-amino groups of polylysine. The dialyzer method of catalyst containment was selected it provides a simple, flexible, and easily manipulated experimental system for studying the dynamics and evolutionary development of confined autocatalytic processes related to the origin of life under anaerobic conditions.
2013-01-01
Background Automated radiosynthesizers are vital for routine production of positron-emission tomography tracers to minimize radiation exposure to operators and to ensure reproducible synthesis yields. The recent trend in the synthesizer industry towards the use of disposable kits aims to simplify setup and operation for the user, but often introduces several limitations related to temperature and chemical compatibility, thus requiring reoptimization of protocols developed on non-cassette-based systems. Radiochemists would benefit from a single hybrid system that provides tremendous flexibility for development and optimization of reaction conditions while also providing a pathway to simple, cassette-based production of diverse tracers. Methods We have designed, built, and tested an automated three-reactor radiosynthesizer (ELIXYS) to provide a flexible radiosynthesis platform suitable for both tracer development and routine production. The synthesizer is capable of performing high-pressure and high-temperature reactions by eliminating permanent tubing and valve connections to the reaction vessel. Each of the three movable reactors can seal against different locations on disposable cassettes to carry out different functions such as sealed reactions, evaporations, and reagent addition. A reagent and gas handling robot moves sealed reagent vials from storage locations in the cassette to addition positions and also dynamically provides vacuum and inert gas to ports on the cassette. The software integrates these automated features into chemistry unit operations (e.g., React, Evaporate, Add) to intuitively create synthesis protocols. 2-Deoxy-2-[18F]fluoro-5-methyl-β-l-arabinofuranosyluracil (l-[18F]FMAU) and 2-deoxy-2-[18F]fluoro-β-d-arabinofuranosylcytosine (d-[18F]FAC) were synthesized to validate the system. Results l-[18F]FMAU and d-[18F]FAC were successfully synthesized in 165 and 170 min, respectively, with decay-corrected radiochemical yields of 46% ± 1% (n = 6) and 31% ± 5% (n = 6), respectively. The yield, repeatability, and synthesis time are comparable to, or better than, other reports. d-[18F]FAC produced by ELIXYS and another manually operated apparatus exhibited similar biodistribution in wild-type mice. Conclusion The ELIXYS automated radiosynthesizer is capable of performing radiosyntheses requiring demanding conditions: up to three reaction vessels, high temperatures, high pressures, and sensitive reagents. Such flexibility facilitates tracer development and the ability to synthesize multiple tracers on the same system without customization or replumbing. The disposable cassette approach simplifies the transition from development to production. PMID:23849185
Method of producing gaseous products using a downflow reactor
Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C
2014-09-16
Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.
1969-01-01
Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.
NASA Astrophysics Data System (ADS)
Rivai, A. K.; Dimyati, A.; Adi, W. A.
2017-05-01
One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).
Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen
2011-01-01
An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Process assessment of small scale low temperature methanol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriyana; Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung; Susanto, Herri, E-mail: herri@che.itb.ac.id
2015-12-29
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developedmore » various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 10{sup 6} IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.« less
NASA Astrophysics Data System (ADS)
Hecht, C.; Kronemayer, H.; Dreier, T.; Wiggers, H.; Schulz, C.
2009-01-01
The iron-atom concentration distribution as well as the gas-phase temperature was measured via laser-induced fluorescence (LIF) during iron-oxide nanoparticle synthesis in a low-pressure hydrogen/oxygen/argon flame reactor using ironpentacarbonyl (Fe(CO)5) as precursor. Temperature measurements based on multi-line NO-LIF imaging are used to correct for temperature-dependent ground-state populations. The concentration measurement is calibrated based on line-of-sight absorption measurements. The influence of the precursor on the flame is observed at precursor concentrations larger than 70 ppm as the flame front moves closer to the burner surface with increasing Fe(CO)5 concentration.
A plasma arc reactor for fullerene research
NASA Astrophysics Data System (ADS)
Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.
1994-12-01
A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.
Biological production of ethanol from coal. Task 4 report, Continuous reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less
Synthesis and sintering of UN-UO 2 fuel composites
Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; ...
2015-06-17
In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less
NASA Astrophysics Data System (ADS)
Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon
2011-06-01
Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.
Brenna, Davide; Pirola, Margherita; Raimondi, Laura; Burke, Anthony J; Benaglia, Maurizio
2017-12-01
The diastereoselective, trichlorosilane-mediate reduction of imines, bearing different and removable chiral auxiliaries, in combination either with achiral bases or catalytic amounts of chiral Lewis bases, was investigated to afford immediate precursors of chiral APIs (Active Pharmaceutical Ingredients). The carbon-nitrogen double bond reduction was successfully performed in batch and in flow mode, in high yields and almost complete stereocontrol. By this metal-free approach, the formal synthesis of rasagiline and tamsulosin was successfully accomplished in micro(meso) flow reactors, under continuous flow conditions. The results of these explorative studies represent a new, important step towards the development of automated processes for the preparation of enantiopure biologically active compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim
2007-07-01
A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.
NASA Technical Reports Server (NTRS)
Revankar, Vithal; Hlavacek, Vladimir
1991-01-01
The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Alpan, F. A.; Fischer, G.A.
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, A.H.
1995-06-28
The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less
Boldrin, Paul; Gallagher, James R.; Combes, Gary B.; Enache, Dan I.; James, David; Ellis, Peter R.; Kelly, Gordon; Claridge, John B.
2015-01-01
Development of heterogeneous catalysts for complex reactions such as Fischer–Tropsch synthesis of fuels is hampered by difficult reaction conditions, slow characterisation techniques such as chemisorption and temperature-programmed reduction and the need for long term stability. High-throughput (HT) methods may help, but their use has until now focused on bespoke micro-reactors for direct measurements of activity and selectivity. These are specific to individual reactions and do not provide more fundamental information on the materials. Here we report using simpler HT characterisation techniques (XRD and TGA) along with ageing under Fischer–Tropsch reaction conditions to provide information analogous to metal surface area, degree of reduction and thousands of hours of stability testing time for hundreds of samples per month. The use of this method allowed the identification of a series of highly stable, high surface area catalysts promoted by Mg and Ru. In an advance over traditional multichannel HT reactors, the chemical and structural information we obtain on the materials allows us to identify the structural effects of the promoters and their effects on the modes of deactivation observed. PMID:29560180
Rotating packed bed reactor for enzymatic synthesis of biodiesel.
Xu, Juntao; Liu, Changsheng; Wang, Meng; Shao, Lei; Deng, Li; Nie, Kaili; Wang, Fang
2017-01-01
The aim of the present work was to study the applicability of rotating packed bed (RPB) for biodiesel through the biocatalytic method. In this research, the RPB facilitated a more homogeneous mixture of substrates due to its higher mass transfer efficiency and better micromixing environment. This was superior to the traditional continuous stirred tank reactor (CSTR) system. Candida sp. 99-125 lipase was used without any organic solvent or additive, and demonstrated a significant catalyst efficiency. The key factors, such as the high gravity factor (β), pattern of the catalyst and methanol-FFA molar ratio etc. were investigated. Under the optimal conditions, the hydrolysis yield of fatty acids was 97.0% after 24h and the esterification yield of biodiesel was 96.0% 6h later. The esterifying yield didn't have an obvious decline in the fifth batch. Consequently, the RPB is an attractive and effective reactor for enzymatic synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.
Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver
2015-06-01
In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis
Elizarov, Arkadij M.; van Dam, R. Michael; Shin, Young Shik; Kolb, Hartmuth C.; Padgett, Henry C.; Stout, David; Shu, Jenny; Huang, Jiang; Daridon, Antoine; Heath, James R.
2010-01-01
An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods The unique architecture of the device is centered around a 5-μL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New mixing mechanisms assisted by vacuum, pressure, and chemical reactions are exploited. Results The architecture of the reported reactor is the first that has allowed batch-mode microfluidic devices to produce radiopharmaceuticals of sufficient quality and quantity to be validated by in vivo imaging. Conclusion The reactor has the potential to produce multiple human doses of 18F-FDG; the most impact, however, is expected in the synthesis of PET radiopharmaceuticals that can be made only with low yields by currently available equipment. PMID:20124050
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B
2008-03-01
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
Microfluidic Reactors for the Controlled Synthesis of Nanoparticles
NASA Astrophysics Data System (ADS)
Erdem, Emine Yegan
Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.
Synthesis-Structure-Activity Relationships in Co3O4 Catalyzed CO Oxidation
NASA Astrophysics Data System (ADS)
Mingle, Kathleen; Lauterbach, Jochen
2018-05-01
In this work, a statistical design and analysis platform was used to develop cobalt oxide based oxidation catalysts prepared via one pot metal salt reduction. An emphasis was placed upon understanding the effects of synthesis conditions, such as heating regimen and Co2+ concentration on the metal salt reduction mechanism, the resultant nanomaterial properties (i.e. size, crystal structure, and crystal faceting), and the catalytic activity in CO oxidation. This was accomplished by carrying out XRD, TEM, and FTIR studies on synthesis intermediates and products. Additionally, high-throughput experimentation was employed to study the performance of Co3O4 oxidation catalysts over a wide range of reaction conditions using a 16-channel fixed bed reactor equipped with a parallel infrared imaging system. Specifically, Co3O4 nanomaterials of varying properties were evaluated for their performance as CO oxidation catalysts. Figure-of-merits including light-off temperatures and activation energies were measured and mapped back to the catalyst properties and synthesis conditions. Statistical analysis methods were used to elucidate significant property-activity relationships as well as the design rules relevant in the synthesis of active catalysts. It was found that CO oxidation light off temperatures could be decreased to <90°C by utilizing the discovered synthesis-structure-activity relationships.
Inorganic Halogen Oxidizer Research.
1980-03-17
Synthesis, Novel Oxidizers, Solid-Propellant NF3 /F2 Gas Generators, Perfluoro- a- ammonium Salts, Perchlorates, Pentafluorooxouranate, Fluorosulfate...kcal mol I previously reported.’ by immersion into i constant-temperature 140.05 () circulating oil The fact that the small mole fraction ranges of...reactor higher tenperatures over almost t he entire nnole fraction () into the hot oil bath. the reactor was evacnaied. and the pressure range A mxpical
NASA Astrophysics Data System (ADS)
Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej
2018-01-01
The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.
Tailored fischer-tropsch synthesis product distribution
Wang, Yong [Richland, WA; Cao, Chunshe [Kennewick, WA; Li, Xiaohong Shari [Richland, WA; Elliott, Douglas C [Richland, WA
2012-06-19
Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.
Peptide synthesis in early earth hydrothermal systems
Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.
2009-01-01
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.
Nzeteu, Corine Orline; Trego, Anna Christine; Abram, Florence; O'Flaherty, Vincent
2018-01-01
Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals. In recent years, organic waste streams have been investigated as attractive and sustainable feedstock alternatives. In particular, attention has recently focused on the production of caproate from mixed culture fermentation of low-grade organic residues. The current approaches for caproate synthesis from organic waste are not economically attractive, as they involve the use of two-stage anaerobic digestion systems and the supplementation of external electron donors, both of which increase its production costs. This study investigates the feasibility of producing caproate from food waste (FW) without the supplementation of external electron donors using a single-phase reactor system. Replicate leach-bed reactors were operated on a semi-continuous mode at organic loading of 80 g VS FW l -1 and at solid retention times of 14 and 7 days. Fermentation, rather than hydrolysis, was the limiting step for caproate production. A higher caproate production yield 21.86 ± 0.57 g COD l -1 was achieved by diluting the inoculating leachate at the beginning of each run and by applying a leachate recirculation regime. The mixed culture batch fermentation of the FW leachate was able to generate 23 g caproate COD l -1 (10 g caproate l -1 ), at a maximum rate of 3 g caproate l -1 day -1 under high H 2 pressure. Lactate served as the electron donor and carbon source for the synthesis of caproate. Microbial community analysis suggested that neither Clostridium kluyveri nor Megasphaera elsdenii, which are well-characterised caproate producers in bioreactors systems, were strongly implicated in the synthesis of caproate, but that rather Clostridium sp. with 99% similarity to Ruminococcaceae bacterium CPB6 and Clostridium sp . MT1 likely played key roles in the synthesis of caproate. This finding indicates that the microbial community capable of caproate synthesis could be diverse and may therefore help in maintaining a stable and robust process. These results indicate that future, full-scale, high-rate caproate production from carbohydrate-rich wastes, associated with biogas recovery, could be envisaged.
Plaza, Dorota D; Strobel, Vinzent; Heer, Parminder Kaur Ks; Sellars, Andrew B; Hoong, Seng-Soi; Clark, Andrew J; Lapkin, Alexei A
2017-09-01
Development of circular economy requires significant advances in the technologies for valorisation of waste, as waste becomes new feedstock. Food waste is a particularly important feedstock, containing large variation of complex chemical functionality. Although most food waste sources are complex mixtures, waste from food processing, no longer suitable for the human food chain, may also represent relatively clean materials. One such material requiring valorisation is cocoa butter. Epoxidation of a triglyceride from a food waste source, processing waste cocoa butter, into the corresponding triglyceride epoxide was carried out using a modified Ishii-Venturello catalyst in batch and continuous flow reactors. The batch reactor achieved higher yields due to the significant decomposition of hydrogen peroxide in the laminar flow tubular reactor. Integral and differential models describing the reaction and the phase transfer kinetics were developed for the epoxidation of cocoa butter and the model parameters were estimated. Ring-opening of the epoxidised cocoa butter was undertaken to provide polyols of varying molecular weight (M w = 2000-84 000 Da), hydroxyl value (27-60 mg KOH g -1 ) and acid value (1-173 mg KOH g -1 ), using either aqueous ortho-phosphoric acid (H 3 PO 4 ) or boron trifluoride diethyl etherate (BF 3 · OEt 2 )-mediated oligomerisation in bulk, using hexane or tetrahydrofuran (THF) as solvents. The thermal and tensile properties of the polyurethanes obtained from the reaction of these polyols with 4,4'-methylene diphenyl diisocyanate (MDI) are described. The paper presents a complete valorisation scheme for a food manufacturing industry waste stream, starting from the initial chemical transformation, developing a process model for the design of a scaled-up process, and leading to synthesis of the final product, in this case a polymer. This work describes aspects of optimisation of the conversion route, focusing on clean synthesis and also demonstrates the interdisciplinary nature of the development projects, requiring input from different areas of chemistry, process modelling and process design. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
ERIC Educational Resources Information Center
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph
2008-01-01
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
NASA Astrophysics Data System (ADS)
Samal, Sneha
2017-11-01
Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone
NASA Astrophysics Data System (ADS)
Setyopratomo, P.; Sudibandriyo, M.; Wulan, P. P. D. K.
2018-03-01
This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 – 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 – 14 nm and an inner diameter range 4 – 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.
Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio
2018-04-30
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During this reporting period, there were three major thrusts in the WVU portion. First, we started a preliminary investigation on the use of a membrane reactor for HAS. Accordingly, the plug-flow reactor which had been isolated from sulfides was substituted by a membrane reactor. The tubular membrane was first characterized in terms of its permeation properties, i.e., the fluxes, permeances and selectivities of the components. After that, a BASF methanol-synthesis catalyst was tested under different conditions on the membrane reactor. The results will be compared with those from a non-permeable stainless steel tubular reactor under the same conditions. Second, wemore » started a detailed study of one of the catalysts tested during the screening runs. Accordingly, a carbon-supported potassium-doped molybdenum-cobalt catalyst was selected to be run in the Rotoberty reactor. Finally, we have started detailed analyses of reaction products from some earlier screening runs in which non-sulfide molybdenum-based catalysts were employed and much more complicated product distributions were generally observed. These products could not hitherto be analyzed using the gas chromatograph which was then available. A Varian gas chromatograph/mass spectrometer (GC/MS) is being used to characterize these liquid products. At UCC, we completed a screening of an Engelhard support impregnated with copper and cesium. We have met or exceeded three of four catalyst development targets. Oxygenate selectivity is our main hurdle. Further, we tested the effect of replacing stainless-steel reactor preheater tubing and fittings with titanium ones. We had hoped to reduce the yield of hydrocarbons which may have been produced at high temperatures due to Fischer-Tropsch catalysis with the iron and nickel in the preheater tube walls. Results showed that total hydrocarbon space time yield was actually increased with the titanium preheater, while total alcohol space time yield was not significantly affected.« less
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates. PMID:27524896
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification-evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.
Carbon dioxide-selective membranes and their applications in hydrogen processing
NASA Astrophysics Data System (ADS)
Zou, Jian
Fuel cells, which are regarded as a promising energy conversion approach in the 21st century, are now receiving increasing attention worldwide. In most cases, hydrogen is the preferred fuel for fuel cells, especially for proton-exchange membrane fuel cells (PEMFCs). One key issue in the development of PEMFC is how to generate hydrogen from the available hydrocarbon fuels. Most feasible strategies consist of a reforming step followed by the water gas shift (WGS) reaction. The resulting synthesis gas (syngas) still consists of 0.5--1.0% CO, which needs to be reduced to less than 10 ppm to meet the requirement of PEMFCs. Therefore, a further CO clean-up step is usually used to decrease CO concentration. In the present work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO 2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers (1 Barrer = 10-10 cm3 (STP).cm/(cm 2.s.cm.Hg)) and a CO2/H2 selectivity of 290 at 110°C. This membrane had a permeability of 1200 Barrers and a CO 2/H2 selectivity of 33 even at 170°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to less than 10 ppm. With such membranes, there are several options to reduce the CO concentration of syngas. One option is to develop a WGS membrane reactor, in which both the low temperature WGS reaction and the CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane module followed by a conventional low-temperature WGS reactor. A third option is to use methanation after the CO2-removal, one of the most widely used processes for the CO clean-up step. Experimental results showed that CO concentration was reduced to below 10 ppm with all three approaches. In the membrane reactor, a CO concentration of less than 10 ppm and a H 2 concentration of greater than 50% (on the dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5 % CO2 removed from the synthesis gas, the reversible WGS was shifted forward so that the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for PEMFC. The WGS reactor had a gas hourly space velocity of 7650 h-1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. Synthesis gas is the primary source for hydrogen as well as an intermediate for a broad range of chemicals. The separation of CO2 from synthesis gas is a critical step to obtain high purity hydrogen in many industrial plants, especially refinery plants. We studied the synthesized polymeric CO2 -selective membranes for synthesis gas purification at feed pressures higher than 200 psia and temperatures ranging from 100 to 150°C. The effects of feed pressure, microporous support, temperature, and permeate pressure were investigated using a simulated synthesis gas containing 20% carbon dioxide and 80% hydrogen. The membranes synthesized showed best CO2 permeability and CO2/H2 selectivity at 110°C. At a feed pressure of 220 psia, the CO2 permeability and CO2/H2 selectivity reached 756 Barrers and 42, respectively, whereas at a feed pressure of 440 psia, the CO2 permeability was 391 Barrers and the CO 2/H2 selectivity was about 25.
In Situ Monitoring of Ni-based Catalysts during the Synthesis of Propylene Carbonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramin, Michael; Reimann, Sven; Grunwaldt, Jan-Dierk
2007-02-02
Three different nickel complexes were catalytically tested in the synthesis of propylene carbonate by carbon dioxide insertion. XAS measurements of the as prepared catalysts confirmed the differences in the structure which led to the varying catalytic activity. The structure of one of the active nickel-based catalysts was followed in situ by X-ray absorption spectroscopy using a specially designed batch reactor cell. The novel batch reactor allows in situ studies in dense carbon dioxide at elevated temperature and high pressure (up to 200 bar) even at the low energy of the nickel K-edge. Hence, important information on the fate of themore » ligands and structural changes under reaction conditions could be gained providing new insight into the reaction mechanism.« less
NASA Technical Reports Server (NTRS)
Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John
2016-01-01
A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.
NASA Astrophysics Data System (ADS)
Mendoza Gonzalez, Norma Yadira
This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study demonstrates the importance of the flow and temperature fields on the growth of fractal particles; namely the aggregates.
Mednick, R. Lawrence; Blum, David B.
1987-01-01
Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.
Synthesizing alkali ferrates using a waste as a raw material
NASA Astrophysics Data System (ADS)
Kanari, N.; Ostrosi, E.; Ninane, L.; Neveux, N.; Evrard, O.
2005-08-01
This study focused on the potential to transform a waste, hydrated iron sulfate, into a useful product. The waste was generated from titanium dioxide production and from the surface treatment of steel. Its disposal is restricted by environmental regulations, and consequently, it has to be recycled and/or treated. The described recycling was achieved through synthesis of potassium ferrate, which contains iron in a hexavalent state (FeVI). The synthesis process was achieved in a rotary reactor at room temperature using chlorine as an oxidant. The efficiency of potassium ferrate synthesis was about 60%. This paper presents details of the kinetics of the potassium ferrate synthesis.
ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan
1999-03-29
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with themore » use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.« less
NASA Astrophysics Data System (ADS)
Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto
2017-11-01
The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.
Free Fall Plasma-Arc Reactor for Synthesis of Carbon Nanotubes in Microgravity
NASA Technical Reports Server (NTRS)
Alford, J. M.; Mason, G. R.; Feinkema, D. A.
2006-01-01
High temperatures inside the plasma of a carbon arc generate strong buoyancy driven convection which has an effect on the growth and morphology of the single-walled carbon nanotubes (SWNTs). To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was designed and developed to synthesize SWNTs in a microgravity environment substantially free from buoyant convective flows. An arc reactor was operated in the 2.2- and 5.18-second drop towers at the NASA Glenn Research Center. The apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5-second drop. However, the principal result is that no dramatic difference in sample yield or composition was noted between normal gravity, 2.2-and 5-second long microgravity runs.
Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.
Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai
2018-04-01
Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ichinari, Daisuke; Nagaki, Aiichiro; Yoshida, Jun-Ichi
2017-12-01
Generation and reactions of methyl azide (MeN 3 ) were successfully performed by using a flow reactor system, demonstrating that the flow method serves as a safe method for handling hazardous explosive methyl azide. The reaction of NaN 3 and Me 2 SO 4 in a flow reactor gave a MeN 3 solution, which was used for Huisgen reaction with benzoyl cyanide in a flow reactor after minimal washing. The resulting 1-methyl-5-benzoyltetrazole serves as a key intermediate of picarbutrazox (IX), a new potent pesticide. Copyright © 2017. Published by Elsevier Ltd.
Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin
2017-01-01
Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
After nearly a decade of work and $150 million in development costs. Exxon Research and Engineering (ER&E; Florham Park, NJ) says its natural gas conversion process based on Fischer-Tropsch technology is ready for full-scale commercialization. ER&E is looking to entice one of Exxon`s other business units into building a plant based on the process. The Exxon technology makes refinery or petrochemical feedstocks from natural gas in an integrated three-step process, including fluid-bed reactor to make synthesis gas and a hydrocarbon synthesis step using a proprietary Fischer-Tropsch catalyst. Exxon has successfully demonstrated the process at a pilot plant in Baton Rouge,more » LA but says no commercialization decision has been made. ER&E estimates that to commercialize the technology economically will require a large gas conversion plant-with a price tag of about $2 billion.« less
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Automatic reactor model synthesis with genetic programming.
Dürrenmatt, David J; Gujer, Willi
2012-01-01
Successful modeling of wastewater treatment plant (WWTP) processes requires an accurate description of the plant hydraulics. Common methods such as tracer experiments are difficult and costly and thus have limited applicability in practice; engineers are often forced to rely on their experience only. An implementation of grammar-based genetic programming with an encoding to represent hydraulic reactor models as program trees should fill this gap: The encoding enables the algorithm to construct arbitrary reactor models compatible with common software used for WWTP modeling by linking building blocks, such as continuous stirred-tank reactors. Discharge measurements and influent and effluent concentrations are the only required inputs. As shown in a synthetic example, the technique can be used to identify a set of reactor models that perform equally well. Instead of being guided by experience, the most suitable model can now be chosen by the engineer from the set. In a second example, temperature measurements at the influent and effluent of a primary clarifier are used to generate a reactor model. A virtual tracer experiment performed on the reactor model has good agreement with a tracer experiment performed on-site.
Production of synthetic fuels using syngas from a steam hydrogasification and reforming process
NASA Astrophysics Data System (ADS)
Raju, Arun Satheesh Kumar
This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio from carbonaceous feedstocks. Experimental work on the Fischer-Tropsch synthesis has also been performed. A life cycle analysis has been performed with the objective of comparing the life cycle energy consumption and emissions of synthetic diesel fuel produced through the CE-CERT process with other fuel/vehicle combinations. The experimental and simulation results presented here demonstrate that the CE-CERT process is versatile and can potentially handle a number of different feedstocks. CE-CERT process appears to be suitable for commercialization in very large scales with a coal feedstock and also in a distributed network of smaller scale reactors utilizing localized renewable feedstocks.
Apparatus and method for solar coal gasification
Gregg, David W.
1980-01-01
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Apparatus for solar coal gasification
Gregg, D.W.
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Fincke, James R [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID
2009-08-18
An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.
NASA Astrophysics Data System (ADS)
Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting
2017-05-01
Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.
Activation of catalysts for synthesizing methanol from synthesis gas
Blum, David B.; Gelbein, Abraham P.
1985-01-01
A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.
Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite
NASA Astrophysics Data System (ADS)
Xu, Lei; Srinivasakannan, C.; Peng, Jinhui; Yan, Mi; Zhang, Di; Zhang, Libo
2015-03-01
The Cu@Cu2O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu2O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu2O which serves as the shell of nanoparticle. The amount of Cu2O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu2O nanocomposite along with H2O2 exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.
Laser-induced incandescence of titania nanoparticles synthesized in a flame
NASA Astrophysics Data System (ADS)
Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.
2009-09-01
Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming
The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the bestmore » of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.« less
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Travis W.
2010-01-31
The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less
NASA Astrophysics Data System (ADS)
Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.
2013-04-01
This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.
Corona-assisted flame synthesis of ultrafine titania particles
NASA Astrophysics Data System (ADS)
Vemury, Srinivas; Pratsinis, Sotiris E.
1995-06-01
Synthesis of ultrafine titania particles is investigated in a diffusion flame aerosol reactor in the presence of a gaseous electric discharge (corona) created by two needle electrodes. The corona wind flattens the flame and reduces the particle residence time at high temperatures, resulting in smaller primary particle sizes and lower level of crystallinity. Increasing the applied potential from 5 to 8 kV reduces the particle size from 50 to 25 nm and the rutile content from 20 to 8 wt %. Coronas provide a clean and simple technique that facilitates gas phase synthesis of nanosized materials with controlled size and crystallinity.
The synthesis of starch from carbon dioxide using isolubilized stabilized enzymes
NASA Technical Reports Server (NTRS)
Bassham, J. A.; Bearden, L.; Wilke, C.; Carroad, P.; Mitra, G.; Ige, R.
1972-01-01
Systems for artificial manufacture of starch and for delineation of technological areas, and the rationale for studying them are considered. A discussion of the enzyme-catalyzed routes of synthesis available and a choice as to the most promising route are presented. A discussion of the enzymes involved, of enzyme insolubilization technology, and of possible engineering approaches, with examples in the form of model calculations for both reactors and separators, are also presented.
Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles
Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham
2016-04-12
Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).
Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd
2004-09-21
The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.
H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).
Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M
2012-02-01
Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time. Copyright © 2011 Elsevier Inc. All rights reserved.
Catalysts for synthesizing various short chain hydrocarbons
Colmenares, Carlos
1991-01-01
Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).
Sadeghi, Saman; Liang, Vincent; Cheung, Shilin; Woo, Suh; Wu, Curtis; Ly, Jimmy; Deng, Yuliang; Eddings, Mark; van Dam, R. Michael
2015-01-01
A brass-platinum electrochemical micro flow cell was developed to extract [18F]fluoride from an aqueous solution and release it into an organic based solution, suitable for subsequent radio-synthesis, in a fast and reliable manner. This cell does not suffer electrode erosion and is thus reusable while operating faster by enabling increased voltages. By optimizing temperature, trapping and release potentials, flow rates, and electrode materials, an overall [18F]fluoride trapping and release efficiency of 84±5% (n=7) was achieved. X-ray photoelectron spectroscopy (XPS) was used to analyze electrode surfaces of various metal-metal systems and the findings were correlated with the performance of the electrochemical cell. To demonstrate the reactivity of the released [18F]fluoride, the cell was coupled to a flow-through reactor and automated synthesis of [18F]FDG with a repeatable decay-corrected yield of 56±4% (n=4) was completed in <15 min. A multi-human dose of 5.92 GBq [18F]FDG was also demonstrated. PMID:23474380
Tian, Pengfei; Xu, Xingyan; Ao, Can; Ding, Doudou; Li, Wei; Si, Rui; Tu, Weifeng; Xu, Jing; Han, Yi-Fan
2017-09-11
Highly selective hydrogen peroxide (H 2 O 2 ) synthesis directly from H 2 and O 2 is a strongly desired reaction for green processes. Herein a highly efficient palladium-tellurium (Pd-Te/TiO 2 ) catalyst with a selectivity of nearly 100 % toward H 2 O 2 under mild conditions (283 K, 0.1 MPa, and a semi-batch continuous flow reactor) is reported. The size of Pd particles was remarkably reduced from 2.1 nm to 1.4 nm with the addition of Te. The Te-modified Pd surface could significantly weaken the dissociative activation of O 2 , leading to the non-dissociative hydrogenation of O 2 . Density functional theory calculations illuminated the critical role of Te in the selective hydrogenation of O 2 , in that the active sites composed of Pd and Te could significantly restrain side reactions. This work has made significant progress on the development of high-selectivity catalysts for the direct synthesis of H 2 O 2 at ambient pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina
2016-01-01
This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. Copyright © 2015 Elsevier B.V. All rights reserved.
A critical assessment of boron target compounds for boron neutron capture therapy.
Hawthorne, M Frederick; Lee, Mark W
2003-01-01
Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study demonstrating improved efficacy is completed. Eventually, BNCT in some form will be commercialized.
Controlled multistep synthesis in a three-phase droplet reactor
Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.
2014-01-01
Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034
Pulsed plasma chemical synthesis of SixCyOz composite nanopowder
NASA Astrophysics Data System (ADS)
Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.
2017-05-01
SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.
Separation of catalyst from Fischer-Tropsch slurry
White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.
1998-10-27
In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.
Apparatus and method for continuous production of materials
Chang, Chih-hung; Jin, Hyungdae
2014-08-12
Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh K; McCabe, Kevin
Coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes were advanced by testing and demonstrating Southern Research’s sulfur tolerant nickel-based reforming catalyst and Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to clean, upgrade and convert syngas predominantly to jet fuel range hydrocarbon liquids, thereby minimizing expensive cleanup and wax upgrading operations. The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream and simulated syngas testing/demonstration. Reformer testing was performed to (1) reform tar and light hydrocarbons, (2) decompose ammonia in the presence H2S,more » and (3) deliver the required H2 to CO ratio for FT synthesis. FT Testing was performed to produce a product primarily containing C5-C20 liquid hydrocarbons and no C21+ waxy hydrocarbons with productivity greater than 0.7 gC5+/g catalyst/h, and at least 70% diesel and jet fuel range (C8-C20) hydrocarbon selectivity in the liquid product. A novel heat-exchange reactor system was employed to enable the use of the highly active FT catalyst and larger diameter reactors that results in cost reduction for commercial systems. Following laboratory development and testing, SR’s laboratory reformer was modified to operate in a Class 1 Div. 2 environment, installed at NCCC, and successfully tested for 125 hours using raw syngas. The catalyst demonstrated near equilibrium reforming (~90%) of methane and complete reforming/decomposition of tar and ammonia in the presence of up to 380 ppm H2S. For FT synthesis, SR modified and utilized a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport gasifier (TRIG). The test-rig developed in a previous project (DE-FE0010231) was modified to receive up to 7.5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of up to 6 L/day. Promising Chevron catalyst candidates in the size range from 70-200 μm were loaded onto SR’s 2-inch ID and 4-inch ID bench-scale reactors utilizing IntraMicron’s micro-fiber entrapped catalyst (MFEC) heat exchange reactor technology. During 2 test campaigns, the FT reactors were successfully demonstrated at NCCC using syngas for ~420 hours. The catalyst did not experience deactivation during the tests. SR’s thermo-syphon heat removal system maintained reactor operating temperature along the axis to within ±4 °C. The experiments gave a steady catalyst productivity of 0.7-0.8 g/g catalyst/h, liquid hydrocarbon selectivity of ~75%, and diesel and jet fuel range hydrocarbon selectivity in the liquid product as high as 85% depending on process conditions. A preliminary techno-economic evaluation showed that the SR technology-based 50,000 bpd plant had a 10 % lower total plant cost compared to a conventional slurry reactor based plant. Furthermore, because of the modular nature of the SR technology, it was shown that the total plant cost advantage increases to >35 % as the plant is scaled down to 1000 bpd.« less
High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor
Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong
2014-01-01
Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter. PMID:28788161
High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor.
Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong
2014-08-11
Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.
Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption
NASA Astrophysics Data System (ADS)
Konovalov, Konstantin; Sachkov, Victor
2017-11-01
In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.
Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.
Bogdan, Andrew R; James, Keith
2011-08-05
A new macrocyclization strategy to synthesize 12- to 31-membered 5-iodo-1,2,3-triazole-containing macrocycles is described. The macrocycles have been generated using a simple and efficient copper-catalyzed cycloaddition in flow under environmentally friendly conditions. This methodology also permits the facile, regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazole-containing macrocyles using palladium-catalyzed cross-coupling reactions. © 2011 American Chemical Society
Nanogold as NEMS platform: past, present, and future
NASA Astrophysics Data System (ADS)
Cornejo-Monroy, Delfino; Acosta-Torres, Laura S.; Castaño, Victor M.
2012-06-01
Gold has been a biomedical material since ancient times. We shall review the historical uses of gold, in different forms as well as the properties of this metal, which make it very attractive for MEMS and NEMS applications. In particular, we will discuss the synthesis and physic-chemical characteristics of nano particles of gold, emphasizing the role of surface modification, which enables the nano gold to act as a true nano reactor or a nano platform to develop various functions at the nanoscale. Finally, we will describe the use of nano gold for drug targeting and disease detection.
Kinetics of the mechanochemical synthesis of alkaline-earth metal amides
NASA Astrophysics Data System (ADS)
Garroni, Sebastiano; Takacs, Laszlo; Leng, Haiyan; Delogu, Francesco
2014-07-01
A phenomenological framework is developed to model the kinetics of the formation of alkaline-earth metal amides by the ball milling induced reaction of their hydrides with gaseous ammonia. It is shown that the exponential character of the kinetic curves is modulated by the increase of the total volume of the powder inside the reactor due to the substantially larger molar volume of the products compared to the reactants. It is claimed that the volume of powder effectively processed during each collision connects the transformation rate to the physical and chemical processes underlying the mechanochemical transformations.
PHOTOCATALYTIC REACTORS AND KINETICS FOR CLEAN CHEMICAL SYNTHESIS [POSTER PRESENTATION
Semiconductor photocatalysis has been tested at a potential technology for synthesizing alcohols, ketones and aldehydes from linear and cyclic hydrocarbons. The technology couples UV light with photocatalyst overcoming many of the drawbacks of conventional reacors. Various hydr...
Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail
2012-12-01
Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.
Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor
NASA Astrophysics Data System (ADS)
Gómez-Ramírez, A.; Cotrino, J.; Lambert, R. M.; González-Elipe, A. R.
2015-12-01
A detailed study of ammonia synthesis from hydrogen and nitrogen in a planar dielectric barrier discharge (DBD) reactor was carried out. Electrical parameters were systematically varied, including applied voltage and frequency, electrode gap, and type of ferroelectric material (BaTiO3 versus PZT). For selected operating conditions, power consumption and plasma electron density were estimated from Lissajous diagrams and by application of the Bolsig + model, respectively. Optical emission spectroscopy was used to follow the evolution of plasma species (\\text{N}{{\\text{H}}*},{{\\text{N}}*},~{N}2+~\\text{and} ~{N}2* ) as a function of applied voltage with both types of ferroelectric material. PZT gave both greater energy efficiency and higher ammonia yield than BaTiO3: 0.9 g NH3 kWh-1 and 2.7% single pass N2 conversion, respectively. This performance is substantially superior to previously published findings on DBD synthesis of NH3 from N2 and H2 alone. The influence of electrical working parameters, the beneficial effect of PZT and the importance of controlling reactant residence time are rationalized in a reaction model that takes account of the principal process variables
NASA Astrophysics Data System (ADS)
Mousa, MoatazBellah Mahmoud
Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor infiltration. Finally, the development of a new ALD chemistry for novel metal deposition is discussed and was used to deposit thin films of tin metal for the first time in literature using an ALD process. The various challenges addressed in this work for the development of different ALD processes help move ALD closer to widespread use and industrial integration.
Performance of rotary kiln reactor for the elephant grass pyrolysis.
De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M
2016-10-01
The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electron emission produced by photointeractions in a slab target
NASA Technical Reports Server (NTRS)
Thinger, B. E.; Dayton, J. A., Jr.
1973-01-01
The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.
Wang, Jun; Gu, Shuang-Shuang; Cui, Hong-Sheng; Yang, Liu-Qing; Wu, Xiang-Yang
2013-12-01
Propyl caffeate has the highest antioxidant activity among caffeic acid alkyl esters, but its industrial production via enzymatic transesterification in batch reactors is hindered by a long reaction time (24h). To develop a rapid process for the production of propyl caffeate in high yield, a continuous-flow microreactor composed of a two-piece PDMS in a sandwich-like microchannel structure was designed for the transesterification of methyl caffeate and 1-propanol catalyzed by Novozym 435 in [B mim][CF3SO3]. The maximum yield (99.5%) in the microreactor was achieved in a short period of time (2.5h) with a flow rate of 2 μL/min, which kinetic constant Km was 16 times lower than that of a batch reactor. The results indicated that the use of a continuous-flow packed bed enzyme microreactor is an efficient method of producing propyl caffeate with an overall yield of 84.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenzer, R. C.; George, P. E.; Thomas, J. F.
1976-07-01
This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equippedmore » with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.« less
Stetka, Steven S.; Nazario, Francisco N.
1982-01-01
In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.
IF-WS{sub 2} nanoparticles size design and synthesis via chemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoreishi, S.M., E-mail: ghoreshi@cc.iut.ac.ir; Meshkat, S.S.; Dadkhah, A.A.
2010-05-15
An innovative synthesis of inorganic fullerene-like disulfide tungsten (IF-WS{sub 2}) nanoparticles was developed using a chemical reduction reaction in a horizontal quartz reactor. In this process, first tungsten trisulfide (WS{sub 3}) was formed via a chemical reaction of tetra thiotungstate ammonium ((NH{sub 4}){sub 2}WS{sub 4}), polyethylene glycol (PEG), and hydrochloric acid (HCl) at ambient temperature and pressure. Subsequently, WS{sub 3} was reacted with hydrogen (H{sub 2}) at high temperature (1173-1373 K) in a quartz tube. The produced WS{sub 2} nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), and transmission electron microscopy (TEM). Themore » characterization results indicated that the high-purity (100%) IF-WS{sub 2} nanoparticles were produced. Moreover, addition of surfactant (PEG) and higher operating temperature (1173-1373 K) decreased the particles agglomeration, and consequently led to the reduction of average diameter of WS{sub 2} particles in the range of 50-78 nm. The developed method is simple, environmentally compatible, and cost-effective in contrast to the conventional techniques.« less
3D-printed devices for continuous-flow organic chemistry.
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy
2013-01-01
We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.
Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng
2013-06-14
LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).
Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium
NASA Astrophysics Data System (ADS)
Kılınç, Mert; Çakal, Gaye Ö.; Yeşil, Sertan; Bayram, Göknur; Eroğlu, İnci; Özkar, Saim
2010-11-01
Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B 2O 3·3.5H 2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H 3BO 3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.
Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen
2009-10-31
Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.
Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode
NASA Astrophysics Data System (ADS)
Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.
2018-01-01
Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.
Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A
2017-11-01
The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.
NASA Astrophysics Data System (ADS)
Smith, Mark W.
Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the reactor inlet, followed by a reforming catalyst. This approach demonstrated that BNHA can be used in the reactor inlet to promote combustion with 1 wt% Rh-substituted pyrochlore in the reactor outlet, but the combustion catalyst should fill less than 50% of the reactor. The second approach placed specific catalysts in regions of the reactor that have conditions in which they are less likely to deactivate. This showed the most benefit in the use of a sulfur-tolerant noble metal catalyst in the reactor outlet. The carbon formation study was conducted on a 2 wt% Rh-substituted pyrochlore. POX of TD for various run times, followed by temperature programmed oxidation, revealed two different types of carbon deposits in the catalyst bed: carbon that burned off at relatively low temperature (LTC), and carbon that burned off at higher temperatures (HTC). The LTC reached a steady state level within two hours of reaction, and was determined not to lead to catalyst deactivation. The HTC continued to accumulate with time on stream. A mathematical expression was developed to predict the rate of formation of the HTC for a given set of reaction conditions (O/C = 1.25). This expression was modified from data from a test under different reaction conditions (O/C = 1.1) for one length of time, and was found to predict the carbon formation for a different run time within 3%.
Conducting polymers: Synthesis and industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1997-04-01
The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less
NASA Astrophysics Data System (ADS)
Sawicki, Jerzy A.
2011-08-01
The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.
Chemical Looping Autothermal Reforming at a 120 kW Pilot Rig
NASA Astrophysics Data System (ADS)
Bofhàr-Nordenkampf, Johannes; Pröll, Tobias; Kolbitsch, Philipp; Hofbauer, Hermann
Chemical looping with selective oxygen transport allows two step combustion or autothermal reforming without mixing of fuel and air. The reactor system consists of two reactors, an air reactor and a fuel reactor with a suitable oxygen carrier that transports the necessary oxygen for operation. In the present study, a highly active nickel based oxygen carrier is tested in a novel dual circulating fluidized bed (DCFB) system at a scale of 120 kW fuel power. The mean particle size of the oxygen carrier is 120 μm and the pilot rig is fueled with natural gas. For the investigated oxygen carrier high CH4 conversion is achieved. Air/fuel ratio is varied at three different fuel reactor temperatures. For chemical looping reforming one can observe synthesis gas composition close to thermodynamic equilibrium. In spite of the fact that no additional steam has been added to the fuel besides the one present through steam fluidization of the loop seals, coke formation does not occur at global stoichiometric air/fuel ratios above 0.46.
Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the pos...
CONTINUOUS MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION AND HYDROLYSIS
Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the poss...
Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders
NASA Astrophysics Data System (ADS)
Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li
2009-09-01
Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.
Separation of catalyst from Fischer-Tropsch slurry
White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.
1998-10-27
In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.
A novel process for methanol synthesis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, J.W.; Wender, I.
1994-01-25
The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH --more » the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.« less
Flow optimization study of a batch microfluidics PET tracer synthesizing device
Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.
2010-01-01
We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595
Green nanoparticle production using micro reactor technology
NASA Astrophysics Data System (ADS)
Kück, A.; Steinfeldt, M.; Prenzel, K.; Swiderek, P.; Gleich, A. v.; Thöming, J.
2011-07-01
The importance and potential of nanoparticles in daily life as well as in various industrial processes is becoming more predominant. Specifically, silver nanoparticles are increasingly applied, e.g. in clothes and wipes, due to their antibacterial properties. For applications in liquid phase it is advantageous to produce the nanoparticles directly in suspension. This article describes a green production of silver nanoparticles using micro reactor technology considering principles of green chemistry. The aim is to reveal the potential and constraints of this approach and to show, how economic and environmental costs vary depending on process conditions. For this purpose our research compares the proposed process with water-based batch synthesis and demonstrates improvements in terms of product quality. Because of the lower energy consumption and lower demand of cleaning agents, micro reactor is the best ecological choice.
NASA Astrophysics Data System (ADS)
Stauss, Sven; Ishii, Chikako; Pai, David Z.; Terashima, Kazuo
2013-09-01
Diamondoids, sp3 hybridized molecules consisting of a cage-like carbon framework with hydrogen terminations, hold promise for many applications: biotechnology, medicine, and opto- and nanoelectronics. So far, diamondoids consisting of more than four cage units have been synthesized by electric discharge and pulsed laser plasmas in supercritical fluids, but the generation of plasmas in high-pressure media is not straightforward. Here we present an alternative, continuous flow process, where diamondoids are synthesized by dielectric barrier discharges inside microreactors. The plasmas were generated at peak-to-peak voltages of 3 - 4 kV at a frequency of 10 kHz, in Ar (96 - 100%-vol) - methane (0 - 4%-vol) - hydrogen (0 - 4%-vol) mixtures, at atmospheric pressure and flow rates of 2 - 20 sccm. As a precursor we used the first diamondoid, adamantane, whose density was controlled by adjusting the reactor temperature in the range from 293 to 323 K. Gas chromatography - mass spectrometry analysis indicated the synthesis of the second diamondoid, diamantane, and the presence of alkylated adamantane derivatives suggests a stepwise reaction mechanism. We will also discuss the influence of the plasma gas composition and precursor density on the diamondoid synthesis. Grant No. 21110002, MEXT, Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr
Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less
Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John
2018-03-28
Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-06-06
A general and efficient method for shaping MOFs into fluidized forms has been developed via direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These novel fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Le, Chi Chip; Wismer, Michael K; Shi, Zhi-Cai; Zhang, Rui; Conway, Donald V; Li, Guoqing; Vachal, Petr; Davies, Ian W; MacMillan, David W C
2017-06-28
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
3D-printed devices for continuous-flow organic chemistry
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J
2013-01-01
Summary We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. PMID:23766811
BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS
A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...
Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2016-09-14
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Kressirer, Sabine; Kralisch, Dana; Stark, Annegret; Krtschil, Ulrich; Hessel, Volker
2013-05-21
In order to investigate the potential for process intensification, various reaction conditions were applied to the Kolbe-Schmitt synthesis starting from resorcinol. Different CO₂ precursors such as aqueous potassium hydrogencarbonate, hydrogencarbonate-based ionic liquids, DIMCARB, or sc-CO₂, the application of microwave irradiation for fast volumetric heating of the reaction mixture, and the effect of harsh reaction conditions were investigated. The experiments, carried out in conventional batch-wise as well as in continuously operated microstructured reactors, aimed at the development of an environmentally benign process for the preparation of 2,4-dihydroxybenzoic acid. To provide decision support toward a green process design, a research-accompanying simplified life cycle assessment (SLCA) was performed throughout the whole investigation. Following this approach, it was found that convective heating methods such as oil bath or electrical heating were more beneficial than the application of microwave irradiation. Furthermore, the consideration of workup procedures was crucial for a holistic view on the environmental burdens.
Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles.
Adalberto, Paulo Roberto; José dos Santos, Francisco; Golfeto, Camilla Calemi; Costa Iemma, Mônica Rosas; Ferreira de Souza, Dulce Helena; Cass, Quezia Bezerra
2012-10-21
Polygalacturonases (EC 3.2.1.15) hydrolyze the α-1,4-glycosidic linkages in polygalacturonic acid chains. The interest on specific inhibitors of pectinase and the versatility of magnetic support for enzyme immobilization endorsed the preparation of an immobilized enzyme reactor (IMER). This work presents the synthesis of CoFe(2)O(4) amino-derivatives, which was employed as the support for the immobilization of pectinases from Leucoagaricus gongylophorus. Amino-functionalized CoFe(2)O(4) was obtained from glyceryl-derivatized CoFe(2)O(4) and was characterized by infrared spectroscopy and electronic microscopy. The immobilized enzyme maintained the same thermal, chemical and kinetic behaviour of the free enzyme (T(opt) 60 °C; pH(opt) 5.0; K(app)(M) = 0.5 mg min(-1); V(app)(M) ≈ 5.0 μmol min(-1) mL(-1)). The straightforward synthesis of CoFe(2)O(4) derivatives and the efficiency of immobilization offer wide perspectives for the use of the developed new IMER.
Neutron capture and stellar synthesis of heavy elements.
Gibbons, J H; Macklin, R L
1967-05-26
The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements.
Structure and Dynamics of Replication-Mutation Systems
NASA Astrophysics Data System (ADS)
Schuster, Peter
1987-03-01
The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.
Apparatus for solar coal gasification
Gregg, D.W.
1980-08-04
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.
High-irradiance reactor design with practical unfolded optics
NASA Astrophysics Data System (ADS)
Feuermann, Daniel; Gordon, Jeffrey M.
2008-08-01
In the design of high-temperature chemical reactors and furnaces, as well as high-radiance light projection applications, reconstituting the ultra-high radiance of short-arc discharge lamps at maximum radiative efficiency constitutes a significant challenge. The difficulty is exacerbated by the high numerical aperture necessary at both the source and the target. Separating the optic from both the light source and the target allows practical operation, control, monitoring, diagnostics and maintenance. We present near-field unfolded aplanatic optics as a feasible solution. The concept is illustrated with a design customized to a high-temperature chemical reactor for nano-material synthesis, driven by an ultra-bright xenon short-arc discharge lamp, with near-unity numerical aperture for both light input and light output. We report preliminary optical measurements for the first prototype, which constitutes a double-ellipsoid solution. We also propose compound unfolded aplanats that collect the full angular extent of lamp emission (in lieu of light recycling optics) and additionally permit nearly full-circumference irradiation of the reactor.
NASA Astrophysics Data System (ADS)
Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-08-01
The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.
Synthesis of carbohydrates in a continuous flow reactor by immobilized phosphatase and aldolase.
Babich, Lara; Hartog, Aloysius F; van Hemert, Lieke J C; Rutjes, Floris P J T; Wever, Ron
2012-12-01
Herein, we report a new flow process with immobilized enzymes to synthesize complex chiral carbohydrate analogues from achiral inexpensive building blocks in a three-step cascade reaction. The first reactor contained immobilized acid phosphatase, which phosphorylated dihydroxyacetone to dihydroxyacetone phosphate using pyrophosphate as the phosphate donor. The second flow reactor contained fructose-1,6-diphosphate aldolase (RAMA, rabbit muscle aldolase) or rhamnulose-1-phosphate aldolase (RhuA from Thermotoga maritima) and acid phosphatase. The immobilized aldolases coupled the formed dihydroxyacetone phosphate to aldehydes, resulting in phosphorylated carbohydrates. A final reactor containing acid phosphatase that dephosphorylated the phosphorylated product yielded the final product. Different aldehydes were used to synthesize carbohydrates on a gram scale. To demonstrate the feasibility of the flow systems, we synthesized 0.6 g of the D-fagomine precursor. By using immobilized aldolase RhuA we were also able to obtain other stereoisomers of the D-fagomine precursor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of potassium ferrate using residual ferrous sulfate as iron bearing material
NASA Astrophysics Data System (ADS)
Kanari, N.; Filippov, L.; Diot, F.; Mochón, J.; Ruiz-Bustinza, I.; Allain, E.; Yvon, J.
2013-03-01
This paper summarizes the results obtained during potassium ferrate (K2FeVIO4) synthesis which is a high added value material. This compound that contains iron in the rare hexavalent state is becoming a substance of growing importance for the water and effluent treatment industries. This is due to its multi-functional nature (oxidation, flocculation, elimination of heavy metals, decomposition of organic matter, etc.). The most well known synthesis methods for potassium ferrate synthesis are those involving the chemical and/or electrochemical oxidation of iron (II) and (III) from aqueous solutions having a high alkali concentration. These methods are generally characterized by a low FeVI efficiency due to the reaction of the potassium ferrate with water, leading to the reduction of FeVI into FeIII. Concerning the work pertinent to this paper, the synthesis of K2FeVIO4 was achieved by a simultaneous reaction of two solids (iron sulfate and KOH) and one gaseous oxidant (chlorine). The synthesis process is performed in a rotary reactor at room temperature and the global synthesis reaction is exothermic. The effects of different experimental parameters on the potassium ferrate synthesis are investigated to determine the optimal conditions for the process.
A review of engineering aspects of intensification of chemical synthesis using ultrasound.
Sancheti, Sonam V; Gogate, Parag R
2017-05-01
Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level. Copyright © 2016 Elsevier B.V. All rights reserved.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-05-28
Solid-state synthesis ensures a high loading and well-dispersed growth of a large collection of metal-organic framework (MOF) nanostructures within a series of commercially available mesoporous silica. This approach provides a general, highly efficient, scalable, environmentally friendly, and inexpensive strategy for shaping MOFs into a fluidized form, thereby allowing their application in fluidized-bed reactors for diverse applications, such as CO 2 capture from post-combustion flue gas. A collection of polyamine-impregnated MOF/SiO 2 hybrid sorbents were evaluated for CO 2 capture under simulated flue gas conditions in a packed-bed reactor. Hybrid sorbents containing a moderate loading of (Zn)ZIF-8 are the most promising sorbents in terms of CO 2 adsorption capacity and long-term stability (up to 250 cycles in the presence of contaminants: SO 2 , NO x and H 2 S) and were successfully prepared at the kilogram scale. These hybrid sorbents demonstrated excellent fluidizability and performance under the relevant process conditions in a visual fluidized-bed reactor. Moreover, a biochemically inspired strategy for covalently linking polyamines to MOF/SiO 2 through strong phosphine bonds has been first introduced in this work as a powerful and highly versatile post-synthesis modification for MOF chemistry, thus providing a novel alternative towards more stable CO 2 solid sorbents.
Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas
NASA Astrophysics Data System (ADS)
Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.
2016-09-01
The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.
1997-01-01
Chemistry Division, Code 6174 Materiaux Leninsky prospekt, 53 Gas/Surface Dinamics Section et des Hautes Pressions Moscow 117924, Russia Washington, D.C...reactor for diamond CVD. Strengths and limitations of this and the various alternative H atom detection methods will be summarised, before
Characterization of elemental release during microbe basalt interactions at T = 28 °C
NASA Astrophysics Data System (ADS)
Wu, Lingling; Jacobson, Andrew D.; Chen, Hsin-Chieh; Hausner, Martina
2007-05-01
This study used batch reactors to characterize the rates and mechanisms of elemental release during the interaction of a single bacterial species ( Burkholderia fungorum) with Columbia River Flood Basalt at T = 28 °C for 36 days. We primarily examined the release of Ca, Mg, P, Si, and Sr under a variety of biotic and abiotic conditions with the aim of evaluating how actively metabolizing bacteria might influence basalt weathering on the continents. Four days after inoculating P-limited reactors (those lacking P in the growth medium), the concentration of viable planktonic cells increased from ˜10 4 to 10 8 CFU (Colony Forming Units)/mL, pH decreased from ˜7 to 4, and glucose decreased from ˜1200 to 0 μmol/L. Mass-balance and acid-base equilibria calculations suggest that the lowered pH resulted from either respired CO 2, organic acids released during biomass synthesis, or H + extrusion during NH4+ uptake. Between days 4 and 36, cell numbers remained constant at ˜10 8 CFU/mL and pH increased to ˜5. Purely abiotic control reactors as well as control reactors containing inert cells (˜10 8 CFU/mL) showed constant glucose concentrations, thus confirming the absence of biological activity in these experiments. The pH of all control reactors remained near-neutral, except for one experiment where the pH was initially adjusted to 4 but rapidly rose to 7 within 2 days. Over the entire 36 day period, P-limited reactors containing viable bacteria yielded the highest Ca, Mg, Si, and Sr release rates. Release rates inversely correlate with pH, indicating that proton-promoted dissolution was the dominant reaction mechanism. Both biotic and abiotic P-limited reactors displayed low P concentrations. Chemical analyses of bacteria collected at the end of the experiments, combined with mass-balances between the biological and fluid phases, demonstrate that the absence of dissolved P in the biotic reactors resulted from microbial P uptake. The only P source in the basalt is a small amount of apatite (˜1.2%), which occurs as needles within feldspar grains and glass. We therefore conclude that B. fungorum utilized apatite as a P source for biomass synthesis, which stimulated elemental release from coexisting mineral phases via pH lowering. The results of this study suggest that actively metabolizing bacteria have the potential to influence elemental release from basalt in continental settings.
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
Rahman, N K; Kamaruddin, A H; Uzir, M H
2011-08-01
The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
High throughput photo-oxidations in a packed bed reactor system.
Kong, Caleb J; Fisher, Daniel; Desai, Bimbisar K; Yang, Yuan; Ahmad, Saeed; Belecki, Katherine; Gupton, B Frank
2017-12-01
The efficiency gains produced by continuous-flow systems in conducting photochemical transformations have been extensively demonstrated. Recently, these systems have been used in developing safe and efficient methods for photo-oxidations using singlet oxygen generated by photosensitizers. Much of the previous work has focused on the use of homogeneous photocatalysts. The development of a unique, packed-bed photoreactor system using immobilized rose bengal expands these capabilities as this robust photocatalyst allows access to and elaboration from these highly useful building blocks without the need for further purification. With this platform we were able to demonstrate a wide scope of singlet oxygen ene, [4+2] cycloadditions and heteroatom oxidations. Furthermore, we applied this method as a strategic element in the synthesis of the high-volume antimalarial artemisinin. Copyright © 2017. Published by Elsevier Ltd.
EARLY ENTRANCE COPRODUCTION PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Storm; Govanon Nongbri; Steve Decanio
2004-01-12
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.« less
Rostgaard Eltzholtz, Jakob; Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Brummerstedt Iversen, Bo
2013-03-21
A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol(-1) for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less
Optimization of the Technological Synthesis of Refractory Compounds
NASA Astrophysics Data System (ADS)
Gaidar, S. M.; Karelina, M. Yu.; Prikhod'ko, V. M.; Volkov, A. A.
2017-12-01
The results of experimental studies, which are related to the regulation of the fractional composition of refractory compounds by roll milling in using controlled roll opening and unbalanced peripheral speeds of rollers, are reported. The content of prepared fine, middle, and coarse fractions is within 50-80%; in this case, the milling time of synthesis products is less than the time of ball milling by an order of magnitude. The application of roll milling for refining the products of self-propagating high-temperature synthesis can be most efficient in using together with heat-generating reactor to solve the main problem of self-propagating synthesis (SHS), which is a problem for recent several decades (the problem is the creation of intense automated production of refractory compounds in using continuous manufacturing cycle within a energotechnological system with the recovery of a great quantity of heat released during SHS).
NASA Astrophysics Data System (ADS)
Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin
2015-08-01
Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James K. Neathery; Gary Jacobs; Burtron H. Davis
In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less
Nuclear Energy and Synthetic Liquid Transportation Fuels
NASA Astrophysics Data System (ADS)
McDonald, Richard
2012-10-01
This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.
In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less
NASA Technical Reports Server (NTRS)
Weber, A. L.
2001-01-01
The formation of pyruvaldehyde from triose sugars was catalyzed by poly-l-lysine contained in a small dialyzer with a 100 molecular weight cut off (100 MWCO) suspended in a much larger triose substrate reservoir at pH 5.5 and 40 degrees C. The polylysine confined in the dialyzer functioned as a catalytic flow reactor that constantly brought in triose from the substrate reservoir by diffusion to offset the drop in triose concentration within the reactor caused by its conversion to pyruvaldehyde. The catalytic polylysine solution (400 mM, 0.35 mL) within the dialyzer generated pyruvaldehyde with a synthetic intensity (rate/volume) that was 3400 times greater than that of the triose substrate solution (12 mM, 120 mL) outside the dialyzer. Under the given conditions the final yield of pyruvaldehyde was greater than twice the weight of the polylysine catalyst. During the reaction the polylysine catalyst was poisoned presumably by reaction of its amino groups with aldehyde reactants and products. Similar results were obtained using a dialyzer with a 500 MWCO. The dialyzer method of catalyst containment was selected because it provides a simple and easily manipulated experimental system for studying the dynamics and evolutionary development of confined autocatalytic processes related to the origin of life under anaerobic conditions.
One Step Biomass Gas Reforming-Shift Separation Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Michael J.; Souleimanova, Razima
2012-12-28
GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes weremore » identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.« less
Nessim, Gilbert D
2010-08-01
Carbon nanotubes (CNTs) have been extensively investigated in the last decade because their superior properties could benefit many applications. However, CNTs have not yet made a major leap into industry, especially for electronic devices, because of fabrication challenges. This review provides an overview of state-of-the-art of CNT synthesis techniques and illustrates their major technical difficulties. It also charts possible in situ analyses and new reactor designs that might enable commercialization. After a brief description of the CNT properties and of the various techniques used to synthesize substrate-free CNTs, the bulk of this review analyzes chemical vapor deposition (CVD). This technique receives special attention since it allows CNTs to be grown in predefined locations, provides a certain degree of control of the types of CNTs grown, and may have the highest chance to succeed commercially. Understanding the primary growth mechanisms at play during CVD is critical for controlling the properties of the CNTs grown and remains the major hurdle to overcome. Various factors that influence CNT growth receive a special focus: choice of catalyst and substrate materials, source gases, and process parameters. This review illustrates important considerations for in situ characterization and new reactor designs that may enable researchers to better understand the physical growth mechanisms and to optimize the synthesis of CNTs, thus contributing to make carbon nanotubes a manufacturing reality.
Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan
2016-05-01
HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.
Plasma metallurgical production of nanocrystalline borides and carbides
NASA Astrophysics Data System (ADS)
Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.
2016-09-01
he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.
Method of growing films by flame synthesis using a stagnation-flow reactor
Hahn, David W.; Edwards, Christopher F.
1998-01-01
A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.
Hydrodynamic and Chemical Modeling of a Chemical Vapor Deposition Reactor for Zirconia Deposition
NASA Astrophysics Data System (ADS)
Belmonte, T.; Gavillet, J.; Czerwiec, T.; Ablitzer, D.; Michel, H.
1997-09-01
Zirconia is deposited on cylindrical substrates by flowing post-discharge enhanced chemical vapor deposition. In this paper, a two dimensional hydrodynamic and chemical modeling of the reactor is described for given plasma characteristics. It helps in determining rate constants of the synthesis reaction of zirconia in gas phase and on the substrate which is ZrCl4 hydrolysis. Calculated deposition rate profiles are obtained by modeling under various conditions and fits with a satisfying accuracy the experimental results. The role of transport processes and the mixing conditions of excited gases with remaining ones are studied. Gas phase reaction influence on the growth rate is also discussed.
Wang, Yong , Liu; Wei, [Richland, WA
2012-01-24
The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.
NASA Technical Reports Server (NTRS)
Hales, Stephen J.; Alexa, Joel A.; Jensen, Brian J.
2016-01-01
Boron nitride nanotubes (BNNTs) are more thermally and chemically compatible with metal- and ceramic-matrix composites than carbon nanotubes (CNTs). The lack of an abundant supply of defect-free, high-aspect-ratio BNNTs has hindered development as reinforcing agents in structural materials. Recent activities at the National Research Council - Canada (NRC-C) and the University of California - Berkeley (UC-B) have resulted in bulk synthesis of few-walled, small diameter BNNTs. Both processes employ induction plasma technology to create boron vapor and highly reactive nitrogen species at temperatures in excess of 8000 K. Subsequent recombination under controlled cooling conditions results in the formation of BNNTs at a rate of 20 g/hr and 35 g/hr, respectively. The end product tends to consist of tangled masses of fibril-, sheet-, and cotton candy-like materials, which accumulate within the processing equipment. The radio frequency plasma spray (RFPS) facility at NASA Langley (LaRC), developed for metallic materials deposition, has been re-tooled for in-situ synthesis of BNNTs. The NRC-C and UC-B facilities comprise a 60 kW RF torch, a reactor with a stove pipe geometry, and a filtration system. In contrast, the LaRC facility has a 100 kW torch mounted atop an expansive reaction chamber coupled with a cyclone separator. The intent is to take advantage of both the extra power and the equipment configuration to simultaneously produce and gather BNNTs in a macroscopic form amenable to structural material applications.
Synthesis of metal and semiconductor nanoparticles in a flow of immiscible liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushkin, L. B., E-mail: leva.matyushkin@gmail.com; Ryzhov, O. A.; Aleksandrova, O. A.
Nanoparticles of silver and cadmium selenide are obtained by the method of synthesis in a flow of immiscible liquids (water/toluene, water/dodecane); these nanoparticles manifest, respectively, the effects of plasmon resonance and the spatial confinement of charge carriers. The reactor used is a polytetrafluoroethylene capillary with temperature-controlled sections for particle nucleation and growth with the supply of precursors using micropumps. The diameters of the particles are determined from absorbance spectra and are found to be 40 nm for Ag nanoparticles and 1–2 nm for CdSe nanoparticles (depending on the growth duration).
Solid State Division progress report for period ending March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1992-09-01
During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.
ERIC Educational Resources Information Center
Kittredge, Kevin W.; Marine, Susan S.; Taylor, Richard T.
2004-01-01
A molecule possessing other functional groups that could be hydrogenerated is examined, where a variety of metal catalysts are evaluated under similar reaction conditions. Optimizing organic reactions is both time and labor intensive, and the use of a combinatorial parallel synthesis reactor was great time saving device, as per summary.
USDA-ARS?s Scientific Manuscript database
Silver nanoparticles (Ag NPs) are effective antimicrobial agents, but their application on the surface of a fiber renders them ineffective because Ag NPs are washable. In this study, a stable, non-leaching Ag-cotton nanocomposite was produced by the in-situ formation of Ag NPs in the microfibrillar ...
NASA Astrophysics Data System (ADS)
Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John
2017-10-01
To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.
2015-03-01
On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.
Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B
2008-05-01
Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).
Molecular Imaging Probe Development using Microfluidics
Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.
2012-01-01
In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436
Synthesis of MgB2 at Low Temperature and Autogenous Pressure
Mackinnon, Ian D. R.; Winnett, Abigail; Alarco, Jose A.; Talbot, Peter C.
2014-01-01
High quality, micron-sized interpenetrating grains of MgB2, with high density, are produced at low temperatures (~420 °C < T < ~500 °C) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5–15 h. Optimum production of MgB2, with yields greater than 75%, occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa, with the reactor at ~500 °C. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250 °C for >20 min prior to a hold at 500 °C. PMID:28788656
Synthesis of carbon nanotubes from waste polyethylene plastics
NASA Astrophysics Data System (ADS)
Zhuo, Chuanwei
Generation of non-biodegradable wastes, such as plastics, and resulting land as well as water pollution therefrom discarded plastics have been continuously increasing, while landfill space decreases and recycling markets dwindle. Exploration of novel uses of such materials becomes therefore imperative. Here I present an innovative and unique partial conversion of plastic waste to valuable carbon nanomaterials. It is an overall exothermic and scalable process based on feeding waste plastics to a multi-stage, pyrolysis/combustion-synthesis reactor. Plain stainless steel screens are used as substrates as well as low-cost catalyst for both carbon nanomaterials synthesis and pyrolyzates generation. Nano carbon yields of as high as 13.6% of the weight of the polymer precursor were recorded. This demonstration provides a sustainable solution to both plastic waste utilization, and carbon nanomaterials mass production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daya Mani, A.; Laporte, V.; Ghosal, P.
2012-09-15
Graphical abstract: Effect of oxidant on the combustion synthesis of TiO{sub 2} has been studied by preparing titanylnitrate in four different ways from Ti(IV) iso-propoxide. It is observed that oxidant preparation method has a significant effect on physico-chemical as well as photocatalytic properties of TiO{sub 2}. All the catalysts showed excellent photocatalytic activity than Degussa P-25 under direct sunlight for the degradation of a textile dye (methylene blue), without the need of external light sources, oxygen supply and reactor systems. Highlights: ► Optimized synthesis of titanylnitrate. ► Influence of titanylnitrate synthesis on the physico-chemical properties of TiO{sub 2} prepared bymore » combustion synthesis. ► Development of highly efficient TiO{sub 2} photocatalysts those are active under the direct sunlight in open atmosphere. ► Degradation of the textile dye (methylene blue) under direct sunlight. -- Abstract: Optimized synthesis of Ti-precursor ‘titanylnitrate’ for one step combustion synthesis of N- and C-doped TiO{sub 2} catalysts were reported and characterized by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), diffused reflectance UV–vis spectroscopy, N{sub 2} adsorption and X-ray photoelectron spectroscopy (XPS). XRD confirmed the formation of TiO{sub 2} anatase and nano-crystallite size which was further confirmed by TEM. UV-DRS confirmed the decrease in the band gap to less than 3.0 eV, which was assigned due to the presence of C and N in the framework of TiO{sub 2} as confirmed by X-ray photoelectron spectroscopy. Degradation of methylene blue in aqueous solution under the direct sunlight was carried out and typical results indicated the better performance of the synthesized catalysts than Degussa P-25.« less
Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors
Jolley, Katherine E
2015-01-01
Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089
Wang, Helan; Niu, Guangda; Zhou, Ming; ...
2016-03-10
We have synthesized Pd icosahedra with uniform, controllable sizes in plug reactors separated by air. The oxygen contained in the air segments not only contributed to the generation of a reductant from diethylene glycol in situ, but also oxidized elemental Pd back to the ionic form by oxidative etching and thus slowed down the reduction kinetics. Compared to droplet reactors involving silicone oil or fluorocarbon, the use of air as a carrier phase could reduce the production cost by avoiding additional procedures for the separation of products from the oil. The average diameters of the Pd icosahedra could be readilymore » controlled in the range of 12–20 nm. The Pd icosahedra were further employed as seeds for the production of Pd@Pt 2–3L core-shell icosahedra, which could serve as a catalyst toward the oxygen reduction reaction with greatly enhanced activity. As a result, we believe that the plug reactors could be extended to other types of noble-metal nanocrystals for their scale-up production.« less
Wang, Jun; Liu, Xi; Wang, Xu -Dong; ...
2016-08-18
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Xi; Wang, Xu -Dong
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7 °C) and decrease ofmore » crystallizing point (3 °C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from 212.3 to 14.6 per batch with the microreactor. Altogether, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.« less
Wang, Jun; Liu, Xi; Wang, Xu-Dong; Dong, Tao; Zhao, Xing-Yu; Zhu, Dan; Mei, Yi-Yuan; Wu, Guo-Hua
2016-11-01
Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7°C) and decrease of crystallizing point (3°C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from $212.3 to $14.6 per batch with the microreactor. Overall, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of extended channel bioreactors for continuous-flow protein production
Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; ...
2015-10-02
In this paper, protein based therapeutics are an important class of drugs, used to treat a variety of medical conditions including cancer and autoimmune diseases. Requiring continuous cold storage, and having a limited shelf life, the ability to produce such therapeutics at the point-of-care would open up new opportunities in distributing medicines and treating patients in more remote locations. Here, the authors describe the first steps in the development of a microfluidic platform that can be used for point-of-care protein synthesis. While biologic medicines, including therapeutic proteins, are commonly produced using recombinant deoxyribonucleic acid (DNA) technology in large batch cellmore » cultures, the system developed here utilizes cell-free protein synthesis (CFPS) technology. CFPS is a scalable technology that uses cell extracts containing the biological machinery required for transcription and translation and combines those extracts with DNA, encoding a specific gene, and the additional metabolites required to produce proteins in vitro. While CFPS reactions are typically performed in batch or fed-batch reactions, a well-engineered reaction scheme may improve both the rate of protein production and the economic efficiency of protein synthesis reactions, as well as enable a more streamlined method for subsequent purification of the protein product—all necessary requirements for point-of-care protein synthesis. In this work, the authors describe a new bioreactor design capable of continuous production of protein using cell-free protein synthesis. The bioreactors were designed with three inlets to separate reactive components prior to on-chip mixing, which lead into a long, narrow, serpentine channel. These multiscale, serpentine channel bioreactors were designed to take advantage of microscale diffusion distances across narrow channels in reactors containing enough volume to produce a therapeutic dose of protein, and open the possibility of performing these reactions continuously and in line with downstream purification modules. Here, the authors demonstrate the capability to produce protein over time with continuous-flow reactions and examine basic design features and operation specifications fundamental to continuous microfluidic protein synthesis.« less
Olivares, Astrid; Laskin, Julia; Johnson, Grant E
2014-09-18
The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.
NASA Astrophysics Data System (ADS)
Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro
2016-05-01
A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Gawande, Manoj B; Shelke, Sharad N; Zboril, Radek; Varma, Rajender S
2014-04-15
The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating conditions, wherein temperature is measured accurately by fiber optic (FO) probe. This Account describes the current status of MW-assisted synthesis highlighting the introduction of various prototypes of equipment, classes of organic reactions pursued using nanomaterials, and the synthesis of unique and multifunctional nanomaterials; the ensuing nanomaterials possess zero-dimensional to three-dimensional shapes, such as spherical, hexagonal, nanoprisms, star shapes, and nanorods. The synthesis of well-defined nanomaterials and nanocatalysts is an integral part of nanotechnology and catalysis science, because it is imperative to control their size, shape, and compositional engineering for unique deployment in the field of nanocatalysis and organic synthesis. MW-assisted methods have been employed for the convenient and reproducible synthesis of well-defined noble and transition core-shell metallic nanoparticles with tunable shell thicknesses. Some of the distinctive attributes of MW-selective heating in the synthesis and applications of magnetic nanocatalysts in organic synthesis under benign reaction conditions are highlighted. Sustainable nanomaterials and their applications in benign media are an ideal blend for the development of greener methodologies in organic synthesis; MW heating provides superb value to the overall sustainable process development via process intensification including the flow systems.
Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker
2015-02-01
Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon dioxide capture process with regenerable sorbents
Pennline, Henry W.; Hoffman, James S.
2002-05-14
A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.
Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods
NASA Technical Reports Server (NTRS)
Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.
2016-01-01
Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram.
Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A
2009-01-01
A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less
Method of growing films by flame synthesis using a stagnation-flow reactor
Hahn, D.W.; Edwards, C.F.
1998-11-24
A method is described for stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability. 5 figs.
El-Atwani, Osman; El-Atwani, Osman C; Aytun, Taner; Mutaf, Omer Faruk; Srot, Vesna; van Aken, Peter A; Ow-Yang, Cleva W
2010-05-18
We report the use of reverse PS-b-P2VP diblock copolymer micelles as true nanoscale-sized reactor vessels to synthesize ZnO nanoparticles. The reverse micelles were formed in toluene and then sequentially loaded with zinc acetate dihydrate and tetramethylammonium hydroxide reactants. Moreover, high spatial resolution Z-contrast imaging and EDX spectroscopy techniques were used to confirm the segregation of the Zn cation to the core of the loaded micelles. Determining the chemical distribution with high nanoscale spatial resolution is shown to complement the less direct characterization by AFM, DLS and FTIR, thus demonstrating broader implications for the characterization of hybrid nanocomposite systems.
Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Tan, Jiawei; Wang, Jiexin
2014-12-15
Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.
Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor
NASA Astrophysics Data System (ADS)
Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco
2012-06-01
Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amitava Sarkar; James K. Neathery; Burtron H. Davis
A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less
NASA Astrophysics Data System (ADS)
Kartaev, E. V.; Emel'kin, V. A.; Aul'chenko, S. M.
2017-10-01
The experimental and numerical investigations of synthesis of silica (SiO2) nanoparticles from premixed gaseous silicon tetrachloride (SiCl4) and oxygen of dry air in the high-temperature nitrogen flow of plasma-chemical reactor have been carried out. The regime of counter flow jet quenching of high-temperature heterogeneous flow has been utilized. The latter provided a rapid cooling of silica particles under nonequilibrium conditions with substantial temperature gradients. Synthesized silica particles were amorphous, with surface-average size being about 28 nm. The results of numerical calculations are found to agree qualitatively with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Xiao, Y.; Xu, S.
A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. Amore » correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunturu, A.K.; Kugler, E.L.; Cropley, J.B.
A statistically designed set of experiments was run in a recycle reactor to evaluate the kinetics of the formation of higher-molecular-weight alcohols (higher alcohols) and total hydrocarbon byproducts from synthesis gas (hydrogen and carbon monoxide) in a range of experimental conditions that mirrors the limits of commercial production. The alkali-promoted, C-supported Co-Mo sulfide catalyst that was employed in this study is well known for its sulfur resistance. The reaction was carried out in a gradientless Berty-type recycle reactor. A two-level fractional-factorial set consisting of 16 experiments was performed. Five independent variables were selected for this study, namely, temperature, partial pressuremore » of carbon monoxide, partial pressure of hydrogen, partial pressure of inerts, and methanol concentration in the feed. The major oxygenated products were linear alcohols up to n-butanol, but alcohols of higher carbon number were also detected, and analysis of the liquid product revealed the presence of trace amounts of ethers also. Yields of hydrocarbons were non-negligible. The alcohol product followed an Anderson-Schultz-Flory distribution. From the results of the factorial experiments, a preliminary power-law model was developed, and the statistically significant variables in the rate expression for the production of each alcohol were found. Based on the results of the power-law models, rate expressions of the Langmuir-Hinshelwood type were fitted. The observed kinetics are consistent with the rate-limiting step for the production of each higher alcohol being a surface reaction of the alcohol of next-lower carbon number. All other steps, including CO-insertion, H{sub 2}-cleavage, and hydrogenation steps, do not appear to affect the rate correlations.« less
Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.
Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J
2014-03-01
In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.
NASA Astrophysics Data System (ADS)
Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.
2016-11-01
The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
NASA Astrophysics Data System (ADS)
Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio
2014-10-01
For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.
Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel
2011-01-01
Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988
Synthesis of Struvite using a Vertical Canted Reactor with Continuous Laminar Flow Process
NASA Astrophysics Data System (ADS)
Sutiyono, S.; Edahwati, L.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.
2018-01-01
Struvite is a white crystalline that is chemically known as magnesium ammonium phosphorus hexahydrate (MgNH4PO4·6H2O). It can easily dissolve in acidic conditions and slightly soluble in neutral and alkaline conditions. In industry, struvite forms as a scale deposit on a pipe with hot flow fluid. However, struvite can be used as fertilizer because of its phosphate content. A vertical canted reactor is a promising technology for recovering phosphate levels in wastewater through struvite crystallization. The study was carried out with the vertical canted reactor by mixing an equimolar stock solution of MgCl2, NH4OH, and H3PO4 in 1: 1: 1 ratio. The crystallization process worked with the flow rate of three stock solution entering the reactor in the range of 16-38 ml/min, the temperature in the reactor is worked on 20°, 30°, and 40°C, while the incoming air rate is kept constant at 0.25 liters/min. Moreover, pH was maintained at a constant value of 9. The struvite crystallization process run until the steady state was reached. Then, the result of crystal precipitates was filtered and dried at standard temperature room for 48 hours. After that, struvite crystals were stored for the subsequent analysis by Scanning Electron Microscope (SEM) and XRD (X-Ray Diffraction) method. The use of canted reactor provided the high pure struvite with a prismatic crystal morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Piaoran; Cao, Peng -Fei; Su, Zhe
Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-01-01
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K
2013-01-01
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Djenadic, Ruzica; Winterer, Markus
2017-02-01
The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.
Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support
Tibhe, Jagdish D; Fu, Hui; Noël, Timothy; Wang, Qi; Meuldijk, Jan
2013-01-01
Summary Threonine aldolase (TA) from Thermotoga maritima was immobilized on an Eupergit support by both a direct and an indirect method. The incubation time for the direct immobilization method was optimized for the highest amount of enzyme on the support. By introducing the immobilized TA in a packed-bed microreactor, a flow synthesis of phenylserine was developed, and the effects of temperature and residence time were studied in particular. Calculations of the Damköhler number revealed that no mass transfer limitations are given in the micro-interstices of the packed bed. The yield does not exceed 40% and can be rationalized by the natural equilibrium as well as product inhibition which was experimentally proven. The flow synthesis with the immobilized enzyme was compared with the corresponding transformation conducted with the free enzyme. The product yield was further improved by operating under slug flow conditions which is related to the very short residence time distribution. In all cases 20% diastereomeric excess (de) and 99% enantiomeric excess (ee) were observed. A continuous run of the reactant solution was carried out for 10 hours in order to check enzyme stability at higher temperature. Stable operation was achieved at 20 minute residence time. Finally, the productivity of the reactor was calculated, extrapolated to parallel run units, and compared with data collected previously. PMID:24204429
Bezinge, Leonard; Maceiczyk, Richard M; Lignos, Ioannis; Kovalenko, Maksym V; deMello, Andrew J
2018-06-06
Recent advances in the development of hybrid organic-inorganic lead halide perovskite (LHP) nanocrystals (NCs) have demonstrated their versatility and potential application in photovoltaics and as light sources through compositional tuning of optical properties. That said, due to their compositional complexity, the targeted synthesis of mixed-cation and/or mixed-halide LHP NCs still represents an immense challenge for traditional batch-scale chemistry. To address this limitation, we herein report the integration of a high-throughput segmented-flow microfluidic reactor and a self-optimizing algorithm for the synthesis of NCs with defined emission properties. The algorithm, named Multiparametric Automated Regression Kriging Interpolation and Adaptive Sampling (MARIA), iteratively computes optimal sampling points at each stage of an experimental sequence to reach a target emission peak wavelength based on spectroscopic measurements. We demonstrate the efficacy of the method through the synthesis of multinary LHP NCs, (Cs/FA)Pb(I/Br) 3 (FA = formamidinium) and (Rb/Cs/FA)Pb(I/Br) 3 NCs, using MARIA to rapidly identify reagent concentrations that yield user-defined photoluminescence peak wavelengths in the green-red spectral region. The procedure returns a robust model around a target output in far fewer measurements than systematic screening of parametric space and additionally enables the prediction of other spectral properties, such as, full-width at half-maximum and intensity, for conditions yielding NCs with similar emission peak wavelength.
Bernhardt, Eduard; Finze, Maik; Willner, Helge
2011-10-17
The fluorination of K[B(CN)(4)] with ClF is studied by millimolar test reactions in aHF and CH(2)Cl(2) solution and by subsequent identification of intermediates such as B-CF═NCl, B-CF(2)-NCl(2), and B-CF(3) species as well as NCl(3) by (19)F, (11)B NMR, and Raman spectroscopy, respectively. At first one cyano group of K[B(CN)(4)] is converted fast into a CF(3) group, and with increasing fluorination the reaction becomes slower and several intermediates could be observed. On the basis of these results, a synthesis was developed for K[B(CF(3))(4)] on a 0.2 molar scale by treatment of K[B(CN)(4)] diluted in aHF with ClF. The course of the reactions was followed by (i) monitoring the vapor pressure inside the reactor, (ii) observing the heat dissipation during ClF uptake, and (iii) measuring the volume of the released nitrogen gas. Since the fluorination of the last cyano group proceeds very slowly, the selective synthesis of K[(CF(3))(3)BCN] on a 0.2 molar scale is possible, as well. The analysis of the mechanisms, thermodynamics, and kinetics of the fluorination reactions is supported by density functional theory (DFT) calculations.
Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J
2010-05-12
While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.
Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun
2018-01-01
Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.
Integrated bioprocess for conversion of gaseous substrates to liquids
Hu, Peng; Chakraborty, Sagar; Kumar, Amit; Woolston, Benjamin; Liu, Hongjuan; Emerson, David; Stephanopoulos, Gregory
2016-01-01
In the quest for inexpensive feedstocks for the cost-effective production of liquid fuels, we have examined gaseous substrates that could be made available at low cost and sufficiently large scale for industrial fuel production. Here we introduce a new bioconversion scheme that effectively converts syngas, generated from gasification of coal, natural gas, or biomass, into lipids that can be used for biodiesel production. We present an integrated conversion method comprising a two-stage system. In the first stage, an anaerobic bioreactor converts mixtures of gases of CO2 and CO or H2 to acetic acid, using the anaerobic acetogen Moorella thermoacetica. The acetic acid product is fed as a substrate to a second bioreactor, where it is converted aerobically into lipids by an engineered oleaginous yeast, Yarrowia lipolytica. We first describe the process carried out in each reactor and then present an integrated system that produces microbial oil, using synthesis gas as input. The integrated continuous bench-scale reactor system produced 18 g/L of C16-C18 triacylglycerides directly from synthesis gas, with an overall productivity of 0.19 g⋅L−1⋅h−1 and a lipid content of 36%. Although suboptimal relative to the performance of the individual reactor components, the presented integrated system demonstrates the feasibility of substantial net fixation of carbon dioxide and conversion of gaseous feedstocks to lipids for biodiesel production. The system can be further optimized to approach the performance of its individual units so that it can be used for the economical conversion of waste gases from steel mills to valuable liquid fuels for transportation. PMID:26951649
Alternative Fuels Research Laboratory
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.
2012-01-01
NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.
Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro
2016-01-01
A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631
Development of a New 47-Group Library for the CASL Neutronics Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Williams, Mark L; Wiarda, Dorothea
The CASL core simulator MPACT is under development for the neutronics and thermal-hydraulics coupled simulation for the pressurized light water reactors. The key characteristics of the MPACT code include a subgroup method for resonance self-shielding, and a whole core solver with a 1D/2D synthesis method. The ORNL AMPX/SCALE code packages have been significantly improved to support various intermediate resonance self-shielding approximations such as the subgroup and embedded self-shielding methods. New 47-group AMPX and MPACT libraries based on ENDF/B-VII.0 have been generated for the CASL core simulator MPACT of which group structure comes from the HELIOS library. The new 47-group MPACTmore » library includes all nuclear data required for static and transient core simulations. This study discusses a detailed procedure to generate the 47-group AMPX and MPACT libraries and benchmark results for the VERA progression problems.« less
Recent Developments in Carbonylation Chemistry Using [13 C]CO, [11 C]CO and [14 C]CO.
Nielsen, Dennis U; Neumann, Karoline T; Lindhardt, Anders T; Skrydstrup, Troels
2018-06-01
Carbon monoxide represents the most important C1-building block for the chemical industry, both for the production of bulk and fine chemicals, but also for synthetic fuels. Yet, its toxicity and subsequently its cautious handling has limited its applications in medicinal chemistry research and in particular for the synthesis of pharmaceutically relevant molecules. Recent years have nevertheless witnessed a considerable headway on the development of carbon monoxide surrogates and reactor systems, which provide an ideal setting for performing carbonylation chemistry with stoichiometric and sub-stoichiometric carbon monoxide. Such set-ups are particularly ideal for the introduction of isotope labels such as carbon-11, carbon-13 and carbon-14 into bioactive compounds. This review summarizes this growing field and examines the large number of carbonylation reactions that can be exploited for the introduction of a carbon isotope. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroeve, Pieter; Faller, Roland
The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel. We achieved synthesis, characterization and detailed modeling of themore » materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwilliams, A. J.
2015-09-08
This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less
Water-Assisted Vapor Deposition of PEDOT Thin Film.
Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K
2015-07-01
The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
Peng, Tao; Paramelle, David; Sana, Barindra; Lee, Chiu Fan; Lim, Sierin
2014-08-13
In biomineralization processes, a supramolecular organic structure is often used as a template for inorganic nanomaterial synthesis. The E2 protein cage derived from Geobacillus stearothermophilus pyruvate dehydrogenase and formed by the self-assembly of 60 subunits, has been functionalized with non-native iron-mineralization capability by incorporating two types of iron-binding peptides. The non-native peptides introduced at the interior surface do not affect the self-assembly of E2 protein subunits. In contrast to the wild-type, the engineered E2 protein cages can serve as size- and shape-constrained reactors for the synthesis of iron nanoparticles. Electrostatic interactions between anionic amino acids and cationic iron molecules drive the formation of iron oxide nanoparticles within the engineered E2 protein cages. The work expands the investigations on nanomaterial biosynthesis using engineered host-guest encapsulation properties of protein cages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
JPRS Report, Science & Technology, China: Energy.
1992-03-30
breeder reactors should become...the primary type of reactors . In developing breeder reactors , we should follow the path of using metal fuel. Breeder reactors give us more time to...first reactor used for power generation was a fast reactor : the " Breeder 1" reactor at the Idaho National Reactor Test Center which was used to
Mohammadian, Narges; Ghoreishi, Seyyed M.; Hafeziyeh, Samira; Saeidi, Samrand; Dionysiou, Dionysios D.
2018-01-01
The growing use of carbon nanotubes (CNTs) in a plethora of applications has provided to us a motivation to investigate CNT synthesis by new methods. In this study, ultrasonic-assisted chemical vapor deposition (CVD) method was employed to synthesize CNTs. The difficulty of controlling the size of clusters and achieving uniform distribution—the major problem in previous methods—was solved by using ultrasonic bath and dissolving ferrocene in xylene outside the reactor. The operating conditions were optimized using a rotatable central composite design (CCD), which helped optimize the operating conditions of the method. Response surface methodology (RSM) was used to analyze these experiments. Using statistical software was very effective, considering that it decreased the number of experiments needed to achieve the optimum conditions. Synthesis of CNTs was studied as a function of three independent parameters viz. hydrogen flow rate (120–280 cm3/min), catalyst concentration (2–6 wt %), and synthesis temperature (800–1200 °C). Optimum conditions for the synthesis of CNTs were found to be 3.78 wt %, 184 cm3/min, and 976 °C for catalyst concentration, hydrogen flow rate, and synthesis temperature, respectively. Under these conditions, Raman spectrum indicates high values of (IG/ID), which means high-quality CNTs. PMID:29747451
Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids
Matthessen, Roman; Fransaer, Jan; Binnemans, Koen
2014-01-01
Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120
Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya
2013-01-16
A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.
Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi
2015-02-28
The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.
High power ring methods and accelerator driven subcritical reactor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahar, Malek Haj
2016-08-07
High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g.,more » PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.« less
Final Report UCLA-Thermochemical Storage with Anhydrous Ammonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavine, Adrienne
In ammonia-based thermochemical energy storage (TCES), ammonia is dissociated endothermically as it absorbs solar energy during the daytime. When energy is required, the reverse reaction releases energy to heat a working fluid such as steam, to produce electricity. Ammonia-based TCES has great advantages of simplicity, low cost reactants, and a strong industrial base in the conventional ammonia industry. The concept has been demonstrated over three decades of research at Australian National University, achieving a 24-hour demonstration of a complete system. At the start of this project, three challenges were identified that would have to be addressed to show that themore » system is technically and economically viable for incorporation into a CSP plant with an advanced, high temperature power block. All three of these challenges have now been addressed: 1. The ammonia synthesis reaction had not, to our knowledge, been carried out at temperatures consistent with modern power blocks (i.e., ~650°C). The technical feasibility of operating a reactor under high-temperature, near-equilibrium conditions was an unknown, and was therefore a technical risk. The project has successfully demonstrated steam heating to 650°C and energy recovery to steam at the 5 kWt level. 2. The ammonia system has a relatively low enthalpy of reaction combined with gas phase reactants. This is not a direct disadvantage since the reactants themselves are low cost. The challenge lies in storing the required volume of reactants cost effectively. Therefore, a second key goal was to show, through techno-economic analysis, that underground storage technologies can be used to store the energy-rich gas at a cost that is consistent with the SunShot cost goal. We have identified two promising technologies for gas storage: storage in salt caverns has an estimated cost of 1(USD)/kWht and storage in drilled shafts could be on the order of 7(USD)/kWht. Together these two options answer the technical challenge associated with storage of gas phase components. 3. While this project is primarily concerned with high-temperature heat recovery and methods to store the gaseous components, it is also important to consider the feasibility of the entire system. Consequently, an additional goal was to perform analysis to show the feasibility of integrating endothermic reactors within a tower receiver. A conceptual design of an ammonia dissociation receiver/reactor has been developed that fits into the same size cylindrical envelope as the molten salt receiver in SAM, and has the same design thermal capacity. The calculated thermal efficiency of this receiver is 94.6%. Thus, this investigation has established the technical feasibility of a surround field tower system using ammonia dissociation. With these challenges addressed, we proceeded to design a full-scale synthesis and heat recovery system. A model was developed and validated by comparison with our experimental data. A parametric study showed, among other things, the importance of using small tube diameters and spacing to enhance heat transfer. Multi-parameter optimization was used to find a design that minimizes the wall material volume. Finally, cost estimation shows that the ammonia system has good prospects of meeting the Sunshot 15(USD)/kWht target: estimated costs of the entire synthesis system for the 220 MWt plant with 6 hours of storage are 13(USD)/kWht using salt cavern storage and 18(USD)/kWht using shaft drilling. Costs per kWht are even lower with more hours of storage. With the established technology of ammonia synthesis as a starting point, the successes of the project have mitigated technical risks associated with high-temperature synthesis reaction, underground storage, and tower receiver design. Estimated costs are less than 15(USD)/kWht with salt cavern storage. It is now possible to map a time line to commercial deployment that is likely to be shorter and less risky than other thermochemical cycles under active investigation. UCLA has filed a patent that protects the new ideas developed during this project. Discussions are ongoing with potential investors with the aim of partnering for further work. As well as immediate improvements and extra work with the existing experimental system, a key goal is to extend it to a small solar-driven project at an early opportunity.« less
Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors
Rudin, Thomas; Wegner, Karsten
2013-01-01
A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113
Synthesis and characterization of natural red dye from Caesalpinia sappan linn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id; Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan; Suyitno,, E-mail: suyitno@uns.ac.id
The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to themore » Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.« less
NASA Astrophysics Data System (ADS)
Steinberg, M.; Dong, Yuanji
1993-10-01
The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.
Determination of parameters of a nuclear reactor through noise measurements
Cohn, C.E.
1975-07-15
A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, A.; Herrick, R.; Gunn, J.
2007-07-01
Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less
Next generation fuel irradiation capability in the High Flux Reactor Petten
NASA Astrophysics Data System (ADS)
Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo
2009-07-01
This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
Kinetics analysis and quantitative calculations for the successive radioactive decay process
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang
2015-01-01
The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
Tomar, Swati; Gupta, Sunil Kumar
2015-11-01
The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst
Lu, Yongwu; Yu, Fei; Hu, Jin; ...
2012-04-12
Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Paul Y
2010-12-10
An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco
2013-12-15
Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less
Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J
2017-05-16
The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high-throughput parametric screening of metal chalcogenides (CdSe, PbS, PbSe, CdSeTe), ternary and core/shell heavy metal-free quantum dots (CuInS 2 , CuInS 2 /ZnS), and all-inorganic perovskite nanocrystals (CsPbX 3 , X = Cl, Br, I) syntheses. Critically, concurrent absorption and photoluminescence measurements on millisecond to second time scales allow the extraction of basic parameters governing nanocrystal formation. Moreover, experimental data obtained from such microfluidic platforms can be directly supported by theoretical models of nucleation and growth. To this end, we also describe the use of metamodeling algorithms able to accurately predict optimized conditions of CdSe synthesis using a minimal number of sample parameters. Importantly, we discuss future challenges that must be addressed before microfluidic technologies are in a position to be widely adopted for the on-demand formation of nanocrystals. From a technology perspective, these challenges include the development of novel engineering platforms for the formation of complex architectures, the integration of monitoring systems able to harvest photophysical and structural information, the incorporation of continuous purification systems, and the application of optimization algorithms to multicomponent quantum dot systems.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During this time period, at WVU, we tried several methods to eliminate problems related to condensation of heavier products when reduced Mo-Ni-K/C materials were used as catalysts. We then resumed our kinetic study on the reduced Mo-Ni-K/C catalysts. We have also obtained same preliminary results in our attempts to analyze quantitatively the temperature-programmed reduction (TPR) spectra for C-supported Mo-based catalysts. We have completed the kinetic study for the sulfided Co-K-MoS /C catalyst. We have compared the results of methanol synthesis 2 using the membrane reactor with those using a simple plug-flow reactor. At UCC, the complete characterization of selected catalystsmore » has been completed. The results suggest that catalyst pretreatment under different reducing conditions yield different surface compositions and thus different catalytic reactivities.« less
NASA Astrophysics Data System (ADS)
Dhamale, G. D.; Tak, A. K.; Mathe, V. L.; Ghorui, S.
2018-06-01
Synthesis of yttria (Y2O3) nanoparticles in an atmospheric pressure radiofrequency inductively coupled thermal plasma (RF-ICTP) reactor has been investigated using the discrete-sectional (DS) model of particle nucleation and growth with argon as the plasma gas. Thermal and fluid dynamic information necessary for the investigation have been extracted through rigorous computational fluid dynamic (CFD) study of the system with coupled electromagnetic equations under the extended field approach. The theoretical framework has been benchmarked against published data first, and then applied to investigate the nucleation and growth process of yttrium oxide nanoparticles in the plasma reactor using the discrete-sectional (DS) model. While a variety of nucleation and growth mechanisms are suggested in literature, the study finds that the theory of homogeneous nucleation fits well with the features observed experimentally. Significant influences of the feed rate and quench rate on the distribution of particles sizes are observed. Theoretically obtained size distribution of the particles agrees well with that observed in the experiment. Different thermo-fluid dynamic environments with varied quench rates, encountered by the propagating vapor front inside the reactor under different operating conditions are found to be primarily responsible for variations in the width of the size distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During this time period, at WVU, the authors have obtained models for the kinetics of the HAS (higher alcohol synthesis) reaction over the Co-K-MoS{sub 2}/C catalyst. The Rotoberty reactor was then replaced in the reactor system by a plug-flow tubular reactor. Accordingly, the authors re-started the investigations on sulfide catalysts. The authors encountered and solved the leak problem from the sampling valve for the non-sulfided reactor system. They also modified the system to eliminate the condensation problem. Accordingly, they are continuing their kinetic studies on the reduced Mo-Ni-K/C catalysts. They have set up an apparatus for temperature-programmed reduction (TPR) studies,more » and have obtained some interesting results on TPR characterizations. At UCC, the complete characterization of selected catalysts has been started. The authors sent nine selected types of ZnO, Zn/CrO and Zn/Cr/MnO catalysts and supports for BET surface area, SEM, XRD and ICP. They also sent fresh and spent samples of the Engelhard Zn/CrO catalyst impregnated with 3 wt% potassium for ISS and XPS testing. In Task 2, work on the design and optimization portion of this task, as well as on the fuel testing, is completed. All funds have been expended and there are no personnel working on this project.« less
Synthesis of Biofluidic Microsystems (SYNBIOSYS)
2007-10-01
reaction system. 58 FIGURE 41. The micro reactor is represented by a PFR network model. The calculation of reaction and convection is conducted in...one column of PFRs and the calculation of diffusional mixing is conducted between two columns of PFRs. 59 FIGURE 42. Apply the numerical method of...lines to calculate the diffusion in the channel width direction. Here, we take 10 discretized concentration points in the channel: ci1 - ci10. Points
2011-05-01
fuel oxygenate MBTE Adapted from Davis, 2007 4 ( 1 ) A multimedia environmental perspective built on a product life cycle framework is essential. (2...Picatinney Arsenal Nanotechnology Research Center: Radiofrequency (RF) Induction Plasma reactor (Tekna Plasma Systems) pilot plant Synthesis Challenges: ( 1 ...Genotoxicity in vivo and in vitro, secondary to ROS (?)23 BUILDING STRONG® CEA: Lessons Learned with fuel oxygenate MBTE Adapted from Davis, 2007 24 ( 1
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor
NASA Astrophysics Data System (ADS)
Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.
Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.
Polyphasic Analyses of Methanogenic Archaeal Communities in Agricultural Biogas Plants▿
Nettmann, E.; Bergmann, I.; Pramschüfer, S.; Mundt, K.; Plogsties, V.; Herrmann, C.; Klocke, M.
2010-01-01
Knowledge of the microbial consortia participating in the generation of biogas, especially in methane formation, is still limited. To overcome this limitation, the methanogenic archaeal communities in six full-scale biogas plants supplied with different liquid manures and renewable raw materials as substrates were analyzed by a polyphasic approach. Fluorescence in situ hybridization (FISH) was carried out to quantify the methanogenic Archaea in the reactor samples. In addition, quantitative real-time PCR (Q-PCR) was used to support and complete the FISH analysis. Five of the six biogas reactors were dominated by hydrogenotrophic Methanomicrobiales. The average values were between 60 to 63% of archaeal cell counts (FISH) and 61 to 99% of archaeal 16S rRNA gene copies (Q-PCR). Within this order, Methanoculleus was found to be the predominant genus as determined by amplified rRNA gene restriction analysis. The aceticlastic family Methanosaetaceae was determined to be the dominant methanogenic group in only one biogas reactor, with average values for Q-PCR and FISH between 64% and 72%. Additionally, in three biogas reactors hitherto uncharacterized but potentially methanogenic species were detected. They showed closest accordance with nucleotide sequences of the hitherto unclassified CA-11 (85%) and ARC-I (98%) clusters. These results point to hydrogenotrophic methanogenesis as a predominant pathway for methane synthesis in five of the six analyzed biogas plants. In addition, a correlation between the absence of Methanosaetaceae in the biogas reactors and high concentrations of total ammonia (sum of NH3 and NH4+) was observed. PMID:20154117
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
Reactor monitoring using antineutrino detectors
NASA Astrophysics Data System (ADS)
Bowden, N. S.
2011-08-01
Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.
Effects of drugs on the efficacy of radioiodine (|) therapy in hyperthyroid patients.
Oszukowska, Lidia; Knapska-Kucharska, Małgorzata; Lewiński, Andrzej
2010-03-01
The treatment of hyperthyroidism is targeted at reducing the production of thyroid hormones by inhibiting their synthesis or suppressing their release, as well as by controlling their influence on peripheral tissue (conservative therapy, medical treatment). Radical treatment includes surgical intervention to reduce the volume of thyroid tissue or damage of the mechanisms of thyroid hormone synthesis by radioiodine ((131)|) administration. Radioiodine ((131)|) is a reactor radionuclide, produced as a result of uranium decomposition and emission of β and γ radiation. The therapeutic effects of the isotope are obtained by the emission of β radiation. In the paper, the effects of administered drugs (antithyroid, glucocorticosteroids, lithium carbonate, inorganic iodine, β-blockers) on the final outcome of radioiodine therapy in patients with hyperthyroidism are discussed.
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz
2015-02-01
A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive ( Enterococcus faecalis ) and -negative ( Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.
Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz
2015-01-01
A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926
Mesoporous Aluminosilicates as a Host and Reactor for Preparation of Ordered Metal Nanowires
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Napolskii, K. S.; Kolesnik, I. V.; Kolenko, Yu. V.; Lukashin, A. V.; Gornert, P.; Tretyakov, Yu. D.
The creation of functional nanomaterials with the controlled properties is emerging as a new area of great technological and scientific interest, in particular, it is a key technology for developing novel high-density data storage devices. Today, no other technology can compete with magnetic carriers in information storage density and access rate. However, usually very small (10-1000 nm3) magnetic nanoparticles shows para- or superparamagnetic properties, with very low blocking temperatures and no coercitivity at normal conditions. One possible solution of this problem is preparation of highly anisotropic nanostructures. From the other hand, the use of purely nanocrystalline systems is limited because of their low stability and tendency to form aggregates. These problems could be solved by encapsulation of nanoparticles to a chemically inert matrix. One of the promising matrices for preparation of highly anisotropic magnetic nanoparticles is mesoporous silica or mesoporous aluminosilicates. Mesoporous silica is an amorphous SiO2 with a highly ordered uniform pore structure (the pore diameter can be controllably varied from 2 to 50 nm). This pore system is a perfect reactor for synthesis of nanocomposites due to the limitation of reaction zone by the pore walls. One could expect that size and shape of nanoparticles incorporated into mesoporous silica to be consistent with the dimensions of the porous framework.
In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
Chen, Jin; Henson, Michael A
2016-11-01
Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization
NASA Astrophysics Data System (ADS)
Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo
2015-08-01
Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.
Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study
NASA Astrophysics Data System (ADS)
Kingston, Diego; Razzitte, Adrián César
2018-04-01
Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.
Tang, Yong; Lu, Hanguang; Rao, Longshi; Ding, Xinrui; Yan, Caiman; Yu, Binhai
2018-01-01
The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc. PMID:29498710
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria
NASA Astrophysics Data System (ADS)
Bilgin, A.; Jaffe, P. R.
2017-12-01
Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.
Bellou, Stamatia; Aggelis, George
2012-12-15
Chlorella sp. and Nannochloropsis salina cultivated in a lab-scale open pond simulating reactor grew well and produced 350-500mgL(-1) of biomass containing approximately 40% and 16% of lipids, respectively, while different trends in storage material (lipid and sugar) synthesis were identified for the two strains. In continuous culture the highest biomass and lipid productivity was respectively 0.7 and 0.06mgL(-1)h(-1) at D=0.0096h(-1), for Chlorella sp. and 0.8 and 0.09mgL(-1)h(-1) at D=0.007h(-1) for N. salina. The major polyunsaturated fatty acid (PUFA) in the lipid of Chlorella sp. was α-linolenic acid, found at a percentage of 23.0%, w/w, while N. salina synthesized eicosapentaenoic acid at a percentage of 27.0%, w/w. Glycolipids plus sphingolipids were predominant and richer in PUFA, compared to neutral lipids and phospholipids. Activities of some key enzymes, such as pyruvate dehydrogenase (PDC), ATP-citrate lyase (ATP:CL), malic enzyme (ME) and NAD-isocitrate dehydrogenase (ICDH), which are implicated in acetyl-CoA and NADPH biosynthesis, were studied in cells grown in batch and continuous modes. PDC involved in the conversion of pyruvate to acetyl-CoA presented a constant activity in all growth phases. The high ATP:CL activity observed in algal cells, combined with low or zero ICDH activity, indicated the algae ability to generate acetyl-CoA from sugar via citrate. However, the lipogenic capacity of the strains under investigation seemed to be restricted by the low ME activity resulting to limited NADPH synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review
Tonin, Fabio
2018-01-01
Ursodeoxycholic acid (UDCA) is a pharmaceutical ingredient widely used in clinics. As bile acid it solubilizes cholesterol gallstones and improves the liver function in case of cholestatic diseases. UDCA can be obtained from cholic acid (CA), which is the most abundant and least expensive bile acid available. The now available chemical routes for the obtainment of UDCA yield about 30% of final product. For these syntheses several protection and deprotection steps requiring toxic and dangerous reagents have to be performed, leading to the production of a series of waste products. In many cases the cholic acid itself first needs to be prepared from its taurinated and glycilated derivatives in the bile, thus adding to the complexity and multitude of steps involved of the synthetic process. For these reasons, several studies have been performed towards the development of microbial transformations or chemoenzymatic procedures for the synthesis of UDCA starting from CA or chenodeoxycholic acid (CDCA). This promising approach led several research groups to focus their attention on the development of biotransformations with non-pathogenic, easy-to-manage microorganisms, and their enzymes. In particular, the enzymatic reactions involved are selective hydrolysis, epimerization of the hydroxy functions (by oxidation and subsequent reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each production step. Particular attention is placed on the precursors availability as well as the substrate loading in the process. Potential new routes and recent developments are discussed, in particular on the employment of flow-reactors. The latter technology allows to develop processes with shorter reaction times and lower costs for the chemical and enzymatic reactions involved. PMID:29520309
Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.
Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo
2014-01-01
An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.
Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol
NASA Astrophysics Data System (ADS)
Phillips, Cory Bernard
1999-11-01
This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramkumar, Shwetha; Fan, Liang-Shih
A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO bymore » calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.« less
Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol.
Radzi, Salina Mat; Mohamad, Rosfarizan; Basri, Mahiran; Salleh, Abu Bakar; Ariff, Arbakariya; Rahman, Mohammad Basyaruddin Abdul; Rahman, Raja Noor Zaliha Raja Abdul
2010-01-01
The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.
RAFT polymerization and some of its applications.
Moad, Graeme; Rizzardo, Ezio; Thang, San H
2013-08-01
Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varied morphology carbon nanotubes and method for their manufacture
Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng
2007-01-02
The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.
Process Technology for Tunable Fischer Tropsch Synthesis Towards Middle Distillate Fuel Fractions
2008-08-04
Catalyst Preparation (III) ● Incipient Wetness Used to impregnate Potassium Solution onto Iron (K / Fe atomic ratio = .02). Catalyst dried overnight at T...80oC then calcined for 1 hour at T = 350oC ● Incipient Wetness Used to impregnate Copper Solution onto Iron ( Cu / Fe atomic ratio = .01...Fischer Tropsch technologies that target the production of TP SBF through process, catalyst , and reactor improvements. Investigate Supercritical
Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs
NASA Astrophysics Data System (ADS)
Towell, Rusty; Niffte Collaboration
2015-10-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.
Update on reactors and reactor instruments in Asia
NASA Astrophysics Data System (ADS)
Rao, K. R.
1991-10-01
The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
Vibro-acoustic Imaging at the Breazeale Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James Arthur; Jewell, James Keith; Lee, James Edwin
2016-09-01
The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less
NASA Astrophysics Data System (ADS)
Shahverdi, Ali
Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in the ITP reactor when a certain nozzle was used. The experimental results showed the increase of D-band intensity in the Raman spectra of SWCNT samples upon the NH3 injection. NH3 could increase the nitrogen content of the SWCNTs final product up to 10 times. The SWCNTs sample treated with 15 vol% NH3 showed an enhanced dispersibility in Dimethylformamide and Isopropanol. Onion-like and planar carbon nanostructures were also observed. Complementary characterization on the SWCNT samples treated by 15 vol% NH3 indicated the surface modification of nanotubes. Metallic tubes showed a higher reactivity with NH3 than semiconducting ones. The model including the reactor thermo-flow field and NH3 thermal decomposition kinetics suggested a two-step SWCNT surface modification in which nanotubes firstly react with H and NH2 intermediates and later, NH3 chemisorbs on the nanotubes. The model also suggested that the intermediate species, like NNH and N2H2, play a role primarily in driving the NH3 decomposition rather than the chemical modification of SWCNTs. Keywords: Single-walled carbon nanotube, Induction thermal plasma, Thermogravimetry, Kinetic, Computational fluid dynamic, Thermodynamic, modification, Functionalization
Developing the European Center of Competence on VVER-Type Nuclear Power Reactors
ERIC Educational Resources Information Center
Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily
2017-01-01
This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Synthesis and characterization of carbon microsphere for extinguishing sodium fire
NASA Astrophysics Data System (ADS)
Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.
2013-06-01
In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.
Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.
The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, P. E.; Lenzer, R. C.; Thomas, J. F.
1977-08-01
This project concerns the production of power and synthesis gases from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. The test cell flow system and electrical system, which includes a safety interlock design, has been installed. Calibration of the UTI-30C mass spectrometer and construction of the gas sampling system are complete. Both the coal feeder, which has been calibrated, and the boiler are ready for integration into the test cell flow system. Construction and testing ofmore » the cyclone reactor, including methane combustion experiments, is complete. The confined jet reactor has been designed and construction is underway. Investigation of combustion and gasification modeling techniques has begun.« less
Mackay, Richard; Sammells, Anthony F.
2000-01-01
Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.
Novel inorganic nanomaterials generated with highly concentrated sunlight
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Katz, Eugene A.; Feuermann, Daniel; Albu-Yaron, Ana; Levy, Moshe; Tenne, Reshef
2008-08-01
Reactors driven by highly concentrated sunlight can create conditions well suited to the synthesis of inorganic nanomaterials. We report the experimental realization of a broad range of closed-cage (fullerene-like) nanostructures, nanotubes and/or nanowires for MoS2, SiO2 and Si, achieved via solar ablation. The solar technique generates the strong temperature and radiative gradients - in addition to the extensive high-temperature annealing environment - conducive to producing such nanostructures. The identity of the nanostructures was established with TEM, HRTEM and EDS. The fullerene-like and nanotube MoS2 configurations achieved fundamentally minimum sizes predicted by molecular structural theory. Furthermore, our experiments represent the first time SiO2 nanofibers and nanospheres have been produced purely from quartz. The solar route is far less energy intensive than laser ablation and other high-temperature chemical reactors, simpler and less costly.
Design of Aerosol Coating Reactors: Precursor Injection
Buesser, Beat; Pratsinis, Sotiris E.
2013-01-01
Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471
NASA Astrophysics Data System (ADS)
Bilik, Narula
This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoj, L.; Sklenka, L.; Rataj, J.
2012-07-01
The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
Breeder Reactors, Understanding the Atom Series.
ERIC Educational Resources Information Center
Mitchell, Walter, III; Turner, Stanley E.
The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Sridharan, K.
2015-12-01
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less
Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman
2011-10-06
Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integritymore » of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.« less
NASA Astrophysics Data System (ADS)
Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.
2014-08-01
The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartvigsen, Joseph J; Dimick, Paul; Laumb, Jason D
Ceramatec Inc, in collaboration with IntraMicron (IM), the Energy & Environmental Research Center (EERC) and Sustainable Energy Solutions, LLC (SES), have completed a three-year research project integrating their respective proprietary technologies in key areas to demonstrate production of a jet fuel from coal and biomass sources. The project goals and objectives were to demonstrate technology capable of producing a “commercially-viable quantity” of jet fuel and make significant progress toward compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements. The Ceramatec led team completed the demonstration of nominalmore » 2 bbl/day Fischer-Tropsch (FT) synthesis pilot plant design, capable of producing a nominal 1 bbl/day in the Jet-A/JP-8 fraction. This production rate would have a capacity of 1,000 gallons of jet fuel per month and provide the design basis of a 100 bbl/day module producing over 2,000 gallons of jet fuel per day. Co-gasification of coal-biomass blends enables a reduction of lifecycle greenhouse gas emissions from equivalent conventional petroleum derived fuel basis. Due to limits of biomass availability within an economic transportation range, implementation of a significant biomass feed fraction will require smaller plants than current world scale CTL and GTL FT plants. Hence a down-scaleable design is essential. The pilot plant design leverages Intramicron’s MicroFiber Entrapped Catalyst (MFEC) support which increases the catalyst bed thermal conductivity two orders of magnitude, allowing thermal management of the FT reaction exotherm in much larger reactor tubes. In this project, single tube reactors having 4.5 inch outer diameter and multi-tube reactors having 4 inch outer diameters were operated, with productivities as high as 1.5 gallons per day per linear foot of reactor tube. A significant reduction in tube count results from the use of large diameter reactor tubes, with an associated reduction in reactor cost. The pilot plant was designed with provisions for product collection capable of operating with conventional wax producing FT catalysts but was operated with a Chevron hybrid wax-free FT catalyst. Process simplification enabled by elimination of the wax hydrocracking process unit provides economic advantages in scaling to biomass capable plant sizes. Intramicron also provided a sulfur capture system based on their Oxidative Sulfur Removal (OSR) catalyst process. The integrated sulfur removal and FT systems were operated with syngas produced by the Transport Reactor Development Unit (TRDU) gasifier at the University of North Dakota EERC. SES performed modeling of their cryogenic carbon capture process on the energy, cost and CO2 emissions impact of the Coal-biomass synthetic fuel process.« less
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing
Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobban, Lance
The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publicationsmore » acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum carbon capture and hydrogen efficiency. Our research approach combined catalyst synthesis, measurements of catalyst activity and selectivity in different reactor systems and conditions, and detailed catalyst characterization to develop fundamental understanding of reaction pathways and the capability to predict product distributions. Nearly all of the candidate catalysts were prepared in-house via standard techniques such as impregnation, co-impregnation, or chemical vapor deposition. Supports were usually purchased, but in some cases coprecipitation was used to simultaneously create the support and active component, which can be advantageous for strong active component-support interactions and for achieving high active component dispersion. In-house synthesis also allowed for studies of the effects on catalyst activity and selectivity of such factors as support porosity, calcination temperature, and reduction/activation conditions. Depending on the physical characteristics of the molecule, catalyst activity measurements were carried out in tubular flow reactors (for vapor phase reactions) or stirred tank reactors (for liquid phase reactions) over a wide range of pressures and temperatures. Reactant and product concentrations were measured using gas chromatography (both on-line and off-line, with TCD, FID, and/or mass spectrometric detection). For promising catalysts, detailed physicochemical characterization was carried out using FTIR, Raman, XPS, and XRD spectroscopies (all available in our laboratories) and TEM spectroscopy (available at OU). Additional methods included temperature programmed techniques (TPD, TPO) and surface area measurements by nitrogen adsorption techniques.« less
Catalysts and process for liquid hydrocarbon fuel production
White, Mark G.; Ranaweera, Samantha A.; Henry, William P.
2016-08-02
The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.
3D printing of versatile reactionware for chemical synthesis.
Kitson, Philip J; Glatzel, Stefan; Chen, Wei; Lin, Chang-Gen; Song, Yu-Fei; Cronin, Leroy
2016-05-01
In recent decades, 3D printing (also known as additive manufacturing) techniques have moved beyond their traditional applications in the fields of industrial manufacturing and prototyping to increasingly find roles in scientific research contexts, such as synthetic chemistry. We present a general approach for the production of bespoke chemical reactors, termed reactionware, using two different approaches to extrusion-based 3D printing. This protocol describes the printing of an inert polypropylene (PP) architecture with the concurrent printing of soft material catalyst composites, using two different 3D printer setups. The steps of the PROCEDURE describe the design and preparation of a 3D digital model of the desired reactionware device and the preparation of this model for use with fused deposition modeling (FDM) type 3D printers. The protocol then further describes the preparation of composite catalyst-silicone materials for incorporation into the 3D-printed device and the steps required to fabricate a reactionware device. This combined approach allows versatility in the design and use of reactionware based on the specific needs of the experimental user. To illustrate this, we present a detailed procedure for the production of one such reactionware device that will result in the production of a sealed reactor capable of effecting a multistep organic synthesis. Depending on the design time of the 3D model, and including time for curing and drying of materials, this procedure can be completed in ∼3 d.
Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E
2011-11-01
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT);more » (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Sanchez, Travis
2005-02-06
The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less
Grandin, Karl; Jagers, Peter; Kullander, Sven
2010-01-01
Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.
Carbon nanotube mass production: principles and processes.
Zhang, Qiang; Huang, Jia-Qi; Zhao, Meng-Qiang; Qian, Wei-Zhong; Wei, Fei
2011-07-18
Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pol, Vilas G; Thiyagarajan, P; Moreno, Jose M Calderon; Popa, Monica; Kessler, Vadim G; Gohil, Suresh; Seisenbaeva, Gulaim A
2009-07-06
The tetragonal BaTiO(3) nanopowder is synthesized in a solvent-less, efficient process by the thermolysis of a single [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor in a closed reactor at 700 degrees C under autogenous pressure, followed by combustion. This paper compiles the synthesis of the [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor, its analysis by mass spectrometry, and implementation for the fabrication of dielectric tetragonal BaTiO(3) nanopowder by controlled efficient thermal decomposition. The as-prepared, intermediate, and final forms of the obtained nanomaterials are systematically analysed by XRD, Raman, and EDS measurements to gain structural and compositional information. Employing HR-SEM, TEM, and HR-TEM techniques, the morphological changes during the structural evolution of all the phases are pursued. The mechanistic elucidation for the fabrication of BaTiO(3) nanopowder is developed on the basis of TGA and DTA data obtained for the initial [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] reactant as well as the as-prepared BaCO(3) with amorphous Ti phase.
Advanced Small Modular Reactor Economics Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
Development of Cross Section Library and Application Programming Interface (API)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.
2014-04-09
The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less
1963-01-01
This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.
Interim waste storage for the Integral Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, R.W.; Phipps, R.D.; Condiff, D.W.
1991-01-01
The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
Radiation chemistry for modern nuclear energy development
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Szołucha, Monika M.
2016-07-01
Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.
Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane
NASA Astrophysics Data System (ADS)
Jastrząb, Krzysztof
2018-01-01
One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
NASA Astrophysics Data System (ADS)
Feldman, Y.; Zak, A.; Popovitz-Biro, R.; Tenne, R.
2000-10-01
MS 2 (M=Mo, W) hollow onion-like nanoparticles were the first inorganic fullerene-like ( IF) materials, found in 1992. Understanding of the IF-MS 2 growth mechanism in 1996 enabled us to build a rather simple reactor, which produced about 0.4 g per batch, of an almost pure IF-WS 2 powder. Soon after, it was found that the new powder showed better tribological properties compared with the regular MS 2 (M=Mo, W) powder, which is a well-known solid lubricant. The present work shows a new synthetic approach, which allows for a scale-up of IF-WS 2 production by more than two orders of magnitude. The falling-bed and, especially, fluidized-bed methods, which are presented here, pave the way for an almost ideal growth condition of the IF synthesis from an oxide precursor. As a result, the presently produced IF has a more uniform (spherical) shape and can grow to a larger size (up to 0.5 μm). It is expected that the relatively spherical IF-WS 2 nanoparticles, which are produced by the falling (fluidized) bed reactor, will exhibit superior tribological properties, than reported before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V.
2015-04-15
A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
Synthesis biolubricant from rubber seed oil
NASA Astrophysics Data System (ADS)
Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan
2017-09-01
The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.
Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor
Dostal, Petr
2015-01-01
Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878
NASA Astrophysics Data System (ADS)
Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-04-01
The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.