Multi-variants synthesis of Petri nets for FPGA devices
NASA Astrophysics Data System (ADS)
Bukowiec, Arkadiusz; Doligalski, Michał
2015-09-01
There is presented new method of synthesis of application specific logic controllers for FPGA devices. The specification of control algorithm is made with use of control interpreted Petri net (PT type). It allows specifying parallel processes in easy way. The Petri net is decomposed into state-machine type subnets. In this case, each subnet represents one parallel process. For this purpose there are applied algorithms of coloring of Petri nets. There are presented two approaches of such decomposition: with doublers of macroplaces or with one global wait place. Next, subnets are implemented into two-level logic circuit of the controller. The levels of logic circuit are obtained as a result of its architectural decomposition. The first level combinational circuit is responsible for generation of next places and second level decoder is responsible for generation output symbols. There are worked out two variants of such circuits: with one shared operational memory or with many flexible distributed memories as a decoder. Variants of Petri net decomposition and structures of logic circuits can be combined together without any restrictions. It leads to existence of four variants of multi-variants synthesis.
Hemoglobin Variants: Biochemical Properties and Clinical Correlates
Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.
2013-01-01
Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674
Chea, Eric K.; Fernández-Tejada, Alberto; Damani, Payal; Adams, Michelle M.; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Gin, David Y.
2012-01-01
QS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and congnitive disorders. Herein we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21 while the corresponding disaccharide and monosaccharide congeners are more toxic or less potent, respectively. Modification of the acyl domain in the trisaccharide series revealed that a terminal carboxylic acid is well-tolerated while a terminal amine results in reduced adjuvant activity. Acylation of the terminal amine can restore adjuvant activity and enables the synthesis of fluorescently-labeled QS-21 variants. Cellular studies with these probes revealed that, contrary to conventional wisdom, the most highly adjuvant active of these fluorescently-labeled saponins does not simply associate with the plasma membrane, but rather is internalized by dendritic cells. PMID:22866694
Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin
2017-01-01
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
The histone variant H2A.Bbd is enriched at sites of DNA synthesis
Sansoni, Viola; Casas-Delucchi, Corella S.; Rajan, Malini; Schmidt, Andreas; Bönisch, Clemens; Thomae, Andreas W.; Staege, Martin S.; Hake, Sandra B.; Cardoso, M. Cristina; Imhof, Axel
2014-01-01
Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity. PMID:24753410
Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J
2013-07-24
The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.
Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888
Harmand, Thibault J; Pattabiraman, Vijaya R; Bode, Jeffrey W
2017-10-02
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral transmembrane protein that is thought to serve as the primary factor for inhibiting the replication of a large number of viruses, including West Nile virus, Dengue virus, Ebola virus, and Zika virus. Production of this 14.5 kDa, 133-residue transmembrane protein, especially with essential posttranslational modifications, by recombinant expression is challenging. In this report, we document the chemical synthesis of IFTIM3 in multi-milligram quantities (>15 mg) and the preparation of phosphorylated and fluorescent variants. The synthesis was accomplished by using KAHA ligations, which operate under acidic aqueous/organic mixtures that excel at solubilizing even the exceptionally hydrophobic C-terminal region of IFITM3. The synthetic material is readily incorporated into model vesicles and forms the basis for using synthetic, homogenous IFITM3 and its derivatives for further studying its structure and biological mode of action. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm
2014-05-01
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.
Simon, Harold J.; Yin, Elaine Jong
1970-01-01
L-phase variants and small colony (G-phase) variants derived from penicillinase-producing Staphylococcus aureus strains were tested for penicillinase (beta lactamase) production. A refined variation of the modified Gots test for penicillinase was used to demonstrate penicillinase synthesis. Penicillinase synthesis was reduced in L-phase variants and G-phase variants when compared to parental strains. After reversion of variants to vegetative stages had been induced, revertants were tested for production of penicillinase, coagulase, and alpha hemolysin, mannitol fermentation, and pigment production, and comparisons were made between parent and reverted vegetative forms. All revertants of G-phase variants retained penicillinase activity. Most revertants of L-phase variants showed reduction or loss of penicillinase activity. Retention of coagulase activity, alpha hemolysin production, mannitol fermentation, pigmentation, and phage type varied among revertants. Images PMID:16557890
Kannouche, Patricia; Broughton, Bernard C.; Volker, Marcel; Hanaoka, Fumio; Mullenders, Leon H.F.; Lehmann, Alan R.
2001-01-01
DNA polymerase η carries out translesion synthesis past UV photoproducts and is deficient in xeroderma pigmentosum (XP) variants. We report that polη is mostly localized uniformly in the nucleus but is associated with replication foci during S phase. Following treatment of cells with UV irradiation or carcinogens, it accumulates at replication foci stalled at DNA damage. The C-terminal third of polη is not required for polymerase activity. However, the C-terminal 70 aa are needed for nuclear localization and a further 50 aa for relocalization into foci. Polη truncations lacking these domains fail to correct the defects in XP-variant cells. Furthermore, we have identified mutations in two XP variant patients that leave the polymerase motifs intact but cause loss of the localization domains. PMID:11157773
Detonation Synthesis of Alpha-Variant Silicon Carbide
NASA Astrophysics Data System (ADS)
Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym
2017-06-01
A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.
Biomimetic Chemistry of Iron, Nickel, Molybdenum, and Tungsten in Sulfur-Ligated Protein Sites†
Groysman, Stanislav; Holm, R. H.
2009-01-01
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few even closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases. PMID:19206188
Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria
2018-06-01
The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.
Douglas, M G; Butow, R A
1976-04-01
Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Fyvie, W. Sean; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki
2018-01-01
The structure-based design, synthesis, and biological evaluation of a series of nonpeptidic HIV-1 protease inhibitors with rationally designed P2′ ligands are described. The inhibitors are designed to enhance backbone binding interactions, particularly at the S2′ subsite. Synthesis of inhibitors was carried out efficiently. The stereochemistry of alcohol functionalities of the P2′ ligands was set by asymmetric reduction of the corresponding ketone using (R,R)- or (S,S)-Noyori catalysts. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 3g and 3h showed enzyme Ki values of 27.9 and 49.7 pM and antiviral activity of 6.2 and 3.9 nM, respectively. These inhibitors also remained quite potent against darunavir-resistant HIV-1 variants. An X-ray structure of inhibitor 3g in complex with HIV-1 protease revealed key interactions in the S2′ subsite. PMID:29110408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.
Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less
Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.; ...
2017-04-20
Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. Finally, we expect the design rules that we uncovered and the thioesterase variants that we identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain-length oleochemicals.« less
Structure and mechanism of human DNA polymerase [eta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji
2010-11-03
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assistmore » translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.« less
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.
1994-01-01
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the -49 lymphoma variant (cyc-) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc- cells. DNA synthesis is inhibited 42% by dmPGA1 (50 microM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the alpha, beta unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc- cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30-50 microns) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc- cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block.(ABSTRACT TRUNCATED AT 250 WORDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parai, Maloy Kumar; Huggins, David J.; Cao, Hong
2012-09-11
A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and Cmore » and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.« less
Nasuno, Ryo; Hirase, Saeka; Norifune, Saki; Watanabe, Daisuke; Takagi, Hiroshi
2016-02-01
Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Synthesis of mesoscale, crumpled, reduced graphene oxide roses by water-in-oil emulsion approach
NASA Astrophysics Data System (ADS)
Sharma, Shruti; Pham, Viet H.; Boscoboinik, Jorge A.; Camino, Fernando; Dickerson, James H.; Tannenbaum, Rina
2018-05-01
Mesoscale crumpled graphene oxide roses (GO roses) were synthesized by using colloidal graphene oxide (GO) variants as precursors for a hybrid emulsification-rapid evaporation approach. This process produced rose-like, spherical, reduced mesostructures of colloidal GO sheets, with corrugated surfaces and particle sizes tunable in the range of ∼800 nm to 15 μm. Excellent reproducibility for particle size distribution is shown for each selected speed of homogenizer rotor among different sample batches. The morphology and chemical structure of these produced GO roses was investigated using electron microscopy and spectroscopy techniques. The proposed synthesis route provides control over particle size, morphology and chemical properties of the synthesized GO roses.
Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.
2014-01-01
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324
Ishikawa, Taizo; Imamura, Keiko; Kondo, Takayuki; Koshiba, Yasushi; Hara, Satoshi; Ichinose, Hiroshi; Furujo, Mahoko; Kinoshita, Masako; Oeda, Tomoko; Takahashi, Jun; Takahashi, Ryosuke; Inoue, Haruhisa
2016-12-01
Dopamine (DA) is a neurotransmitter in the brain, playing a central role in several disease conditions, including tetrahydrobiopterin (BH4) metabolism disorders and Parkinson's disease (PD). BH4 metabolism disorders present a variety of clinical manifestations including motor disturbance via altered DA metabolism, since BH4 is a cofactor for tyrosine hydroxylase (TH), a rate-limiting enzyme for DA synthesis. Genetically, BH4 metabolism disorders are, in an autosomal recessive pattern, caused by a variant in genes encoding enzymes for BH4 synthesis or recycling, including 6-pyruvoyltetrahydropterin synthase (PTPS) or dihydropteridine reductase (DHPR), respectively. Although BH4 metabolism disorders and its metabolisms have been studied, it is unclear how gene variants cause aberrant DA synthesis in patient neurons. Here, we generated induced pluripotent stem cells (iPSCs) from BH4 metabolism disorder patients with PTPS or DHPR variants, corrected the gene variant in the iPSCs using the CRISPR/Cas9 system, and differentiated the BH4 metabolism disorder patient- and isogenic control iPSCs into midbrain DA neurons. We found that by the gene correction, the BH4 amount, TH protein level and extracellular DA level were restored in DA neuronal culture using PTPS deficiency iPSCs. Furthermore, the pharmacological correction by BH4 precursor sepiapterin treatment also improved the phenotypes of PTPS deficiency. These results suggest that patient iPSCs with BH4 metabolism disorders provide an opportunity for screening substances for treating aberrant DA synthesis-related disorders. © The Author 2016. Published by Oxford University Press.
Synthesis and structural characterization of betaine- and imidazoline-based organoclays
NASA Astrophysics Data System (ADS)
Lazorenko, Georgy; Kasprzhitskii, Anton; Yavna, Victor
2018-01-01
The samples of organic-modified clays based on a Wyoming SWy-2 sodium montmorillonite (Na+-Mt) with the cationic surfactant hydroxyethylalkyl imidazoline (HEAI) and the amphoteric surfactant oleylamidopropyl betaine (OAPB) were synthesized via a cation exchange process. The obtained materials were characterized using XRD analysis, ATR-FTIR spectroscopy, SEM, BET and Water contact angle measurements. The potential sites of binding of OAPB and HEAI to the mineral surface were determined by the DFT calculations. For the variants of the structure of the complex, DFT calculations is performed and the interaction energy of the surfactant and clay mineral is estimated.
Trefzer, Axel; Jungmann, Volker; Molnár, István; Botejue, Ajit; Buckel, Dagmar; Frey, Gerhard; Hill, D. Steven; Jörg, Mario; Ligon, James M.; Mason, Dylan; Moore, David; Pachlatko, J. Paul; Richardson, Toby H.; Spangenberg, Petra; Wall, Mark A.; Zirkle, Ross; Stege, Justin T.
2007-01-01
Discovery of the CYP107Z subfamily of cytochrome P450 oxidases (CYPs) led to an alternative biocatalytic synthesis of 4″-oxo-avermectin, a key intermediate for the commercial production of the semisynthetic insecticide emamectin. However, under industrial process conditions, these wild-type CYPs showed lower yields due to side product formation. Molecular evolution employing GeneReassembly was used to improve the regiospecificity of these enzymes by a combination of random mutagenesis, protein structure-guided site-directed mutagenesis, and recombination of multiple natural and synthetic CYP107Z gene fragments. To assess the specificity of CYP mutants, a miniaturized, whole-cell biocatalytic reaction system that allowed high-throughput screening of large numbers of variants was developed. In an iterative process consisting of four successive rounds of GeneReassembly evolution, enzyme variants with significantly improved specificity for the production of 4″-oxo-avermectin were identified; these variants could be employed for a more economical industrial biocatalytic process to manufacture emamectin. PMID:17483257
The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics
Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.
2014-01-01
Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900
Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant.
Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P
2008-09-22
The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70 degrees C showed that Tat Eli is not a random coil at 20 degrees C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes.
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
Synthesis and Thermoelectric Properties in the 2D Ti1 – xNbxS3 Trichalcogenides
Misse, Patrick R. N.; Berthebaud, David; Lebedev, Oleg I.; Maignan, Antoine; Guilmeau, Emmanuel
2015-01-01
A solid solution of Ti1 − xNbxS3 composition (x = 0, 0.05, 0.07, 0.10) was synthesized by solid-liquid-vapor reaction followed by spark plasma sintering. The obtained compounds crystallize in the monoclinic ZrSe3 structure type. For the x = 0.07 sample, a mixture of both A and B variants of the MX3 structure is evidenced by transmission electron microscopy. This result contrasts with those of pristine TiS3, prepared within the same conditions, which crystallizes as a large majority of A variant. Thermoelectric properties were investigated in the temperature range 323 to 523 K. A decrease in the electrical resistivity and absolute value of the Seebeck coefficient is observed when increasing x due to electron doping. The lattice component of the thermal conductivity is effectively reduced by the Nb for Ti substitution through a mass fluctuation effect and/or a disorder effect created by the mixture of both A and B variants. Due to the low carrier concentration and the semiconductor character of the doped compounds, the too low power factor values leads to ZT values that remain smaller by a factor of 50 than those of the TiS2 layered compound.
Intrinsic magnetic properties of L10 FeNi obtained from meteorite NWA 6259
NASA Astrophysics Data System (ADS)
Poirier, Eric; Pinkerton, Frederick E.; Kubic, Robert; Mishra, Raja K.; Bordeaux, Nina; Mubarok, Arif; Lewis, Laura H.; Goldstein, Joseph I.; Skomski, Ralph; Barmak, Katayun
2015-05-01
FeNi having the tetragonal L10 crystal structure is a promising new rare-earth-free permanent magnet material. Laboratory synthesis is challenging, however, tetragonal L10 FeNi—the mineral "tetrataenite"—has been characterized using specimens found in nickel-iron meteorites. Most notably, the meteorite NWA 6259 recovered from Northwest Africa is 95 vol. % tetrataenite with a composition of 43 at. % Ni. Hysteresis loops were measured as a function of sample orientation on a specimen cut from NWA 6259 in order to rigorously deduce the intrinsic hard magnetic properties of its L10 phase. Electron backscatter diffraction showed that NWA 6259 is strongly textured, containing L10 grains oriented along any one of the three equivalent cubic directions of the parent fcc structure. The magnetic structure was modeled as a superposition of the three orthonormal uniaxial variants. By simultaneously fitting first-quadrant magnetization data for 13 different orientations of the sample with respect to the applied field direction, the intrinsic magnetic properties were estimated to be saturation magnetization 4πMs = 14.7 kG and anisotropy field Ha = 14.4 kOe. The anisotropy constant K = 0.84 MJ/m3 is somewhat smaller than the value K = 1.3 MJ/m3 obtained by earlier researchers from nominally equiatomic FeNi prepared by neutron irradiation accompanied by annealing in a magnetic field, suggesting that higher Ni content (fewer Fe antisite defects) may improve the anisotropy. The fit also indicated that NWA 6259 contains one dominant variant (62% by volume), the remainder of the sample being a second variant, and the third variant being absent altogether.
Intrinsic magnetic properties of L1(0) FeNi obtained from meteorite NWA 6259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, E; Pinkerton, FE; Kubic, R
2015-05-07
FeNi having the tetragonal L1(0) crystal structure is a promising new rare-earth-free permanent magnet material. Laboratory synthesis is challenging, however, tetragonal L1(0) FeNi-the mineral "tetrataenite"-has been characterized using specimens found in nickel-iron meteorites. Most notably, the meteorite NWA 6259 recovered from Northwest Africa is 95 vol.% tetrataenite with a composition of 43 at.% Ni. Hysteresis loops were measured as a function of sample orientation on a specimen cut from NWA 6259 in order to rigorously deduce the intrinsic hard magnetic properties of its L1(0) phase. Electron backscatter diffraction showed that NWA 6259 is strongly textured, containing L1(0) grains oriented alongmore » any one of the three equivalent cubic directions of the parent fcc structure. The magnetic structure was modeled as a superposition of the three orthonormal uniaxial variants. By simultaneously fitting first-quadrant magnetization data for 13 different orientations of the sample with respect to the applied field direction, the intrinsic magnetic properties were estimated to be saturation magnetization 4 pi M-s = 14.7 kG and anisotropy field H-a = 14.4 kOe. The anisotropy constant K = 0.84 MJ/m(3) is somewhat smaller than the value K = 1.3 MJ/m(3) obtained by earlier researchers from nominally equiatomic FeNi prepared by neutron irradiation accompanied by annealing in a magnetic field, suggesting that higher Ni content (fewer Fe antisite defects) may improve the anisotropy. The fit also indicated that NWA 6259 contains one dominant variant (62% by volume), the remainder of the sample being a second variant, and the third variant being absent altogether. (C) 2015 AIP Publishing LLC.« less
Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo
2014-01-01
The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413
Varriale, Simona; Cerullo, Gabriella; Antonopoulou, Io; Christakopoulos, Paul; Rova, Ulrika; Tron, Thierry; Fauré, Régis; Jütten, Peter; Piechot, Alexander; Brás, Joana L A; Fontes, Carlos M G A; Faraco, Vincenza
2018-06-01
The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.
Zhang, Chuanzhi; Kang, Zhen; Zhang, Junli; Du, Guocheng; Chen, Jian; Yu, Xiaobin
2014-04-01
3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHP synthase) encoded by aroF is the first enzyme of the shikimate pathway. In the present study, an AroF variant with a deficiency in residue Ile11 (named AroF*) was shown to be insensitive to l-tyrosine. According to three-dimensional structure analysis, nine AroF variants were constructed with truncation of different N-terminal fragments, and overexpression of the variants AroF(Δ(1-9)) , AroF(Δ(1-10)) , AroF(Δ(1-12)) and, in particular, AroF(Δ(1-11)) significantly increased the accumulation of l-phenylalanine (l-Phe). However, the AroG and AroH variants with similar truncations of the N-terminal fragments decreased the production of l-Phe. By co-overexpressing AroF(Δ(1-11)) and PheA(fbr) , the production of l-Phe was increased from 2.36 ± 0.07 g L(-1) (co-overexpression of the wild-type AroF and PheA(fbr) ) to 4.29 ± 0.06 g L(-1) . The novel variant AroF(Δ(1-11)) showed great potential for the production of aromatic amino acids and their derivatives. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, M. M.; Singh, D.; Gangrade, M.; Venkatesh, R.; Deshpande, U. P.; Phase, D. M.; Ganesan, V.
2018-04-01
Structural, morphological and spectroscopic properties of Bi2Se3 nanoparticles synthesized by microwave assisted solvothermal method were investigated systematically. A controlled synthesis of different morphologies by a small variation in synthesis procedure is demonstrated. Powder X-ray diffraction (XRD) confirmed the formation of single phase. Crystallite and particle size reductions were studied with XRD and AFM (Atomic Force Microscopy). Different morphologies such as hexagonal nanoflakes with cross section of around˜6µm, nanoflower and octahedral agglomerated crystals of nearly ˜60 nm size have been observed in scanning electron microscope while varying the microwave assisted synthesis procedures. A significant blue shift observed in diffuse reflectance spectroscopy evidences the energy gap tuning as a result of morphological evolution. The difference in morphology observed in this three fast, facile and scalable synthesis is advantageous for tuning the thermoelectric figure of merit and for probing the surface states of these topological insulators. Low temperature resistivity remains similar for all three variants depicting a 2D character as evidenced by a -lnT term of localization.
Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant
Watkins, Jennifer D; Campbell, Grant R; Halimi, Hubert; Loret, Erwann P
2008-01-01
Background The HIV-1 Tat protein is a promising target to develop AIDS therapies, particularly vaccines, due to its extracellular role that protects HIV-1-infected cells from the immune system. Tat exists in two different lengths, 86 or 87 residues and 99 or 101 residues, with the long form being predominant in clinical isolates. We report here a structural study of the 99 residue Tat Eli variant using 2D liquid-state NMR, molecular modeling and circular dichroism. Results Tat Eli was obtained from solid-phase peptide synthesis and the purified protein was proven biologically active in a trans-activation assay. Circular dichroism spectra at different temperatures up to 70°C showed that Tat Eli is not a random coil at 20°C. Homonuclear 1H NMR spectra allowed us to identify 1639 NMR distance constraints out of which 264 were interresidual. Molecular modeling satisfying at least 1474 NMR constraints revealed the same folding for different model structures. The Tat Eli model has a core region composed of a part of the N-terminus including the highly conserved Trp 11. The extra residues in the Tat Eli C-terminus protrude from a groove between the basic region and the cysteine-rich region and are well exposed to the solvent. Conclusion We show that active Tat variants share a similar folding pattern whatever their size, but mutations induce local structural changes. PMID:18808674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junjie; Zheng, Hong; Malliakas, Christos D.
2014-11-20
We synthesized Ca 2Co 2O 5 in the brownmillerite form using a high-pressure optical-image floating zone furnace, and single crystals with dimensions up to 1.4×0.8×0.5 mm 3 were obtained. At room temperature, Ca 2Co 2O 5 crystallizes as a fully ordered brownmillerite variant in the orthorhombic space group Pcmb (No. 57) with unit cell parameters a=5.28960(10) Å, b=14.9240(2) Å, and c=10.9547(2) Å. Furthermore, with decreasing temperature, it undergoes re-entrant sequence of first-order structural phase transitions (Pcmb→ P2/c11→ P121/m1→ Pcmb) that is unprecedented among brownmillerites, broadening the family of space groups available to these materials and challenging current approaches for sortingmore » the myriad variants of brownmillerite structures. Magnetic susceptibility data indicate antiferromagnetic ordering in Ca 2Co 2O 5 occurs near 240 K, corroborated by neutron powder diffraction. Below 140 K, Ca 2Co 2O 5 shows a weak ferromagnetic component directed primarily along the b axis, and it also exhibits thermal and magnetic history dependence in magnetization.« less
Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids
NASA Astrophysics Data System (ADS)
Rogers, Joseph M.; Kwon, Sunbum; Dawson, Simon J.; Mandal, Pradeep K.; Suga, Hiroaki; Huc, Ivan
2018-03-01
Translation, the mRNA-templated synthesis of peptides by the ribosome, can be manipulated to incorporate variants of the 20 cognate amino acids. Such approaches for expanding the range of chemical entities that can be produced by the ribosome may accelerate the discovery of molecules that can perform functions for which poorly folded, short peptidic sequences are ill suited. Here, we show that the ribosome tolerates some artificial helical aromatic oligomers, so-called foldamers. Using a flexible tRNA-acylation ribozyme—flexizyme—foldamers were attached to tRNA, and the resulting acylated tRNAs were delivered to the ribosome to initiate the synthesis of non-cyclic and cyclic foldamer-peptide hybrid molecules. Passing through the ribosome exit tunnel requires the foldamers to unfold. Yet foldamers encode sufficient folding information to influence the peptide structure once translation is completed. We also show that in cyclic hybrids, the foldamer portion can fold into a helix and force the peptide segment to adopt a constrained and stretched conformation.
Lockridge, O
1990-01-01
People with genetic variants of cholinesterase respond abnormally to succinylcholine, experiencing substantial prolongation of muscle paralysis with apnea rather than the usual 2-6 min. The structure of usual cholinesterase has been determined including the complete amino acid and nucleotide sequence. This has allowed identification of altered amino acids and nucleotides. The variant most frequently found in patients who respond abnormally to succinylcholine is atypical cholinesterase, which occurs in homozygous form in 1 out of 3500 Caucasians. Atypical cholinesterase has a single substitution at nucleotide 209 which changes aspartic acid 70 to glycine. This suggests that Asp 70 is part of the anionic site, and that the absence of this negatively charged amino acid explains the reduced affinity of atypical cholinesterase for positively charged substrates and inhibitors. The clinical consequence of reduced affinity for succinylcholine is that none of the succinylcholine is hydrolyzed in blood and a large overdose reaches the nerve-muscle junction where it causes prolonged muscle paralysis. Silent cholinesterase has a frame shift mutation at glycine 117 which prematurely terminates protein synthesis and yields no active enzyme. The K variant, named in honor of W. Kalow, has threonine in place of alanine 539. The K variant is associated with 33% lower activity. All variants arise from a single locus as there is only one gene for human cholinesterase (EC 3.1.1.8). Comparison of amino acid sequences of esterases and proteases shows that cholinesterase belongs to a new family of serine esterases which is different from the serine proteases.
Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki
2013-01-01
The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685
Shi, Lei; Chen, Huai; Zhang, Si-Yu; Chu, Ting-Ting; Zhao, Yu-Fen; Chen, Yong-Xiang; Li, Yan-Mei
2017-06-01
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three-dimensional structure domain was constructed from three segments murine PrP (mPrP)(90-177), mPrP(178-212), and mPrP(213-230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C-terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
James M. Slavicek; Melissa J. Mercer; Mary Ellen Kelly; Nancy Hayes-Plazolles
1996-01-01
The formation of few polyhedra mutants during serial propagation of baculoviruses in cell culture encumbers commercial scale production in this system. A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) variant (isolate A21-MPV) has been isolated and the traits of budded virus (BV) production, synthesis of polyhedra, the...
An integrated map of structural variation in 2,504 human genomes.
Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O
2015-10-01
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.
Kale, S P; Cary, J W; Bhatnagar, D; Bennett, J W
1996-01-01
Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked. PMID:8795232
Intrinsic magnetic properties of L1{sub 0} FeNi obtained from meteorite NWA 6259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, Eric; Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com; Kubic, Robert
2015-05-07
FeNi having the tetragonal L1{sub 0} crystal structure is a promising new rare-earth-free permanent magnet material. Laboratory synthesis is challenging, however, tetragonal L1{sub 0} FeNi—the mineral “tetrataenite”—has been characterized using specimens found in nickel-iron meteorites. Most notably, the meteorite NWA 6259 recovered from Northwest Africa is 95 vol. % tetrataenite with a composition of 43 at. % Ni. Hysteresis loops were measured as a function of sample orientation on a specimen cut from NWA 6259 in order to rigorously deduce the intrinsic hard magnetic properties of its L1{sub 0} phase. Electron backscatter diffraction showed that NWA 6259 is strongly textured, containing L1{submore » 0} grains oriented along any one of the three equivalent cubic directions of the parent fcc structure. The magnetic structure was modeled as a superposition of the three orthonormal uniaxial variants. By simultaneously fitting first-quadrant magnetization data for 13 different orientations of the sample with respect to the applied field direction, the intrinsic magnetic properties were estimated to be saturation magnetization 4πM{sub s} = 14.7 kG and anisotropy field H{sub a} = 14.4 kOe. The anisotropy constant K = 0.84 MJ/m{sup 3} is somewhat smaller than the value K = 1.3 MJ/m{sup 3} obtained by earlier researchers from nominally equiatomic FeNi prepared by neutron irradiation accompanied by annealing in a magnetic field, suggesting that higher Ni content (fewer Fe antisite defects) may improve the anisotropy. The fit also indicated that NWA 6259 contains one dominant variant (62% by volume), the remainder of the sample being a second variant, and the third variant being absent altogether.« less
Dola, Vasantha Rao; Soni, Awakash; Agarwal, Pooja; Ahmad, Hafsa; Raju, Kanumuri Siva Rama; Rashid, Mamunur; Wahajuddin, Muhammad; Srivastava, Kumkum; Haq, W.; Dwivedi, A. K.; Puri, S. K.
2016-01-01
ABSTRACT A novel 4-aminoquinoline derivative [(S)-7-chloro-N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate] exhibiting curative activity against chloroquine-resistant malaria parasites has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed structure-activity relationship (SAR) studies has good solid-state properties and promising activity against in vitro and in vivo experimental malaria models. The in vitro absorption, distribution, metabolism, and excretion (ADME) parameters indicate a favorable drug-like profile. PMID:27956423
Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.
Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard
2017-04-01
To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.
Park, Gi Tae; Jo, Donghui; Ahn, Nak Ho; Cho, Jung; Hong, Suk Bong
2017-07-17
The structure-directing effects of a series of polymethylimidazolium cations with different numbers of methyl groups as organic structure-directing agents (OSDAs) in the synthesis of aluminophosphate (AlPO 4 )-based molecular sieves in both fluoride and hydroxide media are investigated. On the one hand, among the OSDAs studied here, the smallest 1,3-dimethylimidazolium and the largest 1,2,3,4,5-pentamethylimidazolium cations were found to direct the synthesis of a new variant of the triclinic chabazite (CHA)-type AlPO 4 material, designated AlPO 4 -34(t) V , and the one-dimensional small-pore silicoaluminophosphate (SAPO) molecular sieve STA-6 in hydroxide media, respectively. On the other hand, the intermediate-sized 1,2,3,4-tetramethylimidazolium cation gave SSZ-51, a two-dimensional large-pore SAPO material, in fluoride media. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that as-made AlPO 4 -34(t) V contains penta-coordinated framework Al species connected by hydroxyl groups, as well as tetrahedral framework Al, which contrasts with the distortions arising from the two F - or OH - bridges between octahedral Al atoms in all already known AlPO 4 -34 materials. The presence of Al-OH-Al linkages in this triclinic AlPO 4 -34 molecular sieve has been further corroborated by thermal analysis, variable-temperature IR,27Al magic-angle spinning NMR, and dispersion-corrected density functional theory calculations.
Gooyit, Major; Lee, Mijoon; Hesek, Dusan; Boggess, Bill; Oliver, Allen G; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland
2009-12-01
Gelatinases (MMP-2 and MMP-9) have been implicated in a number of pathological conditions, including cancer and cardiovascular disease. Hence, small molecule inhibitors of these enzymes are highly sought for use as potential therapeutic agents. 2-(4-Phenoxyphenylsulfonylmethyl)thiirane (SB-3CT) has previously been demonstrated to be a potent and selective inhibitor of gelatinases, however, it is rapidly metabolized because of oxidation at the para position of the phenoxy ring and at the alpha-position to the sulfonyl group. alpha-Methyl variants of SB-3CT were conceived to improve metabolic stability and as mechanistic probes. We describe herein the synthesis and evaluation of these structural variants as potent inhibitors of gelatinases. Two (compounds 5b and 5d) among the four synthetic stereoisomers were found to exhibit slow-binding inhibition of gelatinases and MMP-14 (MT1-MMP), which is a hallmark of the mechanism of this class of inhibitors. The ability of these compounds to inhibit MMP-2, MMP-9, and MMP-14 could target cancer tissues more effectively. Metabolism of the newly synthesized inhibitors showed that both oxidation at the alpha-position to the sulfonyl group and oxidation at the para position of the terminal phenyl ring were prevented. Instead oxidation on the thiirane sulfur is the only biotransformation pathway observed for these gelatinase inhibitors.
Yeast cell surface display for lipase whole cell catalyst and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Zhang, Rui; Lian, Zhongshuai
The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less
Carotenoid production and phenotypic variation in Azospirillum brasilense.
Brenholtz, Gal Reem; Tamir-Ariel, Dafna; Okon, Yaacov; Burdman, Saul
2017-06-01
We assessed the occurrence of phenotypic variation in Azospirillum brasilense strains Sp7, Cd, Sp245, Az39 and phv2 during growth in rich media, screening for variants altered in colony pigmentation or extracellular polysaccharide (EPS) production. Previous studies showed that EPS-overproducing variants of Sp7 appear frequently following starvation or growth in minimal medium. In contrast, no such variants were detected during growth in rich media in the tested strains except for few variants of phv2. Regarding alteration in colony pigmentation (from pink to white in strain Cd and from white to pink in the others), strain Sp7 showed a relatively high frequency of variation (0.009-0.026%). Strain Cd showed a lower frequency of alteration in pigmentation (0-0.008%), and this type of variation was not detected in the other strains. In A. brasilense, carotenoid synthesis is controlled by two RpoE sigma factors and their cognate ChrR anti-sigma factors, the latter acting as negative regulators of carotenoid synthesis. Here, all tested (n = 28) pink variants of Sp7 carried mutations in one of the anti-sigma factor genes, chrR1. Our findings indicate that, in A. brasilense, phenotypic variation is strain- and environment-dependent and support the central role of ChrR1 in regulation of carotenoid production. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Song, Yutong; Gorbatsevych, Oleksandr; Liu, Ying; Mugavero, JoAnn; Shen, Sam H; Ward, Charles B; Asare, Emmanuel; Jiang, Ping; Paul, Aniko V; Mueller, Steffen; Wimmer, Eckard
2017-10-10
Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2 Min , a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2 Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2 Min , 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either ( a ) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or ( b ) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.
Beauchemin, André M
2013-11-07
Cope-type hydroaminations are versatile for the direct amination of alkenes, alkynes and allenes using hydroxylamines and hydrazine derivatives. These reactions occur via a concerted, 5-membered cyclic transition state that is the microscopic reverse of the Cope elimination. This article focuses on recent developments, including intermolecular variants, directed reactions, and asymmetric variants using aldehydes as tethering catalysts, and their applications in target-oriented synthesis.
Ghosh, Arun K; R Nyalapatla, Prasanth; Kovela, Satish; Rao, Kalapala Venkateswara; Brindisi, Margherita; Osswald, Heather L; Amano, Masayuki; Aoki, Manabu; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T; Mitsuya, Hiroaki
2018-05-24
The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.
G23D: Online tool for mapping and visualization of genomic variants on 3D protein structures.
Solomon, Oz; Kunik, Vered; Simon, Amos; Kol, Nitzan; Barel, Ortal; Lev, Atar; Amariglio, Ninette; Somech, Raz; Rechavi, Gidi; Eyal, Eran
2016-08-26
Evaluation of the possible implications of genomic variants is an increasingly important task in the current high throughput sequencing era. Structural information however is still not routinely exploited during this evaluation process. The main reasons can be attributed to the partial structural coverage of the human proteome and the lack of tools which conveniently convert genomic positions, which are the frequent output of genomic pipelines, to proteins and structure coordinates. We present G23D, a tool for conversion of human genomic coordinates to protein coordinates and protein structures. G23D allows mapping of genomic positions/variants on evolutionary related (and not only identical) protein three dimensional (3D) structures as well as on theoretical models. By doing so it significantly extends the space of variants for which structural insight is feasible. To facilitate interpretation of the variant consequence, pathogenic variants, functional sites and polymorphism sites are displayed on protein sequence and structure diagrams alongside the input variants. G23D also provides modeling of the mutant structure, analysis of intra-protein contacts and instant access to functional predictions and predictions of thermo-stability changes. G23D is available at http://www.sheba-cancer.org.il/G23D . G23D extends the fraction of variants for which structural analysis is applicable and provides better and faster accessibility for structural data to biologists and geneticists who routinely work with genomic information.
NASA Astrophysics Data System (ADS)
Veitch, Nigel Charles
Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus peroxidase was essential in confirming the identity of residues participating in the aromatic donor molecule binding site of peroxidases.
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F Peter
2016-09-30
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn 2+ than Mg 2+ The human germline R96G variant impairs both Mn 2+ -dependent and Mg 2+ -dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg 2+ -dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn 2+ (0.15 mm) instead of Mg 2+ (2 mm) caused a 770-fold increase in efficiency (k pol /K d ,dCTP ) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in K d ,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in k pol /K d ,dCTP for dCTP insertion opposite G with Mg 2+ when compared with wild type, substantially attenuated by substitution with Mn 2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg 2+ or Mn 2+ , revealed that Mn 2+ achieves more optimal octahedral coordination geometry than Mg 2+ , with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι*
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F. Peter
2016-01-01
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+. The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1–25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1–445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP. The R96G and Δ1–25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+. Crystal structures of pol ι ternary complexes, including the primer terminus 3′-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. PMID:27555320
Diamond family of colloidal supercrystals as phononic metamaterials
NASA Astrophysics Data System (ADS)
Aryana, Kiumars; Zanjani, Mehdi B.
2018-05-01
Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f < 0.45) include smaller bandgaps compared to those with medium filling factors (0.65 > f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.
Rare and low-frequency coding variants alter human adult height
Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas GD; Ng, Maggie CY; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Borst, Gert J.; de Denus, Simon; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna MM; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela AF; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R.B.; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; Hart, Leen M ‘t; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth JF; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume
2016-01-01
Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. PMID:28146470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xuncheng; He, Bo; Anderson, Christopher L.
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
Liu, Xuncheng; He, Bo; Anderson, Christopher L.; ...
2017-05-24
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
Slavchev, Georgi; Michailova, Lilia; Markova, Nadya
2016-12-01
Cell wall-deficient bacterial forms (L-forms) may occur along with resistance to factors that trigger their appearance. It is of interest to study the relationship between the L-form transformation of Mycobacterium tuberculosis and the exhibition of drug tolerance to ethambutol (EMB), an inhibitor of cell wall synthesis. L-form variant was produced from a sensitive EMB strain of M. tuberculosis through a cryogenic stress treatment protocol and was subsequently cultivated in Middlebrook 7H9 semisolid medium, containing EMB in a minimal inhibitory concentration of 2mg/L. Susceptibility to EMB of the parental strain and its L-form variant was evaluated phenotypically and using polymerase chain reaction-restriction fragment length polymorphism assay targeting a mutation in the embB306 gene fragment. In contrast to the sensitivity to EMB of the parental strain, its L-form variant showed phenotypic resistance to high concentrations of EMB (16mg/L), but the mutation in embB306 was not found. Electron microscopy observation of the L-form variant showed a heterogenic population of bacteria, with different degrees of cell wall deficiency, as well as cells of protoplastic type without cell walls. Of special interest were the observed capsule-like structures around the L-form cells and the biofilm-like matrix produced by the L-form population. We suggest that the expression of phenotypic resistance to EMB in M. tuberculosis can be associated with alterations or loss of cell walls in L-form bacteria, respectively, which results in a lack of a specific target for EMB action. In addition, production of capsule-like structures and biofilm matrix by L-forms could contribute to their resistance and survival in the presence of antibacterial agents. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Kangaroo IGF-II is structurally and functionally similar to the human [Ser29]-IGF-II variant.
Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z
1999-06-01
Kangaroo IGF-II has been purified from western grey kangaroo (Macropus fuliginosus) serum and characterised in a number of in vitro assays. In addition, the complete cDNA sequence of mature IGF-II has been obtained by reverse-transcription polymerase chain reaction. Comparison of the kangaroo IGF-II cDNA sequence with known IGF-II sequences from other species revealed that it is very similar to the human variant, [Ser29]-hIGF-II. Both the variant and kangaroo IGF-II contain an insert of nine nucleotides that encode the amino acids Leu-Pro-Gly at the junction of the B and C domains of the mature protein. The deduced kangaroo IGF-II protein sequence also contains three other amino acid changes that are not observed in human IGF-II. These amino acid differences share similarities with the changes described in many of the IGF-IIs reported for non-mammalian species. Characterisation of human IGF-II, kangaroo IGF-II, chicken IGF-II and [Ser29]-hIGF-II in a number of in vitro assays revealed that all four proteins are functionally very similar. No significant differences were observed in the ability of the IGF-IIs to bind to the bovine IGF-II/cation-independent mannose 6-phosphate receptor or to stimulate protein synthesis in rat L6 myoblasts. However, differences were observed in their abilities to bind to IGF-binding proteins (IGFBPs) present in human serum. Kangaroo, chicken and [Ser29]-hIGF-II had lower apparent affinities for human IGFBPs than did human IGF-II. Thus, it appears that the major circulating form of IGF-II in the kangaroo and a minor form of IGF-II found in human serum are structurally and functionally very similar. This suggests that the splice site that generates both the variant and major form of human IGF-II must have evolved after the divergence of marsupials from placental mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang
2010-02-15
The solvothermal syntheses and crystal structures of three indium fluorides are presented. K{sub 5}In{sub 3}F{sub 14} (1) and beta-(NH{sub 4}){sub 3}InF{sub 6} (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In{sub 3}F{sub 15}] trimer templated by tren.
Ashani, Y.; Gupta, R.D.; Goldsmith, M.; Silman, I.; Sussman, J.L.; Tawfik, D. S.; Leader, H.
2010-01-01
Fluorogenic organophosphate inhibitors of acetylcholinesterase (AChE) homologous in structure to nerve agents provide useful probes for high throughput screening of mammalian paraoxonase (PON1) libraries generated by directed evolution of an engineered PON1 variant with wild-type like specificity (rePON1). Wt PON1 and rePON1 hydrolyze preferentially the less-toxic RP enantiomers of nerve agents and of their fluorogenic surrogates containing the fluorescent leaving group, 3-cyano-7-hydroxy-4-methylcoumarin (CHMC). To increase the sensitivity and reliability of the screening protocol so as to directly select rePON1 clones displaying stereo-preference towards the toxic SP enantiomer, and to determine accurately Km and kcat values for the individual isomers, two approaches were used to obtain the corresponding SP and RP isomers: (a) stereo-specific synthesis of the O-ethyl, O-n-propyl, and O-i-propyl analogs; (b) enzymic resolution of a racemic mixture of O-cyclohexyl methylphosphonylated CHMC. The configurational assignments of the SP and RP isomers, as well as their optical purity, were established by X-ray diffraction, reaction with sodium fluoride, hydrolysis by selected rePON1 variants, and inhibition of AChE. The SP configuration of the tested surrogates was established for the enantiomer with the more potent anti-AChE activity, with SP/RP inhibition ratios of 10–100, whereas the RP isomers of the O-ethyl and O-n-propyl were hydrolyzed by wt rePON1 about 600- and 70-fold faster, respectively, than the SP counterpart. Wt rePON1-induced RP/SP hydrolysis ratios for the O-cyclohexyl and O-i-propyl analogs are estimated to be ≫1000. The various SP enantiomers of O-alkyl-methylphosphonyl esters of CHMC provide suitable ligands for screening rePON1 libraries, and can expedite identification of variants with enhanced catalytic proficiency towards the toxic nerve agents. PMID:20303930
Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.
2012-01-01
Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680
Chalubinski, M; Grzegorczyk, J; Grzelak, A; Jarzebska, M; Kowalski, M L
2014-01-01
β2-adrenoreceptor (β2-AR) agonists and glucocorticoids (GCS) were shown to induce IgE synthesis in human PBMCs. Serum total IgE levels are associated with single nucleotide polymorphisms (SNPs) of the β2-AR gene. We aimed to assess the association of the effect of fenoterol (β2-AR agonist) on IL-4-driven and budesonide-induced IgE synthesis with genetic variants of β2-AR. The study included 25 individuals: 13 with allergic asthma and/or allergic rhinitis and 12 healthy volunteers. PBMCs were cultured with IL-4, fenoterol and/or budesonide, and IgE concentrations in supernatants were assessed. Five SNPs in positions: -47, -20, 46, 79 and 252 of β2-AR were determined by direct DNA sequencing. In -47 T/T and -20 T/T patients, incubation with fenoterol resulted in decreased IgE production, whereas in -47 C/T and -47 C/C as well as in -20 C/T and -20 C/C individuals, it was enhanced. In contrast to fenoterol, budesonide-induced IgE synthesis was significantly increased in -47 T/T and -20 T/T patients as compared to -47 C/T, -47 C/C, -20 C/T and -47 C/C individuals. Polymorphisms in positions 46, 79 and 252 were not associated with fenoterol- or budesonide-modulated IgE synthesis. No differences in the distribution of IgE synthesis was seen between atopic and non-atopic individuals carrying the same alleles. The differential effect of β2-agonists and GCS on IgE synthesis may be associated with genetic variants of promoter region of the β2-AR gene. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.
Adams, J G; Steinberg, M H; Newman, M V; Morrison, W T; Benz, E J; Iyer, R
1981-01-01
Hemoglobin Vicksburg was discovered in a 6-year-old Black boy who had been anemic since infancy. Examination of his hemolysate revealed 87.5% Hb F, 2.4% Hb A2, and 7.6% Hb Vicksburg, which had the electrophoretic and chromatographic properties of Hb A. Structural analysis of Hb Vicksburg demonstrated a deletion of leucine at beta 75(E19), a new variant. Hb Vicksburg was neither unstable nor subject to posttranslational degradation. The alpha/non-alpha biosynthetic ratio was 2.6. Because the proband appeared to be a mixed heterozygote for Hb Vicksburg and beta 0-thalassemia, Hb Vicksburg should have comprised the major portion of the hemolysate. Thus, Hb Vicksburg was synthesized at a rate considerably lower than would be expected on the basis of gene dosage. There was no reason to suspect abnormal translation of beta Vicksburg mRNA; in individuals with Hb St. Antoine (beta 74 and beta 75 deleted), the abnormal hemoglobin comprised 25% of the hemolysate in the simple heterozygote yet was unstable. Deletion of beta 75, therefore, would not in itself appear to lead to diminished synthesis. There was a profound deficit of beta Vicksburg mRNA when measured by liquid hybridization analysis with beta cDNA. The most plausible explanation for the low output of Hb Vicksburg is that a mutation for beta +-thalassemia is present in cis to the structural mutation. PMID:6165992
Adams, J G; Steinberg, M H; Newman, M V; Morrison, W T; Benz, E J; Iyer, R
1981-01-01
Hemoglobin Vicksburg was discovered in a 6-year-old Black boy who had been anemic since infancy. Examination of his hemolysate revealed 87.5% Hb F, 2.4% Hb A2, and 7.6% Hb Vicksburg, which had the electrophoretic and chromatographic properties of Hb A. Structural analysis of Hb Vicksburg demonstrated a deletion of leucine at beta 75(E19), a new variant. Hb Vicksburg was neither unstable nor subject to posttranslational degradation. The alpha/non-alpha biosynthetic ratio was 2.6. Because the proband appeared to be a mixed heterozygote for Hb Vicksburg and beta 0-thalassemia, Hb Vicksburg should have comprised the major portion of the hemolysate. Thus, Hb Vicksburg was synthesized at a rate considerably lower than would be expected on the basis of gene dosage. There was no reason to suspect abnormal translation of beta Vicksburg mRNA; in individuals with Hb St. Antoine (beta 74 and beta 75 deleted), the abnormal hemoglobin comprised 25% of the hemolysate in the simple heterozygote yet was unstable. Deletion of beta 75, therefore, would not in itself appear to lead to diminished synthesis. There was a profound deficit of beta Vicksburg mRNA when measured by liquid hybridization analysis with beta cDNA. The most plausible explanation for the low output of Hb Vicksburg is that a mutation for beta +-thalassemia is present in cis to the structural mutation.
Laboratory investigation of hemoglobinopathies and thalassemias: review and update.
Clarke, G M; Higgins, T N
2000-08-01
Structural hemoglobin (Hb) variants typically are based on a point mutation in a globin gene that produce a single amino acid substitution in a globin chain. Although most are of limited clinical significance, a few important subtypes have been identified with some frequency. Homozygous Hb C and Hb S (sickle cell disease) produce significant clinical manifestations, whereas Hb E and Hb D homozygotes may be mildly symptomatic. Although heterozygotes for these variants are typically asymptomatic, diagnosis may be important for genetic counseling. Thalassemia, in contrast, results from quantitative reductions in globin chain synthesis. Those with diminished beta-globin chains are termed beta-thalassemias, whereas those with decreased alpha-chain production are called alpha-thalassemias. Severity of clinical manifestations in these disorders relates to the amount of globin chain produced and the stability of residual chains present in excess. The thalassemia minor syndromes are characterized clinically by mild anemia with persistent microcytosis. Thalassemia intermedia (i.e., Hb H disease) is typified by a moderate, variably compensated hemolytic anemia that may present with clinical symptoms during a period of physiologic stress such as infection, pregnancy, or surgery. The thalassemia major syndromes produce severe, life-threatening anemia. alpha-Thalassemia major usually is incompatible with extrauterine life; beta-thalassemia major presents in infancy and requires life-long transfusion therapy and/or bone marrow transplantation for successful control of the disease. Double heterozygosity for certain structural variants and/or thalassemia syndromes may also lead to severe clinical disease. Several guidelines have been published that outline the required steps for hemoglobinopathy and thalassemia investigation. The availability of HPLC has streamlined many of these requirements, allowing an efficient stepwise diagnostic strategy for these complex disorders.
Lin, Yi-Chun; Hsu, Ju-Yu; Shu, Jui-Hsu; Chi, Yi; Chiang, Su-Chi; Lee, Sho Tone
2008-11-01
Genome-wide search for the genes involved in arsenite resistance in two distinct variants A and A' of Leishmania amazonensis revealed that the two variants used two different mechanisms to achieve resistance, even though these two variants were derived from the same clone and selected against arsenite under the same conditions. In variant A, the variant with DNA amplification, the biochemical pathways for detoxification of oxidative stress, the energy generation system to support the biochemical and physiological needs of the variant for DNA and protein synthesis and the arsenite translocating system to dispose arsenite are among the primary biochemical events that are upregulated under the arsenite stress to gain resistance. In variant A', the variant without DNA amplification, the upregulation of aquaglyceroporin (AQP) gene and the high level of resistance to arsenate point to the direction that the resistance gained by the variant is due to arsenate which is probably oxidized from arsenite in the arsenite solution used for selection and the maintenance of the cell culture. As a result of the AQP upregulation for arsenite disposal, a different set of biochemical pathways for detoxification of oxidative stress, energy generation and cellular signaling are upregulated to sustain the growth of the variant to gain resistance to arsenate. From current evidences, reactive oxygen species (ROS) overproduced by the parasite soon after exposure to arsenite appear to play an instrumental role in both variants to initiate the subsequent biochemical events that allow the same clone of L. amazonensis to take two totally different routes to diverge into two different variants.
Rare and low-frequency coding variants alter human adult height.
Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas G D; Ng, Maggie C Y; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul I W; de Borst, Gert J; de Denus, Simon; de Groot, Mark C H; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela A F; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; 't Hart, Leen M; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume
2017-02-09
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.
Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A
2015-05-18
A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
G2S: a web-service for annotating genomic variants on 3D protein structures.
Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong
2018-06-01
Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu
Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effectivemore » moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and decreases for the late rare-earth metal analogs. • Experimental and theoretical work suggest limiting solubility range RE{sub ≈3}Ca{sub ≈2}Ge{sub 3}.« less
Sahiner, U M; Semic-Jusufagic, A; Curtin, J A; Birben, E; Belgrave, D; Sackesen, C; Simpson, A; Yavuz, T S; Akdis, C A; Custovic, A; Kalayci, O
2014-12-01
Genetic variants in endotoxin signaling pathway are important in modulating the effect of environmental endotoxin on asthma and atopic phenotypes. Our objective was to determine the single nucleotide polymorphisms (SNPs) in the endotoxin signaling pathway that may influence in vitro IgE synthesis and to investigate the relationship between these variants and endotoxin exposure in relation to the development of asthma and atopy in a birth cohort. Peripheral blood mononuclear cells from 45 children with asthma were stimulated with 2 and 200 ng/ml lipopolysaccharide in vitro and IgE was measured in the culture supernatants. Children were genotyped for 121 SNPs from 30 genes in the endotoxin signaling pathway. Variants with a dose-response IgE production in relation to lipopolysaccharide (LPS) were selected for replication in a population-based birth cohort, in which we investigated the interaction between these SNPs and endotoxin exposure in relation to airway hyper-responsiveness, wheeze, and atopic sensitization. Twenty-one SNPs in nine genes (CD14, TLR4, IRF3, TRAF-6, TIRAP, TRIF, IKK-1, ST-2, SOCS1) were found to modulate the effect of endotoxin on in vitro IgE synthesis, with six displaying high linkage disequilibrium. Of the remaining 15 SNPs, for seven we found significant relationships between genotype and endotoxin exposure in the genetic association study in relation to symptomatic airway hyper-responsiveness (CD14-rs2915863 and rs2569191, TRIF-rs4807000), current wheeze (ST-2-rs17639215, IKK-1-rs2230804, and TRIF-rs4807000), and atopy (CD14-rs2915863 and rs2569192, TRAF-6-rs5030411, and IKK-1-rs2230804). Variants in the endotoxin signaling pathway are important determinants of asthma and atopy. The genotype effect is a function of the environmental endotoxin exposure. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pereira, Tiago V; Mingroni-Netto, Regina C
2011-06-06
The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.
Interstate 73 economic impact analysis : a summary and synthesis.
DOT National Transportation Integrated Search
1994-01-01
The Transportation Planning Division (TPD) of the Virginia Department of Transportation (VDOT) is currently considering seven corridors along which VDOT may build the future Interstate 73. The division describes these seven routes and their variants ...
Fu, Dong-Jun; Zhang, Li; Song, Jian; Mao, Ruo-Wang; Zhao, Ruo-Han; Liu, Ying-Chao; Hou, Yu-Hui; Li, Jia-Huan; Yang, Jia-Jia; Jin, Cheng-Yun; Li, Ping; Zi, Xiao-Lin; Liu, Hong-Min; Zhang, Sai-Yang; Zhang, Yan-Bing
2017-01-01
A series of novel formononetin-dithiocarbamate derivatives were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell line (MGC-803, EC-109, PC-3). The first structure-activity relationship (SAR) for this formononetin-dithiocarbamate scaffold is explored in this report with evaluation of 14 variants of the structural class. Among these analogues, tert-butyl 4-(((3-((3-(4-methoxyphenyl)-4-oxo-4H–chromen-7-yl)oxy)propyl)thio)carbonothioyl)piperazine-1-carboxylate (8i) showed the best inhibitory activity against PC-3 cells (IC50 = 1. 97 µM). Cellular mechanism studies elucidated 8i arrests cell cycle at G1 phase and regulates the expression of G1 checkpoint-related proteins in concentration-dependent manners. Furthermore, 8i could inhibit cell growth via MAPK signaling pathway and inhibit migration via Wnt pathway in PC-3 cells. PMID:28038329
A grand unified model for liganded gold clusters
NASA Astrophysics Data System (ADS)
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-12-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.
Sokolova, E P; Demidova, G V; Ziuzina, V P; Alekseeva, L P; Bespalova, I A; Tynianova, V I
2010-01-01
AIM. To study dynamics of synthesis of TNF-alpha and INF-gamma by cell line U-937 human monocytes under the effect of Yersinia pestis EV 76 lypopolysaccharides (LPS) with different levels of toxicity: original LPS28 and LPS37 as well as their conformationally--changed variants with enhanced toxicity--complex of LPS with murine toxin (MT) of Y. pestis, and LPS modified by biologicall active compound (BAC) obtained from human erythrocytes. Using phenol method, LPS were obtained from Y. pestis EV 76 cells grown at 28 and 37 degrees C. Production of cytokines was measured by ELISA. It was shown that original and modified forms of LPS28 and LPS37 induce synthesis of both TNF-alpha and INF-gamma by human monocytes. Expression of genes for two ways of synthesis of these cytokines points to activation and transmission of signal induced by all studied forms of Y. pestis EV 76 LPS through TLR4. Levels of activity of MyD88-dependent and MyD88-independent signaling pathways are different and depend from chemical structure of LPS28 and LPS37, conformation of their modified forms and duration of their exposition with monocytes. Dynamics ofcytokine synthesis corresponds to response of synergized TLR on activation with profound agonistic/antagonistic effect. It was determined that conformational modifications of Y. pestis EV76 LPS occurring due to effect of MT and BAC accompanied by quantitative, qualitative and temporal changes of TNF-alpha and INF-gamma synthesis by human monocytes and correlate with increase of their toxic properties.
Okamoto, Ryo; Mandal, Kalyaneswar; Ling, Morris; Luster, Andrew D; Kajihara, Yasuhiro; Kent, Stephen B H
2014-05-12
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T-cells and acts as a chemoattractant for monocytes. Originally, CCL1 was identified as a 73 amino acid protein having one N-glycosylation site, and a variant 74 residue non-glycosylated form, Ser-CCL1, has also been described. There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser-CCL1. Here we report the total chemical syntheses of both N-glycosylated and non-glycosylated forms of (Ser-)CCL1, by convergent native chemical ligation. We used an N-glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide-(α) thioester building block. Chemotaxis assays of these glycoproteins and the corresponding non-glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser-)CCL1 using homogeneous N-glycosylated protein molecules of defined covalent structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?
Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander
2013-01-01
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660
Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?
Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander
2013-09-03
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Jones, Tim D.; Hearn, Arron R.; Holgate, Robert G.E.; Kozub, Dorota; Fogg, Mark H.; Carr, Francis J.; Baker, Matthew P.; Lacadena, Javier; Gehlsen, Kurt R.
2016-01-01
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics. PMID:27578884
Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.
Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T
2018-05-29
Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.
Li, Dangdang; Zhang, Shasha; Song, Zehua; Li, Wei; Zhu, Feng; Zhang, Jiwen; Li, Shengkun
2018-01-01
The synthesis of antifungal natural product drimenal was accomplished. Bio-inspired optimization protruded chiral 8-(R)-drimane fused oxazinone D as a lead, considering favorable physicochemical profiles for novel pesticides. The improved scalable synthesis of scaffold D was implemented by Hofmann rearrangment under mild conditions. Detailed structural optimization was discussed for both antifungal and antibacterial exploration. Substituted groups (SGs) with C 3 ∼C 5 hydrocarbon chain are recommended for exploration of antifungal agents, while substituents with C 4 ∼C 6 carbon length are preferred for antibacterial ingredients. The chiral drimane fused oxazinone D8 was selected as a promising antifungal candidate against Botrytis cirerea, with an EC 50 value of 1.18 mg/L, with the enhancement of up to >25 folds and >80 folds than the mother compound D, and acyclic counterpart AB5, respectively. The in vivo bioassay confirmed much better preservative effect of D8 than that of Carbendazim. The chiral oxazinone variant D10 possessed prominent antibacterial activity, with MIC values of 8 mg/L against both Bacillus subtilis and Ralstonia solanacearum, showing advantages over the positive control streptomycin sulfate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002
15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less
Molecular models of NS3 protease variants of the Hepatitis C virus.
da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F
2005-01-21
Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
NASA Astrophysics Data System (ADS)
Pozharskii, A. F.; Kachalkina, S. G.; Gulevskaya, A. V.; Filatova, E. A.
2017-07-01
The data on the synthesis and properties of benzo[g]indoles accumulated mainly over a period of the past 15-20 years are integrated. Various variants of pyrrole ring and naphthalene nucleus closure are considered. It is demonstrated that, in addition to the expected similarity between benzo[g]indoles and indoles, there are noticeable differences between them as well, especially where the synthesis of the benzoindole system is concerned. Practical applications of benzo[g]indoles are discussed. The bibliography includes 199 references.
Structural variants of yeast prions show conformer-specific requirements for chaperone activity
Stein, Kevin C.; True, Heather L.
2016-01-01
Summary Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1, and its human ortholog Hdj1, had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation. PMID:25060529
Atypical face shape and genomic structural variants in epilepsy
Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter
2012-01-01
Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390
Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A
2018-01-23
Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating spatial proximity analyses into other pathogenicity prediction tools may improve accuracy for other genes and genetic diseases.
Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P▿
O'Shea, Eileen F.; O'Connor, Paula M.; Cotter, Paul D.; Ross, R. Paul; Hill, Colin
2010-01-01
Two-component salivaricin P-like bacteriocins have demonstrated potential as antimicrobials capable of controlling infections in the gastrointestinal tract (GIT). The anti-Listeria activity of salivaricin P is optimal when the individual peptides Sln1 and Sln2 are added in succession at a 1:1 ratio. However, as degradation by digestive proteases may compromise the functionality of these peptides within the GIT, we investigated the potential to create salivaricin variants with enhanced resistance to the intestinal protease trypsin. A total of 11 variants of the salivaricin P components, in which conservative modifications at the trypsin-specific cleavage sites were explored in order to protect the peptides from trypsin degradation while maintaining their potent antimicrobial activity, were generated. Analysis of these variants revealed that eight were resistant to trypsin digestion while retaining antimicrobial activity. Combining the complementary trypsin-resistant variants Sln1-5 and Sln2-3 resulted in a MIC50 of 300 nM against Listeria monocytogenes, a 3.75-fold reduction in activity compared to the level for wild-type salivaricin P. This study demonstrates the potential of engineering bacteriocin variants which are resistant to specific protease action but which retain significant antimicrobial activity. PMID:20581174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya
Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.
Thomas, Vanessa A.; Kothari, Ninad; Bhagia, Samarthya; ...
2017-11-30
Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems.
Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases.
Ranza, E; Huber, C; Levin, N; Baujat, G; Bole-Feysot, C; Nitschke, P; Masson, C; Alanay, Y; Al-Gazali, L; Bitoun, P; Boute, O; Campeau, P; Coubes, C; McEntagart, M; Elcioglu, N; Faivre, L; Gezdirici, A; Johnson, D; Mihci, E; Nur, B G; Perrin, L; Quelin, C; Terhal, P; Tuysuz, B; Cormier-Daire, V
2017-06-01
The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hfq variant with altered RNA binding functions
Ziolkowska, Katarzyna; Derreumaux, Philippe; Folichon, Marc; Pellegrini, Olivier; Régnier, Philippe; Boni, Irina V.; Hajnsdorf, Eliane
2006-01-01
The interaction between Hfq and RNA is central to multiple regulatory processes. Using site-directed mutagenesis, we have found a missense mutation in Hfq (V43R) which strongly affects2 the RNA binding capacity of the Hfq protein and its ability to stimulate poly(A) tail elongation by poly(A)-polymerase in vitro. In vivo, overexpression of this Hfq variant fails to stimulate rpoS–lacZ expression and does not restore a normal growth rate in hfq null mutant. Cells in which the wild-type gene has been replaced by the hfqV43R allele exhibit a phenotype intermediate between those of the wild-type and of the hfq minus or null strains. This missense mutation derepresses Hfq synthesis. However, not all Hfq functions are affected by this mutation. For example, HfqV43R represses OppA synthesis as strongly as the wild-type protein. The dominant negative effect of the V43R mutation over the wild-type allele suggests that hexamers containing variant and genuine subunits are presumably not functional. Finally, molecular dynamics studies indicate that the V43R substitution mainly changes the position of the K56 and Y55 side chains involved in the Hfq–RNA interaction but has probably no effect on the folding and the oligomerization of the protein. PMID:16449205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, J.E.; Thomas, G.H.; Park, S.D.
1979-01-01
Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with (/sup 3/H)thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of (/sup 3/H)thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added duringmore » the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.« less
Selective destruction of cells infected with human immunodeficiency virus
Keener, William K.; Ward, Thomas E.
2003-09-30
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Synthesis and nonstoichiometry of the zirconium trihalides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daake, R.L.; Corbett, J.D.
1978-05-01
The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less
NASA Astrophysics Data System (ADS)
Anderson, Lissa C.; Håkansson, Maria; Walse, Björn; Nilsson, Carol L.
2017-09-01
Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a 45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM. [Figure not available: see fulltext.
Grunina, T M; Demidenko, A V; Lyaschuk, A M; Poponova, M S; Galushkina, Z M; Soboleva, L A; Cherepushkin, S A; Polyakov, N B; Grumov, D A; Solovyev, A I; Zhukhovitsky, V G; Boksha, I S; Subbotina, M E; Gromov, A V; Lunin, V G; Karyagina, A S
2017-11-01
Three variants of human recombinant erythropoietin (rhEPO) with additional N-terminal protein domains were obtained by synthesis in an Escherichia coli heterologous expression system. These domains included (i) maltose-binding protein (MBP), (ii) MBP with six histidine residues (6His) in N-terminal position, (iii) s-tag (15-a.a. oligopeptide derived from bovine pancreatic ribonuclease A) with N-terminal 6His. Both variants of the chimeric protein containing MBP domain were prone to aggregation under nondenaturing conditions, and further purification of EPO after the domain cleavage by enterokinase proved to be impossible. In the case of 6His-s-tag-EPO chimeric protein, the products obtained after cleavage with enterokinase were successfully separated by column chromatography, and rhEPO without additional domains was obtained. Results of MALDI-TOF mass spectrometry showed that after refolding 6His-s-tag-EPO formed a structure similar to that of one of native EPO with two disulfide bonds. Both 6His-s-tag-EPO and rhEPO without additional protein domains purified after proteolysis possessed the same biological activity in vitro in the cell culture.
Entry kinetics and mouse virulence of Ross River virus mutants altered in neutralization epitopes.
Vrati, S; Kerr, P J; Weir, R C; Dalgarno, L
1996-03-01
Previously we identified the locations of three neutralization epitopes (a, b1 and b2) of Ross River virus (RRV) by sequencing a number of variants resistant to monoclonal antibody neutralization which were found to have single amino acid substitutions in the E2 protein (S. Vrati, C.A. Fernon, L. Dalgarno, and R.C. Weir, Virology 162:346-353, 1988). We have now studied the biological properties of these variants in BHK cells and their virulence in mice. While variants altered in epitopes a and/or b1 showed no difference, variants altered in epitope b2, including a triple variant altered in epitopes a, b1, and b2, showed rapid penetration but retarded kinetics of growth and RNA and protein synthesis in BHK cells compared with RRV T48, the parent virus. Variants altered in epitopes a and/or b1 showed no change in mouse virulence. However, two of the six epitope b2 variants examined had attenuated mouse virulence. They had a four- to fivefold-higher 50% lethal dose (LD50), although no change in the average survival time of infected mice was observed. These variants grew to titers in mouse tissues similar to those of RRV T48. The ID50 of the triple variant was unchanged, but infected mice had an increased average survival time. This variant produced lower levels of viremia in infected mice. On the basis of these findings we propose that both the receptor binding site and neutralization epitopes of RRV are nearby or in the same domain of the E2 protein.
Sequencing Structural Variants in Cancer for Precision Therapeutics.
Macintyre, Geoff; Ylstra, Bauke; Brenton, James D
2016-09-01
The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploration of RNA Sequence Space in the Absence of a Replicase.
Tirumalai, Madhan R; Tran, Quyen; Paci, Maxim; Chavan, Dimple; Marathe, Anuradha; Fox, George E
2018-05-11
It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.
Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine
2013-01-01
BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394
Synthesis of Arbitrary Quantum Circuits to Topological Assembly: Systematic, Online and Compact.
Paler, Alexandru; Fowler, Austin G; Wille, Robert
2017-09-05
It is challenging to transform an arbitrary quantum circuit into a form protected by surface code quantum error correcting codes (a variant of topological quantum error correction), especially if the goal is to minimise overhead. One of the issues is the efficient placement of magic state distillation sub circuits, so-called distillation boxes, in the space-time volume that abstracts the computation's required resources. This work presents a general, systematic, online method for the synthesis of such circuits. Distillation box placement is controlled by so-called schedulers. The work introduces a greedy scheduler generating compact box placements. The implemented software, whose source code is available at www.github.com/alexandrupaler/tqec, is used to illustrate and discuss synthesis examples. Synthesis and optimisation improvements are proposed.
In situ click chemistry: a powerful means for lead discovery.
Sharpless, K Barry; Manetsch, Roman
2006-11-01
Combinatorial chemistry and parallel synthesis are important and regularly applied tools for lead identification and optimisation, although they are often accompanied by challenges related to the efficiency of library synthesis and the purity of the compound library. In the last decade, novel means of lead discovery approaches have been investigated where the biological target is actively involved in the synthesis of its own inhibitory compound. These fragment-based approaches, also termed target-guided synthesis (TGS), show great promise in lead discovery applications by combining the synthesis and screening of libraries of low molecular weight compounds in a single step. Of all the TGS methods, the kinetically controlled variant is the least well known, but it has the potential to emerge as a reliable lead discovery method. The kinetically controlled TGS approach, termed in situ click chemistry, is discussed in this article.
Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing.
Beerens, Koen; De Winter, Karel; Van de Walle, Davy; Grootaert, Charlotte; Kamiloglu, Senem; Miclotte, Lisa; Van de Wiele, Tom; Van Camp, John; Dewettinck, Koen; Desmet, Tom
2017-07-26
Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C. Process optimization allowed kojibiose production at the kilogram scale, and simple but efficient downstream processing, using a yeast treatment and crystallization, resulted in more than 3 kg of highly pure crystalline kojibiose (99.8%). These amounts allowed a deeper characterization of its potential in food applications. It was found to have possible beneficial health effects, including delayed glucose release and potential to trigger SCFA production. Finally, we compared the bulk functionality of highly pure kojibiose to that of sucrose, hereby mapping its potential as a new sweetener in confectionery products.
Ciarlo, Eleonora; Massone, Sara; Penna, Ilaria; Nizzari, Mario; Gigoni, Arianna; Dieci, Giorgio; Russo, Claudio; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2013-03-01
Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.
Common genetic variants influence human subcortical brain structures.
Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E
2015-04-09
The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru
2016-08-15
Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less
Wild yeast harbor a variety of distinct amyloid structures with strong prion-inducing capabilities
Westergard, Laura; True, Heather L.
2014-01-01
Summary Variation in amyloid structures profoundly influences a wide array of pathological phenotypes in mammalian protein conformation disorders and dominantly inherited phenotypes in yeast. Here, we describe, for the first time, naturally occurring, self-propagating, structural variants of a prion protein isolated from wild strains of the yeast Saccharomyces cerevisiae. Variants of the [RNQ+] prion propagating in a variety of wild yeast differ biochemically, in their intracellular distributions, and in their ability to promote formation of the [PSI+] prion. [PSI+] is an epigenetic regulator of cellular phenotype and adaptability. Strikingly, we find that most natural [RNQ+] variants induced [PSI+] at high frequencies and the majority of [PSI+] variants elicited strong cellular phenotypes. We hypothesize that the presence of an efficient [RNQ+] template primes the cell for [PSI+] formation in order to induce [PSI+] in conditions where it would be advantageous. These studies utilize naturally occurring structural variants to expand our understanding of the consequences of diverse prion conformations on cellular phenotypes. PMID:24673812
Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy
2017-01-05
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.
Koomen, Jeroen; den Besten, Heidy M W; Metselaar, Karin I; Tempelaars, Marcel H; Wijnands, Lucas M; Zwietering, Marcel H; Abee, Tjakko
2018-06-07
Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistance-associated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inlA, inlB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype in rpsU variants. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Zintzaras, Elias; Doxani, Chrysoula; Rodopoulou, Paraskevi; Bakalos, Georgios; Ziogas, Dimitris C; Ziakas, Panayiotis; Voulgarelis, Michael
2012-04-01
Acute lymphoblastic leukemia (ALL) is a complex disease with genetic background. The genetic association studies (GAS) that investigated the association between ALL and the MTHFR C677T and A1298C gene variants have produced contradictory or inconclusive results. In order to decrease the uncertainty of estimated genetic risk effects, a meticulous meta-analysis of published GAS related the variants in the MTFHR gene with susceptibility to ALL was conducted. The risk effects were estimated based on the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)). Cumulative and recursive cumulative meta-analyses were also performed. The analysis showed marginal significant association for the C677T variant, overall [OR=0.91 (0.82-1.00) and OR(G)=0.89 (0.79-1.01)], and in Whites [OR=0.88 (0.77-0.99) and OR(G)=0.85 (0.73-0.99)]. The A1298C variant produced non-significant results. For both variants, the cumulative meta-analysis did not show a trend of association as evidence accumulates and the recursive cumulative meta-analysis indicated lack of sufficient evidence for denying or claiming an association. The current evidence is not sufficient to draw definite conclusions regarding the association of MTHFR variants and development of ALL. Copyright © 2011 Elsevier Ltd. All rights reserved.
Buck, Dorothea; Albrecht, Eva; Aslam, Muhammad; Goris, An; Hauenstein, Natalie; Jochim, Angela; Cepok, Sabine; Grummel, Verena; Dubois, Bénédicte; Berthele, Achim; Lichtner, Peter; Gieger, Christian; Winkelmann, Juliane; Hemmer, Bernhard
2013-01-01
Intrathecal synthesis of immunoglobulin gamma (IgG) synthesis is frequently observed in patients with multiple sclerosis (MS). Whereas the extent of intrathecal IgG synthesis varies largely between patients, it remains rather constant in the individual patient over time. The aim of this study was to identify common genetic variants associated with the IgG index as a marker of intrathecal IgG synthesis in MS. We performed a genome-wide association study of the IgG index in a discovery series of 229 patients. For confirmation we performed a replication in 2 independent series comprising 256 and 153 patients, respectively. The impact of associated single nucleotide polymorphisms (SNPs) on MS susceptibility was analyzed in an additional 1,854 cases and 5,175 controls. Significant association between the IgG index and 5 SNPs was detected in the discovery and confirmed in both replication series reaching combined p values of p = 6.5 × 10(-11) to p = 7.5 × 10(-16) . All identified SNPs are clustered around the immunoglobulin heavy chain (IGHC) locus on chromosome 14q32.33 and are in linkage disequilibrium (r(2) range, 0.71-0.95). The best associated SNP is located in an intronic region of the immunoglobulin gamma3 heavy chain gene. Additional sequencing identified the GM21* haplotype to be associated with a high IgG index. Further evaluation of the IGHC SNPs revealed no association with susceptibility to MS in our data set. The extent of intrathecal IgG in MS is influenced by the IGHC locus. No association with susceptibility to MS was found. Therefore GM haplotypes might affect intrathecal IgG synthesis independently of the underlying disease. Copyright © 2012 American Neurological Association.
Chan, Yvonne Gar-Yun; Kim, Hwan Keun; Schneewind, Olaf; Missiakas, Dominique
2014-01-01
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan. PMID:24753256
Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun
2014-10-20
DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and cancer susceptibility to genotoxic carcinogens.
2015-01-01
DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1–445) proteins and DNA templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg2+ (but not with Mn2+), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg2+). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg2+ or Mn2+, except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The Δ1–25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg2+), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1–25 variant, was ∼7-fold stronger with 0.15 mM Mn2+ than with Mg2+. The results indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι, whereas the Δ1–25 variation selectively and substantially enhances the Mg2+-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and cancer susceptibility to genotoxic carcinogens. PMID:25162224
Yin, Xiaojian; Komatsu, Setsuko
2016-07-01
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Ozawa, Tatsuhiko; Kondo, Masato; Isobe, Masaharu
2004-01-01
The 3' rapid amplification of cDNA ends (3' RACE) is widely used to isolate the cDNA of unknown 3' flanking sequences. However, the conventional 3' RACE often fails to amplify cDNA from a large transcript if there is a long distance between the 5' gene-specific primer and poly(A) stretch, since the conventional 3' RACE utilizes 3' oligo-dT-containing primer complementary to the poly(A) tail of mRNA at the first strand cDNA synthesis. To overcome this problem, we have developed an improved 3' RACE method suitable for the isolation of cDNA derived from very large transcripts. By using the oligonucleotide-containing random 9mer together with the GC-rich sequence for the suppression PCR technology at the first strand of cDNA synthesis, we have been able to amplify the cDNA from a very large transcript, such as the microtubule-actin crosslinking factor 1 (MACF1) gene, which codes a transcript of 20 kb in size. When there is no splicing variant, our highly specific amplification allows us to perform the direct sequencing of 3' RACE products without requiring cloning in bacterial hosts. Thus, this stepwise 3' RACE walking will help rapid characterization of the 3' structure of a gene, even when it encodes a very large transcript.
Yue, Shiyu; Li, Jing; Wang, Lei; ...
2018-03-05
Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less
Control of cell cycle by metabolites of prostaglandin D2 through a non-cAMP mediated mechanism
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Fukushima, M.
1993-01-01
The dehydration products of PGD2, 9-deoxy-9 prostaglandin D2(PGJ2), 9-deoxy-delta 9, delta 12, delta 13 dehydroprostaglandin D2 (delta 12 PGJ2), and PGA2 all contain an unsaturated cyclopentenone structure which is characteristic of prostaglandins which effectively inhibit cell growth. It has been suggested that the action of the inhibitory prostaglandins may be through a cAMP mechanism. In this study, we use S49 wild type (WT) and adenylate cyclase variant (cyc-) cells to show that PGD2 and PGJ2 are not acting via a cyclic AMP mechanism. First, the increase in cyclic AMP in wild type S-49 cells is not proportional to its effects on DNA synthesis. More importantly, when S-49 cyc- cells were exposed to PGJ2, the adenylate cyclase (cyc-) mutant had decreased DNA synthesis with no change in its nominal cAMP content. Short-term (2 hours or less) exposure of the cyc- cells to prostaglandin J2 caused an inhibition of DNA synthesis. PGJ2 caused cytolysis at high concentrations. Long-term exposure (>14 hrs) of the cells to PGJ2, delta 12PGJ2 or delta 12, delta 14PGJ2 caused a cell cycle arrest in G1 demonstrating a cell cycle specific mechanism of action for growth inhibition by naturally occurring biological products independent of cAMP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Shiyu; Li, Jing; Wang, Lei
Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less
Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.
Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343
A grand unified model for liganded gold clusters
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-01-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848
Roberts, Shirley M; Davies, Gideon J
2012-01-01
The three-dimensional (3-D) structures of cellulases, and other glycoside hydrolases, are a central feature of research in carbohydrate chemistry and biochemistry. 3-D structure is used to inform protein engineering campaigns, both academic and industrial, which are typically used to improve the stability or activity of an enzyme. Examples of classical protein engineering goals include higher thermal stability, reduced metal-ion dependency, detergent and protease resistance, decreased product inhibition, and altered specificity. 3-D structure may also be used to interpret the behavior of enzyme variants that are derived from screening or random mutagenesis approaches, with a view to establishing an iterative design process. In other areas, 3-D structure is used as one of the many tools to probe enzymatic catalysis, typically dovetailing with physical organic chemistry approaches to provide complete reaction mechanisms for enzymes by visualizing catalytic site interactions at different stages of the reaction. Such mechanistic insight is not only fundamentally important, impacting on inhibitor and drug design approaches with ramifications way beyond cellulose hydrolysis, but also provides the framework for the design of enzyme variants to use as biocatalysts for the synthesis of bespoke oligosaccharides. Here we review some of the strategies and tactics that may be applied to the X-ray structure solution of cellulases (and other carbohydrate-active enzymes). The general approach is first to decide why you are doing the work, then to establish correct domain boundaries for truncated constructs (typically the catalytic domain only), and finally to pursue crystallization of pure, homogeneous, and monodisperse protein with appropriate ligand and additive combinations. Cellulase-specific strategies are important for the delineation of domain boundaries, while glycoside hydrolases generally also present challenges and opportunities for the selection and optimization of ligands to both aid crystallization, and also provide structural and mechanistic insight. As the many roles for plant cell wall degrading enzymes increase, so does the need for rapid high-quality structure determination to provide a sound structural foundation for understanding mechanism and specificity, and for future protein engineering strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Tabassum, Asra; Rajeshwari, Tadigadapa; Soni, Nidhi; Raju, D S B; Yadav, Mukesh; Nayarisseri, Anuraj; Jahan, Parveen
2014-03-01
Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alteration directly affects their structural stability through conformational changes. Presence of these conformational changes near catalytic site or active site may alter protein function and as a consequence receptor-ligand complex interactions. The present investigation includes assessment of human podocin mutations (G92C, P118L, R138Q, and D160G) on its structure. Podocin is an important glomerular integral membrane protein thought to play a key role in steroid resistant nephrotic syndrome. Podocin has a hairpin like structure with 383 amino acids, it is an integral protein homologous to stomatin, and acts as a molecular link in a stretch-sensitive system. We modeled 3D structure of podocin by means of Modeller and validated via PROCHECK to get a Ramachandran plot (88.5% in most favored region), main chain, side chain, bad contacts, gauche and pooled standard deviation. Further, a protein engineering tool Triton was used to induce mutagenesis corresponding to four variants G92C, P118L, R138Q and D160G in the wild type. Perusal of energies of wild and mutated type of podocin structures confirmed that mutated structures were thermodynamically more stable than wild type and therefore biological events favored synthesis of mutated forms of podocin than wild type. As a conclusive part, two mutations G92C (-8179.272 kJ/mol) and P118L (-8136.685 kJ/mol) are more stable and probable to take place in podocin structure over wild podocin structure (-8105.622 kJ/mol). Though there is lesser difference in mutated and wild type (approximately, 74 and 35 kJ/mol), it may play a crucial role in deciding why mutations are favored and occur at the genetic level.
Stellar Populations in BL Lac type Objects
NASA Astrophysics Data System (ADS)
Serote Roos, Margarida
The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).
Biofuel metabolic engineering with biosensors.
Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F
2016-12-01
Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
De novo design of recombinant spider silk proteins for material applications.
Zheng, Ke; Ling, Shengjie
2018-05-21
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies were developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, we first introduce the structure-property-function relationship of spider silks. Then, we discuss the recent progress in the genetic synthesis of RSSPs and summarize their related multiscale self-assembly behaviors. Finally, we outline works utilizing multiscale modeling to assist RSSP material design. This article is protected by copyright. All rights reserved.
Fu, Dong-Jun; Zhang, Li; Song, Jian; Mao, Ruo-Wang; Zhao, Ruo-Han; Liu, Ying-Chao; Hou, Yu-Hui; Li, Jia-Huan; Yang, Jia-Jia; Jin, Cheng-Yun; Li, Ping; Zi, Xiao-Lin; Liu, Hong-Min; Zhang, Sai-Yang; Zhang, Yan-Bing
2017-02-15
A series of novel formononetin-dithiocarbamate derivatives were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell line (MGC-803, EC-109, PC-3). The first structure-activity relationship (SAR) for this formononetin-dithiocarbamate scaffold is explored in this report with evaluation of 14 variants of the structural class. Among these analogues, tert-butyl 4-(((3-((3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)propyl)thio)carbonothioyl)piperazine-1-carboxylate (8i) showed the best inhibitory activity against PC-3 cells (IC 50 = 1.97 μM). Cellular mechanism studies elucidated 8i arrests cell cycle at G1 phase and regulates the expression of G1 checkpoint-related proteins in concentration-dependent manners. Furthermore, 8i could inhibit cell growth via MAPK signaling pathway and inhibit migration via Wnt pathway in PC-3 cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Visani, G; Loscocco, F; Ruzzo, A; Galimberti, S; Graziano, F; Voso, M T; Giacomini, E; Finelli, C; Ciabatti, E; Fabiani, E; Barulli, S; Volpe, A; Magro, D; Piccaluga, P; Fuligni, F; Vignetti, M; Fazi, P; Piciocchi, A; Gabucci, E; Rocchi, M; Magnani, M; Isidori, A
2017-12-05
We evaluated the impact of genomic polymorphisms in folate-metabolizing, DNA synthesis and DNA repair enzymes on the clinical outcome of 108 patients with myelodysplastic syndromes (MDS) receiving best supportive care (BSC) or azacitidine. A statistically significant association between methylenetetrahydrofolate reductase (MTHFR) 677T/T, thymidylate synthase (TS) 5'-untranslated region (UTR) 3RG, TS 3'-UTR -6 bp/-6 bp, XRCC1 399G/G genotypes and short survival was found in patients receiving BSC by multivariate analysis (P<0.001; P=0.026; P=0.058; P=0.024). MTHFR 677T/T, TS 3'-UTR -6 bp/-6 bp and XRCC1 399G/G genotypes were associated with short survival in patients receiving azacitidine by multivariate analysis (P<0.001; P=0.004; P=0.002). We then performed an exploratory analysis to evaluate the effect of the simultaneous presence of multiple adverse variant genotypes. Interestingly, patients with ⩾1 adverse genetic variants had a short survival, independently from their International Prognostic Scoring System (IPSS) and therapy received. To our knowledge, this is the first study showing that polymorphisms in folate-metabolizing pathway, DNA synthesis and DNA repair genes could influence survival of MDS patients.The Pharmacogenomics Journal advance online publication, 5 December 2017; doi:10.1038/tpj.2017.48.
Ganz, Ariel B.; Shields, Kelsey; Fomin, Vlad G.; Lopez, Yusnier S.; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C.; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie A.; Vitiello, Gerardo A.; Malysheva, Olga V.; Mudrak, Erika; Caudill, Marie A.
2016-01-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.—Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. PMID:27342765
Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A
2016-10-01
Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. © FASEB.
Sookoian, Silvia; Pirola, Carlos J
2012-01-01
Genome-wide and candidate gene association studies have identified several variants that predispose individuals to developing nonalcoholic fatty liver disease (NAFLD). However, the gene that has been consistently involved in the genetic susceptibility of NAFLD in humans is patatin-like phospholipase domain containing 3 (PNPLA3, also known as adiponutrin). A nonsynonymous single nucleotide polymorphism in PNPLA3 (rs738409 C/G, a coding variant that encodes an amino acid substitution I148M) is significantly associated with fatty liver and histological disease severity, not only in adults but also in children. Nevertheless, how PNPLA3 influences the biology of fatty liver disease is still an open question. A recent article describes new aspects about PNPLA3 gene/protein function and suggests that the I148M variant promotes hepatic lipid synthesis due to a gain of function. We revise here the published data about the role of the I148M variant in lipogenesis/lipolysis, and suggest putative areas of future research. For instance we explored in silico whether the rs738409 C or G alleles have the ability to modify miRNA binding sites and miRNA gene regulation, and we found that prediction of PNPLA3 target miRNAs shows two miRNAs potentially interacting in the 3’UTR region (hsa-miR-769-3p and hsa-miR-516a-3p). In addition, interesting unanswered questions remain to be explored. For example, PNPLA3 lies between two CCCTC-binding factor-bound sites that could be tested for insulator activity, and an intronic histone 3 lysine 4 trimethylation peak predicts an enhancer element, corroborated by the DNase I hypersensitivity site peak. Finally, an interaction between PNPLA3 and glycerol-3-phosphate acyltransferase 2 is suggested by data miming. PMID:23155331
De Castro-Orós, Isabel; Pampín, Sandra; Cofán, Montserrat; Mozas, Pilar; Pintó, Xavier; Salas-Salvadó, Jordi; Rodríguez-Rey, Jose C; Ros, Emilio; Civeira, Fernando; Pocoví, Miguel
2011-04-01
The bile acid pool influences intestinal cholesterol absorption because this process is strictly dependent on micellar solubilization, which is disrupted by plant sterols (PS). Plasma lipid variation relates to promoter variant -204A > C (rs3808607) of the CYP7A1 gene encoding for 7α-hydroxylase, an enzyme for bile acid synthesis. We hypothesized that this polymorphism would be associated with variability in lipid responses to PS. We investigated 67 subjects (31 AA and 36 AC + CC) with lipid responses to PS documented in two studies. To assess the functionality of the -204A > C variant, electrophoretic mobility gel shift assays were performed and luciferase reporter plasmids containing the promoter were transfected into HepG2 cells. Compared to AA-subjects, C-carriers showed significantly higher adjusted mean reductions in total cholesterol (0.14 versus 0.43 mmol/L, P = 0.042) and increases in lathosterol-to-cholesterol ratios (0.10 versus 0.75, P = 0.013). The C-construct caused a 78% promoter activity increase and gel-shift assays showed lower affinity for nuclear transcription factors, while in silico experiments predicted a binding site for inhibitory nuclear factors RXR-CAR. Results suggest that promoter -204A > C variant is associated with enhanced CYP7A1 activity. Increased intestinal bile acids and ensuing more efficient cholesterol absorption might explain why C-allele carriers show enhanced cholesterol lowering and increased feedback cholesterol synthesis to PS intervention. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Common genetic variants influence human subcortical brain structures
Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.
2015-01-01
The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358
Dynamic response analysis of structure under time-variant interval process model
NASA Astrophysics Data System (ADS)
Xia, Baizhan; Qin, Yuan; Yu, Dejie; Jiang, Chao
2016-10-01
Due to the aggressiveness of the environmental factor, the variation of the dynamic load, the degeneration of the material property and the wear of the machine surface, parameters related with the structure are distinctly time-variant. Typical model for time-variant uncertainties is the random process model which is constructed on the basis of a large number of samples. In this work, we propose a time-variant interval process model which can be effectively used to deal with time-variant uncertainties with limit information. And then two methods are presented for the dynamic response analysis of the structure under the time-variant interval process model. The first one is the direct Monte Carlo method (DMCM) whose computational burden is relative high. The second one is the Monte Carlo method based on the Chebyshev polynomial expansion (MCM-CPE) whose computational efficiency is high. In MCM-CPE, the dynamic response of the structure is approximated by the Chebyshev polynomials which can be efficiently calculated, and then the variational range of the dynamic response is estimated according to the samples yielded by the Monte Carlo method. To solve the dependency phenomenon of the interval operation, the affine arithmetic is integrated into the Chebyshev polynomial expansion. The computational effectiveness and efficiency of MCM-CPE is verified by two numerical examples, including a spring-mass-damper system and a shell structure.
Pre- and Post-Conditions Expressed in Variants of the Modal µ-Calculus
NASA Astrophysics Data System (ADS)
Tanabe, Yoshinori; Sekizawa, Toshifusa; Yuasa, Yoshifumi; Takahashi, Koichi
Properties of Kripke structures can be expressed by formulas of the modal µ-calculus. Despite its strong expressive power, the validity problem of the modal µ-calculus is decidable, and so are some of its variants enriched by inverse programs, graded modalities, and nominals. In this study, we show that the pre- and post-conditions of transformations of Kripke structures, such as addition/deletion of states and edges, can be expressed using variants of the modal µ-calculus. Combined with decision procedures we have developed for those variants, the properties of sequences of transformations on Kripke structures can be deduced. We show that these techniques can be used to verify the properties of pointer-manipulating programs.
Schmidt, Joel E.; Xie, Dan; Rea, Thomas
2015-01-01
A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (∼7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants. PMID:29163872
Can misfolded proteins be beneficial? The HAMLET case.
Pettersson-Kastberg, Jenny; Aits, Sonja; Gustafsson, Lotta; Mossberg, Anki; Storm, Petter; Trulsson, Maria; Persson, Filip; Mok, K Hun; Svanborg, Catharina
2009-01-01
By changing the three-dimensional structure, a protein can attain new functions, distinct from those of the native protein. Amyloid-forming proteins are one example, in which conformational change may lead to fibril formation and, in many cases, neurodegenerative disease. We have proposed that partial unfolding provides a mechanism to generate new and useful functional variants from a given polypeptide chain. Here we present HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) as an example where partial unfolding and the incorporation of cofactor create a complex with new, beneficial properties. Native alpha-lactalbumin functions as a substrate specifier in lactose synthesis, but when partially unfolded the protein binds oleic acid and forms the tumoricidal HAMLET complex. When the properties of HAMLET were first described they were surprising, as protein folding intermediates and especially amyloid-forming protein intermediates had been regarded as toxic conformations, but since then structural studies have supported functional diversity arising from a change in fold. The properties of HAMLET suggest a mechanism of structure-function variation, which might help the limited number of human protein genes to generate sufficient structural diversity to meet the diverse functional demands of complex organisms.
Fra, Anna M.; Gooptu, Bibek; Ferrarotti, Ilaria; Miranda, Elena; Scabini, Roberta; Ronzoni, Riccardo; Benini, Federica; Corda, Luciano; Medicina, Daniela; Luisetti, Maurizio; Schiaffonati, Luisa
2012-01-01
Alpha1-antitrypsin (AAT) deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile), Etaurisano (Lys368Glu) and Yorzinuovi (Pro391His), showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening ‘latch’ interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state. PMID:22723858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.
Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s riskmore » variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.« less
Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep
2018-02-12
The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.
2006-04-01
W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that
Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F
2015-07-08
Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.
Sustainability and durability analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.
2017-09-01
The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.
Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms.
Workentine, Matthew L; Wang, Siyuan; Ceri, Howard; Turner, Raymond J
2013-07-28
The emergence of colony morphology variants in structured environments is being recognized as important to both niche specialization and stress tolerance. Pseudomonas fluorescens demonstrates diversity in both its natural environment, the rhizosphere, and in laboratory grown biofilms. Sub-populations of these variants within a biofilm have been suggested as important contributors to antimicrobial stress tolerance given their altered susceptibility to various agents. As such it is of interest to determine how these variants might be distributed in the biofilm environment. Here we present an analysis of the spatial distribution of Pseudomonas fluorescens colony morphology variants in mixed-culture biofilms with the wildtype phenotype. These findings reveal that two variant colony morphotypes demonstrate a significant growth advantage over the wildtype morphotype in the biofilm environment. The two variant morphotypes out-grew the wildtype across the entire biofilm and this occurred within 24 h and was maintained through to 96 h. This competitive advantage was not observed in homogeneous broth culture. The significant advantage that the variants demonstrate in biofilm colonization over the wildtype denotes the importance of this phenotype in structured environments.
Regulation of Hemoglobin β-Chain Synthesis in Bone Marrow Erythroid Cells by α Chains
Wolf, Jeffrey L.; Mason, R. George; Honig, George R.
1973-01-01
Synthesis of α and β chains of hemoglobin was studied in vitro in intact reticulocytes and bone marrow cells. The cells were from rabbits having a variant form of hemoglobin in which L-isoleucine is in the α but not in the β chains. This characteristic permitted a selective inhibition of α-chain synthesis to be produced by addition to the incubation medium of L-O-methylthreonine, an inhibitor of protein synthesis that is a specific antagonist of L-isoleucine. In studies with reticulocytes, 25 mM L-O-methylthreonine produced a 60-70% inhibition of α-chain synthesis, but β-chain synthesis was unaffected even after incubation times for 4 hr. Because reticulocytes contain a pool of uncombined α chains which might have obscured the demonstration of an α chain-dependent mechanism for β-chain synthesis, subsequent studies were done with bone marrow cells. The latter had little or no detectable α-chain pool. A substantial inhibition of α-chain synthesis by the bone marrow cells was produced by the isoleucine antagonist but was also accompanied by a significantly decreased rate of β-chain synthesis. These findings suggest that the coordinated synthesis of the complementary α- and β-globin chains of hemoglobin may reflect in part a modifying effect of α-chain synthesis on the synthesis of β chains. PMID:4519634
Goldsmith, Elizabeth W.; Renshaw, Benjamin; Clement, Christopher J.; Himschoot, Elizabeth A.; Hundertmark, Kris J.; Hueffer, Karsten
2015-01-01
For pathogens that infect multiple species the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We test the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (V. vulpes) in order to possibly distinguish reservoir and spill over hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found 2 groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising 2 regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the artic fox Therefore we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. PMID:26661691
Structure-based design of combinatorial mutagenesis libraries
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-01-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189
Structure-based design of combinatorial mutagenesis libraries.
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-05-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.
Goldsmith, Elizabeth W; Renshaw, Benjamin; Clement, Christopher J; Himschoot, Elizabeth A; Hundertmark, Kris J; Hueffer, Karsten
2016-02-01
For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. © 2015 John Wiley & Sons Ltd.
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag
2016-01-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag
2016-08-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.
Identification of causal genes for complex traits.
Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar
2015-06-15
Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Software is freely available for download at genetics.cs.ucla.edu/caviar. © The Author 2015. Published by Oxford University Press.
El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C
2018-04-01
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.
Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen
2017-01-26
Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A
2017-08-04
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus
Keener, William K.; Ward, Thomas E.
2006-03-28
Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.
Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, P.K.; Sirover, M.A.
1984-10-01
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less
Ali, Sikander; Nawaz, Wajeeha
2017-02-01
The optimisation of nutritional requirements for dopamine (DA) synthesis by calcium alginate-entrapped mutant variant of Aspergillus oryzae EMS-6 using submerged fermentation technique was investigated. A total of 13 strains were isolated from soil. Isolate I-2 was selected as a better producer of DA and improved by exposing with ethyl methylsulphonate (EMS). EMS-6 was selected as it exhibited 43 μg/mL DA activity. The mutant variable was further treated with low levels of l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of mutant variant were entrapped in calcium alginate beads for stable product formation. EMS-6 gave maximum DA activity (124 μg/mL) when supplemented with 0.1% peptone and 0.2% sucrose, under optimised parameters viz. pH 3, temperature of 55 °C and incubation time of 70 min. The study involves the high profile of DA activity and is needed, as DA is capable to control numerous neurogenic disorders.
Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi
2017-12-01
We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.
Neilson, James R; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E
2009-12-07
We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co(1-0.5x)(oct) Co(x)(tet) (OH)2 (Cl)x (H2O)n, all modifications of an alpha-Co(OH)2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.
Davis, Tyler A.
2012-01-01
The first highly diastereo- and enantioselective additions of aryl nitromethane pronucleophiles to aryl aldimines are described. Identification of an electron rich chiral Bis(Amidine) catalyst for this aza-Henry variant was key to this development, leading ultimately to differentially protected cis-stilbene diamines in two steps. This method then became the lynchpin for an enantioselective synthesis of (–)-Nutlin-3 (Hoffmann-LaRoche), a potent cis-imidazoline small molecule inhibitor of p53-MDM2 used extensively as a probe of cell biology and currently in drug development. PMID:22708054
Ie, Susan I; Thedja, Meta D; Roni, Martono; Muljono, David H
2010-11-18
Selection of hepatitis B virus (HBV) by host immunity has been suggested to give rise to variants with amino acid substitutions at or around the 'a' determinant of the surface antigen (HBsAg), the main target of antibody neutralization and diagnostic assays. However, there have never been successful attempts to provide evidence for this hypothesis, partly because the 3 D structure of HBsAg molecules has not been determined. Tertiary structure prediction of HBsAg solely from its primary amino acid sequence may reveal the molecular energetic of the mutated proteins. We carried out this preliminary study to analyze the predicted HBsAg conformation changes of HBV variants isolated from Indonesian blood donors undetectable by HBsAg assays and its significance, compared to other previously-reported variants that were associated with diagnostic failure. Three HBV variants (T123A, M133L and T143M) and a wild type sequence were analyzed together with frequently emerged variants T123N, M133I, M133T, M133V, and T143L. Based on the Jameson-Wolf algorithm for calculating antigenic index, the first two amino acid substitutions resulted in slight changes in the antigenicity of the 'a' determinant, while all four of the comparative variants showed relatively more significant changes. In the pattern T143M, changes in antigenic index were more significant, both in its coverage and magnitude, even when compared to variant T143L. These data were also partially supported by the tertiary structure prediction, in which the pattern T143M showed larger shift in the HBsAg second loop structure compared to the others. Single amino acid substitutions within or near the 'a' determinant of HBsAg may alter antigenicity properties of variant HBsAg, which can be shown by both its antigenic index and predicted 3 D conformation. Findings in this study emphasize the significance of variant T143M, the prevalent isolate with highest degree of antigenicity changes found in Indonesian blood donors. This highlights the importance of evaluating the effects of protein structure alterations on the sensitivity of screening methods being used in detection of ongoing HBV infection, as well as the use of vaccines and immunoglobulin therapy in contributing to the selection of HBV variants.
Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar
2016-03-01
Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.
Indo, Y; Glassberg, R; Yokota, I; Tanaka, K
1991-01-01
In our previous study of eight glutaric acidemia type II (GAII) fibroblast lines by using [35S]methionine labeling and immunoprecipitation, three of them had a defect in the synthesis of the alpha-subunit of electron transfer flavoprotein (alpha-ETF) (Ikeda et al. 1986). In one of them (YH1313) the labeling of the mature alpha-ETF was barely detectable, while that of the precursor (p) was stronger. In another (YH605) no synthesis of immunoreactive p alpha-ETF was detectable. In the third cell line (YH1391) the rate of variant p alpha-ETF synthesis was comparable to normal, but its electrophoretic mobility was slightly faster than normal. In the present study, the northern blot analysis revealed that all three mutant cell lines contained p alpha-ETF mRNA and that their size and amount were comparable to normal. In immunoblot analysis, both alpha- and beta-ETF bands were barely detectable in YH1313 and YH605 but were detectable in YH1391 in amounts comparable to normal. Sequencing of YH1313 p alpha-ETF cDNA via PCR identified a transversion of T-470 to G. We then devised a simple PCR method for the 119-bp section (T-443/G-561) for detecting this mutation. In the upstream primer, A-466 was artificially replaced with C, to introduce a BstNI site into the amplified copies in the presence of G-470 from the variant sequence. The genomic DNA analysis using this method demonstrated that YH1313 was homozygous for T----G-470 transversion. It was not detected either in two other alpha-ETF-deficient GAII or in seven control cell lines. The alpha-ETF cDNA sequence in YH605 was identical to normal. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:1882842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake
Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants atmore » position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density functional theory calculations of the trioxo form of the cofactor reasonably reproducd the Mo=O distances of the complex; however, the calculated Mo-S distances were slightly longer than either crystallographic or EXAFS measurements. Taken together, these results indicate that the active sites of the C185S and C185A variants are essentially catalytically inactive, the crystal structures of C185S and C185A variants contain a fully oxidized, trioxo form of the cofactor, and Tyr322 can undergo a conformational change that is relevant to the reaction mechanism. Additional DFT calculations demonstrated that such methods can reasonably reproduce the geometry and bond lengths of the active site.« less
Maillard, Michel C; Brookfield, Frederick A; Courtney, Stephen M; Eustache, Florence M; Gemkow, Mark J; Handel, Rebecca K; Johnson, Laura C; Johnson, Peter D; Kerry, Mark A; Krieger, Florian; Meniconi, Mirco; Muñoz-Sanjuán, Ignacio; Palfrey, Jordan J; Park, Hyunsun; Schaertl, Sabine; Taylor, Malcolm G; Weddell, Derek; Dominguez, Celia
2011-10-01
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD. Copyright © 2011 Elsevier Ltd. All rights reserved.
The modern theory of biological evolution: an expanded synthesis.
Kutschera, Ulrich; Niklas, Karl J
2004-06-01
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase
NASA Astrophysics Data System (ADS)
Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.
2017-01-01
Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.
Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase
Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.
2017-01-01
Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids. PMID:28028245
The modern theory of biological evolution: an expanded synthesis
NASA Astrophysics Data System (ADS)
Kutschera, Ulrich; Niklas, Karl J.
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muntifering, B.; Pond, R. C.; Kovarik, L.
2014-06-01
The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in whichmore » the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.« less
RAPTR-SV: a hybrid method for the detection of structural variants
USDA-ARS?s Scientific Manuscript database
Motivation: Identification of Structural Variants (SV) in sequence data results in a large number of false positive calls using existing software, which overburdens subsequent validation. Results: Simulations using RAPTR-SV and another software package that uses a similar algorithm for SV detection...
The effect of rare variants on inflation of the test statistics in case-control analyses.
Pirie, Ailith; Wood, Angela; Lush, Michael; Tyrer, Jonathan; Pharoah, Paul D P
2015-02-20
The detection of bias due to cryptic population structure is an important step in the evaluation of findings of genetic association studies. The standard method of measuring this bias in a genetic association study is to compare the observed median association test statistic to the expected median test statistic. This ratio is inflated in the presence of cryptic population structure. However, inflation may also be caused by the properties of the association test itself particularly in the analysis of rare variants. We compared the properties of the three most commonly used association tests: the likelihood ratio test, the Wald test and the score test when testing rare variants for association using simulated data. We found evidence of inflation in the median test statistics of the likelihood ratio and score tests for tests of variants with less than 20 heterozygotes across the sample, regardless of the total sample size. The test statistics for the Wald test were under-inflated at the median for variants below the same minor allele frequency. In a genetic association study, if a substantial proportion of the genetic variants tested have rare minor allele frequencies, the properties of the association test may mask the presence or absence of bias due to population structure. The use of either the likelihood ratio test or the score test is likely to lead to inflation in the median test statistic in the absence of population structure. In contrast, the use of the Wald test is likely to result in under-inflation of the median test statistic which may mask the presence of population structure.
Morales, Eva; Bustamante, Mariona; Gonzalez, Juan Ramon; Guxens, Monica; Torrent, Maties; Mendez, Michelle; Garcia-Esteban, Raquel; Julvez, Jordi; Forns, Joan; Vrijheid, Martine; Molto-Puigmarti, Carolina; Lopez-Sabater, Carmen; Estivill, Xavier; Sunyer, Jordi
2011-01-01
Introduction Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition. Methods Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children's Abilities, respectively. Results Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele. Conclusion Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in fatty acid desaturase and elongase enzymes. PMID:21383846
In vivo study of the surgical anatomy of the axilla.
Khan, A; Chakravorty, A; Gui, G P H
2012-06-01
Classical anatomical descriptions fail to describe variants often observed in the axilla as they are based on studies that looked at individual structures in isolation or textbooks of cadaveric dissections. The presence of variant anatomy heightens the risk of iatrogenic injury. The aim of this study was to document the nature and frequency of these anatomical variations based on in vivo peroperative surgical observations. Detailed anatomical relationships were documented prospectively during consecutive axillary dissections. Relationships between the thoracodorsal pedicle, course of the lateral thoracic vein, presence of latissimus dorsi muscle slips, variations in axillary and angular vein anatomy, and origins and branching of the intercostobrachial nerve were recorded. Among a total of 73 axillary dissections, 43 (59 per cent) revealed at least one anatomical variant. Most notable variants included aberrant courses of the thoracodorsal nerve in ten patients (14 per cent)--three variants; lateral thoracic vein in 12 patients (16 per cent)--four variants; bifid axillary veins in ten patients (14 per cent); latissimus dorsi muscle slips in four patients (5 per cent); and variants in intercostobrachial nerve origins and branching in 26 patients (36 per cent). The angular vein, a subscapular vein tributary, was found to be a constant axillary structure. Variations in axillary anatomical structures are common. Poor understanding of these variants can affect the adequacy of oncological clearance, lead to vascular injury, compromise planned microvascular procedures and result in chronic pain or numbness from nerve injury. Surgeons should be aware of the common anatomical variants to facilitate efficient and safe axillary surgery. Copyright © 2012 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.
2016-01-01
Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413
Identification of causal genes for complex traits
Hormozdiari, Farhad; Kichaev, Gleb; Yang, Wen-Yun; Pasaniuc, Bogdan; Eskin, Eleazar
2015-01-01
Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider ‘causal variants’ as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD. This is particularly important for model organisms such as inbred mice, where LD extends much further than in human populations, resulting in large stretches of the genome with significantly associated variants. Furthermore, these model organisms are highly structured and require correction for population structure to remove potential spurious associations. Results: In this work, we propose CAVIAR-Gene (CAusal Variants Identification in Associated Regions), a novel method that is able to operate across large LD regions of the genome while also correcting for population structure. A key feature of our approach is that it provides as output a minimally sized set of genes that captures the genes which harbor causal variants with probability ρ. Through extensive simulations, we demonstrate that our method not only speeds up computation, but also have an average of 10% higher recall rate compared with the existing approaches. We validate our method using a real mouse high-density lipoprotein data (HDL) and show that CAVIAR-Gene is able to identify Apoa2 (a gene known to harbor causal variants for HDL), while reducing the number of genes that need to be tested for functionality by a factor of 2. Availability and implementation: Software is freely available for download at genetics.cs.ucla.edu/caviar. Contact: eeskin@cs.ucla.edu PMID:26072484
An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia.
Martín, B; Solanas-Barca, M; García-Otín, A-L; Pampín, S; Cofán, M; Ros, E; Rodríguez-Rey, J-C; Pocoví, M; Civeira, F
2010-05-01
A substantial number of subjects with autosomal dominant hypercholesterolemia (ADH) do not have LDL receptor (LDLR) or apolipoprotein B (APOB) mutations. Some ADH subjects appear to hyperabsorb sterols from the intestine, thus we hypothesized that they could have variants of the Niemann-Pick C1-Like 1 gene (NPC1L1). NPC1L1 encodes a crucial protein involved in intestinal sterol absorption. Four NPC1L1 variants (-133A>G, -18C>A, 1679C>G, 28650A>G) were analyzed in 271 (155 women and 116 men) ADH bearers without mutations in LDLR or APOB aged 30-70years and 274 (180 women and 94 men) control subjects aged 25-65years. The AC haplotype determined by the -133A>G and -18C>A variants was underrepresented in ADH subjects compared to controls (p=0.01). In the ADH group, cholesterol absorption/synthesis markers were significantly lower in AC homozygotes that in all others haplotypes. Electrophoretic mobility shift assay (EMSA) results revealed that the -133A-specific oligonucleotide produced a retarded band stronger than the -133G allele. Luciferase activity with NPC1L1 -133G variant was 2.5-fold higher than with the -133A variant. The -133A>G polymorphism exerts a significant effect on NPC1L1 promoter activity. NPC1L1 promoter variants might explain in part the hypercholesterolemic phenotype of some subjects with nonLDLR/nonAPOB ADH. Copyright 2009 Elsevier B.V. All rights reserved.
Raza, M. Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M. Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S.; Drayna, Dennis
2015-01-01
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. PMID:26544806
Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.
Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I
2011-01-31
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
Crystal structure of p44, a constitutively active splice variant of visual arrestin.
Granzin, Joachim; Cousin, Anneliese; Weirauch, Moritz; Schlesinger, Ramona; Büldt, Georg; Batra-Safferling, Renu
2012-03-09
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21.
Fernández-Tejada, Alberto; Walkowicz, William E; Tan, Derek S; Gin, David Y
2017-01-01
Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work.
Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis
2015-04-01
Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.
CRISPR EnAbled trackable genome engineering for isopropanol production in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Liya; Liu, Rongming; Garst, Andrew D.
Isopropanol is an important target molecule for sustainable production of fuels and chemicals. Increases in DNA synthesis and synthetic biology capabilities have resulted in the development of a range of new strategies for the more rapid design, construction, and testing of production strains. Here, we report on the use of such capabilities to construct and test 903 different variants of the isopropanol production pathway in Escherichia coli. We first constructed variants to explore the effect of codon optimization, copy number, and translation initiation rates on isopropanol production. The best strain (PA06) produced isopropanol at titers of 17.5 g/L, with amore » yield of 0.62 (mol/mol), and maximum productivity of 0.40 g/L/h. We next integrated the isopropanol synthetic pathway into the genome and then used the CRISPR EnAbled Trackable genome Engineering (CREATE) strategy to generate an additional 640 individual RBS library variants for further evaluation. After testing each of these variants, we constructed a combinatorial library containing 256 total variants from four different RBS levels for each gene. The best producing variant, PA14, produced isopropanol at titers of 7.1 g/L at 24 h, with a yield of 0.75 (mol/mol), and maximum productivity of 0.62 g/L/h (which was 0.22 g/L/h above the parent strain PA07). As a result, we demonstrate the ability to rapidly construct and test close to ~1000 designer strains and identify superior performers.« less
CRISPR EnAbled trackable genome engineering for isopropanol production in Escherichia coli
Liang, Liya; Liu, Rongming; Garst, Andrew D.; ...
2017-02-16
Isopropanol is an important target molecule for sustainable production of fuels and chemicals. Increases in DNA synthesis and synthetic biology capabilities have resulted in the development of a range of new strategies for the more rapid design, construction, and testing of production strains. Here, we report on the use of such capabilities to construct and test 903 different variants of the isopropanol production pathway in Escherichia coli. We first constructed variants to explore the effect of codon optimization, copy number, and translation initiation rates on isopropanol production. The best strain (PA06) produced isopropanol at titers of 17.5 g/L, with amore » yield of 0.62 (mol/mol), and maximum productivity of 0.40 g/L/h. We next integrated the isopropanol synthetic pathway into the genome and then used the CRISPR EnAbled Trackable genome Engineering (CREATE) strategy to generate an additional 640 individual RBS library variants for further evaluation. After testing each of these variants, we constructed a combinatorial library containing 256 total variants from four different RBS levels for each gene. The best producing variant, PA14, produced isopropanol at titers of 7.1 g/L at 24 h, with a yield of 0.75 (mol/mol), and maximum productivity of 0.62 g/L/h (which was 0.22 g/L/h above the parent strain PA07). As a result, we demonstrate the ability to rapidly construct and test close to ~1000 designer strains and identify superior performers.« less
Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun
2017-12-01
Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.
Glusman, Gustavo; Rose, Peter W; Prlić, Andreas; Dougherty, Jennifer; Duarte, José M; Hoffman, Andrew S; Barton, Geoffrey J; Bendixen, Emøke; Bergquist, Timothy; Bock, Christian; Brunk, Elizabeth; Buljan, Marija; Burley, Stephen K; Cai, Binghuang; Carter, Hannah; Gao, JianJiong; Godzik, Adam; Heuer, Michael; Hicks, Michael; Hrabe, Thomas; Karchin, Rachel; Leman, Julia Koehler; Lane, Lydie; Masica, David L; Mooney, Sean D; Moult, John; Omenn, Gilbert S; Pearl, Frances; Pejaver, Vikas; Reynolds, Sheila M; Rokem, Ariel; Schwede, Torsten; Song, Sicheng; Tilgner, Hagen; Valasatava, Yana; Zhang, Yang; Deutsch, Eric W
2017-12-18
The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.
Fais, Antonella; Casu, Mariano; Ruggerone, Paolo; Ceccarelli, Matteo; Porcu, Simona; Era, Benedetta; Anedda, Roberto; Sollaino, Maria Carla; Galanello, Renzo; Corda, Marcella
2011-01-01
WE REPORT THE FIRST CASE OF COSEGREGATION OF TWO HAEMOGLOBINS (HBS): HbG-Philadelphia [α68(E17)Asn → Lys] and HbDuarte [β62(E6)Ala → Pro]. The proband is a young patient heterozygous also for β°-thalassaemia. We detected exclusively two haemoglobin variants: HbDuarte and HbG-Philadelphia/Duarte. Functional study of the new double variant HbG-Philadelphia/Duarte exhibited an increase in oxygen affinity, with a slight decrease of cooperativity and Bohr effect. This functional behaviour is attributed to β62Ala → Pro instead of α68Asn → Lys substitution. Indeed, HbG-Philadelphia isolated in our laboratory from blood cells donor carrier for this variant is not affected by any functional modification, whereas purified Hb Duarte showed functional properties very similar to the double variant. NMR and MD simulation studies confirmed that the presence of Pro instead of Ala at the β62 position produces displacement of the E helix and modifications of the tertiary structure. The substitution α68(E17)Asn → Lys does not cause significant structural and dynamical modifications of the protein. A possible structure-based rational of substitution effects is suggested.
Structural analysis of an HLA-B27 functional variant, B27d detected in American blacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojo, S.; Aparicio, P.; Hansen, J.A.
1987-11-15
The structure of a new functional variant B27d has been established by comparative peptide mapping and radiochemical sequencing. This analysis complete the structural characterization of the six know histocompatibility leukocyte antigen (HLA)-B27 subtypes. The only detected amino acid change between the main HLA-B27.1 subtype and B27d is that of Try/sub 59/ to His/sub 59/. Position 59 has not been previously found to vary among class I HLA or H-2 antigens. Such substitution accounts for the reported isoelectric focusing pattern of this variant. HLA-B27d is the only B27 variant found to differ from other subtypes by a single amino acid replacement.more » The nature of the change is compatible with its origin by a point mutation from HLB-B27.1. Because B27d was found only American blacks and in no other ethnic groups, it is suggested that this variant originated as a result of a mutation of the B27.1 gene that occurred within the black population. Structural analysis of B27d was done by comparative mapping. Radiochemical sequencing was carried out with /sup 14/C-labeled and /sup 3/H-labeled amino acids.« less
Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto
2015-01-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385
Minimalism in radiation synthesis of biomedical functional nanogels.
Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio
2012-06-11
A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.
Installing hydrolytic activity into a completely de novo protein framework
NASA Astrophysics Data System (ADS)
Burton, Antony J.; Thomson, Andrew R.; Dawson, William M.; Brady, R. Leo; Woolfson, Derek N.
2016-09-01
The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine-histidine-glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.
Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.
Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki
2014-01-01
To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, V.P.; Tkacheva, O.N.
1986-03-01
Heat treatment entails considerable expenditure of power and often requires expensive equipment. One of the fundamental problems arising in the elaboration of heat treatment technology is the selection of the economically optimal process, which also has to ensure the quality of finished parts required by the customer. To correctly determine the expenditures on the basic kinds of resources it is necessary to improve the methods of calculating prime costs and to carry out such a calculation at the earliest stages of the technological preparation of production. A new method of optimizing synthesis of the structure of devising technological processes ofmore » heat treatment using the achievements of cybernetics and the possibilities of computerization is examined in this article. The method makes it possible to analyze in detail the economy of all possible variants of a technological process when one parameter is changed, without recalculating all items of prime cost.« less
Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.
Li, Wenbin; Li, Ju
2016-02-24
Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.
Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers
Li, Wenbin; Li, Ju
2016-02-24
Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV permore » chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Furthermore, monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.« less
Hehir-Kwa, Jayne Y; Marschall, Tobias; Kloosterman, Wigard P; Francioli, Laurent C; Baaijens, Jasmijn A; Dijkstra, Louis J; Abdellaoui, Abdel; Koval, Vyacheslav; Thung, Djie Tjwan; Wardenaar, René; Renkens, Ivo; Coe, Bradley P; Deelen, Patrick; de Ligt, Joep; Lameijer, Eric-Wubbo; van Dijk, Freerk; Hormozdiari, Fereydoun; Uitterlinden, André G; van Duijn, Cornelia M; Eichler, Evan E; de Bakker, Paul I W; Swertz, Morris A; Wijmenga, Cisca; van Ommen, Gert-Jan B; Slagboom, P Eline; Boomsma, Dorret I; Schönhuth, Alexander; Ye, Kai; Guryev, Victor
2016-10-06
Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.
Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam
2016-08-17
There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared to LMM. Therefore, it is recommended to use rare variant association mapping methods to map rare genetic variants that affect quantitative traits in livestock, such as bovine populations.
Majoros, William H.; Campbell, Michael S.; Holt, Carson; DeNardo, Erin K.; Ware, Doreen; Allen, Andrew S.; Yandell, Mark; Reddy, Timothy E.
2017-01-01
Abstract Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype–phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (‘Assessing Changes to Exons’) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation: ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE Contact: myandell@genetics.utah.edu or tim.reddy@duke.edu Supplementary information: Supplementary information is available at Bioinformatics online. PMID:28011790
Majoros, William H; Campbell, Michael S; Holt, Carson; DeNardo, Erin K; Ware, Doreen; Allen, Andrew S; Yandell, Mark; Reddy, Timothy E
2017-05-15
The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B
2017-08-15
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Studer, Patrick; Borisova, Marina; Schneider, Alexander; Ayala, Juan A; Mayer, Christoph; Schuppler, Markus; Loessner, Martin J; Briers, Yves
2016-01-01
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Jetzt, Amanda E; Li, Xiao-Ping; Tumer, Nilgun E; Cohick, Wendie S
2016-11-01
Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. Copyright © 2016 Elsevier Inc. All rights reserved.
Saha, Tanusree; Chatterjee, Mahasweta; Verma, Deepak; Ray, Anirban; Sinha, Swagata; Rajamma, Usha; Mukhopadhyay, Kanchan
2018-06-08
An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B 9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B 12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B 6 , which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated traits by attenuating folate metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.
Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression
Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.
2018-01-01
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865
NASA Astrophysics Data System (ADS)
Goto, Masaru
d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.
Haynes, Edward; Helgason, Thorunn; Young, J Peter W; Thwaites, Richard; Budge, Giles E
2013-08-01
Melissococcus plutonius is the bacterial pathogen that causes European Foulbrood of honeybees, a globally important honeybee brood disease. We have used next-generation sequencing to identify highly polymorphic regions in an otherwise genetically homogenous organism, and used these loci to create a modified MLST scheme. This synthesis of a proven typing scheme format with next-generation sequencing combines reliability and low costs with insights only available from high-throughput sequencing technologies. Using this scheme we show that the global distribution of M.plutonius variants is not uniform. We use the scheme in epidemiological studies to trace movements of infective material around England, insights that would have been impossible to confirm without the typing scheme. We also demonstrate the persistence of local variants over time. © 2013 Crown copyright. Reproduced with the permission of the Controller of Her Majesty's Stationary Office/Queen’s Printer for Scotland and Food and Environment Research Agency.
Chelidze, P V; Dzidziguri, D V; Zarandiia, M A; Georgobiani, N M; Tumanishvili, G D
1993-01-01
By means of stereological and morphometrical analysis, the ultrastructure of nucleoli in epitheliocytes of mouse kidney cortex proximal tubuli has been studied. In accordance to the nucleolar composition, three main groups of nephrocytes with different levels of rRNA and protein synthesis were defined. Functional heterogeneity of proximal tubuli epithelium was established by correlation between different variants of ultrastructural organization of nucleoli and the total RNA synthesis activity, determined by 3H-uridine incorporation intensity. It has been shown that a greater part of cells (about 52%) in the nephron proximal section, which is characterized by slow RNA synthesis, causing a low functional activity of these cells, presumably represents a reparative cellular reserve. Such cells, defined as the 1st group cells, have resting, ring-shaped nucleoli with one fibrillar centre, and nucleoli similar to the ring-shaped ones but containing 2-3 fibrillar centres. Nucleoli of the 2nd group of nephrocytes (about 37%), most actively incorporating labeled precursor, contain 4-6 fibrillar centres. Their structural organization is closer to the reticular type of nucleoli. The 3rd most actively labeled group of nephrocytes includes cells with typical reticulated nucleoli. The number of fibrillar centres in the reticulated nucleoli is much higher (18-22) than in the 1st and 2nd groups of nephrocytes. Structural and functional polymorphism of nephrocytes was revealed not only in the proximal part of one nephron. During the increase in functional activity of nephrocytes, caused by unilateral nephrectomy, the quantitative correlation between cells related to these different groups was seen to change. The number of cells of the 1st group decreased by 24%, whereas that in the 2nd and 3rd groups increased by 9 and 15%, respectively. Nucleoli with 2-3 fibrillar centres are considered as transitional forms between the inactive ring-shaped nucleoli and the active reticulated nucleoli. Differences in the ultrastructure of nucleoli may be considered as an evidence of functional heterogeneity of nephrocytes within the proximal segment of nephron.
Punchaichira, Toyanji Joseph; Dey, Sanjay Kumar; Mukhopadhyay, Anirban; Kundu, Suman; Thelma, B K
2017-07-01
Dopamine-β-hydroxylase (DBH, EC 1.14.17.1), an oxido-reductase that catalyses the conversion of dopamine to norepinephrine, is largely expressed in sympathetic neurons and adrenal medulla. Several regulatory and structural variants in DBH associated with various neuropsychiatric, cardiovascular diseases and a few that may determine enzyme activity have also been identified. Due to paucity of studies on functional characterization of DBH variants, its structure-function relationship is poorly understood. The purpose of the study was to characterize five non-synonymous (ns) variants that were prioritized either based on previous association studies or Sorting Tolerant From Intolerant (SIFT) algorithm. The DBH ORF with wild type (WT) and site-directed mutagenized variants were transfected into HEK293 cells to generate transient and stable lines expressing these variant enzymes. Activity was determined by UPLC-PDA and corresponding quantity by MRM HR on a TripleTOF 5600 MS respectively of spent media from stable cell lines. Homospecific activity computed for the WT and variant proteins showed a marginal decrease in A318S, W544S and R549C variants. In transient cell lines, differential secretion was observed in the case of L317P, W544S and R549C. Secretory defect in L317P was confirmed by localization in ER. R549C exhibited both decreased homospecific activity and differential secretion. Of note, all the variants were seen to be destabilizing based on in silico folding analysis and molecular dynamics (MD) simulation, lending support to our experimental observations. These novel genotype-phenotype correlations in this gene of considerable pharmacological relevance have implications for dopamine-related disorders.
Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction
Laehnemann, David; Borkhardt, Arndt
2016-01-01
Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete Genomics DNA nanoball sequencing, Illumina sequencing by synthesis, Ion Torrent semiconductor sequencing, Pacific Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the features of the data they analyse, the parameters they determine from them and the data structures and algorithms they use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to consider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific benchmarks would greatly inform tool choices and future software development. The development of stand-alone error correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge about error profiles and from (re)combining ideas from the existing approaches presented here. PMID:26026159
Kingston, Anthony W; Liao, Xiaojie; Helmann, John D
2013-11-01
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis. © 2013 John Wiley & Sons Ltd.
Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula
2016-01-01
Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.
Contributions of the σW, σM, and σX Regulons to the Lantibiotic Resistome of Bacillus subtilis
Kingston, Anthony W.; Liao, Xiaojie; Helmann, John D.
2014-01-01
Summary In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW, and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling D-alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homolog), and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin, and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis. PMID:23980836
Hoover, T. A.; Culp, D. W.; Vodkin, M. H.; Williams, J. C.; Thompson, H. A.
2002-01-01
After repeated passages through embyronated eggs, the Nine Mile strain of Coxiella burnetii exhibits antigenic variation, a loss of virulence characteristics, and transition to a truncated lipopolysaccharide (LPS) structure. In two independently derived strains, Nine Mile phase II and RSA 514, these phenotypic changes were accompanied by a large chromosomal deletion (M. H. Vodkin and J. C. Williams, J. Gen. Microbiol. 132:2587-2594, 1986). In the work reported here, additional screening of a cosmid bank prepared from the wild-type strain was used to map the deletion termini of both mutant strains and to accumulate all the segments of DNA that comprise the two deletions. The corresponding DNAs were then sequenced and annotated. The Nine Mile phase II deletion was completely nested within the deletion of the RSA 514 strain. Basic alignment and homology studies indicated that a large group of LPS biosynthetic genes, arranged in an apparent O-antigen cluster, was deleted in both variants. Database homologies identified, in particular, mannose pathway genes and genes encoding sugar methylases and nucleotide sugar epimerase-dehydratase proteins. Candidate genes for addition of sugar units to the core oligosaccharide for synthesis of the rare sugar 6-deoxy-3-C-methylgulose (virenose) were identified in the deleted region. Repeats, redundancies, paralogous genes, and two regions with reduced G+C contents were found within the deletions. PMID:12438347
Raza, M Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S; Drayna, Dennis
2015-11-05
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Ben-Mahmoud, A; Ben-Salem, S; Al-Sorkhy, M; John, A; Ali, B R; Al-Gazali, L
2018-06-01
Al-Gazali syndrome encompasses several clinical features including prenatal growth retardation, large joints contractures with camptodactyly, bilateral talipes equinovarus, small mouth, anterior segment anomalies of the eyes, and early lethality. Recently, a baby with features very similar to Al-Gazali syndrome was found to have compound heterozygous variants in B3GALT6. This gene encodes Beta-1,3-galactosyltransferase 6 (β3GalT6), an essential component of the glycosaminoglycan synthesis pathway. Pathogenic variants in B3GALT6 have also been shown to cause Ehlers-Danlos syndrome spondylodysplastic type (spEDS-B3GALT6) and spondyloepimetaphyseal dysplasia with joint laxity type I (SEMD-JL1). In 2017, a new international classification of EDS included these 2 conditions together with the child reported to have features similar to Al-Gazali syndrome under spondylodysplastic EDS (spEDS). We report a disease-causing variant c.618C > G, p.(Cys206Trp) in 1 patient originally described as Al-Gazali syndrome and reported in 1999. We evaluated the involvement of the endoplasmic reticulum-associated protein degradation, in the pathogenesis of 13 B3GALT6 variants. Retention in endoplasmic reticulum was evident in 6 of them while the c.618C > G, p.(Cys206Trp) and the other 6 variants trafficked normally. Our findings confirm the involvement of B3GALT6 in the pathogenesis of Al-Gazali syndrome and suggest that Al-Gazali syndrome represents the severe end of the spectrum of the phenotypes caused by pathogenic variants in this gene. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alamo, Lorenzo; Ware, James S; Pinto, Antonio; Gillilan, Richard E; Seidman, Jonathan G; Seidman, Christine E; Padrón, Raúl
2017-01-01
Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10−19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.24634.001 PMID:28606303
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-01-01
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an α-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display β-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a β-sheet structure. Dynamic light scattering revealed that the presence of β-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation. PMID:20172856
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-04-23
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
NASA Astrophysics Data System (ADS)
Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny
2015-09-01
Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.
Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21
Fernández-Tejada, Alberto; Walkowicz, William E.; Tan, Derek S.; Gin, David Y.
2016-01-01
Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work. PMID:27718185
Våge, Dag Inge; Fuglei, Eva; Snipstad, Kristin; Beheim, Janne; Landsem, Veslemøy Malm; Klungland, Helge
2005-10-01
We have characterized two mutations in the MC1R gene of the blue variant of the arctic fox (Alopex lagopus) that both incorporate a novel cysteine residue into the receptor. A family study in farmed arctic foxes verified that the dominant expression of the blue color phenotype cosegregates completely with the allele harboring these two mutations. Additionally to the altered pigment synthesis, the blue fox allele suppresses the seasonal change in coat color found in the native arctic fox. Consequently, these findings suggest that the MC1R/agouti regulatory system is involved in the seasonal changes of coat color found in arctic fox.
Gimba, E R; Tilli, T M
2013-04-30
Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Tashiro, Miki; Fujii, Akira; Kawai-Noma, Shigeko; Saito, Kyoichi; Umeno, Daisuke
2017-11-17
To achieve an efficient production of geraniol and its derivatives in Escherichia coli, we aimed to improve the activity of geraniol synthase (GES) through a single round of mutagenesis and screening for higher substrate consumption. We isolated GES variants that outperform their parent in geraniol production. The analysis of GES variants indicated that the expression level of GES was the bottleneck for geraniol synthesis. Over-expression of the mutant GES M53 with a 5'-untranslated sequence designed for high translational efficiency, along with the additional expression of mevalonate pathway enzymes, isopentenyl pyrophosphate isomerase, and geranyl pyrophosphate synthase, yielded 300 mg/L/12 h geraniol and its derivatives (>1000 mg/L/42 h in total) in a shaking flask.
Genomic variants in an inbred mouse model predict mania-like behaviors.
Saul, Michael C; Stevenson, Sharon A; Zhao, Changjiu; Driessen, Terri M; Eisinger, Brian E; Gammie, Stephen C
2018-01-01
Contemporary rodent models for bipolar disorders split the bipolar spectrum into complimentary behavioral endophenotypes representing mania and depression. Widely accepted mania models typically utilize single gene transgenics or pharmacological manipulations, but inbred rodent strains show great potential as mania models. Their acceptance is often limited by the lack of genotypic data needed to establish construct validity. In this study, we used a unique strategy to inexpensively explore and confirm population allele differences in naturally occurring candidate variants in a manic rodent strain, the Madison (MSN) mouse strain. Variants were identified using whole exome resequencing on a small population of animals. Interesting candidate variants were confirmed in a larger population with genotyping. We enriched these results with observations of locomotor behavior from a previous study. Resequencing identified 447 structural variants that are mostly fixed in the MSN strain relative to control strains. After filtering and annotation, we found 11 non-synonymous MSN variants that we believe alter protein function. The allele frequencies for 6 of these variants were consistent with explanatory variants for the Madison strain's phenotype. The variants are in the Npas2, Cp, Polr3c, Smarca4, Trpv1, and Slc5a7 genes, and many of these genes' products are in pathways implicated in human bipolar disorders. Variants in Smarca4 and Polr3c together explained over 40% of the variance in locomotor behavior in the Hsd:ICR founder strain. These results enhance the MSN strain's construct validity and implicate altered nucleosome structure and transcriptional regulation as a chief molecular system underpinning behavior.
Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-06-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina
2014-01-01
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941
Bisenius, Sandrine; Mueller, Karsten; Diehl-Schmid, Janine; Fassbender, Klaus; Grimmer, Timo; Jessen, Frank; Kassubek, Jan; Kornhuber, Johannes; Landwehrmeyer, Bernhard; Ludolph, Albert; Schneider, Anja; Anderl-Straub, Sarah; Stuke, Katharina; Danek, Adrian; Otto, Markus; Schroeter, Matthias L
2017-01-01
Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early individual diagnosis, we used support vector machine classification on grey matter density maps obtained by voxel-based morphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age, and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degeneration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest approach for support vector machine classification. We also used support vector machine classification to discriminate the three PPA subtypes from each other. Whole brain support vector machine classification enabled a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95% for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracy was low with 55%. Interestingly, the regions that contributed the most to the support vector machine classification of patients corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Although the whole brain approach took also into account regions that were not covered in the regions-of-interest approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks. Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data enables prediction of PPA subtypes with a very high accuracy paving the road for its application in clinical settings.
Kwak, Ho-Geun; Dohmae, Naoshi
2016-11-15
Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.
Structure and dynamics of mesophilic variants from the homing endonuclease I-DmoI
NASA Astrophysics Data System (ADS)
Alba, Josephine; Marcaida, Maria Jose; Prieto, Jesus; Montoya, Guillermo; Molina, Rafael; D'Abramo, Marco
2017-12-01
I-DmoI, from the hyperthermophilic archaeon Desulfurococcus mobilis, belongs to the LAGLIDADG homing endonuclease protein family. Its members are highly specific enzymes capable of recognizing long DNA target sequences, thus providing potential tools for genome manipulation. Working towards this particular application, many efforts have been made to generate mesophilic variants of I-DmoI that function at lower temperatures than the wild-type. Here, we report a structural and computational analysis of two I-DmoI mesophilic mutants. Despite very limited structural variations between the crystal structures of these variants and the wild-type, a different dynamical behaviour near the cleavage sites is observed. In particular, both the dynamics of the water molecules and the protein perturbation effect on the cleavage site correlate well with the changes observed in the experimental enzymatic activity.
Wong, Anita M-Y; Chow, Dorcas C-C; McBride-Cheng, Catherine; Stokes, Stephanie F
2010-01-01
To express object transfer, Cantonese-speakers use a 'ditransitive' ([V-R-T] or [V-T-R] where V=Verb, T=Theme, R=Recipient), or a more complex prepositional/serial-verb (P/SV) construction. Clausal elements in Cantonese datives can be optional (resulting in 'full' versus 'non-full' forms) or appear in variant orders (full non-canonical and full canonical). We report on usage of dative constructions with the word bei2 'to give' in 86 parents and 53 three-year-old children during conversations. The parents used more P/SV than ditransitive bei2-datives, and vice versa for the children. Both groups showed a similar usage pattern of optional elements and variant structures in their ditransitive and P/SV bei2-datives. The roles of multiple construction types, optional elements and variant structures in children's learning of bei2-dative constructions are described.
Proteolysis of truncated hemolysin A yields a stable dimerization interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.
2017-02-21
Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less
ERIC Educational Resources Information Center
Bendig, Ina; Betz, Emma; Huth, Thorsten
2016-01-01
Researchers have observed that in spoken German, the conjunctions "weil" and "obwohl" commonly occur with verb-second (V2) instead of verb-final (V[subscript f]) word order (Gaumann, 1983; Gänthner, 1993, 1996; Uhmann, 1998). Current findings document that this syntactic variant of "weil/obwohl-structures" has an…
Sun Exposure, Vitamin D Receptor Polymorphisms FokI and BsmI and Risk of Multiple Primary Melanoma
Mandelcorn-Monson, Rochelle; Marrett, Loraine; Kricker, Anne; Armstrong, Bruce K.; Orlow, Irene; Goumas, Chris; Paine, Susan; Rosso, Stefano; Thomas, Nancy; Millikan, Robert C.; Pole, Jason D.; Cotignola, Javier; Rosen, Cheryl; Kanetsky, Peter A.; Lee-Taylor, Julia; Begg, Colin B.; Berwick, Marianne
2011-01-01
Sunlight exposure increases risk of melanoma. Sunlight also potentiates cutaneous synthesis of vitamin D, which can inhibit melanoma cell growth and promote apoptosis. Vitamin D effects are mediated through the vitamin D receptor (VDR). We hypothesized that genetic variation in VDR affects the relationship of sun exposure to risk of a further melanoma in people who have already had one. We investigated the interaction between VDR polymorphisms and sun exposure in a population-based multinational study comparing 1138 patients with a multiple (second or subsequent) primary melanoma (cases) to 2151 patients with a first primary melanoma (controls); essentially a case-control study of melanoma in a population of melanoma survivors. Sun exposure was assessed using a questionnaire and interview, and was shown to be associated with multiple primary melanoma. VDR was genotyped at the FokI and BsmI loci and the main effects of variants at these loci and their interactions with sun exposure were analyzed. Only the BsmI variant was associated with multiple primary melanoma (OR = 1.27, 95% CI 0.99-1.62 for the homozygous variant genotype). Joint effects analyses showed highest ORs in the high exposure, homozygous variant BsmI genotype category for each sun exposure variable. Stratified analyses showed somewhat higher ORs for the homozygous BsmI variant genotype in people with high sun exposure than with low sun exposure. P values for interaction, however, were high. These results suggest that risk of multiple primary melanoma is increased in people who have the BsmI variant of VDR. PMID:21612999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bou, G.; Santillana, E; Sheri, A
Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influencesmore » inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.« less
2014-01-01
Background Grapevine (Vitis vinifera L.) is the most important Mediterranean fruit crop, used to produce both wine and spirits as well as table grape and raisins. Wine and table grape cultivars represent two divergent germplasm pools with different origins and domestication history, as well as differential characteristics for berry size, cluster architecture and berry chemical profile, among others. ‘Sultanina’ plays a pivotal role in modern table grape breeding providing the main source of seedlessness. This cultivar is also one of the most planted for fresh consumption and raisins production. Given its importance, we sequenced it and implemented a novel strategy for the de novo assembly of its highly heterozygous genome. Results Our approach produced a draft genome of 466 Mb, recovering 82% of the genes present in the grapevine reference genome; in addition, we identified 240 novel genes. A large number of structural variants and SNPs were identified. Among them, 45 (21 SNPs and 24 INDELs) were experimentally confirmed in ‘Sultanina’ and six SNPs in other 23 table grape varieties. Transposable elements corresponded to ca. 80% of the repetitive sequences involved in structural variants and more than 2,000 genes were affected in their structure by these variants. Some of these genes are likely involved in embryo development, suggesting that they may contribute to seedlessness, a key trait for table grapes. Conclusions This work produced the first structural variants and SNPs catalog for grapevine, constituting a novel and very powerful tool for genomic studies in this key fruit crop, particularly useful to support marker assisted breeding in table grapes. PMID:24397443
Polymerization-Defective Fibrinogen Variant gammaD364A Binds Knob “A” Peptide Mimic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowley,S.; Merenbloom, B.; Heroux, A.
2008-01-01
Fibrin polymerization is supported in part by interactions called 'A:a'. Crystallographic studies revealed ?364Asp is part of hole 'a' that interacts with knob 'A' peptide mimic, GPRP. Biochemical studies have shown ?364Asp is critical to polymerization, as polymerization of variants ?D364A, ?D364H, and ?D364V is exceptionally impaired. To understand the molecular basis for the aberrant function, we solved the crystal structure of fragment D from ?D364A. Surprisingly, the structure (rfD-?D364A+GP) showed near normal 'A:a' interactions with GPRP bound to hole 'a' and no change in the overall structure of ?D364A. Of note, inspection of the structure showed negative electrostatic potentialmore » inside hole 'a' was diminished by this substitution. We examined GPRP binding to the ?364Asp variants in solution by plasmin protection assay. We found no protection of either ?D364H or ?D364V but partial protection of ?D364A, indicating the peptide does not bind to either ?D364H or ?D364V and binds more weakly than normal to ?D364A. We also examined protection by calcium and found all variants were indistinguishable from normal, suggesting the global structures of the variants are not markedly different from normal. Our data imply that ?364Asp per se is not required for knob 'A' binding to hole 'a'; rather, this residue's negative charge has a critical role in the electrostatic interactions that facilitate the important first step in fibrin polymerization.« less
A hetero-micro-seeding strategy for readily crystallizing closely related protein variants.
Islam, Mohammad M; Kuroda, Yutaka
2017-11-04
Protein crystallization remains difficult to rationalize and screening for optimal crystallization conditions is a tedious and time consuming procedure. Here, we report a hetero-micro-seeding strategy for producing high resolution crystals of closely related protein variants, where micro crystals from a readily crystallized variant are used as seeds to develop crystals of other variants less amenable to crystallization. We applied this strategy to Bovine Pancreatic Trypsin Inhibitor (BPTI) variants, which would not crystallize using standard crystallization practice. Out of six variants in our analysis, only one called BPTI-[5,55]A14G formed well behaving crystals; and the remaining five (A14GA38G, A14GA38V, A14GA38L, A14GA38I, and A14GA38K) could be crystallized only using micro-seeds from the BPTI-[5,55]A14G crystal. All hetero-seeded crystals diffracted at high resolution with minimum mosaicity, retaining the same space group and cell dimension. Moreover, hetero-micro-seeding did not introduce any biases into the mutant's structure toward the seed structure, as demonstrated by A14GA38I structures solved using micro-seeds from A14GA38G, A14GA38L and A14GA38I. Though hetero-micro-seeding is a simple and almost naïve strategy, this is the first direct demonstration of its workability. We believe that hetero-micro-seeding, which is contrasting with the popular idea that crystallization requires highly purified proteins, could contribute a new tool for rapidly solving protein structures in mutational analysis studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Substructural controller synthesis
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1989-01-01
A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.
Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
Nishimasu, Hiroshi; Yamano, Takashi; Gao, Linyi; Zhang, Feng; Ishitani, Ryuichiro; Nureki, Osamu
2017-07-06
The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. Copyright © 2017 Elsevier Inc. All rights reserved.
Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.
2017-01-01
Background Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Results Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. Conclusions The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites. PMID:28362841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki
2017-03-31
Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetramericmore » hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.« less
DangerTrack: A scoring system to detect difficult-to-assess regions.
Dolgalev, Igor; Sedlazeck, Fritz; Busby, Ben
2017-01-01
Over recent years, multiple groups have shown that a large number of structural variants, repeats, or problems with the underlying genome assembly have dramatic effects on the mapping, calling, and overall reliability of single nucleotide polymorphism calls. This project endeavored to develop an easy-to-use track for looking at structural variant and repeat regions. This track, DangerTrack, can be displayed alongside the existing Genome Reference Consortium assembly tracks to warn clinicians and biologists when variants of interest may be incorrectly called, of dubious quality, or on an insertion or copy number expansion. While mapping and variant calling can be automated, it is our opinion that when these regions are of interest to a particular clinical or research group, they warrant a careful examination, potentially involving localized reassembly. DangerTrack is available at https://github.com/DCGenomics/DangerTrack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203; Pace, Jim
2012-12-01
Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B{sub 5}) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B{sub 5}, butmore » not the LT-IIb-B{sub 5} Ser74Asp variant [LT-IIb-B{sub 5}(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B{sub 5}(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B{sub 5} and the LT-IIb-B{sub 5} Thr13Ile [LT-IIb-B{sub 5}(T13I)] and LT-IIb-B{sub 5} Ser74Ala [LT-IIb-B{sub 5}(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B{sub 5} have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B{sub 5}(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B{sub 5}(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B{sub 5}(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B{sub 5}(T13I) variant to GD1a ganglioside.« less
Dang, Zhao; Qian, Keduo; Ho, Phong; Zhu, Lei; Lee, Kuo-Hsiung; Huang, Li; Chen, Chin-Ho
2012-08-15
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram
2018-01-01
In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The glycan structure of albumin Redhill, a glycosylated variant of human serum albumin.
Kragh-Hansen, U; Donaldson, D; Jensen, P H
2001-11-26
Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.
Using ClinVar as a Resource to Support Variant Interpretations
Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.
2016-01-01
ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489
Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E
2014-06-16
The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.
Carmichael, Suzan L; Yang, Wei; Ma, Chen; Roberts, Eric; Kegley, Susan; English, Paul; Lammer, Edward J; Witte, John S; Shaw, Gary M
2016-08-01
We examined risks associated with joint exposure of gene variants and pesticides. Analyses included 189 cases and 390 male controls born from 1991 to 2003 in California's San Joaquin Valley. We used logistic regression to examine risks associated with joint exposures of gene variants and pesticides that our previous work identified as associated with hypospadias. Genetic variables were based on variants in DGKK, genes involved in sex steroid synthesis/metabolism, and genes involved in genital tubercle development. Pesticide exposure was based on residential proximity to commercial agricultural pesticide applications. Odds ratios (ORs) were highest among babies with joint exposures, who had two- to fourfold increased risks; for example, the OR was 3.7 (95% confidence interval [CI], 0.8-16.5) among subjects with the risk-associated DGKK haplotype and pesticide exposure; OR, 1.5 (95% CI, 0.7-3.1) among subjects with the haplotype and no pesticide exposure; and OR, 0.9 (95% CI, 0.5-1.6) among subjects without the haplotype but with pesticide exposure, relative to subjects with neither. However, results did not provide statistical evidence that these risks were significantly greater than expected on an additive scale, relative to risks associated with one exposure at a time. We observed elevated risks associated with joint exposures to selected pesticides and genetic variants but no statistical evidence for interaction. Birth Defects Research (Part A) 106:653-658, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rico-Díaz, Agustín; Álvarez-Cao, María-Efigenia; Escuder-Rodríguez, Juan-José; González-Siso, María-Isabel; Cerdán, M. Esperanza; Becerra, Manuel
2017-01-01
Kluyveromyces lactis β-galactosidase (Kl-β-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-β-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-β-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-β-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-β-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-β-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis. PMID:28361909
Aplenc, Richard; Thompson, Jennifer; Han, Peggy; La, Mei; Zhao, Huaqing; Lange, Beverly; Rebbeck, Timothy
2005-03-15
A significant portion of patients treated for pediatric acute lymphoblastic leukemia (ALL) relapse. We hypothesized that common polymorphisms with moderate effect sizes and large attributive risks could explain an important fraction of ALL relapses. Methylenetetrahydrofolate reductase (MTHFR) is central to folate metabolism and has two common functional polymorphisms (C677T and A1298G). Methotrexate (MTX), which interrupts folate metabolism, is a mainstay of pediatric ALL therapy. MTX inhibits the synthesis of dTMP needed for DNA replication by blocking the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate by MTHFR. We hypothesized that a deactivating MTHFR allele would increase ALL relapse risk by potentially increasing 5,10-methylenetetrahydrofolate and dTMP, enhancing DNA synthesis and thus opposing MTX. To test this hypothesis, we genotyped 520 patients on the Children's Cancer Study Group ALL study, CCG-1891. The MTHFR C677T variant allele was statistically significantly associated with relapse (chi2 = 4.38, P = 0.036). This association remained significant (hazard ratio = 1.82, P = 0.008), controlling for important covariates, and was more predictive of relapse than other predictors, including day 7 bone marrow response. The MTHFR C677T variant allele was not associated with an increased risk of toxicity or infection. The MTHFR A1298G polymorphism was not associated with altered risks of relapse, toxicity, or infection. Haplotype analysis showed six common haplotypes that did not provide additional information predictive for relapse. These data provide evidence that the MTHFR C677T polymorphism is a common genetic variant conferring a moderate relative risk and a high attributable risk for relapse in pediatric ALL patients.
Rico-Díaz, Agustín; Álvarez-Cao, María-Efigenia; Escuder-Rodríguez, Juan-José; González-Siso, María-Isabel; Cerdán, M Esperanza; Becerra, Manuel
2017-03-31
Kluyveromyces lactis β-galactosidase (Kl-β-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-β-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-β-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-β-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-β-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-β-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis.
Damnjanović, Jasmina; Nakano, Hideo; Iwasaki, Yugo
2014-04-01
Supplementary phosphatidylinositol (PI) was shown to improve lipid metabolism in animals, thus it is interesting for pharmaceutical and nutritional applications. Homogenous PI can be produced in transphosphatidylation of phosphatidylcholine (PC) with myo-inositol catalyzed by phospholipase D (PLD). Only bacterial enzymes able to catalyze PI synthesis are Streptomyces antibioticus PLD (SaPLD) variants, among which DYR (W187D/Y191Y/Y385R) has the best kinetic profile. Increase in PI yield is possible by providing excess of solvated myo-inositol, which is achievable at high temperatures due to its highly temperature-dependent solubility. However, high-temperature PI synthesis requires the thermostable PLD. Previous site-directed combinatorial mutagenesis at the residues of DYR having high B-factor yielded the most improved variant, D40H/T291Y DYR, obtained by the combination of two selected mutations. D40 and T291 are located within dynamic surface loops, D37-G45 (termed D40 loop) and G273-T313. Thus, in this work, thermostabilization of DYR SaPLD was attempted by rational design based on deletion of the D40 loop, generating two variants, Δ37-45 DYR and Δ38-46 DYR PLD. Δ38-46 DYR showed highest thermostability as its activity half-life at 70°C proved 11.7 and 8.0 times longer than that of the DYR and Δ37-45 DYR, respectively. Studies on molecular dynamics predicted Δ38-46 DYR to have the least average RMSD change as temperature dramatically increases. At 60 and 70°C, both mutants synthesized PI in a twofold higher yield compared to the DYR, while at the same time produced less of the hydrolytic side-product, phosphatidic acid. © 2013 Wiley Periodicals, Inc.
Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi
2018-03-01
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Thelen, P; Taubert, H; Duensing, S; Kristiansen, G; Merseburger, A S; Cronauer, M V
2018-01-25
A recently discovered mechanism enabling prostate cancer cells to escape the effects of endocrine therapies consists in the synthesis of C-terminally truncated, constitutively active androgen receptor (AR) splice variants (AR-V). Devoid of a functional C-terminal hormone/ligand binding domain, various AR-Vs are insensitive to therapies targeting the androgen/AR signalling axis. Preliminary studies suggest that AR-V7, the most common AR-V, is a promising predictive tumour marker and a relevant selection marker for the treatment of advanced prostate cancer. This review critically outlines recent advances in AR-V7 diagnostics and presents an overview of current AR-V7 targeted therapies. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei
Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less
Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota
Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.
2011-01-01
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950
Hernandez-Ferrer, Carles; Quintela Garcia, Ines; Danielski, Katharina; Carracedo, Ángel; Pérez-Jurado, Luis A; González, Juan R
2015-05-20
The well-known Genome-Wide Association Studies (GWAS) had led to many scientific discoveries using SNP data. Even so, they were not able to explain the full heritability of complex diseases. Now, other structural variants like copy number variants or DNA inversions, either germ-line or in mosaicism events, are being studies. We present the R package affy2sv to pre-process Affymetrix CytoScan HD/750k array (also for Genome-Wide SNP 5.0/6.0 and Axiom) in structural variant studies. We illustrate the capabilities of affy2sv using two different complete pipelines on real data. The first one performing a GWAS and a mosaic alterations detection study, and the other detecting CNVs and performing an inversion calling. Both examples presented in the article show up how affy2sv can be used as part of more complex pipelines aimed to analyze Affymetrix SNP arrays data in genetic association studies, where different types of structural variants are considered.
Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.
2010-07-19
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here wemore » report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.« less
Human Apolipoprotein A-I Natural Variants: Molecular Mechanisms Underlying Amyloidogenic Propensity
Ramella, Nahuel A.; Schinella, Guillermo R.; Ferreira, Sergio T.; Prieto, Eduardo D.; Vela, María E.; Ríos, José Luis
2012-01-01
Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis. PMID:22952757
NAD Deficiency, Congenital Malformations, and Niacin Supplementation.
Shi, Hongjun; Enriquez, Annabelle; Rapadas, Melissa; Martin, Ella M M A; Wang, Roni; Moreau, Julie; Lim, Chai K; Szot, Justin O; Ip, Eddie; Hughes, James N; Sugimoto, Kotaro; Humphreys, David T; McInerney-Leo, Aideen M; Leo, Paul J; Maghzal, Ghassan J; Halliday, Jake; Smith, Janine; Colley, Alison; Mark, Paul R; Collins, Felicity; Sillence, David O; Winlaw, David S; Ho, Joshua W K; Guillemin, Gilles J; Brown, Matthew A; Kikuchi, Kazu; Thomas, Paul Q; Stocker, Roland; Giannoulatou, Eleni; Chapman, Gavin; Duncan, Emma L; Sparrow, Duncan B; Dunwoodie, Sally L
2017-08-10
Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).
Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk
Zeng, Chenjie; Matsuda, Koichi; Jia, Wei-Hua; Chang, Jiang; Kweon, Sun-Seog; Xiang, Yong-Bing; Shin, Aesun; Jee, Sun Ha; Kim, Dong-Hyun; Zhang, Ben; Cai, Qiuyin; Guo, Xingyi; Long, Jirong; Wang, Nan; Courtney, Regina; Pan, Zhi-Zhong; Wu, Chen; Takahashi, Atsushi; Shin, Min-Ho; Matsuo, Keitaro; Matsuda, Fumihiko; Gao, Yu-Tang; Oh, Jae Hwan; Kim, Soriul; Jung, Keum Ji; Ahn, Yoon-Ok; Ren, Zefang; Li, Hong-Lan; Wu, Jie; Shi, Jiajun; Wen, Wanqing; Yang, Gong; Li, Bingshan; Ji, Bu-Tian; Brenner, Hermann; Schoen, Robert E.; Küry, Sébastien; Gruber, Stephen B.; Schumacher, Fredrick R.; Stenzel, Stephanie L.; Casey, Graham; Hopper, John L.; Jenkins, Mark A.; Kim, Hyeong-Rok; Jeong, Jin-Young; Park, Ji Won; Tajima, Kazuo; Cho, Sang-Hee; Kubo, Michiaki; Shu, Xiao-Ou; Lin, Dongxin; Zeng, Yi-Xin; Zheng, Wei
2016-01-01
Background & Aims Known Genetic factors explain only a small fraction of genetic variation in colorectal cancer (CRC). We conducted a genome-wide association study (GWAS) to identify risk loci for CRC. Methods This discovery stage included 8027 cases and 22577 controls of East-Asian ancestry. Promising variants were evaluated in studies including as many as 11044 cases and 12047 controls. Tumor-adjacent normal tissues from 188 patients were analyzed to evaluate correlations of risk variants with expression levels of nearby genes. Potential functionality of risk variants were evaluated using public genomic and epigenomic databases. Results We identified 4 loci associated with CRC risk; P values for the most significant variant in each locus ranged from 3.92×10−8 to 1.24×10−12: 6p21.1 (rs4711689), 8q23.3 (rs2450115, rs6469656), 10q24.3 (rs4919687), and 12p13.3 (rs11064437). We also identified 2 risk variants at loci previously associated with CRC: 10q25.2 (rs10506868) and 20q13.3 (rs6061231). These risk variants, conferring an approximate 10%–18% increase in risk per allele, are located either inside or near protein-coding genes that include TFEB (lysosome biogenesis and autophagy), EIF3H (initiation of translation), CYP17A1 (steroidogenesis), SPSB2 (proteasome degradation), and RPS21 (ribosome biogenesis). Gene expression analyses showed a significant association (P <.05) for rs4711689 with TFEB, rs6469656 with EIF3H, rs11064437 with SPSB2, and rs6061231 with RPS21. Conclusions We identified susceptibility loci and genes associated with CRC risk, linking CRC predisposition to steroid hormone, protein synthesis and degradation, and autophagy pathways and providing added insight into the mechanism of CRC pathogenesis. PMID:26965516
Sun exposure, vitamin D receptor polymorphisms FokI and BsmI and risk of multiple primary melanoma.
Mandelcorn-Monson, Rochelle; Marrett, Loraine; Kricker, Anne; Armstrong, Bruce K; Orlow, Irene; Goumas, Chris; Paine, Susan; Rosso, Stefano; Thomas, Nancy; Millikan, Robert C; Pole, Jason D; Cotignola, Javier; Rosen, Cheryl; Kanetsky, Peter A; Lee-Taylor, Julia; Begg, Colin B; Berwick, Marianne
2011-12-01
Sunlight exposure increases risk of melanoma. Sunlight also potentiates cutaneous synthesis of vitamin D, which can inhibit melanoma cell growth and promote apoptosis. Vitamin D effects are mediated through the vitamin D receptor (VDR). We hypothesized that genetic variation in VDR affects the relationship of sun exposure to risk of a further melanoma in people who have already had one. We investigated the interaction between VDR polymorphisms and sun exposure in a population-based multinational study comparing 1138 patients with a multiple (second or subsequent) primary melanoma (cases) to 2151 patients with a first primary melanoma (controls); essentially a case-control study of melanoma in a population of melanoma survivors. Sun exposure was assessed using a questionnaire and interview, and was shown to be associated with multiple primary melanoma. VDR was genotyped at the FokI and BsmI loci and the main effects of variants at these loci and their interactions with sun exposure were analyzed. Only the BsmI variant was associated with multiple primary melanoma (OR=1.27, 95% CI 0.99-1.62 for the homozygous variant genotype). Joint effects analyses showed highest ORs in the high exposure, homozygous variant BsmI genotype category for each sun exposure variable. Stratified analyses showed somewhat higher ORs for the homozygous BsmI variant genotype in people with high sun exposure than with low sun exposure. P values for interaction, however, were high. These results suggest that risk of multiple primary melanoma is increased in people who have the BsmI variant of VDR. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nho, Kwangsik; Horgusluoglu, Emrin; Kim, Sungeun; Risacher, Shannon L; Kim, Dokyoon; Foroud, Tatiana; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J
2016-08-12
Pathogenic mutations in PSEN1 are known to cause familial early-onset Alzheimer's disease (EOAD) but common variants in PSEN1 have not been found to strongly influence late-onset AD (LOAD). The association of rare variants in PSEN1 with LOAD-related endophenotypes has received little attention. In this study, we performed a rare variant association analysis of PSEN1 with quantitative biomarkers of LOAD using whole genome sequencing (WGS) by integrating bioinformatics and imaging informatics. A WGS data set (N = 815) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort was used in this analysis. 757 non-Hispanic Caucasian participants underwent WGS from a blood sample and high resolution T1-weighted structural MRI at baseline. An automated MRI analysis technique (FreeSurfer) was used to measure cortical thickness and volume of neuroanatomical structures. We assessed imaging and cerebrospinal fluid (CSF) biomarkers as LOAD-related quantitative endophenotypes. Single variant analyses were performed using PLINK and gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 839 rare variants (MAF < 1/√(2 N) = 0.0257) were found within a region of ±10 kb from PSEN1. Among them, six exonic (three non-synonymous) variants were observed. A single variant association analysis showed that the PSEN1 p. E318G variant increases the risk of LOAD only in participants carrying APOE ε4 allele where individuals carrying the minor allele of this PSEN1 risk variant have lower CSF Aβ1-42 and higher CSF tau. A gene-based analysis resulted in a significant association of rare but not common (MAF ≥ 0.0257) PSEN1 variants with bilateral entorhinal cortical thickness. This is the first study to show that PSEN1 rare variants collectively show a significant association with the brain atrophy in regions preferentially affected by LOAD, providing further support for a role of PSEN1 in LOAD. The PSEN1 p. E318G variant increases the risk of LOAD only in APOE ε4 carriers. Integrating bioinformatics with imaging informatics for identification of rare variants could help explain the missing heritability in LOAD.
Improved Synthesis and In Vitro Evaluation of an Aptamer Ribosomal Toxin Conjugate
Kelly, Linsley; Kratschmer, Christina; Maier, Keith E.; Yan, Amy C.
2016-01-01
Delivery of toxins, such as the ricin A chain, Pseudomonas exotoxin, and gelonin, using antibodies has had some success in inducing specific toxicity in cancer treatments. However, these antibody-toxin conjugates, called immunotoxins, can be bulky, difficult to express, and may induce an immune response upon in vivo administration. We previously reported delivery of a recombinant variant of gelonin (rGel) by the full-length prostate-specific membrane antigen (PSMA) binding aptamer, A9, to potentially circumvent some of these problems. Here, we report a streamlined approach to generating aptamer-rGel conjugates utilizing a chemically synthesized minimized form of the A9 aptamer. Unlike the full-length A9 aptamer, this minimized variant can be chemically synthesized with a 5′ terminal thiol. This facilitates the large scale synthesis and generation of aptamer toxin conjugates linked by a reducible disulfide linkage. Using this approach, we generated aptamer-toxin conjugates and evaluated their binding specificity and toxicity. On PSMA(+) LNCaP prostate cancer cells, the A9.min-rGel conjugate demonstrated an IC50 of ∼60 nM. Additionally, we performed a stability analysis of this conjugate in mouse serum where the conjugate displayed a t1/2 of ∼4 h, paving the way for future in vivo experiments. PMID:27228412
Lee, Young-Sam; Gregory, Mark T.; Yang, Wei
2014-01-01
DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906
Lee, Young-Sam; Gregory, Mark T; Yang, Wei
2014-02-25
DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.
Booth, Andrew; Carroll, Christopher
2015-11-01
Increasing recognition of the role and value of theory in improvement work in healthcare offers the prospect of capitalising upon, and consolidating, actionable lessons from synthesis of improvement projects and initiatives. We propose that informed use of theory can (i) provide a mechanism by which to collect and organise data from a body of improvement work, (ii) offer a framework for analysis and identification of lessons learnt and (iii) facilitate an evaluation of the feasibility, effectiveness and acceptability of improvement programmes. Improvement practitioners can benefit from using an underpinning external structure as a lens by which to examine the specific achievements of their own projects alongside comparable initiatives led by others. We demonstrate the utility of a method known as 'best fit framework synthesis' (BFFS) in offering a ubiquitous and versatile means by which to collect, analyse and evaluate improvement work in healthcare. First reported in 2011, BFFS represents a pragmatic, flexible approach to integrating theory with findings from practice. A deductive phase, where a review team seeks to accommodate a substantial part of the data, is followed by an inductive phase, in which the team explores data not accommodated by the framework. We explore the potential for BFFS within improvement work by drawing upon the evidence synthesis methodology literature and practical examples of improvement work reported in BMJ Quality and Safety (2011-2015). We suggest four variants of BFFS that may have particular value in synthesising a body of improvement work. We conclude that BFFS, alongside other approaches that seek to optimise the contribution of theory to improvement work, represents one important enabling mechanism by which to establish the rigour and scientific credentials of the emerging discipline of 'improvement science'. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.
Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael
2016-09-19
The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.
Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet
2015-11-01
Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.
Richards, Mark W.; Law, Edward W. P.; Rennalls, La’Verne P.; Busacca, Sara; O’Regan, Laura; Fry, Andrew M.; Fennell, Dean A.; Bayliss, Richard
2014-01-01
Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners. PMID:24706829
Richards, Mark W; Law, Edward W P; Rennalls, La'Verne P; Busacca, Sara; O'Regan, Laura; Fry, Andrew M; Fennell, Dean A; Bayliss, Richard
2014-04-08
Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners.
Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists.
Bollinger, Stefan; Hübner, Harald; Heinemann, Frank W; Meyer, Karsten; Gmeiner, Peter
2010-10-14
To further improve the maximal serotonergic efficacy and better understand the configurational requirements for 5-HT(1A) binding and activation, we generated and biologically investigated structural variants of the lead structure befiradol. For a bioisosteric replacement of the 3-chloro-4-fluoro moiety, a focused library of 63 compounds by solution phase parallel synthesis was developed. Target binding of our compound collection was investigated, and their affinities for 5-HT(2), α(1), and α(2)-adrenergic as well as D(1)-D(4) dopamine receptors were compared. For particularly interesting test compounds, intrinsic activities at 5-HT(1A) were examined in vitro employing a GTPγS assay. The investigation guided us to highly selective 5HT(1A) superagonists. The benzothiophene-3-carboxamide 8bt revealed almost exclusive 5HT(1A) recognition with a K(i) value of 2.7 nM and a maximal efficacy of 124%. To get insights into the bioactive conformation of our compound collection, we synthesized conformationally constrained bicyclic scaffolds when SAR data indicated a chair-type geometry and an equatorially dispositioned aminomethyl substituent for the 4,4-disubstituted piperidine moiety.
The structure and mobility of the intervariant boundaries in 18R martensite in a Cu-Zn-Al alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.X.; Zheng, Y.F.; Zhao, L.C.
1999-05-28
Detailed crystallographic analysis was carried out on the martensitic transformation and the various variant combinations in 18R martensite in a Cu-Zn-Al alloy. The self-accommodation of martensitic shear strain is quite perfect within a variant group, but not effective or even does not exist for variant combinations which belong to different groups. Twenty-three unique variant combinations between 24 martensite variants can be divided into four groups, i.e. reflection twin, 180 rotation twin, 120 rotation twin and 90 rotation twin. TEM and HREM observations show that the A C boundary is straight, well-defined and perfectly coherent, the A B boundary is irrational,more » coherent and gradually curved, and the A D boundary is stepped. The A C and A B boundaries have obvious mobility, and the mobility is not effective for A D boundary. The interplate group boundaries are curved, blurred and immobile. The morphology, structure and mobility of interplate boundary are all related to the degree of self-accommodation and the misorientation of twin boundary.« less
A methodology for the synthesis of robust feedback systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Milich, David Albert
1988-01-01
A new methodology is developed for the synthesis of linear, time-variant (LTI) controllers for multivariable LTI systems. The resulting closed-loop system is nominally stable and exhibits a known level of performance. In addition, robustness of the feedback system is guaranteed, i.e., stability and performance are retained in the presence of multiple unstructured uncertainty blocks located at various points in the feedback loop. The design technique is referred to as the Causality Recovery Methodology (CRM). The CRM relies on the Youla parameterization of all stabilizing compensators to ensure nominal stability of the feedback system. A frequency-domain inequality in terms of the structured singular value mu defines the robustness specification. The optimal compensator, with respect to the mu condition, is shown to be noncausal in general. The aim of the CRM is to find a stable, causal transfer function matrix that approximates the robustness characteristics of the optimal solution. The CRM, via a series of infinite-dimensional convex programs, produces a closed-loop system whose performance robustness is at least as good as that of any initial design. The algorithm is approximated by a finite dimensional process for the purposes of implementation. Two numerical examples confirm the potential viability of the CRM concept; however, the robustness improvement comes at the expense of increased computational burden and compensator complexity.
Is His54 a gating residue for the ferritin ferroxidase site?
Bernacchioni, Caterina; Ciambellotti, Silvia; Theil, Elizabeth C; Turano, Paola
2015-09-01
Ferritin is a ubiquitous iron concentrating nanocage protein that functions through the enzymatic oxidation of ferrous iron and the reversible synthesis of a caged ferric-oxo biomineral. Among vertebrate ferritins, the bullfrog M homopolymer ferritin is a frequent model for analyzing the role of specific amino acids in the enzymatic reaction and translocation of iron species within the protein cage. X-ray crystal structures of ferritin in the presence of metal ions have revealed His54 binding to iron(II) and other divalent cations, with its imidazole ring proposed as "gate" that influences iron movement to/from the active site. To investigate its role, His54 was mutated to Ala. The H54A ferritin variant was expressed and its reactivity studied via UV-vis stopped-flow kinetics. The H54A variant exhibited a 20% increase in the initial reaction rate of formation of ferric products with 2 or 4 Fe²⁺/subunit and higher than 200% with 20 Fe²⁺/subunit. The possible meaning of the increased efficiency of the ferritin reaction induced by this mutation is proposed taking advantage of the comparative sequence analysis of other ferritins. The data here reported are consistent with a role for His54 as a metal ion trap that maintains the correct levels of access of iron to the active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Weber, J M; Sircar, S; Horvath, J; Dion, P
1989-11-01
Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.
Mutation screening of melatonin-related genes in patients with autism spectrum disorders
2010-01-01
Background One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential role in the pathophysiology of these disorders. PMID:20377855
Mutation screening of melatonin-related genes in patients with autism spectrum disorders.
Jonsson, Lina; Ljunggren, Elin; Bremer, Anna; Pedersen, Christin; Landén, Mikael; Thuresson, Kent; Giacobini, Maibritt; Melke, Jonas
2010-04-08
One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential role in the pathophysiology of these disorders.
Romanelli Tavares, Vanessa L; Gordon, Christopher T; Zechi-Ceide, Roseli M; Kokitsu-Nakata, Nancy Mizue; Voisin, Norine; Tan, Tiong Y; Heggie, Andrew A; Vendramini-Pittoli, Siulan; Propst, Evan J; Papsin, Blake C; Torres, Tatiana T; Buermans, Henk; Capelo, Luciane Portas; den Dunnen, Johan T; Guion-Almeida, Maria L; Lyonnet, Stanislas; Amiel, Jeanne; Passos-Bueno, Maria Rita
2015-04-01
Auriculocondylar syndrome is a rare craniofacial disorder comprising core features of micrognathia, condyle dysplasia and question mark ear. Causative variants have been identified in PLCB4, GNAI3 and EDN1, which are predicted to function within the EDN1-EDNRA pathway during early pharyngeal arch patterning. To date, two GNAI3 variants in three families have been reported. Here we report three novel GNAI3 variants, one segregating with affected members in a family previously linked to 1p21.1-q23.3 and two de novo variants in simplex cases. Two variants occur in known functional motifs, the G1 and G4 boxes, and the third variant is one amino acid outside of the G1 box. Structural modeling shows that all five altered GNAI3 residues identified to date cluster in a region involved in GDP/GTP binding. We hypothesize that all GNAI3 variants lead to dominant negative effects.
Somatic Mosaicism: Implications for Disease and Transmission Genetics
Campbell, Ian M.; Shaw, Chad A.; Stankiewicz, Pawel; Lupski, James R.
2015-01-01
Nearly all of the genetic material among cells within an organism is identical. However, single nucleotide variants (SNVs), indels, copy number variants (CNVs), and other structural variants (SVs) continually accumulate as cells divide during development. This process results in an organism composed of countless cells, each with its own unique personal genome. Thus, every human is undoubtedly mosaic. Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted to the next generation as constitutional variants. Here, we review the influence of the developmental timing of mutations, the mechanisms by which they arise, methods for detecting mosaic variants, and the risk of passing these mutations on to the next generation. PMID:25910407
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi1-xMxO2; M = Co, Mn, ...) are appealing alternatives to conventional LiCoO2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1-xMxO2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co-substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni-rich layered oxides. Results from this study indicatemore » a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O-2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g(-1) ) with excellent retention. The findings shed light on designing high performance Ni-rich layered oxide cathodes through synthetic control of the structural ordering in the materials.« less
Chitnumsub, Penchit; Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree
2014-01-01
Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme. PMID:24914963
Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar
2017-06-01
The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.
Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M
2010-09-01
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.
Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder.
Cameron, Jessie M; Levandovskiy, Valeriy; Roberts, Wendy; Anagnostou, Evdokia; Scherer, Stephen; Loh, Alvin; Schulze, Andreas
2017-07-31
Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase ( GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase ( GAMT gene), and creatine transporter deficiency ( SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM , GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions). A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM , and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) databases). A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF) in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher's exact test). Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism spectrum disorder (ASD) in children.
Parmeggiani, Fabio; Lovelock, Sarah L.; Weise, Nicholas J.; Ahmed, Syed T.
2015-01-01
Abstract The synthesis of substituted d‐phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one‐pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high‐throughput solid‐phase screening method has also been developed to identify PALs with higher rates of formation of non‐natural d‐phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d‐configured product. Furthermore, the system was extended to the preparation of those l‐phenylalanines which are obtained with a low ee value using PAL amination. PMID:27478261
Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J
2015-04-07
The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination.
Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J
2015-01-01
The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita
Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.
Buckeridge, M S; Vergara, C E; Carpita, N C
2001-08-01
Synthases of cellulose, chitin, hyaluronan, and all other polymers containing (1-->4)beta-linked glucosyl, mannosyl and xylosyl units have overcome a substrate orientation problem in catalysis because the (1-->4)beta-linkage requires that each of these sugar units be inverted nearly 180 degrees with respect to its neighbors. We and others have proposed that this problem is solved by two modes of glycosyl transfer within a single catalytic subunit to generate disaccharide units, which, when linked processively, maintain the proper orientation without rotation or re-orientation of the synthetic machinery in 3-dimensional space. A variant of the strict (1-->4)beta-D-linkage structure is the mixed-linkage (1-->3),(1-->4)beta-D-glucan, a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-D-linkages. In reactions in vitro at high substrate concentration, a polymer composed of almost entirely cellotriosyl and cellopentosyl units is made. These results support a model in which three modes of glycosyl transfer occur within the synthase complex instead of just two. The generation of odd numbered units demands that they are connected by (1-->3)beta-linkages and not (1-->4)beta-. In this short review of beta-glucan synthesis in maize, we show how such a model not only provides simple mechanisms of synthesis for all (1-->4)beta-D-glycans but also explains how the synthesis of callose, or strictly (1-->3)beta-D-glucans, occurs upon loss of the multiple modes of glycosyl transfer to a single one.
Booth, Andrew; Carroll, Christopher
2015-01-01
Increasing recognition of the role and value of theory in improvement work in healthcare offers the prospect of capitalising upon, and consolidating, actionable lessons from synthesis of improvement projects and initiatives. We propose that informed use of theory can (i) provide a mechanism by which to collect and organise data from a body of improvement work, (ii) offer a framework for analysis and identification of lessons learnt and (iii) facilitate an evaluation of the feasibility, effectiveness and acceptability of improvement programmes. Improvement practitioners can benefit from using an underpinning external structure as a lens by which to examine the specific achievements of their own projects alongside comparable initiatives led by others. We demonstrate the utility of a method known as ‘best fit framework synthesis’ (BFFS) in offering a ubiquitous and versatile means by which to collect, analyse and evaluate improvement work in healthcare. First reported in 2011, BFFS represents a pragmatic, flexible approach to integrating theory with findings from practice. A deductive phase, where a review team seeks to accommodate a substantial part of the data, is followed by an inductive phase, in which the team explores data not accommodated by the framework. We explore the potential for BFFS within improvement work by drawing upon the evidence synthesis methodology literature and practical examples of improvement work reported in BMJ Quality and Safety (2011–2015). We suggest four variants of BFFS that may have particular value in synthesising a body of improvement work. We conclude that BFFS, alongside other approaches that seek to optimise the contribution of theory to improvement work, represents one important enabling mechanism by which to establish the rigour and scientific credentials of the emerging discipline of ‘improvement science’. PMID:26306609
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.
Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth
2017-08-01
Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3D pol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237F HF substitution or W237I LF and W237L LF mutations were highly attenuated in animals. Our study shows that obtaining 3D pol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. Copyright © 2017 American Society for Microbiology.
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity
Rai, Devendra K.; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A.; Kloc, Anna; de los Santos, Teresa; Peersen, Olve
2017-01-01
ABSTRACT Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. PMID:28515297
Edrees, Burhan M; Athar, Mohammad; Abduljaleel, Zainularifeen; Al-Allaf, Faisal A; Taher, Mohiuddin M; Khan, Wajahatullah; Bouazzaoui, Abdellatif; Al-Harbi, Naffaa; Safar, Ramzia; Al-Edressi, Howaida; Alansary, Khawala; Anazi, Abulkareem; Altayeb, Naji; Ahmed, Muawia A
2016-12-01
A targeted customized sequencing of genes implicated in autosomal recessive polycystic kidney disease (ARPKD) phenotype was performed to identify candidate variants using the Ion torrent PGM next-generation sequencing. The results identified four potential pathogenic variants in PKHD1 gene [c.4870C > T, p.(Arg1624Trp), c.5725C > T, p.(Arg1909Trp), c.1736C > T, p.(Thr579Met) and c.10628T > G, p.(Leu3543Trp)] among 12 out of 18 samples. However, one variant c.4870C > T, p.(Arg1624Trp) was common among eight patients. Some patient samples also showed few variants in autosomal dominant polycystic kidney disease (ADPKD) disease causing genes PKD1 and PKD2 such as c.12433G > A, p.(Val4145Ile) and c.1445T > G, p.(Phe482Cys), respectively. All causative variants were validated by capillary sequencing and confirmed the presence of a novel homozygous variant c.10628T > G, p.(Leu3543Trp) in a male proband. We have recently published the results of these studies (Edrees et al., 2016). Here we report for the first time the effect of the common mutation p.(Arg1624Trp) found in eight samples on the protein structure and function due to the specific amino acid changes of PKHD1 protein using molecular dynamics simulations. The computational approaches provide tool predict the phenotypic effect of variant on the structure and function of the altered protein. The structural analysis with the common mutation p.(Arg1624Trp) in the native and mutant modeled protein were also studied for solvent accessibility, secondary structure and stabilizing residues to find out the stability of the protein between wild type and mutant forms. Furthermore, comparative genomics and evolutionary analyses of variants observed in PKHD1 , PKD1 , and PKD2 genes were also performed in some mammalian species including human to understand the complexity of genomes among closely related mammalian species. Taken together, the results revealed that the evolutionary comparative analyses and characterization of PKHD1 , PKD1 , and PKD2 genes among various related and unrelated mammalian species will provide important insights into their evolutionary process and understanding for further disease characterization and management.
Ponomareva, Eugenia P; Ternovoi, Vladimir A; Mikryukova, Tamara P; Protopopova, Elena V; Gladysheva, Anastasia V; Shvalov, Alexander N; Konovalova, Svetlana N; Chausov, Eugene V; Loktev, Valery B
2017-10-01
The C11-13 strain from the Siberian subtype of tick-borne encephalitis virus (TBEV) was isolated from human brain using pig embryo kidney (PEK), 293, and Neuro-2a cells. Analysis of the complete viral genome of the C11-13 variants during six passages in these cells revealed that the cell-adapted C11-13 variants had multiple amino acid substitutions as compared to TBEV from human brain. Seven out of eight amino acids substitutions in the high-replicating C11-13(PEK) variant mapped to non-structural proteins; 13 out of 14 substitutions in the well-replicating C11-13(293) variant, and all four substitutions in the low-replicating C11-13(Neuro-2a) variant were also localized in non-structural proteins, predominantly in the NS2a (2), NS3 (6) and NS5 (3) proteins. The substitutions NS2a 1067 (Asn → Asp), NS2a 1168 (Leu → Val) in the N-terminus of NS2a and NS3 1745 (His → Gln) in the helicase domain of NS3 were found in all selected variants. We postulate that multiple substitutions in the NS2a, NS3 and NS5 genes play a key role in adaptation of TBEV to different cells.
Breitfeld, Jana; Martens, Susanne; Klammt, Jürgen; Schlicke, Marina; Pfäffle, Roland; Krause, Kerstin; Weidle, Kerstin; Schleinitz, Dorit; Stumvoll, Michael; Führer, Dagmar; Kovacs, Peter; Tönjes, Anke
2013-12-01
The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD.
2013-01-01
Background The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. Methods We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Results Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. Conclusions A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD. PMID:24289245
Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun
2017-11-01
Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Roy, Jenny; Maltais, René; Jegham, Hajer; Poirier, Donald
2011-05-01
Libraries of steroid derivatives with two levels of molecular diversity were prepared to optimize the antiproliferative activity on leukemia HL-60 cells by first varying the amino acid (AA) at R(1) (libraries A, B, C, and D: with 45, 45, 20, and 20 members, respectively) and, subsequently, the capping group at R(2) (library E: 168 members). The screening of these aminosteroids revealed interesting structure-activity relationships. In library A, the compounds bearing a tetrahydroisoquinolone residue as the first element of diversity showed potent cytotoxicity, principally when isovaleric or cyclohexyl acetic acid was used as a capping group (>40% of cell growth inhibition at 1 μM). In library B, the phenylalanine (Phe) derivatives bearing a cyano group induced a higher growth inhibition than the other Phe derivatives. The screening of library C indicated the increase of hydrophobicity of proline (Pro) seems to preserve the cytotoxic effect achieved by the lead compound. However, the synthesis of structural Pro variants (library D) clearly shows weaker activities when compared to L-Pro building blocks. Finally, by incorporating some of the most active AA of libraries A-D in library E, we observed that the amide coupling functionality gave stronger cytotoxic activity compared to the corresponding sulfonamides or benzylamines. Six of the most active amide derivatives (E-37P, E-41P, E-42P, E-46P, E-48F, and E-12T) were selected and IC(50) determined on HL-60 cells as well as on normal human lymphocytes. Among this series of new anticancer agents, good to high selectivity indices (SI = IC(50) (lymphocytes)/IC(50) (HL-60 cells) = 5 - 55) were obtained.
Macias, Freddy J; Deo, Krishant M; Pages, Benjamin J; Wormell, Paul; Clegg, Jack K; Zhang, Yingjie; Li, Feng; Zheng, Gang; Sakoff, Jennette; Gilbert, Jayne; Aldrich-Wright, Janice R
2015-11-16
We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2](2+), where HL is a methyl-functionalised variant of 1,10-phenanthroline and AL is the S,S or R,R isomer of 1,2-diaminocyclohexane. NMR characterisation and X-ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self-stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self-association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.
2016-01-01
Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418
Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong
2015-01-01
Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016
The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex.
Lindenstrauß, Ute; Skorupa, Philipp; McDowall, Jennifer S; Sargent, Frank; Pinske, Constanze
2017-08-11
The assembly of multi-protein complexes requires the concerted synthesis and maturation of its components and subsequently their co-ordinated interaction. The membrane-bound formate hydrogenlyase (FHL) complex is the primary hydrogen-producing enzyme in Escherichia coli and is composed of seven subunits mostly encoded within the hycA-I operon for [NiFe]-hydrogenase-3 (Hyd-3). The HycH protein is predicted to have an accessory function and is not part of the final structural FHL complex. In this work, a mutant strain devoid of HycH was characterised and found to have significantly reduced FHL activity due to the instability of the electron transfer subunits. HycH was shown to interact specifically with the unprocessed species of HycE, the catalytic hydrogenase subunit of the FHL complex, at different stages during the maturation and assembly of the complex. Variants of HycH were generated with the aim of identifying interacting residues and those that influence activity. The R70/71/K72, the Y79, the E81 and the Y128 variant exchanges interrupt the interaction with HycE without influencing the FHL activity. In contrast, FHL activity, but not the interaction with HycE, was negatively influenced by H37 exchanges with polar residues. Finally, a HycH Y30 variant was unstable. Surprisingly, an overlapping function between HycH with its homologous counterpart HyfJ from the operon encoding [NiFe]-hydrogenase-4 (Hyd-4) was identified and this is the first example of sharing maturation machinery components between Hyd-3 and Hyd-4 complexes. The data presented here show that HycH has a novel dual role as an assembly chaperone for a cytoplasmic [NiFe]-hydrogenase. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J
2015-01-01
The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.
Jung, Un Ju; Baek, Nam-In; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung Tae; Lee, Mi-Kyung; Choi, Myung-Sook
2009-12-01
The objective of this study was to determine the effects of the ethanol extract of two variants of Artemisia princeps Pampanini, Sajabalssuk (SB) and Sajuarissuk (SS), on lipid metabolism in type 2 diabetic animals. Male C57BL/KsJ-db/db mice were divided into control, SB ethanol extract (SBE) (0.171 g/100 g of diet), SS ethanol extract (SSE) (0.154 g/100 g of diet), and rosiglitazone (RG) (0.005 g/100 g of diet) groups. Supplementation of SBE and SSE significantly lowered the plasma levels of free fatty acid, triglyceride, and total cholesterol compared to the control group. The hepatic triglyceride and cholesterol contents and hepatic lipid droplets accumulation were also significantly lower in the SBE- and SSE-supplemented db/db mice than in the control or RG-supplemented db/db mice. Reductions of hepatic triglyceride and cholesterol contents in the SBE and SSE groups were related to the suppression of hepatic lipogenic enzyme activities, fatty acid synthesis (fatty acid synthase and malic enzyme), triglyceride synthesis (phosphatidate phosphohydrolase), and cholesterol synthesis (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and esterification (acyl-coenzyme A:cholesterol acyltransferase). The RG supplement lowered plasma and hepatic lipid levels compared to the control group. However, RG significantly increased the white and brown adipose tissue weight and epididymal adipocyte size, whereas SBE and SSE lowered the brown adipose tissue weight and epididymal adipocyte size compared to the RG group. Together, these data suggest that supplementation of SBE and SSE partly improves lipid dysregulation and fatty liver in db/db mice by suppressing hepatic lipogenic enzyme activities.
Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri
2014-02-01
The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin
2014-01-01
Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946
Misselbeck, Karla; Marchetti, Luca; Field, Martha S; Scotti, Marco; Priami, Corrado; Stover, Patrick J
2017-04-11
Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.
Variant Review with the Integrative Genomics Viewer.
Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P
2017-11-01
Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.
Solubilization of a membrane protein by combinatorial supercharging.
Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A
2011-04-15
Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.
Meta-analysis of gene-level tests for rare variant association.
Liu, Dajiang J; Peloso, Gina M; Zhan, Xiaowei; Holmen, Oddgeir L; Zawistowski, Matthew; Feng, Shuang; Nikpay, Majid; Auer, Paul L; Goel, Anuj; Zhang, He; Peters, Ulrike; Farrall, Martin; Orho-Melander, Marju; Kooperberg, Charles; McPherson, Ruth; Watkins, Hugh; Willer, Cristen J; Hveem, Kristian; Melander, Olle; Kathiresan, Sekar; Abecasis, Gonçalo R
2014-02-01
The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.
Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2
Xiao, JunFeng
2009-01-01
The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845
Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.
Dong, Renhao; Zhang, Tao; Feng, Xinliang
2018-06-18
The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)-that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by a brief classification of inorganic and organic 2DMs achieved by interfacial synthesis. Next, the currently developed interfacial synthesis strategies combined with representative inorganic and organic 2DMs are summarized, including the description of method details, the corresponding structural features, and the insights into the advantages and limitations of the synthesis methods, along with some recommendable characterization methods for understanding the interfacial assembly of the precursors and crystal growth of 2DMs. After that, we will discuss several classes of emerging organic 2DMs with particular emphasis on the structural control by the interfacial synthesis strategies. Note that, inorganic 2DMs will not be categorized separately due to the fact that a number of review articles have covered the synthesis, structure, processing, and applications. Finally, the challenges and perspectives are provided regarding the future development of interface-assisted synthesis of 2DMs with diverse structural and functional control.
Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations
Oprescu, Stephanie N.; Griffin, Laurie B.; Beg, Asim A.; Antonellis, Anthony
2016-01-01
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids—the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data sustains that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype. PMID:27876679
Wang, Guirong; Guo, Xiaoxuan; Silveyra, Patricia; Kimball, Scot R.; Floros, Joanna
2009-01-01
Human surfactant protein A (hSP-A), a molecule of innate immunity and surfactant-related functions, consists of two functional genes, SP-A1 and SP-A2. SP-A expression is regulated by several factors including environmental stressors. SP-A1 and SP-A2 5′-untranslated region (5′-UTR) splice variants have a differential impact on translation efficiency and mRNA stability. To study whether these variants mediate internal ribosome entry site (IRES) activity (i.e., cap-independent translation), we performed transient transfection experiments in H441 cells with constructs containing one SP-A1 (A′D′, AB′D′, or A′CD′) or SP-A2 (ABD) 5′-UTR splice variant between the Renilla and firefly luciferase genes of a bicistronic reporter vector. We found that 1) variants A′D′, ABD, and AB′D′ exhibit significantly higher IRES activities than negative control (no SP-A 5′-UTR) and A′CD′ has no activity; the order of highest IRES activity was ABD > A′D′ > AB′D; 2) IRES activity of ABD significantly increased in response to diesel particulate matter (20 μg/ml) but not in response to ozone (1 ppm for 1 h); 3) deletion mutants of ABD revealed regulatory elements associated with IRES activity; one at the end of exon A attenuated activity, whereas a region containing a short adenosine-rich motif in the second half of exon B and the start of exon D enhanced activity; 4) elimination of a predicted double-loop structure or increase in free energy significantly reduced IRES activity; 5) elimination of one or both double-loop structures in A′D′ did not affect cap-dependent translation activity. Thus several factors, including cis-elements and secondary structure type and stability, are required for hSP-A 5′-UTR variant-mediated cap-independent translation. PMID:19181744
Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes
López-Garriga, Juan; Cadilla, Carmen L.
2016-01-01
The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233
Hyysalo, Jenni; Gopalacharyulu, Peddinti; Bian, Hua; Hyötyläinen, Tuulia; Leivonen, Marja; Jaser, Nabil; Juuti, Anne; Honka, Miikka-Juhani; Nuutila, Pirjo; Olkkonen, Vesa M; Oresic, Matej; Yki-Järvinen, Hannele
2014-01-01
We examined whether relative concentrations of circulating triacylglycerols (TAGs) between carriers compared with noncarriers of PNPLA3(I148M) gene variant display deficiency of TAGs, which accumulate in the liver because of defective lipase activity. We also analyzed the effects of obesity-associated nonalcoholic fatty liver disease (NAFLD) independent of genotype, and of NAFLD due to either PNPLA3(I148M) gene variant or obesity on circulating TAGs. A total of 372 subjects were divided into groups based on PNPLA3 genotype or obesity. Absolute and relative deficiency of distinct circulating TAGs was observed in the PNPLA3(148MM/148MI) compared with the PNPLA3(148II) group. Obese and 'nonobese' groups had similar PNPLA3 genotypes, but the obese subjects were insulin-resistant. Liver fat was similarly increased in obese and PNPLA3(148MM/148MI) groups. Relative concentrations of TAGs in the obese subjects versus nonobese displayed multiple changes. These closely resembled those between obese subjects with NAFLD but without PNPLA3(I148M) versus those with the I148M variant and NAFLD. The etiology of NAFLD influences circulating TAG profiles. 'PNPLA3 NAFLD' is associated with a relative deficiency of TAGs, supporting the idea that the I148M variant impedes intrahepatocellular lipolysis rather than stimulates TAG synthesis. 'Obese NAFLD' is associated with multiple changes in TAGs, which can be attributed to obesity/insulin resistance rather than increased liver fat content per se.
Blackburn, Heather L; Ellsworth, Darrell L; Shriver, Craig D; Ellsworth, Rachel E
2015-03-01
The cytochrome P450 (CYP) genes are oxygenases involved in estrogen biosynthesis and metabolism, generation of DNA damaging procarcinogens, and response to anti-estrogen therapies. Since lifetime estrogen exposure is an established risk factor for breast cancer, determining the role of CYP genes in breast cancer etiology may provide critical information for understanding tumorigenesis and response to treatment. This review summarizes literature available in PubMed published between 1993 and 2013 that focuses on studies evaluating the effects of DNA variants in CYP genes on estrogen synthesis, metabolism, and generation of procarcinogens in addition to response to anti-estrogen therapies. Evaluation of DNA variants in estrogen metabolism genes was largely inconclusive. Meta-analyses of data from CYP19A1 support an association between the number of (TTTA) n repeats in intron 4 and breast cancer risk, but the biological mechanism for this relationship is unknown. Associations between single nucleotide polymorphism in CYP1B1 and DNA damage caused by procarcinogenic estrogen metabolites were ambiguous. Variants in CYP2D6 are associated with altered metabolism tamoxifen; however, current data do not support widespread clinical testing. The effect of variants in CYP19A1 in response to aromatase inhibitors is also questionable. Evaluation of DNA variants in CYP genes involved with estrogen metabolism or treatment response has been inconclusive, reflecting small samples sizes, tumor heterogeneity, and differences between populations. Better-powered studies that account for genetic backgrounds and tumor phenotypes are thus necessary.
Design of a radiator shade for testing in a simulated lunar environment
NASA Technical Reports Server (NTRS)
Huff, Jaimi; Remington, Randy; Tang, Toan
1992-01-01
The National Aeronautics and Space Administration (NASA) and The Universities Space Research Association (USRA) have chosen the parabolic/catenary concept from their sponsored Fall 1991 lunar radiation shade project for further testing and development. NASA asked the design team to build a shading device and support structure for testing in a vacuum chamber. Besides the support structure for the catenary shading device, the design team was asked to develop a system for varying the shade shape so that the device can be tested at different focal lengths. The design team developed concept variants and combined the concept variants to form overall designs. Using a decision matrix, an overall design was selected by the team from several overall design alternatives. Concept variants were developed for three primary functions. The three functions were structural support, shape adjustments, and end shielding. The shade adjustment function was divided into two sub-functions, arc length adjustment, and width adjustment.
NMR backbone resonance assignments of the prodomain variants of BDNF in the urea denatured state.
Wang, Jing; Bains, Henrietta; Anastasia, Agustin; Bracken, Clay
2018-04-01
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1 H, 13 C, and 15 N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.
Boville, Christina E; Romney, David K; Almhjell, Patrick J; Sieben, Michaela; Arnold, Frances H
2018-04-27
The use of enzymes has become increasingly widespread in synthesis as chemists strive to reduce their reliance on organic solvents in favor of more environmentally benign aqueous media. With this in mind, we previously endeavored to engineer the tryptophan synthase β-subunit (TrpB) for production of noncanonical amino acids that had previously been synthesized through multistep routes involving water-sensitive reagents. This enzymatic platform proved effective for the synthesis of analogues of the amino acid tryptophan (Trp), which are frequently used in pharmaceutical synthesis as well as chemical biology. However, certain valuable compounds, such as the blue fluorescent amino acid 4-cyanotryptophan (4-CN-Trp), could only be made in low yield, even at elevated temperature (75 °C). Here, we describe the engineering of TrpB from Thermotoga maritima that improved synthesis of 4-CN-Trp from 24% to 78% yield. Remarkably, although the final enzyme maintains high thermostability ( T 50 = 93 °C), its temperature profile is shifted such that high reactivity is observed at ∼37 °C (76% yield), creating the possibility for in vivo 4-CN-Trp production. The improvements are not specific to 4-CN-Trp; a boost in activity at lower temperature is also demonstrated for other Trp analogues.
Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís
2017-01-01
Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426
Second generation engineering of transketolase for polar aromatic aldehyde substrates.
Payongsri, Panwajee; Steadman, David; Hailes, Helen C; Dalby, Paul A
2015-04-01
Transketolase has significant industrial potential for the asymmetric synthesis of carboncarbon bonds with new chiral centres. Variants evolved on propanal were found previously with nascent activity on polar aromatic aldehydes 3-formylbenzoic acid (3-FBA), 4-formylbenzoic acid (4-FBA), and 3-hydroxybenzaldehyde (3-HBA), suggesting a potential novel route to analogues of chloramphenicol. Here we evolved improved transketolase activities towards aromatic aldehydes, by saturation mutagenesis of two active-site residues (R358 and S385), predicted to interact with the aromatic substituents. S385 variants selectively controlled the aromatic substrate preference, with up to 13-fold enhanced activities, and KM values comparable to those of natural substrates with wild-type transketolase. S385E even completely removed the substrate inhibition for 3-FBA, observed in all previous variants. The mechanisms of catalytic improvement were both mutation type and substrate dependent. S385E improved 3-FBA activity via kcat, but reduced 4-FBA activity via KM. Conversely, S385Y/T improved 3-FBA activity via KM and 4-FBA activity via kcat. This suggested that both substrate proximity and active-site orientation are very sensitive to mutation. Comparison of all variant activities on each substrate indicated different binding modes for the three aromatic substrates, supported by computational docking. This highlights a potential divergence in the evolution of different substrate specificities, with implications for enzyme engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome
Wu, Hong; Zeng, Hong; Lam, Robert; ...
2015-08-01
Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.
Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun
2015-01-01
Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind
2017-06-13
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
Kalastavadi, Tejas; True, Heather L.
2010-01-01
Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI+] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ+] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ+] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ+] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI+] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins. PMID:20442412
De novo design of the hydrophobic core of ubiquitin.
Lazar, G. A.; Desjarlais, J. R.; Handel, T. M.
1997-01-01
We have previously reported the development and evaluation of a computational program to assist in the design of hydrophobic cores of proteins. In an effort to investigate the role of core packing in protein structure, we have used this program, referred to as Repacking of Cores (ROC), to design several variants of the protein ubiquitin. Nine ubiquitin variants containing from three to eight hydrophobic core mutations were constructed, purified, and characterized in terms of their stability and their ability to adopt a uniquely folded native-like conformation. In general, designed ubiquitin variants are more stable than control variants in which the hydrophobic core was chosen randomly. However, in contrast to previous results with 434 cro, all designs are destabilized relative to the wild-type (WT) protein. This raises the possibility that beta-sheet structures have more stringent packing requirements than alpha-helical proteins. A more striking observation is that all variants, including random controls, adopt fairly well-defined conformations, regardless of their stability. This result supports conclusions from the cro studies that non-core residues contribute significantly to the conformational uniqueness of these proteins while core packing largely affects protein stability and has less impact on the nature or uniqueness of the fold. Concurrent with the above work, we used stability data on the nine ubiquitin variants to evaluate and improve the predictive ability of our core packing algorithm. Additional versions of the program were generated that differ in potential function parameters and sampling of side chain conformers. Reasonable correlations between experimental and predicted stabilities suggest the program will be useful in future studies to design variants with stabilities closer to that of the native protein. Taken together, the present study provides further clarification of the role of specific packing interactions in protein structure and stability, and demonstrates the benefit of using systematic computational methods to predict core packing arrangements for the design of proteins. PMID:9194177
Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.
2012-03-15
NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure ofmore » human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.« less
New multirate sampled-data control law structure and synthesis algorithm
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.; Yang, Gen-Sheng
1992-01-01
A new multirate sampled-data control law structure is defined and a new parameter-optimization-based synthesis algorithm for that structure is introduced. The synthesis algorithm can be applied to multirate, multiple-input/multiple-output, sampled-data control laws having a prescribed dynamic order and structure, and a priori specified sampling/update rates for all sensors, processor states, and control inputs. The synthesis algorithm is applied to design two-input, two-output tip position controllers of various dynamic orders for a sixth-order, two-link robot arm model.
Georgiadou, Dimitra; Chroni, Angeliki; Vezeridis, Alexander; Zannis, Vassilis I.; Stratikos, Efstratios
2011-01-01
Background Apolipoprotein E (apoE) is a major protein of the lipoprotein transport system that plays important roles in lipid homeostasis and protection from atherosclerosis. ApoE is characterized by structural plasticity and thermodynamic instability and can undergo significant structural rearrangements as part of its biological function. Mutations in the 136–150 region of the N-terminal domain of apoE, reduce its low density lipoprotein (LDL) receptor binding capacity and have been linked with lipoprotein disorders, such as type III hyperlipoproteinemia (HLP) in humans. However, the LDL-receptor binding defects for these apoE variants do not correlate well with the severity of dyslipidemia, indicating that these variants may carry additional properties that contribute to their pathogenic potential. Methodology/Principal Findings In this study we examined whether three type III HLP predisposing apoE3 variants, namely R136S, R145C and K146E affect the biophysical properties of the protein. Circular dichroism (CD) spectroscopy revealed that these mutations do not significantly alter the secondary structure of the protein. Thermal and chemical unfolding analysis revealed small thermodynamic alterations in each variant compared to wild-type apoE3, as well as effects in the reversibility of the unfolding transition. All variants were able to remodel multillamelar 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles, but R136S and R145C had reduced kinetics. Dynamic light scattering analysis indicated that the variant R136S exists in a higher-order oligomerization state in solution. Finally, 1-anilinonaphthalene-8-sulfonic acid (ANS) binding suggested that the variant R145C exposes a larger amount of hydrophobic surface to the solvent. Conclusions/Significance Overall, our findings suggest that single amino acid changes in the functionally important region 136–150 of apoE3 can affect the molecule's stability and conformation in solution and may underlie functional consequences. However, the magnitude and the non-concerted nature of these changes, make it unlikely that they constitute a distinct unifying mechanism leading to type III HLP pathogenesis. PMID:22069485
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitnumsub, Penchit, E-mail: penchit@biotec.or.th; Ittarat, Wanwipa; Jaruwat, Aritsara
2014-06-01
The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similarmore » to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.« less
Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.
2012-01-01
amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn2+-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule. PMID:22121198
Klinkenberg-Ramirez, Stephanie; Neri, Pamela M; Volk, Lynn A; Samaha, Sara J; Newmark, Lisa P; Pollard, Stephanie; Varugheese, Matthew; Baxter, Samantha; Aronson, Samuel J; Rehm, Heidi L; Bates, David W
2016-01-01
Partners HealthCare Personalized Medicine developed GeneInsight Clinic (GIC), a tool designed to communicate updated variant information from laboratory geneticists to treating clinicians through automated alerts, categorized by level of variant interpretation change. The study aimed to evaluate feedback from the initial users of the GIC, including the advantages and challenges to receiving this variant information and using this technology at the point of care. Healthcare professionals from two clinics that ordered genetic testing for cardiomyopathy and related disorders were invited to participate in one-hour semi-structured interviews and/ or a one-hour focus group. Using a Grounded Theory approach, transcript concepts were coded and organized into themes. Two genetic counselors and two physicians from two treatment clinics participated in individual interviews. Focus group participants included one genetic counselor and four physicians. Analysis resulted in 8 major themes related to structuring and communicating variant knowledge, GIC's impact on the clinic, and suggestions for improvements. The interview analysis identified longitudinal patient care, family data, and growth in genetic testing content as potential challenges to optimization of the GIC infrastructure. Participants agreed that GIC implementation increased efficiency and effectiveness of the clinic through increased access to genetic variant information at the point of care. Development of information technology (IT) infrastructure to aid in the organization and management of genetic variant knowledge will be critical as the genetic field moves towards whole exome and whole genome sequencing. Findings from this study could be applied to future development of IT support for genetic variant knowledge management that would serve to improve clinicians' ability to manage and care for patients.
Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy
Blesneac, Iulia; Themistocleous, Andreas C.; Fratter, Carl; Conrad, Linus J.; Ramirez, Juan D.; Cox, James J.; Tesfaye, Solomon; Shillo, Pallai R.; Rice, Andrew S.C.; Tucker, Stephen J.
2018-01-01
Abstract Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively. PMID:29176367
Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; ...
2015-04-14
Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni 2/3Sb 1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms,more » depending on the synthesis conditions. The average structure of Na(Ni 2/3Sb 1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯ m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants ( C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni 2/3Sb 1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the three possible choices for distributing Ni and Sb cations into a honeycomb lattice in each transition metal layer. It is observed that the full theoretical discharge capacity expected for a Ni³⁺/²⁺ redox couple (133 mAh/g) can be achieved for the ordered variant but not for the disordered variant (~110 mAh/g). The first 3.27 V plateau during charging is found to be associated with a two-phase O3 ↔ P3 structural transition, with the P3 stacking sequence persisting throughout all further stages of desodiation.« less
Common 5S rRNA variants are likely to be accepted in many sequence contexts
NASA Technical Reports Server (NTRS)
Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.
2003-01-01
Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The results demonstrate that changes that occur multiple times in a local region of RNA sequence space in fact usually will be accepted in any sequence context in that same local region.
Retarded protein folding of deficient human α1-antitrypsin D256V and L41P variants
Jung, Chan-Hun; Na, Yu-Ran; Im, Hana
2004-01-01
α1-Antitrypsin is the most abundant protease inhibitor in plasma and is the archetype of the serine protease inhibitor superfamily. Genetic variants of human α1-antitrypsin are associated with early-onset emphysema and liver cirrhosis. However, the detailed molecular mechanism for the pathogenicity of most variant α1-antitrypsin molecules is not known. Here we examined the structural basis of a dozen deficient α1-antitrypsin variants. Unlike most α1-antitrypsin variants, which were unstable, D256V and L41P variants exhibited extremely retarded protein folding as compared with the wild-type molecule. Once folded, however, the stability and inhibitory activity of these variant proteins were comparable to those of the wild-type molecule. Retarded protein folding may promote protein aggregation by allowing the accumulation of aggregation-prone folding intermediates. Repeated observations of retarded protein folding indicate that it is an important mechanism causing α1-antitrypsin deficiency by variant molecules, which have to fold into the metastable native form to be functional. PMID:14767073
Filtering genetic variants and placing informative priors based on putative biological function.
Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N
2016-02-03
High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.
Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome
Huang, Cheng Ran Lisa; Schneider, Anna M.; Lu, Yunqi; Niranjan, Tejasvi; Shen, Peilin; Robinson, Matoya A.; Steranka, Jared P.; Valle, David; Civin, Curt I.; Wang, Tao; Wheelan, Sarah J.; Ji, Hongkai; Boeke, Jef D.; Burns, Kathleen H.
2010-01-01
Summary Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further. PMID:20602999
Li, C W; Han, L Z; Luo, X M; Liu, Q D; Gu, J F
2016-11-01
Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low-carbon low-alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama-Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Role of H1 Linker Histones in Mammalian Development and Stem Cell Differentiation
Pan, Chenyi; Fan, Yuhong
2016-01-01
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. PMID:26689747
Spatially variant periodic structures in electromagnetics.
Rumpf, Raymond C; Pazos, Javier J; Digaum, Jennefir L; Kuebler, Stephen M
2015-08-28
Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Spatially variant periodic structures in electromagnetics
Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.
2015-01-01
Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058
Kim, Seon-Hee; Kong, Yoon; Bae, Young-An
2017-06-01
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P
2012-08-01
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-Smore » cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k cat/K M higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k cat/K M of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.« less
[Antigen differences of genetic variants Abent+ and Abent- poliovirus vaccine strain of III type].
Shyrobokov, V P; Kostenko, I H; Nikolaienko, I V
2003-01-01
Hybridomes--producers of monoclonal antibodies (MAB) were obtained able to differentiate the variants Abent+ and Abent- poliovirus vaccine strain in the virus neutralizing reaction. Using the obtained panel the changes of the epitope structure of capsid proteins of poliovirus variants (dissociants) were found which appeared during reproduction in cell culture. It proves the fact that there exist essential antigenic differences of superficial virion's proteins, which appear during the process of dissociation.
Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro
2018-03-01
Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.
Rare variation facilitates inferences of fine-scale population structure in humans.
O'Connor, Timothy D; Fu, Wenqing; Mychaleckyj, Josyf C; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S; Leal, Suzanne M; Smith, Joshua D; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Akey, Joshua M
2015-03-01
Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European-American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun
2016-02-24
Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant.
Tam, Heng Keat; Härle, Johannes; Gerhardt, Stefan; Rohr, Jürgen; Wang, Guojun; Thorson, Jon S; Bigot, Aurélien; Lutterbeck, Monika; Seiche, Wolfgang; Breit, Bernhard; Bechthold, Andreas; Einsle, Oliver
2015-02-23
The structures of the O-glycosyltransferase LanGT2 and the engineered, C-C bond-forming variant LanGT2S8Ac show how the replacement of a single loop can change the functionality of the enzyme. Crystal structures of the enzymes in complex with a nonhydrolyzable nucleotide-sugar analogue revealed that there is a conformational transition to create the binding sites for the aglycon substrate. This induced-fit transition was explored by molecular docking experiments with various aglycon substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J
2015-04-07
The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Denmark, Scott E.; Wilson, Tyler W.
2010-11-01
The reactions of acyl anion equivalents (d1 synthons) with carbonyl electrophiles allow for the construction of a wide range of molecules useful for the synthesis of biologically active compounds, natural products and chiral ligands. Despite their utility, significant challenges still exist for developing catalytic, enantioselective variants of these reactions. For example, the asymmetric benzoin process, arguably the most characteristic reaction of d synthetic equivalents, finds no general solution for reactions involving aliphatic acyl anions. In this Article, we introduce a new class of stable, isolable silyl ketene imines derived from protected cyanohydrins. These nucleophiles serve as acyl anion equivalents in Lewis base catalysed aldol addition reactions and allow for the preparation of cross-benzoin and glycolate-aldol products in high yield and with exceptional diastereo- and enantioselectivities.
Variant forms of ataxia telangiectasia.
Taylor, A M; Flude, E; Laher, B; Stacey, M; McKay, E; Watt, J; Green, S H; Harding, A E
1987-01-01
Two ataxia telangiectasia patients with unusual clinical and cellular features are described. Cultured fibroblasts and PHA stimulated lymphocytes from these two patients showed a smaller increase of radiosensitivity than cells from other A-T patients, as measured by colony forming ability or induced chromosome damage respectively, after exposure to ionising radiation. The response of DNA synthesis to irradiation of these cells was, however, the same as for other A-T patients. Cells from a third patient with some clinical features of A-T but with a very protracted course also showed low levels of radiation induced chromosome damage, but colony forming ability and the response of DNA synthesis after irradiation were no different from cells of normal subjects. There was, however, an increased level of translocations and unstable chromosomal rearrangements in this patient's lymphocytes. Images PMID:3430541
Synthesis, crystal structure, and magnetism of A 2Co 12As 7 (A=Ca, Y, Ce–Yb)
Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; ...
2015-08-28
In this study, ternary intermetallics, A 2Co 12As 7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P6 3/m variant of the Zr 2Fe 12P 7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1),more » respectively, at room temperature. Magnetic behavior of A 2Co 12As 7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce 2Co 12As 7 and Nd 2Co 12As 7, respectively.« less
The variant call format and VCFtools.
Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A; Banks, Eric; DePristo, Mark A; Handsaker, Robert E; Lunter, Gerton; Marth, Gabor T; Sherry, Stephen T; McVean, Gilean; Durbin, Richard
2011-08-01
The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. http://vcftools.sourceforge.net
Structural comparisons of two allelic variants of human placental alkaline phosphatase.
Millán, J L; Stigbrand, T; Jörnvall, H
1985-01-01
A simple immunosorbent purification scheme based on monoclonal antibodies has been devised for human placental alkaline phosphatase. The two most common allelic variants, S and F, have similar amino acid compositions with identical N-terminal amino acid sequences through the first 13 residues. Both variants have identical lectin binding properties towards concanavalin A, lentil-lectin, wheat germ agglutinin, phytohemagglutinin and soybean agglutinin, and identical carbohydrate contents as revealed by methylation analysis. CNBr fragments of the variants demonstrate identical high performance liquid chromatography patterns. The carbohydrate containing fragment is different from the 32P-labeled active site fragment and the N-terminal fragment.
Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling
Triana, Sergio; de Cock, Hans; Ohm, Robin A.; Danies, Giovanna; Wösten, Han A. B.; Restrepo, Silvia; González Barrios, Andrés F.; Celis, Adriana
2017-01-01
Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia. PMID:28959251
Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling.
Triana, Sergio; de Cock, Hans; Ohm, Robin A; Danies, Giovanna; Wösten, Han A B; Restrepo, Silvia; González Barrios, Andrés F; Celis, Adriana
2017-01-01
Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa , Malassezia sympodialis , and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur , and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis . The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa , M. sympodialis , M. pachydermatis , and the atypical variant of M. furfur , but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia .
Kamada, Mayumi; Hase, Sumitaka; Fujii, Kazushi; Miyake, Masato; Sato, Kengo; Kimura, Keitarou; Sakakibara, Yasubumi
2015-01-01
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.
Woody, April L; Hsieh, David T; McIver, Harkirtin K; Thomas, Linda P; Rohena, Luis
2015-04-01
Vanishing White Matter disease (VWM) is an inherited progressive leukoencephalopathy caused by mutations in the genes EIF2B1-5, which encode for the 5 subunits of the eukaryotic initiation factor 2B (eIF2B), a regulator of protein synthesis. VWM typically presents with acute neurological decline following febrile infections or minor head trauma, and subsequent progressive neurological and cognitive regression. There is a varied clinical spectrum of VWM, with earlier onset associated with more severe phenotypes. Brain magnetic resonance imaging is usually diagnostic with diffusely abnormal white matter, progressing over time to cystic degeneration. We are reporting on a patient with infantile onset VWM associated with three heterozygous missense variants in EIF2B5, including a novel missense variant on exon 6 of EIF2B5 (D262N), as well as an interstitial duplication at 7q21.12. In addition, our case is unusual because of a severe epilepsy course, a novel clinical finding of hypopituitarism manifested by hypothyroidism and adrenal insufficiency, and a prolonged life span with current age of survival of 4 years and 11 months. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Bala; Gorti, Sarma; Babu, Suresh Sudharsanam
Here, we present phase field simulations incorporating energy contributions due to thermodynamics, and anisotropic interfacial and strain energies, to demonstrate the nucleation and growth of multiple variants of alpha from beta in Ti-6Al-4V under isothermal conditions. The simulations focused on the effect of thermodynamic driving force and nucleation rate on the morphology of the transformed alpha assuming that the partitioning of V between beta and alpha is negligible for short isothermal holds. The results indicate that a high nucleation rate favors the formation of the basket-weave structure. However, at a lower nucleation rate the simulations show the intragranular nucleation ofmore » a colony structure by an autocatalytic nucleation mechanism adjacent to a pre-existing alpha variant. New side-plates of the same variant appear to nucleate progressively and grow to form the colony. The isothermal simulation results are used to offer a possible explanation for the transition from a largely basket weave structure to a colony structure inside narrow layer bands occurring during continuous heating and cooling conditions encountered during laser additive manufacturing of Ti-6Al-4V.« less
Li, Min; Zhang, Zhi-Jun; Kong, Xu-Dong; Yu, Hui-Lei
2017-01-01
ABSTRACT Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter−1 day−1. These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor. IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis. PMID:28389544
regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.
Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong
2017-09-01
While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Zhen; Horton, John R.; Cheng, Xiadong
2009-11-02
Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less
A FRMD7 variant in a Japanese family causes congenital nystagmus.
Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei
2015-01-01
Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN.
A FRMD7 variant in a Japanese family causes congenital nystagmus
Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei
2015-01-01
Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN. PMID:27081518
A Program Structure for Event-Based Speech Synthesis by Rules within a Flexible Segmental Framework.
ERIC Educational Resources Information Center
Hill, David R.
1978-01-01
A program structure based on recently developed techniques for operating system simulation has the required flexibility for use as a speech synthesis algorithm research framework. This program makes synthesis possible with less rigid time and frequency-component structure than simpler schemes. It also meets real-time operation and memory-size…
Gola, Joanna; Ghavami, Saeid; Skonieczna, Magdalena; Markowski, Jarosław; Likus, Wirginia; Lewandowska, Magdalena; Maziarz, Wojciech
2017-01-01
With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10 nanofibers, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw = 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAg makes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field. PMID:29302386
Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G
2017-05-01
Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.
Lheureux, M; Lheureux, M; Vervoort, T; Van Meirvenne, N; Steinert, M
1979-01-01
Polyadenylated RNA isolated from total polyribosomes of two variable antigen types (VATs) of T. brucei brucei were shown to program the synthesis, in mRNA-dependant reticulocyte lysates, of a wide variety of polypeptides. After immunoprecipitation of these cell-free products with an homologous antiserum raised against purified variant-specific surface antigen (VSSA), a major electrophoretic band was apparent on fluorography. It was confirmed that this band corresponds to the variable antigen since only an excess of purified homologous antigen will provoke competition. The apparent molecular weight of the in vitro synthesized antigen is about 63,000 daltons. The VSSA mRNA has been found in membrane-bound polyribosomes and a 15 fold immunological purification of this mRNA has been obtained, using partially purified anti-VSSA IgG in conjunction with inactivated Staphylococcus aureus. Images PMID:116191
Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W
2005-10-01
Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.
Analysis and Synthesis of Tonal Aircraft Noise Sources
NASA Technical Reports Server (NTRS)
Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen
2012-01-01
Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansson, J.; Keyse, S.M.; Lindahl, T.
Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less
Traits regionaux en protoroman (Regional Traits in Proto-Romance).
ERIC Educational Resources Information Center
De Dardel, Robert
2001-01-01
Every spoken linguistic system shared by a community has structurally related regional variants. For example, the variant of the present day French for "soixante-dix" is "septante" in eastern France, Belgium, and the French-speaking community of Switzerland. This suggests that Proto-Romance has regionalisms. Using the…
USDA-ARS?s Scientific Manuscript database
Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.
Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conservedmore » in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.« less
Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A
2015-07-31
Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.
Impact of inflammation, gene variants, and cigarette smoking on coronary artery disease risk.
Merhi, Mahmoud; Demirdjian, Sally; Hariri, Essa; Sabbah, Nada; Youhanna, Sonia; Ghassibe-Sabbagh, Michella; Naoum, Joseph; Haber, Marc; Othman, Raed; Kibbani, Samer; Chammas, Elie; Kanbar, Roy; Bayeh, Hamid El; Chami, Youssef; Abchee, Antoine; Platt, Daniel E; Zalloua, Pierre; Khazen, Georges
2015-06-01
The role of inflammation in coronary artery disease (CAD) pathogenesis is well recognized. Moreover, smoking inhalation increases the activity of inflammatory mediators through an increase in leukotriene synthesis essential in atherosclerosis pathogenesis. The aim of this study is to investigate the effect of "selected" genetic variants within the leukotriene (LT) pathway and other variants on the development of CAD. CAD was detected by cardiac catheterization. Logistic regression was performed to investigate the association of smoking and selected susceptibility variants in the LT pathway including ALOX5AP, LTA4H, LTC4S, PON1, and LTA as well as CYP1A1 on CAD risk while controlling for age, gender, BMI, family history, diabetes, hyperlipidemia, and hypertension. rs4769874 (ALOX5AP), rs854560 (PON1), and rs4646903 (CYP1A1 MspI polymorphism) are significantly associated with an increased risk of CAD with respective odds ratios of 1.53703, 1.67710, and 1.35520; the genetic variant rs9579646 (ALOX5AP) is significantly associated with a decreased risk of CAD (OR 0.76163). Moreover, a significant smoking-gene interaction is determined with CYP1A1 MspI polymorphism rs4646903 and is associated with a decreased risk of CAD in current smokers (OR 0.52137). This study provides further evidence that genetic variation of the LT pathway, PON1, and CYP1A1 can modulate the atherogenic processes and eventually increase the risk of CAD in our study population. Moreover, it also shows the effect of smoking-gene interaction on CAD risk, where the CYP1A1 MspI polymorphism revealed a decreased risk in current smokers.
Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients
Broughton, Bernard C.; Cordonnier, Agnes; Kleijer, Wim J.; Jaspers, Nicolaas G. J.; Fawcett, Heather; Raams, Anja; Garritsen, Victor H.; Stary, Anne; Avril, Marie-Françoise; Boudsocq, François; Masutani, Chikahide; Hanaoka, Fumio; Fuchs, Robert P.; Sarasin, Alain; Lehmann, Alan R.
2002-01-01
Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase η, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA, the others are likely to disrupt the three-dimensional structure of the protein. There is a wide variability in clinical features among patients, which is not obviously related to the site or type of mutation. PMID:11773631
Nuccitelli, Annalisa; Cozzi, Roberta; Gourlay, Louise J; Donnarumma, Danilo; Necchi, Francesca; Norais, Nathalie; Telford, John L; Rappuoli, Rino; Bolognesi, Martino; Maione, Domenico; Grandi, Guido; Rinaudo, C Daniela
2011-06-21
Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens.
Takasuka, Taichi E; Acheson, Justin F; Bianchetti, Christopher M; Prom, Ben M; Bergeman, Lai F; Book, Adam J; Currie, Cameron R; Fox, Brian G
2014-01-01
β-Mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.
NASA Astrophysics Data System (ADS)
Das, Payel; Chakraborty, Srirupa; Chacko, Anita; Murray, Brian; Belfort, Georges
The aggregation of amyloid-beta (A β) peptides plays a crucial role in the etiology of Alzheimer's disease (AD). Recently, it has been reported that an A2T mutation in A β can protect from AD. Interestingly, an A2V mutation has been also found to offer protection against AD in the heterozygous state. Structural characterization of these natural A β variants thus offers an intriguing approach to understand the molecular mechanism of AD. Toward this goal, we have characterized the conformational landscapes of the intrinsically disordered WT, A2V, and A2T A β1-42 variant monomers and dimers by using extensive atomistic molecular dynamics (MD) simulations. Simulations reveal markedly different secondary and tertiary structure at the central and C-terminal hydrophobic regions of the peptide, which play a crucial role in A β aggregation and related toxicity. For example, an enhanced double β-hairpin formation was observed in A2V monomer. In contrast, the A2T mutation enhances disorder of the conformational ensemble due to formation of atypical long-range interactions. These structural insights obtained from simulations allow understanding of the differential aggregation, oligomer morphology, and LTP inhibition of the variants observed in the experiments and offer a path toward designing and testing aggregation inhibitors.
Chen, Yan; Sit, Sing-Yuen; Chen, Jie; Swidorski, Jacob J; Liu, Zheng; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Lin, Zeyu; Li, Zhufang; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira D; Meanwell, Nicholas A; Regueiro-Ren, Alicia
2018-05-15
The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC 50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leone, Piero; Galluccio, Michele; Barbiroli, Alberto; Eberini, Ivano; Tolomeo, Maria; Vrenna, Flavia; Gianazza, Elisabetta; Iametti, Stefania; Bonomi, Francesco; Indiveri, Cesare; Barile, Maria
2018-01-06
FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L -1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (k cat about 2.8 min -1 ), as well as FAD pyrophosphorolysis in a strictly Mg 2+ -dependent manner. The synthesis of FAD is inhibited by HgCl₂. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.
Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong
2015-02-23
A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi
Synthesis of oxide and spinel nanocrystals for use in solid state lighting
NASA Astrophysics Data System (ADS)
Foley, Megan Elizabeth
In this dissertation, microwave chemistry is employed to synthesize a variety of different crystalline nanoparticles (NPs). This introduction will describe the structures, properties and applications of the NPs studied within the dissertation, with a main focus being on ligand sensitization for the goal of enhanced luminescence. The use of metal acetylacetonate complexes to make Europium (III) doped Ytrrium (Y2O3) NPs is explored, where the acetylacetonate acts both as a source of oxygen for the synthesis of Y2O3, as well as an organic chromophore acting as an "antenna" for the absorption of light and subsequent excitation transfer to the incorporated Europium (III) (Chapter 2). Other host materials are investigated by method of metal acetylacetonate decomposition to synthesize a variety of different nanospinels, having the general formula AB2X4, with sulfide variants made by decomposition of diethyldithiocarbamate, (Chapter 3). The antenna ligand thenoyltrifluoroacetone (tta), which is known to undergo a Dexter energy transfer (DET) mechanism to efficiently sensitize Europium (III) emission, is used to determine the distance of energy transfer in Europium (III) doped nanospinels by passivating the surface of the nanospinel with a tta (Chapter 4). A variety of ligands are explored in order to optimize the sensitization efficiency in relation to the difference in energy between the singlet and triplet levels of the ligands versus the 5D0 and 5D4 energy levels of Europium (III) and Terbium (III) respectively (Chapter 5).
Heterocyclic Salt Synthesis and Rational Properties Tailoring (PREPRINT)
2009-06-23
performance behavior can be tailored in a controlled manner, defines the objective of a pertinent synthesis effort. Achieving this objective by...the structure of the anion. To illustrate this premise, four general synthesis methods to synthesize heterocyclic salts, including several new binary...manner, defines the objective of a pertinent synthesis effort. Achieving this objective by introducing structural alterations in a neutral covalent
Skibola, Christine F.; Smith, Martyn T.; Kane, Eleanor; Roman, Eve; Rollinson, Sara; Cartwright, Raymond A.; Morgan, Gareth
1999-01-01
Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL. PMID:10536004
Total Synthesis and Structural Revision of Antibiotic CJ-16,264.
Nicolaou, K C; Shah, Akshay A; Korman, Henry; Khan, Tabrez; Shi, Lei; Worawalai, Wisuttaya; Theodorakis, Emmanuel A
2015-08-03
The total synthesis and structural revision of antibiotic CJ-16,264 is described. Starting with citronellal, the quest for the target molecule featured a novel bis-transannular Diels-Alder reaction that casted stereoselectively the decalin system and included the synthesis of six isomers before demystification of its true structure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.
Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G
2017-08-07
The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.
Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.
Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia
2017-03-01
Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.
Loley, Christina; Alver, Maris; Assimes, Themistocles L; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C; Kanoni, Stavroula; Kleber, Marcus E; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S; Beutner, Frank; Bottinger, Erwin P; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B; Hall, Alistair S; Hamsten, Anders; Hazen, Stanley L; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K E; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H; Stewart, Alexandre F R; Thompson, John R; Zalloua, Pierre A; Chambers, John C; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J; Kooner, Jaspal S; Lehtimäki, Terho; Loos, Ruth J F; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P; Ripatti, Samuli; Sanghera, Dharambir K; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R
2016-10-12
In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R
2016-07-08
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W
2018-02-01
Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.
Localized structural frustration for evaluating the impact of sequence variants
Kumar, Sushant; Clarke, Declan; Gerstein, Mark
2016-01-01
Population-scale sequencing is increasingly uncovering large numbers of rare single-nucleotide variants (SNVs) in coding regions of the genome. The rarity of these variants makes it challenging to evaluate their deleteriousness with conventional phenotype–genotype associations. Protein structures provide a way of addressing this challenge. Previous efforts have focused on globally quantifying the impact of SNVs on protein stability. However, local perturbations may severely impact protein functionality without strongly disrupting global stability (e.g. in relation to catalysis or allostery). Here, we describe a workflow in which localized frustration, quantifying unfavorable local interactions, is employed as a metric to investigate such effects. Using this workflow on the Protein Databank, we find that frustration produces many immediately intuitive results: for instance, disease-related SNVs create stronger changes in localized frustration than non-disease related variants, and rare SNVs tend to disrupt local interactions to a larger extent than common variants. Less obviously, we observe that somatic SNVs associated with oncogenes and tumor suppressor genes (TSGs) induce very different changes in frustration. In particular, those associated with TSGs change the frustration more in the core than the surface (by introducing loss-of-function events), whereas those associated with oncogenes manifest the opposite pattern, creating gain-of-function events. PMID:27915290
SvABA: genome-wide detection of structural variants and indels by local assembly.
Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen
2018-04-01
Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.
Hintzsche, Jennifer D; Yoo, Minjae; Kim, Jihye; Amato, Carol M; Robinson, William A; Tan, Aik Choon
2018-04-20
With the advancement of next generation sequencing technology, researchers are now able to identify important variants and structural changes in DNA and RNA in cancer patient samples. With this information, we can now correlate specific variants and/or structural changes with actionable therapeutics known to inhibit these variants. We introduce the creation of the IMPACT Web Portal, a new online resource that connects molecular profiles of tumors to approved drugs, investigational therapeutics and pharmacogenetics associated drugs. IMPACT Web Portal contains a total of 776 drugs connected to 1326 target genes and 435 target variants, fusion, and copy number alterations. The online IMPACT Web Portal allows users to search for various genetic alterations and connects them to three levels of actionable therapeutics. The results are categorized into 3 levels: Level 1 contains approved drugs separated into two groups; Level 1A contains approved drugs with variant specific information while Level 1B contains approved drugs with gene level information. Level 2 contains drugs currently in oncology clinical trials. Level 3 provides pharmacogenetic associations between approved drugs and genes. IMPACT Web Portal allows for sequencing data to be linked to actionable therapeutics for translational and drug repurposing research. The IMPACT Web Portal online resource allows users to query genes and variants to approved and investigational drugs. We envision that this resource will be a valuable database for personalized medicine and drug repurposing. IMPACT Web Portal is freely available for non-commercial use at http://tanlab.ucdenver.edu/IMPACT .
ERIC Educational Resources Information Center
Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko
2004-01-01
A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.
Ferraroni, Marta; Steimer, Lenz; Matera, Irene; Bürger, Sibylle; Scozzafava, Andrea; Stolz, Andreas; Briganti, Fabrizio
2012-12-01
Key amino acid residues of the salicylate 1,2-dioxygenase (SDO), an iron (II) class III ring cleaving dioxygenase from Pseudaminobacter salicylatoxidans BN12, were selected, based on amino acid sequence alignments and structural analysis of the enzyme, and modified by site-directed mutagenesis to obtain variant forms with altered catalytic properties. SDO shares with 1-hydroxy-2-naphthoate dioxygenase (1H2NDO) its unique ability to oxidatively cleave monohydroxylated aromatic compounds. Nevertheless SDO is more versatile with respect to 1H2NDO and other known gentisate dioxygenases (GDOs) because it cleaves not only gentisate and 1-hydroxy-2-naphthoate (1H2NC) but also salicylate and substituted salicylates. Several enzyme variants of SDO were rationally designed to simulate 1H2NDO. The basic kinetic parameters for the SDO mutants L38Q, M46V, A85H and W104Y were determined. The enzyme variants L38Q, M46V, A85H demonstrated higher catalytic efficiencies toward 1-hydroxy-2-naphthoate (1H2NC) compared to gentisate. Remarkably, the enzyme variant A85H effectively cleaved 1H2NC but did not oxidize gentisate at all. The W104Y SDO mutant exhibited reduced reaction rates for all substrates tested. The crystal structures of the A85H and W104Y variants were solved and analyzed. The substitution of Ala85 with a histidine residue caused significant changes in the orientation of the loop containing this residue which is involved in the active site closing upon substrate binding. In SDO A85H this specific loop shifts away from the active site and thus opens the cavity favoring the binding of bulkier substrates. Since this loop also interacts with the N-terminal residues of the vicinal subunit, the structure and packing of the holoenzyme might be also affected. Copyright © 2012 Elsevier Inc. All rights reserved.
Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico
2014-10-03
The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A hemizygous GYG2 mutation and Leigh syndrome: a possible link?
Imagawa, Eri; Osaka, Hitoshi; Yamashita, Akio; Shiina, Masaaki; Takahashi, Eihiko; Sugie, Hideo; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Ogata, Kazuhiro; Matsumoto, Naomichi; Miyake, Noriko
2014-02-01
Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder characterized by unique, bilateral neuropathological findings in brainstem, basal ganglia, cerebellum and spinal cord. LS is genetically heterogeneous, with the majority of the causative genes affecting mitochondrial malfunction, and many cases still remain unsolved. Here, we report male sibs affected with LS showing ketonemia, but no marked elevation of lactate and pyruvate. To identify their genetic cause, we performed whole exome sequencing. Candidate variants were narrowed down based on autosomal recessive and X-linked recessive models. Only one hemizygous missense mutation (c.665G>C, p.W222S) in glycogenin-2 (GYG2) (isoform a: NM_001079855) in both affected sibs and a heterozygous change in their mother were identified, being consistent with the X-linked recessive trait. GYG2 encodes glycogenin-2 (GYG2) protein, which plays an important role in the initiation of glycogen synthesis. Based on the structural modeling, the mutation can destabilize the structure and result in protein malfunctioning. Furthermore, in vitro experiments showed mutant GYG2 was unable to undergo the self-glucosylation, which is observed in wild-type GYG2. This is the first report of GYG2 mutation in human, implying a possible link between GYG2 abnormality and LS.
System analysis of vehicle active safety problem
NASA Astrophysics Data System (ADS)
Buznikov, S. E.
2018-02-01
The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.
Integrated microdroplet-based system for enzyme synthesis and sampling
NASA Astrophysics Data System (ADS)
Lapierre, Florian; Best, Michel; Stewart, Robert; Oakeshott, John; Peat, Thomas; Zhu, Yonggang
2013-12-01
Microdroplet-based microfluidic devices are emerging as powerful tools for a wide range of biochemical screenings and analyses. Monodispersed aqueous microdroplets from picoliters to nanoliters in volume are generated inside microfluidic channels within an immiscible oil phase. This results in the formation of emulsions which can contain various reagents for chemical reactions and can be considered as discrete bioreactors. In this paper an integrated microfluidic platform for the synthesis, screening and sorting of libraries of an organophosphate degrading enzyme is presented. The variants of the selected enzyme are synthesized from a DNA source using in-vitro transcription and translation method. The synthesis occurs inside water-in-oil emulsion droplets, acting as bioreactors. Through a fluorescence based detection system, only the most efficient enzymes are selected. All the necessary steps from the enzyme synthesis to selection of the best genes (producing the highest enzyme activity) are thus integrated inside a single and unique device. In the second part of the paper, an innovative design of the microfluidic platform is presented, integrating an electronic prototyping board for ensuring the communication between the various components of the platform (camera, syringe pumps and high voltage power supply), resulting in a future handheld, user-friendly, fully automated device for enzyme synthesis, screening and selection. An overview on the capabilities as well as future perspectives of this new microfluidic platform is provided.
Different structural stability and toxicity of PrP(ARR) and PrP(ARQ) sheep prion protein variants.
Paludi, Domenico; Thellung, Stefano; Chiovitti, Katia; Corsaro, Alessandro; Villa, Valentina; Russo, Claudio; Ianieri, Adriana; Bertsch, Uwe; Kretzschmar, Hans A; Aceto, Antonio; Florio, Tullio
2007-12-01
The polymorphisms at amino acid residues 136, 154, and 171 in ovine prion protein (PrP) have been associated with different susceptibility to scrapie: animals expressing PrP(ARQ) [PrP(Ala136/Arg154/Gln171)] show vulnerability, whereas those that express PrP(ARR) [PrP(Ala136/Arg154/Arg171)] are resistant to scrapie. The aim of this study was to evaluate the in vitro toxic effects of PrP(ARR) and PrP(ARQ) variants in relation with their structural characteristics. We show that both peptides cause cell death inducing apoptosis but, unexpectedly, the scrapie resistant PrP(ARR) form was more toxic than the scrapie susceptible PrP(ARQ) variant. Moreover, the alpha-helical conformation of PrP(ARR) was less stable than that of PrP(ARQ) and the structural determinants responsible of these different conformational stabilities were characterized by spectroscopic analysis. We observed that PrP toxicity was inversely related to protein structural stability, being the unfolded conformation more toxic than the native one. However, the PrP(ARQ) variant displays a higher propensity to form large aggregates than PrP(ARR). Interestingly, in the presence of small amounts of PrP(ARR), PrP(ARQ) aggregability was reduced to levels similar to that of PrP(ARR). Thus, in contrast to PrP(ARR) toxicity, scrapie transmissibility seems to reside in the more stable conformation of PrP(ARQ) that allows the formation of large amyloid fibrils.
Deletion mapping of the Aequorea victoria green fluorescent protein.
Dopf, J; Horiagon, T M
1996-01-01
Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2-232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300-500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.
Extreme Entropy-Enthalpy Compensation in a Drug Resistant Variant of HIV-1 Protease
King, Nancy M.; Prabu-Jeyabalan, Moses; Bandaranayake, Rajintha M.; Nalam, Madhavi N. L.; Nalivaika, Ellen A.; Özen, Ayşegül; Haliloglu, Türkan; Yılmaz, Neşe Kurt; Schiffer, Celia A.
2012-01-01
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5–15 kcal/mol, while losing only 1–3 kcal/mol in total binding free energy for any of six FDA approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wildtype protease and another drug resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design. PMID:22712830
GenProBiS: web server for mapping of sequence variants to protein binding sites.
Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka
2017-07-03
Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2005-02-01
refined carbohydrates, is associated with high incidence of breast cancer in women. Excess energy intake causes elevated blood levels of glucose and...confer increased breast cancer susceptibility. In a series of 46 breast cancer cases, we are systematically searching the coding and regulatory regions of...of excess energy in the form of triglycerides , produced either from the diet fatty acids or from those synthesized de novo. Excess energy intake and
2014-01-01
Background Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Results Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3′UTR SNP (FADS2-23, rs109772589), and another 3′UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Conclusion Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3’UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health. PMID:24533445
Ibeagha-Awemu, Eveline M; Akwanji, Kingsley A; Beaudoin, Frédéric; Zhao, Xin
2014-02-17
Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3'UTR SNP (FADS2-23, rs109772589), and another 3'UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3'UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetzt, Amanda E.
Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarlymore » to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. - Highlights: • Arginines 193 and 235 of RTA are critical for binding to the mammalian ribosome. • R193A/R235A has full catalytic activity on RNA but not on mammalian ribosomes. • R193A/R235A is less toxic than a mutant that targets the active site. • The toxin-ribosome interaction is a therapeutic target for ricin intoxication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
The crystal structure of the human MLH1 N-terminus is reported at 2.30 Å resolution. The overall structure is described along with an analysis of two clinically important mutations. Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in the MLH1 gene are associated with a predisposition to Lynch and Turcot’s syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. The structure shares a high degree ofmore » similarity with previously determined prokaryotic MLH1 homologs; however, this structure affords a more accurate platform for the classification of MLH1 variants.« less
Computational design of chimeric protein libraries for directed evolution.
Silberg, Jonathan J; Nguyen, Peter Q; Stevenson, Taylor
2010-01-01
The best approach for creating libraries of functional proteins with large numbers of nondisruptive amino acid substitutions is protein recombination, in which structurally related polypeptides are swapped among homologous proteins. Unfortunately, as more distantly related proteins are recombined, the fraction of variants having a disrupted structure increases. One way to enrich the fraction of folded and potentially interesting chimeras in these libraries is to use computational algorithms to anticipate which structural elements can be swapped without disturbing the integrity of a protein's structure. Herein, we describe how the algorithm Schema uses the sequences and structures of the parent proteins recombined to predict the structural disruption of chimeras, and we outline how dynamic programming can be used to find libraries with a range of amino acid substitution levels that are enriched in variants with low Schema disruption.
Structural Characterization of the Histone Variant macroH2A
Chakravarthy, Srinivas; Gundimella, Sampath Kumar Y.; Caron, Cecile; Perche, Pierre-Yves; Pehrson, John R.; Khochbin, Saadi; Luger, Karolin
2005-01-01
macroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes. The 1.6-Å X-ray structure of the nonhistone region reveals an α/β fold which has previously been found in a functionally diverse group of proteins. This region associates with histone deacetylases and affects the acetylation status of nucleosomes containing macroH2A. Thus, the unusual domain structure of macroH2A integrates independent functions that are instrumental in establishing a structurally and functionally unique chromatin domain. PMID:16107708
Evidence of trem2 variant associated with triple risk of Alzheimer's disease.
Abduljaleel, Zainularifeen; Al-Allaf, Faisal A; Khan, Wajahatullah; Athar, Mohammad; Shahzad, Naiyer; Taher, Mohiuddin M; Elrobh, Mohamed; Alanazi, Mohammed S; El-Huneidi, Waseem
2014-01-01
Alzheimer's disease is one of the main causes of dementia among elderly individuals and leads to the neurodegeneration of different areas of the brain, resulting in memory impairments and loss of cognitive functions. Recently, a rare variant that is associated with 3-fold higher risk of Alzheimer's disease onset has been found. The rare variant discovered is a missense mutation in the loop region of exon 2 of Trem2 (rs75932628-T, Arg47His). The aim of this study was to investigate the evidence for potential structural and functional significance of Trem2 gene variant (Arg47His) through molecular dynamics simulations. Our results showed the alteration caused due to the variant in TREM2 protein has significant effect on the ligand binding affinity as well as structural configuration. Based on molecular dynamics (MD) simulation under salvation, the results confirmed that native form of the variant (Arg47His) might be responsible for improved compactness, hence thereby improved protein folding. Protein simulation was carried out at different temperatures. At 300K, the deviation of the theoretical model of TREM2 protein increased from 2.0 Å at 10 ns. In contrast, the deviation of the Arg47His mutation was maintained at 1.2 Å until the end of the simulation (t = 10 ns), which indicated that Arg47His had reached its folded state. The mutant residue was a highly conserved region and was similar to "immunoglobulin V-set" and "immunoglobulin-like folds". Taken together, the result from this study provides a biophysical insight on how the studied variant could contribute to the genetic susceptibility to Alzheimer's disease.
Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.
Perols, Anna; Karlström, Amelie Eriksson
2014-03-19
Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
Identification of genomic variants putatively targeted by selection during dog domestication.
Cagan, Alex; Blass, Torsten
2016-01-12
Dogs [Canis lupus familiaris] were the first animal species to be domesticated and continue to occupy an important place in human societies. Recent studies have begun to reveal when and where dog domestication occurred. While much progress has been made in identifying the genetic basis of phenotypic differences between dog breeds we still know relatively little about the genetic changes underlying the phenotypes that differentiate all dogs from their wild progenitors, wolves [Canis lupus]. In particular, dogs generally show reduced aggression and fear towards humans compared to wolves. Therefore, selection for tameness was likely a necessary prerequisite for dog domestication. With the increasing availability of whole-genome sequence data it is possible to try and directly identify the genetic variants contributing to the phenotypic differences between dogs and wolves. We analyse the largest available database of genome-wide polymorphism data in a global sample of dogs 69 and wolves 7. We perform a scan to identify regions of the genome that are highly differentiated between dogs and wolves. We identify putatively functional genomic variants that are segregating or at high frequency [> = 0.75 Fst] for alternative alleles between dogs and wolves. A biological pathways analysis of the genes containing these variants suggests that there has been selection on the 'adrenaline and noradrenaline biosynthesis pathway', well known for its involvement in the fight-or-flight response. We identify 11 genes with putatively functional variants fixed for alternative alleles between dogs and wolves. The segregating variants in these genes are strong candidates for having been targets of selection during early dog domestication. We present the first genome-wide analysis of the different categories of putatively functional variants that are fixed or segregating at high frequency between a global sampling of dogs and wolves. We find evidence that selection has been strongest around non-synonymous variants. Strong selection in the initial stages of dog domestication appears to have occurred on multiple genes involved in the fight-or-flight response, particularly in the catecholamine synthesis pathway. Different alleles in some of these genes have been associated with behavioral differences between modern dog breeds, suggesting an important role for this pathway at multiple stages in the domestication process.
A Five-Factor Measure of Schizotypal Personality Traits
ERIC Educational Resources Information Center
Edmundson, Maryanne; Lynam, Donald R.; Miller, Joshua D.; Gore, Whitney L.; Widiger, Thomas A.
2011-01-01
The current study provides convergent, discriminant, and incremental validity data for a new measure of schizotypy from the perspective of the five-factor model (FFM) of general personality structure. Nine schizotypy scales were constructed as maladaptive variants of respective facets of the FFM (e.g., Aberrant Ideas as a maladaptive variant of…
svviz: a read viewer for validating structural variants.
Spies, Noah; Zook, Justin M; Salit, Marc; Sidow, Arend
2015-12-15
Visualizing read alignments is the most effective way to validate candidate structural variants (SVs) with existing data. We present svviz, a sequencing read visualizer for SVs that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele and identifying reads that match one allele better than the other. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared with the single reference genome-based view common to most current read browsers. The browser view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations and manual refinement of breakpoints. svviz supports data from most modern sequencing platforms. svviz is implemented in python and freely available from http://svviz.github.io/. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Fais, Antonella; Sollaino, Maria Carla; Barella, Susanna; Perseu, Lucia; Era, Benedetta; Corda, Marcella
2012-01-01
During a screening program for the identification of β-thalassemia (β-thal) carriers in Sardinia, Italy, we identified two subjects with increased hemoglobin (Hb) levels and an abnormal Hb variant. The same variant was detected in a family member. DNA sequencing revealed a TGT > TGG mutation at codon 93 of the β-globin gene. Structural analysis demonstrated that the cystine residue at position 93 of the β chain was substituted by tryptophan. Since this amino acid substitution had not yet been reported, we designated this variant Hb Santa Giusta Sardegna for the place of birth of the subjects. This amino acid substitution occurs at the tyrosine pocket of the β chain as well as at the α1β2/α2β1 contact of the quaternary structure of the molecule. The presence of this Hb in the hemolysate causes an increased oxygen affinity, a slightly reduced Bohr effect and a reduced heme-heme interaction (n(50), Hill's constant) in comparison with those of Hb A.
Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E
2014-01-01
Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.
Characterizing complex structural variation in germline and somatic genomes
Quinlan, Aaron R.; Hall, Ira M.
2011-01-01
Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. While SV is typically defined by its canonical forms – duplication, deletion, insertion, inversion and translocation – recent breakpoint mapping studies have revealed a surprising number of “complex” variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, while others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing. PMID:22094265
Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W
2018-03-05
Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Welsch, Christoph; Shimakami, Tetsuro; Hartmann, Christoph; Yang, Yan; Domingues, Francisco S.; Lengauer, Thomas; Zeuzem, Stefan; Lemon, Stanley M.
2011-01-01
Background & Aims It is a challenge to develop direct-acting antiviral agents (DAAs) that target the NS3/4A protease of hepatitis C virus (HCV) because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. Methods We identified residues near the ketoamide-binding site in X-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype 1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. Results Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell culture studies were consistent with this observation. Four variants (Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). Conclusions Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the HCV protease NS3/4A sequences might affect susceptibility to first-generation DAAs. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants. PMID:22155364
2013-01-01
Background Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. Methods A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. Results We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. Conclusions This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages. PMID:23835114
Peterson, Nathan A; Anderson, Tavis K; Wu, Xiao-Jun; Yoshino, Timothy P
2013-07-09
Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.
CRAVAT is an easy to use web-based tool for analysis of cancer variants (missense, nonsense, in-frame indel, frameshift indel, splice site). CRAVAT provides scores and a variety of annotations that assist in identification of important variants. Results are provided in an interactive, highly graphical webpage and include annotated 3D structure visualization. CRAVAT is also available for local or cloud-based installation as a Docker container. MuPIT provides 3D visualization of mutation clusters and functional annotation and is now integrated with CRAVAT.
Natural genetic variability reduces recalcitrance in poplar
Bhagia, Samarthya; Muchero, Wellington; Kumar, Rajeev; ...
2016-05-20
Here, lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.
Köhler, Karen; Duchardt-Ferner, Elke; Lechner, Marcus; Damm, Katrin; Hoch, Philipp G; Salas, Margarita; Hartmann, Roland K
2015-10-01
Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Vigne, Emmanuelle; Bergdoll, Marc; Guyader, Sébastien; Fuchs, Marc
2004-08-01
The nematode-borne Grapevine fanleaf virus, from the genus Nepovirus in the family Comoviridae, causes severe degeneration of grapevines in most vineyards worldwide. We characterized 347 isolates from transgenic and conventional grapevines from two vineyard sites in the Champagne region of France for their molecular variant composition. The population structure and genetic diversity were examined in the coat protein gene by IC-RT-PCR-RFLP analysis with EcoRI and StyI, and nucleotide sequencing, respectively. RFLP data suggested that 55 % (191 of 347) of the isolates had a population structure consisting of one predominant variant. Sequencing data of 51 isolates representing the different restrictotypes confirmed the existence of mixed infection with a frequency of 33 % (17 of 51) and showed two major predominant haplotypes representing 71 % (60 of 85) of the sequence variants. Comparative nucleotide diversity among population subsets implied a lack of genetic differentiation according to host (transgenic vs conventional) or field site for most restrictotypes (17 of 18 and 13 of 18) and for haplotypes in most phylogenetic groups (seven of eight and six of eight), respectively. Interestingly, five of the 85 haplotypes sequenced had an intermediate divergence (0.036-0.066) between the lower (0.005-0.028) and upper range (0.083-0.138) of nucleotide variability, suggesting the occurrence of homologous RNA recombination. Sequence alignments clearly indicated a mosaic structure for four of these five variants, for which recombination sites were identified and parental lineages proposed. This is the first in-depth characterization of the population structure and genetic diversity in a nepovirus.
Higgins, Chelsea D; Malashkevich, Vladimir N; Almo, Steven C; Lai, Jonathan R
2014-09-01
The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. © 2014 Wiley Periodicals, Inc.
Martin, Gregory G.; McIntosh, Avery L.; Huang, Huan; Gupta, Shipra; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
Although the human L-FABP T94A variant arises from the most commonly occurring SNP in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in complete loss of ligand binding ability and function analogous to L-FABP gene ablation. This possibility was addressed using recombinant human WT T94T and T94A variant L-FABP and cultured primary human hepatocytes. Non-conservative replacement of the medium sized, polar, uncharged T residue by a smaller, nonpolar, aliphatic A residue at position 94 of human L-FABP significantly increased L-FABP protein α-helical structure at the expense of β-sheet and concomitantly decreased thermal stability. T94A did not alter binding affinities for PPARα agonist ligands (phytanic acid, fenofibrate, fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on human L-FABP secondary structure, the active metabolite fenofibric acid altered T94A secondary structure much more than that of WT T94T L-FABP. Finally, in cultured primary human hepatocytes the T94A variant exhibited significantly reduced fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while T94A substitution did not alter the affinity of human L-FABP for PPARα agonist ligands, it significantly altered human L-FABP structure, stability, as well as conformational and functional response to fibrate. PMID:24299557
The UK10K project identifies rare variants in health and disease.
Walter, Klaudia; Min, Josine L; Huang, Jie; Crooks, Lucy; Memari, Yasin; McCarthy, Shane; Perry, John R B; Xu, ChangJiang; Futema, Marta; Lawson, Daniel; Iotchkova, Valentina; Schiffels, Stephan; Hendricks, Audrey E; Danecek, Petr; Li, Rui; Floyd, James; Wain, Louise V; Barroso, Inês; Humphries, Steve E; Hurles, Matthew E; Zeggini, Eleftheria; Barrett, Jeffrey C; Plagnol, Vincent; Richards, J Brent; Greenwood, Celia M T; Timpson, Nicholas J; Durbin, Richard; Soranzo, Nicole
2015-10-01
The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.
Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping
2014-07-01
Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.
Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility.
Leistra, Abigail N; Amador, Paul; Buvanendiran, Aishwarya; Moon-Walker, Alex; Contreras, Lydia M
2017-12-15
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.
GALT protein database: querying structural and functional features of GALT enzyme.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2014-09-01
Knowledge of the impact of variations on protein structure can enhance the comprehension of the mechanisms of genetic diseases related to that protein. Here, we present a new version of GALT Protein Database, a Web-accessible data repository for the storage and interrogation of structural effects of variations of the enzyme galactose-1-phosphate uridylyltransferase (GALT), the impairment of which leads to classic Galactosemia, a rare genetic disease. This new version of this database now contains the models of 201 missense variants of GALT enzyme, including heterozygous variants, and it allows users not only to retrieve information about the missense variations affecting this protein, but also to investigate their impact on substrate binding, intersubunit interactions, stability, and other structural features. In addition, it allows the interactive visualization of the models of variants collected into the database. We have developed additional tools to improve the use of the database by nonspecialized users. This Web-accessible database (http://bioinformatica.isa.cnr.it/GALT/GALT2.0) represents a model of tools potentially suitable for application to other proteins that are involved in human pathologies and that are subjected to genetic variations. © 2014 WILEY PERIODICALS, INC.
Phase field simulations of autocatalytic formation of alpha lamellar colonies in Ti-6Al-4V
Radhakrishnan, Bala; Gorti, Sarma; Babu, Suresh Sudharsanam
2016-09-13
Here, we present phase field simulations incorporating energy contributions due to thermodynamics, and anisotropic interfacial and strain energies, to demonstrate the nucleation and growth of multiple variants of alpha from beta in Ti-6Al-4V under isothermal conditions. The simulations focused on the effect of thermodynamic driving force and nucleation rate on the morphology of the transformed alpha assuming that the partitioning of V between beta and alpha is negligible for short isothermal holds. The results indicate that a high nucleation rate favors the formation of the basket-weave structure. However, at a lower nucleation rate the simulations show the intragranular nucleation ofmore » a colony structure by an autocatalytic nucleation mechanism adjacent to a pre-existing alpha variant. New side-plates of the same variant appear to nucleate progressively and grow to form the colony. The isothermal simulation results are used to offer a possible explanation for the transition from a largely basket weave structure to a colony structure inside narrow layer bands occurring during continuous heating and cooling conditions encountered during laser additive manufacturing of Ti-6Al-4V.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang
Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less
French, Robert J.; Yoshikami, Doju; Sheets, Michael F.; Olivera, Baldomero M.
2010-01-01
Neurotoxin receptor site 1, in the outer vestibule of the conducting pore of voltage-gated sodium channels (VGSCs), was first functionally defined by its ability to bind the guanidinium-containing agents, tetrodotoxin (TTX) and saxitoxin (STX). Subsequent studies showed that peptide μ-conotoxins competed for binding at site 1. All of these natural inhibitors block single sodium channels in an all-or-none manner on binding. With the discovery of an increasing variety of μ-conotoxins, and the synthesis of numerous derivatives, observed interactions between the channel and these different ligands have become more complex. Certain μ-conotoxin derivatives block single-channel currents partially, rather than completely, thus enabling the demonstration of interactions between the bound toxin and the channel’s voltage sensor. Most recently, the relatively small μ-conotoxin KIIIA (16 amino acids) and its variants have been shown to bind simultaneously with TTX and exhibit both synergistic and antagonistic interactions with TTX. These interactions raise new pharmacological possibilities and place new constraints on the possible structures of the bound complexes of VGSCs with these toxins. PMID:20714429
Kress, Nico; Rapp, Johanna; Hauer, Bernhard
2017-04-18
A deeper understanding of the >99 % S-selective reduction of both isomers of citral catalyzed by NCR ene reductase was achieved by active-site mutational studies and docking simulation. Though structurally similar, the E/Z isomers of citral showed a significantly varying selectivity response to introduced mutations. Although it was possible to invert (E)-citral reduction enantioselectivity to ee 46 % (R) by introducing mutation W66A, for (Z)-citral it remained ≥88 % (S) for all single-residue variants. Residue 66 seems to act as a lever for opposite binding modes. This was underlined by a W66A-based double-mutant library that enhanced the (E)-citral derived enantioselectivity to 63 % (R) and significantly lowered the S selectivity for (Z)-citral to 44 % (S). Formation of (R)-citronellal from an (E/Z)-citral mixture is a desire in industrial (-)-menthol synthesis. Our findings pave the way for a rational enzyme engineering solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A reductive aminase from Aspergillus oryzae
NASA Astrophysics Data System (ADS)
Aleku, Godwin A.; France, Scott P.; Man, Henry; Mangas-Sanchez, Juan; Montgomery, Sarah L.; Sharma, Mahima; Leipold, Friedemann; Hussain, Shahed; Grogan, Gideon; Turner, Nicholas J.
2017-10-01
Reductive amination is one of the most important methods for the synthesis of chiral amines. Here we report the discovery of an NADP(H)-dependent reductive aminase from Aspergillus oryzae (AspRedAm, Uniprot code Q2TW47) that can catalyse the reductive coupling of a broad set of carbonyl compounds with a variety of primary and secondary amines with up to >98% conversion and with up to >98% enantiomeric excess. In cases where both carbonyl and amine show high reactivity, it is possible to employ a 1:1 ratio of the substrates, forming amine products with up to 94% conversion. Steady-state kinetic studies establish that the enzyme is capable of catalysing imine formation as well as reduction. Crystal structures of AspRedAm in complex with NADP(H) and also with both NADP(H) and the pharmaceutical ingredient (R)-rasagiline are reported. We also demonstrate preparative scale reductive aminations with wild-type and Q240A variant biocatalysts displaying total turnover numbers of up to 32,000 and space time yields up to 3.73 g l-1 d-1.
Persic, Martina; Mikulic-Petkovsek, Maja; Halbwirth, Heidi; Solar, Anita; Veberic, Robert; Slatnar, Ana
2018-03-21
A rare walnut variant with a red seed coat (pellicle) was examined for alterations in its phenolic profile during development. The red-walnut (RW) pellicle was compared with two commonly colored walnut varieties: 'Lara' (brown) and 'Fernor' (light brown). Furthermore, the activities of selected enzymes of the phenylpropanoid- and flavonoid-related pathways and the relative expressions of the structural genes phenylalanine ammonia lyase ( PAL) and anthocyanidin synthase ( ANS) were examined in the pellicles of the three varieties. In the pellicles of the RWs, phenylalanine ammonia lyase (PAL) activity and related PAL expression was most pronounced in August, about one month before commercial maturity, suggesting a high synthesis rate of phenolic compounds at this development stage. The most pronounced differences between the red and light- and dark-brown varieties were the increased PAL activity, PAL expression, and ANS expression in RWs in August. The vibrant color of the RW pellicle is based on the presence of four derivatives of cyanidin- and delphinidin-hexosides.
NASA Astrophysics Data System (ADS)
Gursky, Georgy; Nikitin, Alexei; Surovaya, Anna; Grokhovsky, Sergey; Andronova, Valeria; Galegov, Georgy
We performed a systematic search for new structural motifs isohelical to double-stranded DNA and found five motifs that can be used for the design and synthesis of new DNA-binding oligomers. Some of the DNA-binding oligomers can be equipped with fluorescence chromophores and metal-chelating groups and may serve as conductive wires in nano-scaled electric circuits. A series of new DNA-binding ligands were synthesized by a modular assembly of pyrrole carboxamides and novel pseudopeptides of the form (XY)n. Here, Y is a glycine residue; n is the degree of polymerization. X is an unusual amino acid residue containing a five-membered aromatic ring. Antiviral activity of bis-linked netropsin derivatives is studied. Bis-netropsins containing 15 and 31 lysine residues at the N-termini inhibit most effectively reproduction of the herpes virus type 1 in the Vero cell culture, including virus variants resistant to acyclovir and its analogues. Antiviral activity of bis-linked netropsin derivatives is correlated with their ability to interact with long clusters of AT-base pairs in the origin of replication of the viral DNA.
A dual switch controls bacterial enhancer-dependent transcription
Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin
2012-01-01
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125
Crystalline matrices for the immobilization of plutonium and actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.
1996-05-01
The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressingmore » method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.« less
Nie, Feilin; Kunciw, Dominique L.; Wilcke, David; Stokes, Jamie E.; Galloway, Warren R. J. D.; Bartlett, Sean; Sore, Hannah F.
2016-01-01
Abstract Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity‐oriented synthesis, and its application towards macrocycles. This enabled the step‐efficient generation of a library of 45 novel, structurally diverse, and highly‐functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza‐ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity‐generating steps of the synthesis strategy impact on molecular shape. PMID:27484830
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.
Flannick, Jason; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M; Agarwala, Vineeta; Gaulton, Kyle J; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Dennis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana Cn; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Altshuler, David; Burtt, Noël P; Florez, Jose C; Boehnke, Michael; McCarthy, Mark I
2017-12-19
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
Genotype–phenotype correlations in individuals with pathogenic RERE variants
Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.
2018-01-01
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883
Genotype-phenotype correlations in individuals with pathogenic RERE variants.
Jordan, Valerie K; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J; Balci, Tugce B; Carter, Melissa T; Bernat, John A; Moccia, Amanda N; Srivastava, Anshika; Martin, Donna M; Bielas, Stephanie L; Pappas, John; Svoboda, Melissa D; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M; Scaglia, Fernando; Kohler, Jennefer N; Bernstein, Jonathan A; Dries, Annika M; Rosenfeld, Jill A; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H; Bi, Weimin; Scott, Daryl A
2018-05-01
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. © 2018 Wiley Periodicals, Inc.
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
Jason, Flannick; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M.; Agarwala, Vineeta; Gaulton, Kyle J.; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J.; Rivas, Manuel A.; Perry, John R. B.; Sim, Xueling; Blackwell, Thomas W.; Robertson, Neil R.; Rayner, N William; Cingolani, Pablo; Locke, Adam E.; Tajes, Juan Fernandez; Highland, Heather M.; Dupuis, Josee; Chines, Peter S.; Lindgren, Cecilia M.; Hartl, Christopher; Jackson, Anne U.; Chen, Han; Huyghe, Jeroen R.; van de Bunt, Martijn; Pearson, Richard D.; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M.; Gamazon, Eric R.; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A.; Below, Jennifer E.; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L.; Pasko, Dorota; Parker, Stephen C. J.; Varga, Tibor V.; Green, Todd; Beer, Nicola L.; Day-Williams, Aaron G.; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J.; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P.; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F.; Han, Bok-Ghee; Jenkinson, Christopher P.; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C. Y.; Palmer, Nicholette D.; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E.; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D.; Neale, Benjamin M.; Purcell, Shaun; Butterworth, Adam S.; Howson, Joanna M. M.; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K. L.; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H. T.; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E.; Rybin, Dennis; Farook, Vidya S.; Fowler, Sharon P.; Freedman, Barry I.; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J.; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K.; Puppala, Sobha; Scott, William R.; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A.; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C.; Mangino, Massimo; Bonnycastle, Lori L.; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L.; Herder, Christian; Groves, Christopher J.; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A.; Doney, Alex S. F.; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J.; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E.; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H.; Stirrups, Kathleen; Wood, Andrew R.; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O.; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P.; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B.; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N. A.; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M.; Syvänen, Ann-Christine; Bergman, Richard N.; Bharadwaj, Dwaipayan; Bottinger, Erwin P.; Cho, Yoon Shin; Chandak, Giriraj R.; Chan, Juliana CN; Chia, Kee Seng; Daly, Mark J.; Ebrahim, Shah B.; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A.; Lehman, Donna M.; Jia, Weiping; Ma, Ronald C. W.; Pollin, Toni I.; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J. F.; Small, Kerrin S.; Ried, Janina S.; DeFronzo, Ralph A.; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J.; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W.; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R.; Gloyn, Anna L.; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D.; Hattersley, Andrew T.; Bowden, Donald W.; Collins, Francis S.; Atzmon, Gil; Chambers, John C.; Spector, Timothy D.; Laakso, Markku; Strom, Tim M.; Bell, Graeme I.; Blangero, John; Duggirala, Ravindranath; Tai, E. Shyong; McVean, Gilean; Hanis, Craig L.; Wilson, James G.; Seielstad, Mark; Frayling, Timothy M.; Meigs, James B.; Cox, Nancy J.; Sladek, Rob; Lander, Eric S.; Gabriel, Stacey; Mohlke, Karen L.; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J.; Morris, Andrew P.; Kang, Hyun Min; Altshuler, David; Burtt, Noël P.; Florez, Jose C.; Boehnke, Michael; McCarthy, Mark I.
2017-01-01
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D. PMID:29257133
A (1)H-NMR study on the effect of high pressures on beta-lactoglobulin.
Belloque, J; López-Fandiño, R; Smith, G M
2000-09-01
1H NMR was used to study the effect of high pressure on changes in the structure of beta-lactoglobulin (beta-Lg), particularly the strongly bonded regions, the "core". beta-Lg was exposed to pressures ranging from 100 to 400 MPa at neutral pH. After depressurization and acidification to pH 2.0, (1)H NMR spectra were taken. Pressure-induced unfolding was studied by deuterium exchange. Refolding was also evaluated. Our results showed that the core was unaltered at 100 MPa but increased its conformational flexibility at >/=200 MPa. Even though the core was highly flexible at 400 MPa, its structure was found to be identical to the native structure after equilibration back to atmospheric pressure. It is suggested that pressure-induced aggregates are formed by beta-Lg molecules maintaining most of their structure, and the intermolecular -SS- bonds, formed by -SH/-SS- exchange reaction, are likely to involve C(66)-C(160) rather than C(106)-C(119). In addition, the beta-Lg variants A and B could be distinguished in a (1)H NMR spectrum from a solution made with the AB mixed variant, by the differences in chemical shifts of M(107) and C(106); structural implications are discussed. Under pressure, the core of beta-Lg A seemed to unfold faster than that of beta-LgB. The structural recovery of the core was full for both variants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowley, S.; Okumura, N; Lord, S
'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptidemore » GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.« less
Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried
2015-01-01
A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis. PMID:26355961
Kamada, Mayumi; Hase, Sumitaka; Fujii, Kazushi; Miyake, Masato; Sato, Kengo; Kimura, Keitarou; Sakakibara, Yasubumi
2015-01-01
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from “Tua Nao” of Thailand traces a different evolutionary process from other strains. PMID:26505996
Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried
2015-01-01
A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.
Stein, Kevin C.; True, Heather L.
2014-01-01
Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression. PMID:24811344
An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock
Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun; ...
2016-12-12
Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less
An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun
Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less
Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains
Cronin, Thomas C; DiNitto, Jonathan P; Czech, Michael P; Lambright, David G
2004-01-01
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the β1/β2 loop exhibit dual specificity for PtdIns(3,4,5)P3 and PtdIns(4,5)P2. The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Loss of contacts with the β1/β2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P3 affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P2 is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the β1/β2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition. PMID:15359279
Takasuka, Taichi E.; Acheson, Justin F.; Bianchetti, Christopher M.; Prom, Ben M.; Bergeman, Lai F.; Book, Adam J.; Currie, Cameron R.; Fox, Brian G.
2014-01-01
β-mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity. PMID:24710170
Kurian, Mary; Korff, Christian M; Ranza, Emmanuelle; Bernasconi, Andrea; Lübbig, Anja; Nangia, Srishti; Ramelli, Gian Paolo; Wohlrab, Gabriele; Nordli, Douglas R; Bast, Thomas
2018-01-01
In this case report we assess the occurrence of cortical malformations in children with early infantile epilepsy associated with variants of the gene protocadherin 19 (PCDH19). We describe the clinical course, and electrographic, imaging, genetic, and neuropathological features in a cohort of female children with pharmacoresistant epilepsy. All five children (mean age 10y) had an early onset of epilepsy during infancy and a predominance of fever sensitive seizures occurring in clusters. Cognitive impairment was noted in four out of five patients. Radiological evidence of cortical malformations was present in all cases and, in two patients, validated by histology. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification analysis of PCDH19 revealed pathogenic variants in four patients. In one patient, array comparative genomic hybridization showed a microdeletion encompassing PCDH19. We propose molecular testing and analysis of PCDH19 in patients with pharmacoresistant epilepsy, with onset in early infancy, seizures in clusters, and fever sensitivity. Structural lesions are to be searched in patients with PCDH19 pathogenic variants. Further, PCDH19 analysis should be considered in epilepsy surgery evaluation even in the presence of cerebral structural lesions. Focal cortical malformations and monogenic epilepsy syndromes may coexist. Structural lesions are to be searched for in patients with protocadherin 19 (PCDH19) pathogenic variants with refractory focal seizures. © 2017 Mac Keith Press.
Ochoa-Leyva, Adrián; Montero-Morán, Gabriela; Saab-Rincón, Gloria; Brieba, Luis G.; Soberón, Xavier
2013-01-01
After the surprisingly low number of genes identified in the human genome, alternative splicing emerged as a major mechanism to generate protein diversity in higher eukaryotes. However, it is still not known if its prevalence along the genome evolution has contributed to the overall functional protein diversity or if it simply reflects splicing noise. The (βα)8 barrel or TIM barrel is one of the most frequent, versatile, and ancient fold encountered among enzymes. Here, we analyze the structural modifications present in TIM barrel proteins from the human genome product of alternative splicing events. We found that 87% of all splicing events involved deletions; most of these events resulted in protein fragments that corresponded to the (βα)2, (βα)4, (βα)5, (βα)6, and (βα)7 subdomains of TIM barrels. Because approximately 7% of all the splicing events involved internal β-strand substitutions, we decided, based on the genomic data, to design β-strand and α-helix substitutions in a well-studied TIM barrel enzyme. The biochemical characterization of one of the chimeric variants suggests that some of the splice variants in the human genome with β-strand substitutions may be evolving novel functions via either the oligomeric state or substrate specificity. We provide results of how the splice variants represent subdomains that correlate with the independently folding and evolving structural units previously reported. This work is the first to observe a link between the structural features of the barrel and a recurrent genetic mechanism. Our results suggest that it is reasonable to expect that a sizeable fraction of splice variants found in the human genome represent structurally viable functional proteins. Our data provide additional support for the hypothesis of the origin of the TIM barrel fold through the assembly of smaller subdomains. We suggest a model of how nature explores new proteins through alternative splicing as a mechanism to diversify the proteins encoded in the human genome. PMID:23950966
Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors
Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois
2016-01-01
ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765
Ibeh, Neke; Nshogozabahizi, Jean Claude; Aris-Brosou, Stéphane
2016-06-01
Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2011-12-31
have developed a vastly improved procedure for synthesis of the n- propyl ester that gives essentially quantitative yield and uses concentrated... Synthesis of n- propyl 4-aminofurazan-3-carboxylate. We next turned our attention to the synthesis of the amide. Again, the literature procedure is... synthesis and chemistry of 3-hydroxymethyl-4-amino[1,2,5]oxadiazole and 5) work on energetic polymers for structural components. 15. SUBJECT TERMS
McGregor, W. Glenn; Wei, Dong; Maher, Veronica M.; McCormick, J. Justin
1999-01-01
Xeroderma pigmentosum (XP) is a rare genetic disease characterized by a greatly increased susceptibility to sunlight-induced skin cancer. Cells from the majority of patients are defective in nucleotide excision repair. However, cells from one set of patients, XP variants, exhibit normal repair but are abnormally slow in replicating DNA containing UV photoproducts. The frequency of UV radiation-induced mutations in the XP variant cells is significantly higher than that in normal human cells. Furthermore, the kinds of UV-induced mutations differ very significantly from normal. Instead of transitions, mainly C→T, 30% of the base substitutions consist of C→A transversions, all arising from photoproducts located in one strand. Mutations involving cytosine in the other strand are almost all C→T transitions. Forty-five percent of the substitutions involve thymine, and the majority are transversions. To test the hypothesis that the UV hypermutability and the abnormal spectrum of mutations result from abnormal bypass of photoproducts in DNA, we compared extracts from XP variant cells with those from HeLa cells and a fibroblast cell strain, MSU-1.2, for the ability to replicate a UV-irradiated form I M13 phage. The M13 template contains a simian virus 40 origin of replication located directly to the left or to the right of the target gene, lacZα, so that the template for the leading and lagging strands of DNA replication is defined. Reduction of replication to ∼37% of the control value required only 1 photoproduct per template for XP variant cell extracts, but ∼2.2 photoproducts for HeLa or MSU-1.2 cell extracts. The frequency of mutants induced was four times higher with XP variant cell extracts than with HeLa or MSU-1.2 cell extracts. With XP variant cell extracts, the proportion of C→A transversions reached as high as 43% with either M13 template and arose from photoproducts located in the template for leading-strand synthesis; with HeLa or MSU-1.2 cell extracts, this value was only 5%, and these arose from photoproducts in either strand. With the XP variant extracts, 26% of the substitutions involved thymine, and virtually all were T→A transversions. Sequence analysis of the coding region of the catalytic subunit of DNA polymerase delta in XP variant cell lines revealed two polymorphisms, but these do not account for the reduced bypass fidelity. Our data indicate that the UV hypermutability of XP variant cells results from reduced bypass fidelity and that unlike for normal cells, bypass of photoproducts involving cytosine in the template for the leading strand differs significantly from that of photoproducts in the lagging strand. PMID:9858539
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-09-01
The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.
VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research
Lai, Zhongwu; Markovets, Aleksandra; Ahdesmaki, Miika; Chapman, Brad; Hofmann, Oliver; McEwen, Robert; Johnson, Justin; Dougherty, Brian; Barrett, J. Carl; Dry, Jonathan R.
2016-01-01
Abstract Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research. PMID:27060149
Yamagiwa, Raika; Kurahashi, Takuya; Takeda, Mariko; Adachi, Mayuho; Nakamura, Hiro; Arai, Hiroyuki; Shiro, Yoshitsugu; Sawai, Hitomi; Tosha, Takehiko
2018-05-01
Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N 2 O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO 2 - ) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.
Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S
2009-08-01
Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15 min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.
Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara
2013-01-01
The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc. PMID:23589421
Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu
2012-01-01
Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al, Hui-wang; Henderson, J. Nathan; Remington, S. James
The arsenal of engineered variants of the GFP [green FP (fluorescent protein)] from Aequorea jellyfish provides researchers with a powerful set of tools for use in biochemical and cell biology research. The recent discovery of diverse FPs in Anthozoa coral species has provided protein engineers with an abundance of alternative progenitor FPs from which improved variants that complement or supersede existing Aequorea GFP variants could be derived. Here, we report the engineering of the first monomeric version of the tetrameric CFP (cyan FP) cFP484 from Clavularia coral. Starting from a designed synthetic gene library with mammalian codon preferences, we identifiedmore » dimeric cFP484 variants with fluorescent brightness significantly greater than the wild-type protein. Following incorporation of dimer-breaking mutations and extensive directed evolution with selection for blue-shifted emission, high fluorescent brightness and photostability, we arrived at an optimized variant that we have named mTFP1 [monomeric TFP1 (teal FP 1)]. The new mTFP1 is one of the brightest and most photostable FPs reported to date. In addition, the fluorescence is insensitive to physiologically relevant pH changes and the fluorescence lifetime decay is best fitted as a single exponential. The 1.19 {angstrom} crystal structure (1 {angstrom}=0.1 nm) of mTFP1 confirms the monomeric structure and reveals an unusually distorted chromophore conformation. As we experimentally demonstrate, the high quantum yield of mTFP1 (0.85) makes it particularly suitable as a replacement for ECFP (enhanced CFP) or Cerulean as a FRET (fluorescence resonance energy transfer) donor to either a yellow or orange FP acceptor.« less
Suzuki, Takahiro; Fujibayashi, Misato; Hataya, Tatsuji; Taneda, Akito; He, Ying-Hong; Tsushima, Taro; Duraisamy, Ganesh Selvaraj; Siglová, Kristyna; Matoušek, Jaroslav; Sano, Teruo
2017-03-01
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J
2015-05-12
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Colitis-associated variant of TLR2 causes impaired mucosal repair due to TFF3 deficiency
Podolsky, Daniel K.; Gerken, Guido; Eyking, Annette; Cario, Elke
2009-01-01
Background & aims Goblet cells (GC) facilitate mucosal protection and epithelial barrier repair, yet the innate immune mechanisms that selectively drive GC functions have not been defined. The aim of this study was to determine whether TLR2 and modulation of GC-derived TFF3 are functionally linked in the intestine. Methods GC modulation was assessed using qRT-PCR, western blotting and confocal microscopy. DSS colitis was induced in wild-type, TFF3−/− and TLR2−/− mice. Recombinant TLR2 ligand or TFF3 peptide were orally administered after DSS termination. Caco-2 overexpressing full-length TLR2 or mutant TLR2-R753Q were tested for TFF3 synthesis and functional-related effects in a wounding-assay. Results Data from in-vitro (Ls174T) and ex-vivo models of murine and human GC reveal that TLR2 activation selectively induces synthesis of TFF3. In-vivo studies using TFF3−/− or TLR2−/− mice demonstrate the ability for oral treatment with a TLR2 agonist to confer anti-apoptotic protection of the intestinal mucosa against inflammatory stress-induced damage through TFF3. Recombinant TFF3 rescues TLR2-deficient mice from increased morbidity and mortality during acute colonic injury. Severe ulcerative colitis has recently been found to be associated with the R753Q polymorphism of the TLR2 gene. The relevance of the observed functional effect of TLR2 in regulating GC is confirmed by the finding that the UC-associated TLR2-R753Q variant is functionally deficient in the ability to induce TFF3 synthesis, thus leading to impaired wound healing. Conclusions These data demonstrate a novel function of TLR2 in intestinal GC that links products of commensal bacteria to innate immune protection of the host via TFF3. PMID:19303021
Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency.
Podolsky, Daniel K; Gerken, Guido; Eyking, Annette; Cario, Elke
2009-07-01
Goblet cells (GC) facilitate mucosal protection and epithelial barrier repair, yet the innate immune mechanisms that selectively drive GC functions have not been defined. The aim of this study was to determine whether Toll-like receptor (TLR) 2 and modulation of GC-derived trefoil factor (TFF) 3 are functionally linked in the intestine. GC modulation was assessed using quantitative real-time polymerase chain reaction analysis (qRT-PCR), Western blotting, and confocal microscopy. Dextran sulfate sodium (DSS) colitis was induced in wild-type, TFF3(-/-), and TLR2(-/-) mice. Recombinant TLR2 ligand or TFF3 peptide were orally administered after DSS termination. Caco-2 cells overexpressing full-length TLR2 or mutant TLR2-R753Q were tested for TFF3 synthesis and functional-related effects in a wounding assay. Data from in vitro (Ls174T) and ex vivo models of murine and human GC reveal that TLR2 activation selectively induces synthesis of TFF3. In vivo studies using TFF3(-/-) or TLR2(-/-) mice demonstrate the ability for oral treatment with a TLR2 agonist to confer antiapoptotic protection of the intestinal mucosa against inflammatory stress-induced damage through TFF3. Recombinant TFF3 rescues TLR2-deficient mice from increased morbidity and mortality during acute colonic injury. Severe ulcerative colitis (UC) has recently been found to be associated with the R753Q polymorphism of the TLR2 gene. The relevance of the observed functional effect of TLR2 in regulating GC is confirmed by the finding that the UC-associated TLR2-R753Q variant is functionally deficient in the ability to induce TFF3 synthesis, thus leading to impaired wound healing. These data demonstrate a novel function of TLR2 in intestinal GC that links products of commensal bacteria to innate immune protection of the host via TFF3.
Ge, Deyong; Xue, Yanfen; Ma, Yanhe
2016-05-11
Bacillus species, possessing the methylerythritol phosphate (MEP) pathway for the synthesis of isoprenoid feedstock, are the highest producers of isoprene among bacteria; however, the enzyme responsible for isoprene synthesis has not been identified. The iron-sulfur protein IspH is the final enzyme of the MEP pathway and catalyses the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to form isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). In this study, we demonstrated two unexpected promiscuous activities of IspH from alkaliphilic Bacillus sp. N16-5, which can produce high levels of isoprene. Bacillus sp. N16-5 IspH could catalyse the formation of isoprene from HMBPP and the conversion of DMAPP into a mixture of 2-methyl-2-butene and 3-methyl-1-butene. Both reactions require an electron transfer system, such as that used for HMBPP dehydration. Isoprene and isoamylene synthesis in Bacillus sp. N16-5 was investigated and the reaction system was reconstituted in vitro, including IspH, ferredoxin and ferredoxin-NADP(+)-reductase proteins and NADPH. The roles of specific IspH protein residues were also investigated by site-directed mutagenesis experiments; two variants (H131N and E133Q) were found to have lost the HMBPP reductase activity but could still catalyse the formation of isoprene. Overexpression of IspH H131N in Bacillus sp. N16-5 resulted in a twofold enhancement of isoprene production, and the yield of isoprene from the strain expressing E133Q was increased 300% compared with the wild-type strain. IspH from Bacillus sp. N16-5 is a promiscuous enzyme that can catalyse formation of isoprene and isoamylene. This enzyme, especially the H131N and E133Q variants, could be used for the production of isoprene from HMBPP.
Characterization of C-terminally engineered laccases.
Liu, Yingli; Cusano, Angela Maria; Wallace, Erin C; Mekmouche, Yasmina; Ullah, Sana; Robert, Viviane; Tron, Thierry
2014-08-01
Extremities of proteins are potent sites for functionalization. Carboxy terminus variants of the Trametes sp. strain C30 LAC3 laccase were generated and produced in Saccharomyces cerevisiae. A variant deleted of the last 13 residues (CΔ) and its 6 His tagged counterpart (CΔ6H) were found active enzymes. The production of CΔ6H resulted in the synthesis of a unusually high proportion of highly glycosylated forms of the enzyme therefore allowing the additional purification of a hyper-glycosylated form of CΔ6H noted CΔ6Hh. Properties of CΔ, CΔ6H and CΔ6Hh were compared. Globally, LAC3 catalytic efficiency was moderately affected by terminal modifications except in CΔ for which the kcat/KM ratio decreased 4 fold (with syringaldazine as substrate) and 10 fold (with ABTS as substrate) respectively. The catalytic parameters kcat and KM of CΔ6H and CΔ6Hh were found to be strictly comparable revealing that over glycosylation does not affect the enzyme catalytic efficiency. To the contrary, in vitro deglycosylation of laccase drastically reduced its activity. So, despite a complex glycosylated pattern observed for some of the variant enzymes, terminal sequences of laccases appear to be appropriate sites for the functionalization/immobilization of laccase. Copyright © 2014 Elsevier B.V. All rights reserved.
Shang, Hanqiao; Li, Qing; Feng, Guohui; Cui, Zongbin
2011-01-01
Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress. PMID:21887375
Shang, Hanqiao; Li, Qing; Feng, Guohui; Cui, Zongbin
2011-01-01
Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5' termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress.