Science.gov

Sample records for synthetic ceric oxide

  1. Oxidation, deformation, and destruction of carbon nanotubes in aqueous ceric sulfate.

    PubMed

    Luong, John H T; Hrapovic, Sabahudin; Liu, Yali; Yang, De-Quan; Sacher, Edward; Wang, Dashan; Kingston, Christopher T; Enright, Gary D

    2005-02-01

    A simple wet chemical method involving only ultrasonic processing in dilute ceric sulfate (CS) was used to functionalize carbon nanotubes (CNTs). Unexpectedly, single-walled and multiwalled carbon nanotubes (SWCNTs and MWCNTs) were cut, oxidized, and disintegrated by sonication in 0.1 N CS for 2-5 h. Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), Raman scattering, and photoacoustic Fourier transform infrared spectroscopy (FTIR) were used to probe wall damage during the chemical processing. Cyclic voltammetry and impedance spectroscopy were used to evaluate the conductivity of the CS-treated CNTs. This one-step process resulted in the destruction of SWCNTs to produce nonconducting amorphous carbon. MWCNTs were oxidized and converted to graphitic materials and amorphous carbon with retained conductivity. PMID:16851109

  2. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  3. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  4. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  5. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  6. Synthetic chemistry with nitrous oxide.

    PubMed

    Severin, Kay

    2015-10-01

    This review article summarizes efforts to use nitrous oxide (N2O, 'laughing gas') as a reagent in synthetic chemistry. The focus will be on reactions which are carried out in homogeneous solution under (relatively) mild conditions. First, the utilization of N2O as an oxidant is discussed. Due to the low intrinsic reactivity of N2O, selective oxidation reactions of highly reactive compounds are possible. Furthermore, it is shown that transition metal complexes can be used to catalyze oxidation reactions, in some cases with high turnover numbers. In the final part of this overview, the utilization of N2O as a building block for more complex molecules is discussed. It is shown that N2O can be used as an N-atom donor for the synthesis of interesting organic molecules such as triazenes and azo dyes. PMID:26104268

  7. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  8. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  9. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  10. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  11. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  12. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  13. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  14. 21 CFR 73.1200 - Synthetic iron oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically...

  15. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  16. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  17. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  18. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  19. A synthetic leaf: the biomimetic potential of graphene oxide

    NASA Astrophysics Data System (ADS)

    Lamb, Marilla; Koch, George W.; Morgan, Eric R.; Shafer, Michael W.

    2015-03-01

    Emerging materials such as graphene oxide (GO) have micro and nano features that are functionally similar to those in plant cell walls involved in water transport. Therefore, it may now be possible to design and build biomimetic trees to lift water via mechanisms similar to those employed by trees, allowing for potential applications such as passive water pumping, filtering, and evaporative cooling. The tallest trees can raise large volumes of water to over 100 meters using only the vapor pressure gradient between their leaves and the atmosphere. This phenomenon occurs in all terrestrial plants when capillary forces generated in the microscopic pores in the cell walls of leaves are collectively applied to large diameter xylem conduits. The design of a synthetic tree that mimics these mechanisms will allow water to be moved to heights greater than is currently possible by any engineered system that does not require the use of a positive pressure pump. We are testing the suitability of membranous GO as the leaf of a synthetic tree and present an analysis in support of this design. In addition, we include results from a preliminary design using ceramics.

  20. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  1. Water-oxidation catalysis by synthetic manganese oxides--systematic variations of the calcium birnessite theme.

    PubMed

    Frey, Carolin E; Wiechen, Mathias; Kurz, Philipp

    2014-03-21

    Layered manganese oxides from the birnessite mineral family have been identified as promising heterogeneous compounds for water-oxidation catalysis (WOC), a key reaction for the conversion of renewable energy into storable fuels. High catalytic rates were especially observed for birnessites which contain calcium as part of their structures. With the aim to systematically improve the catalytic performance of such oxide materials, we used a flexible synthetic route to prepare three series of calcium birnessites, where we varied the calcium concentrations, the ripening times of the original precipitates and the temperature of the heat treatment following the initial synthetic steps (tempering) during the preparation process. The products were carefully analysed by a number of analytical techniques and then probed for WOC activity using the Ce(4+)-system. We find that our set of twenty closely related manganese oxides shows large, but somewhat systematic alterations in catalytic rates, indicating the importance of synthesis parameters for maximum catalytic performance. The catalyst of the series for which the highest water-oxidation rate was found is a birnessite of medium calcium content (Ca : Mn ratio 0.2 : 1) that had been subjected to a tempering temperature of 400 °C. On the basis of the detailed analysis of the results, a WOC reaction scheme for birnessites is proposed to explain the observed trends in reactivity. PMID:24225769

  2. The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil.

    PubMed

    Mahmood, Shahid; Prosser, James I

    2006-06-01

    In grazed, grassland soils, sheep urine generates heterogeneity in ammonia concentrations, with potential impact on ammonia oxidizer community structure and soil N cycling. The influence of different levels of synthetic sheep urine on ammonia oxidizers was studied in grassland soil microcosms. 'Total' and active ammonia oxidizers were distinguished by comparing denaturing gradient gel electrophoresis (DGGE) profiles following PCR and RT-PCR amplification of 16S rRNA gene fragments, targeting DNA and RNA, respectively. The RNA-based approach indicated earlier, more reproducible and finer scale qualitative shifts in ammonia oxidizing communities than DNA-based analysis, but led to amplification of a small number of nonammonia oxidizer sequences. Qualitative changes in RNA-derived DGGE profiles were related to changes in nitrate accumulation. Sequence analysis of excised DGGE bands revealed that ammonia oxidizing communities in synthetic sheep urine-treated soils consisted mainly of Nitrosospira clusters 2, 3 and 4. Nitrosospira cluster 2 increased in relative abundance in microcosms treated with all levels of synthetic sheep urine. Low levels additionally led to increased relative abundance of Nitrosospira cluster 4 and medium and high levels increased relative abundance of cluster 3. Synthetic sheep urine is therefore likely to influence the spatial distribution and composition of ammonia oxidizer communities, with consequent effects on nitrate accumulation.

  3. Carcinogenic and cocarcinogenic effects of inhaled synthetic smog and ferric oxide particles.

    PubMed

    Nettesheim, P; Creasia, D A; Mitchell, T J

    1975-07-01

    The carcinogenic and cocarcinogenic activity of synthetic smog, ferric oxide (Fe2O3) dust, and a mixture of the two air contaminants was determined in a long-term inhalation study with Syrian hamsters. Inhaled Fe2O3 particles definitely enhanced diethylnitrosamine tumorigenicity in the peripheral lung. Synthetic smog did not. When tested at a concentration of 40 ppm methane equivalents or 40 mg/m3, respectively, neither air pollutant by itself appeared carcinogenic. Fe2O3 caused pulmonary fibrosis and synthetic smog caused alveolar bronchiolization in many of the exposed animals.

  4. Development of Novel Biopolymer/Synthetic-Polymer/Iron Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mena Montoya, Marleth; Carranza, Sugeheidy; Hinojosa, Moisés; González, Virgilio

    2009-03-01

    In this work we report the successful development of a family of magnetic nanocomposites based on chitosan or/and polyamide 6 matrix with dispersed iron oxide nanoparticles synthesized by chemical co-precipitation. The iron oxide contents varied from 5 up to 23 wt%, the nanocomposites were studied by FTIR, UV-vis, TGA, XRD, TEM and magnetometry. The FTIR analysis demonstrates an interaction between the amide group of the polyamide 6 and the ceramic material. In formic acid, the nanocomposites absorb in the UV-Vis range, and the magnitude of the band gap (optical), calculated using the band of higher wavelength, is between 2.16 and 2.19 eV. In nanocomposites with chitosan/polyamide 6 matrix the developed morphologies are spherulites of polyamide 6 surrounded by chitosan, with the iron oxide particles presumably in the form of ferrihidryte. The measured magnetic properties revealed a superparamagnetic character on the studied specimens.

  5. Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues

    NASA Technical Reports Server (NTRS)

    Fox, V. K.; Arvidson, R. E.; Jolliff, B. L.; Carpenter, P. K.; Catalano, J. G.; Hinkle, M. A. G.; Morris, R. V.

    2015-01-01

    Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples.

  6. Mild oxidation of tosylmethylisocyanide to tosylmethylisocyanate: utility in synthetic and medicinal chemistry

    PubMed Central

    Le, Hoang V.; Ganem, Bruce

    2014-01-01

    A convenient and efficient (one-step) oxidation is reported of commercially available tosylmethylisocyanide (TOSMIC) to form tosylmethylisocyanate, making this highly reactive bifunctional molecule a readily available synthetic reagent. Besides engaging in nucleophilic addition reactions with alcohols, amines and thiols, tosylmethylisocyanate also reacts with carboxylic acids to form tosylmethylamides, which undergo substitution reactions in the presence of organocopper and organomagnesium reagents. PMID:24791030

  7. Oxidation of synthetic phenolic antioxidants during water chlorination.

    PubMed

    Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2012-01-15

    The degradation of seven phenolic antioxidants and metabolites during chlorination was investigated. Under strong chlorination conditions (10 mg L(-1) chlorine, 24h), five of the target compounds were significantly degraded, while only BHT-Q (2,6-di-tert-butylcyclohexa-2,5-diene-1,4-dione) and BHT-CHO (3,5-di-tert-butyl-4-hydroxybenzaldehyde) were stable. The effect of the presence of bromide to the sample was only significant for BHA (butylated hydroxyanisole) resulting in increased disappearance rate as it is increased. Moreover, the disappearance kinetics were investigated at different concentrations of chlorine and pH of sample using a factorial experimental design. It was observed that the pH of the sample was a significant factor for BHT (butylated hydroxytoluene) and BHA, and chlorine concentration was significant for BHT, resulting in increased disappearance kinetics as they are increased. The degradation of these compounds has revealed two main processes: hydroxylation and oxidation of the aromatic system. The hydroxylated derivatives in some cases (e.g. from BHT-OH (2,6-di-tert-butyl-4-(hydroxymethyl)phenol) and BHT-COOH (3,5-di-tert-butyl-4-hydroxybenzoic acid)) are formed via the chlorinated and/or brominated intermediate. Moreover, the oxidation of the aromatic system leads to the quinone derivatives. The investigation of these by-products in real samples by solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) showed that derivatives of BHT, BHT-OH and/or BHT-COOH occurred in wastewater and drinking water samples analysed. PMID:22093692

  8. Reduction of ozone oxidants in synthetic seawater by use of sodium thiosulfate

    SciTech Connect

    Hemdal, J.F. )

    1992-01-01

    Ozone gas was dissolved in synthetic seawater at various concentrations. The toxicity of the resultant ozone oxidants on Brachionus sp. rotifers was noted. The time to 50% mortality ranged from 10 min for an oxidant concentration of 9.0 mg/L to more than 23 h for a 0.43-mg/L concentration. Sodium thiosulfate was added to water samples containing known toxic concentrations of ozone oxidants. One milligram of sodium thiosulfate neutralized 0.16-1.13 mg of ozone oxidants depending on the length of time the sample was aerated before thiosulfate was added: the longer the aeration, the less effectively thiosulfate neutralized oxidants. In samples in which the oxidants were fully neutralized by sodium thiosulfate, the time to 50% rotifer mortality was comparable to that in control samples never exposed to ozone. 7 refs., 3 tabs.

  9. Dissolution of Technetium(IV) Oxide by Natural and Synthetic Organic Ligands Under both Reducing and Oxidizing Conditions

    SciTech Connect

    Gu, Baohua; Dong, W.; Liang, Liyuan; Wall, Nathalie

    2011-01-01

    Technetium-99 (Tc) in nuclear waste is a significant environmental concern due to its long half-life and high mobility in the subsurface. Reductive precipitation of Tc(IV) oxides [TcO2(s)] is an effective means of immobilizing Tc, thereby impeding its migration in groundwater. However, TcO2(s) is subject to dissolution by oxidants and/or complexing agents. In this study we ascertain the effects of a synthetic organic ligand, ethylenediaminetetraacetate (EDTA), and two natural humic isolates on the dissolution and solubility of Tc(IV) oxides. Pure synthetic TcO2(s) (0.23 mM) was used in batch experiments to determine dissolution kinetics at pH ~6 under both reducing and oxidizing conditions. All organic ligands were found to enhance the dissolution of Tc(IV) oxides, increasing their solubility from ~10-8 M (without ligands) to 4 10-7 M under strictly anoxic conditions. Reduced Tc(IV) was also found to re-oxidize rapidly under oxic conditions, with an observed oxidative dissolution rate approximately an order of magnitude higher than that of ligand-promoted dissolution under reducing conditions. Significantly, oxidative dissolution was inhibited by EDTA but enhanced by humic acid compared with experiments without any complexing agents. The redox functional properties of humics, capable of facilitating intra-molecular electron transfer, may account for this increased oxidation rate under oxic conditions. Our results highlight the importance of complex interactions for the stability and mobility of Tc, and thus for the long-term fate of Tc in contaminated environments.

  10. Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater.

    PubMed

    Tong, Man; Yuan, Songhu; Zhang, Peng; Liao, Peng; Alshawabkeh, Akram N; Xie, Xianjun; Wang, Yanxin

    2014-05-01

    Mobilization of Arsenic in groundwater is primarily induced by reductive dissolution of As-rich Fe(III) oxyhydroxides under anoxic conditions. Creating a well-controlled artificial environment that favors oxidative precipitation of Fe(II) and subsequent oxidation and uptake of aqueous As can serve as a remediation strategy. We reported a proof of concept study of a novel iron-based dual anode system for As(III) oxidation and removal in synthetic groundwater. An iron anode was used to produce Fe(II) under iron-deficient conditions, and another inert anode was used to generate O2 for oxidative precipitation of Fe(II). For 30 min's treatment, 6.67 μM (500 μg/L) of As(III) was completely oxidized and removed from the solution during the oxidative precipitation process when a total current of 60 mA was equally partitioned between the two anodes. The current on the inert anode determined the rate of O2 generation and was linearly related to the rates of Fe(II) oxidation and of As oxidation and removal, suggesting that the process could be manipulated electrochemically. The composition of Fe precipitates transformed from carbonate green rust to amorphous iron oxyhydroxide as the inert anode current increased. A conceptual model was proposed for the in situ application of the electrochemically induced oxidative precipitation process for As(III) remediation.

  11. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR.

  12. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.

    PubMed

    Nousiainen, Paula; Kontro, Jussi; Manner, Helmiina; Hatakka, Annele; Sipilä, Jussi

    2014-11-01

    Fungal oxidative enzymes, such as peroxidases and laccases, are the key catalysts in lignin biodegradation in vivo, and consequently provide an important source for industrial ligninolytic biocatalysts. Recently, it has been shown that some syringyl-type phenolics have potential as industrial co-oxidants or mediators, in laccase-catalyzed modification of lignocellulosic material. We have now studied the effect of such mediators with ligninolytic peroxidases on oxidation of the most recalcitrant lignin model compounds. We found that they are able to enhance the manganese peroxidase (MnP) catalyzed oxidation reactions of small non-phenolic compounds, veratryl alcohol and veratrylglycerol β-guaiacyl ether (adlerol), which are not usually oxidized by manganese peroxidases alone. In these experiments we compared two peroxidases from white-rot fungi, MnP from Phlebia sp. Nf b19 and versatile peroxidase (VP) from Bjerkandera adusta under two oxidation conditions: (i) the Mn(III) initiated mediated oxidation by syringyl compounds and (ii) the system involving MnP-dependent lipid peroxidation, both with production of (hydrogen) peroxides in situ to maintain the peroxidase catalytic cycle. It was found that both peroxidases produced α-carbonyl oxidation product of veratryl alcohol in clearly higher yields in reactions mediated by phenoxy radicals than in lipid-peroxyl radical system. The oxidation of adlerol, on the other hand, was more efficient in lipid-peroxidation-system. VP was more efficient than MnP in the oxidation of veratryl alcohol and showed its lignin peroxidase type activity in the reaction conditions indicated by some cleavage of Cα-Cβ-bond of adlerol. Finally, the mediator assisted oxidation conditions were applied in the oxidation of synthetic lignin (DHP) and the structural analysis of the oxidized polymers showed clear modifications in the polymer outcome, e.g. the oxidation resulted in reduced amount of aliphatic hydroxyls indicated by (31)P NMR. PMID

  13. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin

    PubMed Central

    Meyer, Michael E.; Phillips, John H.; Ferreira, Eric M.; Stoltz, Brian M.

    2013-01-01

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR). PMID:23913988

  14. Synthesis of cobalt oxide nanoparticles via homogeneous precipitation using different synthetic conditions.

    PubMed

    Kishore, P N R; Jeevanandam, P

    2013-04-01

    Cobalt oxide nanoparticles have been prepared via homogeneous precipitation using different synthetic conditions. The effect of using cobalt salts with different anions (nitrate, acetate, chloride and sulphate) and concentrations on the final products has been investigated. The precursors to the cobalt oxide nanoparticles, obtained by the homogeneous precipitation, were found to be alpha-cobalt hydroxides with different stoichiometries. Pink and blue coloured alpha-cobalt hydroxides were obtained depending on the anion and concentration of the cobalt salt used. Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt hydroxides in air at 350 degrees C. The precursors and the cobalt oxide nanoparticles were characterized by a variety of analytical techniques and magnetic properties of the different cobalt oxide nanoparticles have also been investigated.

  15. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  16. Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Bargar, J. R.; Sposito, G.

    2005-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.

  17. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.

    PubMed

    Kohan, Leila Mirsaleh; Meesungnoen, Jintana; Sanguanmith, Sunuchakan; Meesat, Ridthee; Jay-Gerin, Jean-Paul

    2014-05-01

    The stochastic modeling of the (60)Co γ/fast-electron radiolysis of the ceric-cerous chemical dosimeter has been performed as a function of temperature from 25-350°C. The system used is a dilute solution of ceric sulfate and cerous sulfate in aqueous 0.4 M sulfuric acid. In this system, H(•) (or HO2(•) in the presence of dissolved oxygen) and H2O2 produced by the radiolytic decomposition of water both reduce Ce(4+) ions to Ce(3+) ions, while (•)OH radicals oxidize the Ce(3+) present in the solution back to Ce(4+). The net Ce(3+) yield is given by G(Ce(3+)) = g(H(•)) + 2 g(H2O2) - g((•)OH), where the primary (or "escape") yields of H(•), H2O2 and (•)OH are represented by lower case g's. At room temperature, G(Ce(3+)) has been established to be 2.44 ± 0.8 molecules/100 eV. In this work, we investigated the effect of temperature on the yield of Ce(3+) and on the underlying chemical reaction kinetics using Monte Carlo track chemistry simulations. The simulations showed that G(Ce(3+)) is time dependent, a result of the differences in the lifetimes of the reactions that make up the radiolysis mechanism. Calculated G(Ce(3+)) values were found to decrease almost linearly with increasing temperature up to about 250°C, and are in excellent agreement with available experimental data. In particular, our calculations confirmed previous estimated values by Katsumura et al. (Radiat Phys Chem 1988; 32:259-63) showing that G(Ce(3+)) at ∼250°C is about one third of its value at room temperature. Above ∼250°C, our model predicted that G(Ce(3+)) would drop markedly with temperature until, instead of Ce(4+) reduction, Ce(3+) oxidation is observed. This drop is shown to occur as a result of the reaction of hydrogen atoms with water in the homogeneous chemical stage.

  18. Effect of temperature on the low-linear energy transfer radiolysis of the ceric-cerous sulfate dosimeter: a Monte Carlo simulation study.

    PubMed

    Kohan, Leila Mirsaleh; Meesungnoen, Jintana; Sanguanmith, Sunuchakan; Meesat, Ridthee; Jay-Gerin, Jean-Paul

    2014-05-01

    The stochastic modeling of the (60)Co γ/fast-electron radiolysis of the ceric-cerous chemical dosimeter has been performed as a function of temperature from 25-350°C. The system used is a dilute solution of ceric sulfate and cerous sulfate in aqueous 0.4 M sulfuric acid. In this system, H(•) (or HO2(•) in the presence of dissolved oxygen) and H2O2 produced by the radiolytic decomposition of water both reduce Ce(4+) ions to Ce(3+) ions, while (•)OH radicals oxidize the Ce(3+) present in the solution back to Ce(4+). The net Ce(3+) yield is given by G(Ce(3+)) = g(H(•)) + 2 g(H2O2) - g((•)OH), where the primary (or "escape") yields of H(•), H2O2 and (•)OH are represented by lower case g's. At room temperature, G(Ce(3+)) has been established to be 2.44 ± 0.8 molecules/100 eV. In this work, we investigated the effect of temperature on the yield of Ce(3+) and on the underlying chemical reaction kinetics using Monte Carlo track chemistry simulations. The simulations showed that G(Ce(3+)) is time dependent, a result of the differences in the lifetimes of the reactions that make up the radiolysis mechanism. Calculated G(Ce(3+)) values were found to decrease almost linearly with increasing temperature up to about 250°C, and are in excellent agreement with available experimental data. In particular, our calculations confirmed previous estimated values by Katsumura et al. (Radiat Phys Chem 1988; 32:259-63) showing that G(Ce(3+)) at ∼250°C is about one third of its value at room temperature. Above ∼250°C, our model predicted that G(Ce(3+)) would drop markedly with temperature until, instead of Ce(4+) reduction, Ce(3+) oxidation is observed. This drop is shown to occur as a result of the reaction of hydrogen atoms with water in the homogeneous chemical stage. PMID:24754561

  19. Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic Nanocrystalline Mackinawite

    SciTech Connect

    Bi, Yuqiang; Hyun, Sung Pil; Kukkadapu, Ravi K.; Hayes, Kim F.

    2013-02-01

    The long-term success of in situ reductive immobilization of uranium (U) depends on the stability of U(IV) precipitates (e.g., uraninite) under oxic conditions. Field and laboratory studies have implicated iron sulfide minerals as redox buffers or oxidant scavengers that may slow oxidation of reduced U(VI) solid phases by oxygen and Fe(III). Yet, the inhibition mechanism(s) and reaction rates of uraninite (UO2) oxidative dissolution by oxic species such as oxygen in FeS-bearing systems remain largely unresolved. To address this knowledge gap, abiotic batch experiments were conducted with synthetic UO2 in the presence and absence of synthetic mackinawite (FeS) under simulated groundwater conditions of pH = 7, PO2 = 0.02 atm, and PCO2 = 0.05 atm (equivalent to total dissolved carbonate of 0.01 M). The kinetic profiles of dissolved uranium indicate that FeS inhibited UO2 dissolution for 51 hr by effectively scavenging oxygen and keeping dissolved oxygen (DO) low. During this time period, oxidation of structural Fe(II) and S(-II) of FeS were found to control the DO levels, leading to the formation of iron oxyhydroxides and elemental sulfur, respectively, as verified by X-ray diffraction (XRD), Mössbauer and X-ray absorption spectroscopy (XAS). After FeS was depleted due to oxidation, DO levels increased and UO2 oxidative dissolution occurred at an initial rate of rm = 1.2 ± 0.4 ×10-8 mol•g-1•s-1, higher than rm = 5.4 ± 0.3 ×10-9 mol•g-1•s-1 in the control experiment where FeS was absent. Soluble U(VI) products were adsorbed by iron oxyhydroxides (i.e. nanogoethite and ferrihydrite) formed from FeS oxidation, which facilitated the detachment of U(VI) surface complexes and more rapid dissolution of UO2. XAS analysis confirmed the adsorption of U(VI) species, and also showed that U(VI) was not significantly incorporated into iron oxyhydroxide structure. This work reveals that both the oxygen scavenging by FeS and the adsorption of U(VI) to FeS oxidation

  20. Influence of annealing atmospheres and synthetic air treatment on solution processed zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Busch, C.; Schierning, G.; Theissmann, R.; Schmechel, R.

    2012-08-01

    Thin film transistors (TFTs) based on active layers of zinc oxide prepared from a solution process were fabricated under different annealing conditions. The influence of the annealing gas as well as the influence of a subsequent exposure to synthetic air to the device properties is considered. Annealing under N2 or H2 atmosphere leads to a strong negative threshold voltage shift. With respect to known defect states in ZnO, two different donor states are suggested to be responsible for the negative threshold voltage. A subsequent synthetic air treatment causes in general a positive threshold voltage shift. However, transistors annealed under H2 degrade very fast under synthetic air in contrast to transistors annealed under N2. In order to obtain more information about the density of states (DOS) distribution, a transistor model for thin film transistors in the hopping transport regime (Vissenberg model) was utilized. For positive threshold voltages, the DOS distribution is independent from the gas treatment and the threshold voltage within the experimental accuracy. This indicates a shift of the Fermi-level within an exponentially decaying DOS. The change in the charge carrier density is either due to shallow donors or due to a charge transfer with acceptors at the surface. In contrast, for negative threshold voltages, the DOS distribution parameter rises, indicating a flatter DOS distribution. We suggest that the difference is due to the change from accumulation mode to the depletion mode of the device.

  1. Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance.

    PubMed

    Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo; Xie, Qiao-Qin; Pan, Min

    2014-01-01

    Synthetic effect between sulfate minerals (gypsum) and iron oxide (hematite) on the anaerobic transformation of organic substance was investigated in the current study. The results showed that gypsum was completely decomposed while hematite was partially reduced. The mineral phase analysis results showed that FeS and CaCO3 was the major mineralization product. Methane generation process was inhibited and inorganic carbon contents in the precipitates were enhanced compared to the control without hematite and gypsum. The inorganic carbon content increased with the increasing of hematite dosages. Co-addition of sulfate minerals and iron oxide would have a potential application prospect in the carbon sequestration area and reduction of the greenhouse gas release. The results would also reveal the role of inorganic mineral in the global carbon cycle. PMID:24189378

  2. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2008-07-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB +, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB + at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.

  3. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    PubMed

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-28

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.

  4. Effect of Cu2+ on the oxidative folding of synthetic maurotoxin in vitro

    PubMed Central

    Regaya, Imed; Andreotti, Nicolas; Di Luccio, Eric; De Waard, Michel; Sabatier, Jean-Marc

    2008-01-01

    Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K+ channel types. It folds according to an α/β scaffold, i.e. a helix connected to a two stranded β-sheet by two disulphide bridges. In a former study, various parameters that affect the oxidation and folding of the reduced form of synthetic MTX were investigated in vitro. It was found that MTX achieves its final 3-D structure by evolving over time through a series of oxidation intermediates, from the least to the most oxidised species. MTX oxidative intermediates can be studied by iodoacetamide alkylation of free cysteine residues followed by mass spectrometry analysis. Here, we have analysed the effect of Cu2+ on the kinetics of MTX oxidative folding and found that it dramatically speeds up the formation of the four-disulphide bridged, native-like, MTX (maximal production within 30 minutes instead of > 60 hours). Cu2+ was also found to prevent the slow transition of a three disulphide-bridged MTX intermediate towards the final four disulphide-bridged product (12% of total MTX). The data are discussed in light of the potential effects of Cu2+ on MTX secondary structure formation, disulphide bridging and peptidyl prolyl cis-trans isomerisation. PMID:18533728

  5. Effects of Ceric Oxide Coatings on Materials Performance of 430 Steel in Coal Synthetc Gas

    SciTech Connect

    Ziomek-Moroz, M. Jablonski, P

    2011-12-21

    The surfaces of low silicon and aluminum 430 stainless steel (UNS 43000) coupons with and without ceria (CeO2) surface treatment were investigated after exposure to simulated coal syngas based fuel at 800 C. The results indicate a different mechanism of carburization for the ceria treated steel than that for the untreated steel.

  6. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes.

    PubMed

    Janoš, Pavel; Henych, Jiří; Pelant, Ondřej; Pilařová, Věra; Vrtoch, Luboš; Kormunda, Martin; Mazanec, Karel; Štengl, Václav

    2016-03-01

    Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase. PMID:26561750

  7. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes.

    PubMed

    Janoš, Pavel; Henych, Jiří; Pelant, Ondřej; Pilařová, Věra; Vrtoch, Luboš; Kormunda, Martin; Mazanec, Karel; Štengl, Václav

    2016-03-01

    Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.

  8. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide

    SciTech Connect

    Toro, D.M. di |; Mahony, J.D.; Gonzalez, A.M.

    1996-12-01

    A model is proposed for the kinetics of the oxidation of acid-volatile sulfide (AVS). It is based on a surface oxidation reaction that erodes the particle surface until the particle disappears. A monodisperse particle size distribution is assumed with a reaction rate that is proportional to the surface area remaining and a dimensional exponent that related the surface area to the particle volume. The model is fit to time course data from a number of experiments conducted using synthetic FeS at various pHs, oxygen concentrations, and ionic strengths. The reaction rate constants are modeled using a surface complexation model. It is based upon the formation of two activated surface complexes with molecular oxygen, one of which is charged. The complexation model provides a good fit to the variation of the reaction rate constant with respect to O{sub 2}, pH, temperature, and ionic strength. The dimensional exponent {nu} increases with pH from values characteristic of plates and needles to values reflecting more spherical particles, presumably due to coagulation. However the increase in {nu} with respect to O{sub 2} at high concentrations is unexplained.

  9. Laccase‐catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications

    PubMed Central

    Jeon, Jong‐Rok; Baldrian, Petr; Murugesan, Kumarasamy; Chang, Yoon‐Seok

    2012-01-01

    Summary Laccases are oxidases that contain several copper atoms, and catalyse single‐electron oxidations of phenolic compounds with concomitant reduction of oxygen to water. The enzymes are particularly widespread in ligninolytic basidiomycetes, but also occur in certain prokaryotes, insects and plants. Depending on the species, laccases are involved in various biosynthetic processes contributing to carbon recycling in land ecosystems and the morphogenesis of biomatrices, wherein low‐molecular‐weight naturally occurring phenols serve as key enzyme substrates. Studies of these in vivo synthetic pathways have afforded new insights into fungal laccase applicability in green synthetic chemistry. Thus, we here review fungal laccase‐catalysed oxidations of naturally occurring phenols that are particularly relevant to the synthesis of fine organic chemicals, and we discuss how the discovered synthetic strategies mimic laccase‐involved in vivo pathways, thus enhancing the green nature of such reactions. Laccase‐catalysed in vivo processes yield several types of biopolymers, including those of cuticles, lignin, polyflavonoids, humus and the melanin pigments, using natural mono‐ or poly‐phenols as building blocks. The in vivo synthetic pathways involve either phenoxyl radical‐mediated coupling or cross‐linking reactions, and can be adapted to the design of in vitro oxidative processes involving fungal laccases in organic synthesis; the laccase substrates and the synthetic mechanisms reflect in vivo processes. Notably, such in vitro synthetic pathways can also reproduce physicochemical properties (e.g. those of chromophores, and radical‐scavenging, hydration and antimicrobial activities) found in natural biomaterials. Careful study of laccase‐associated in vivo metabolic pathways has been rewarded by the discovery of novel green applications for fungal laccases. This review comprehensively summarizes the available data on laccase

  10. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed; Cañizares, Pablo; Rodrigo, Manuel A

    2015-04-01

    In this work, the electrochemical oxidation of synthetic urine by anodic oxidation using boron-doped diamond as anode and stainless steel as cathode was investigated. Results show that complete depletion of chemical oxygen demand (COD) and total organic carbon (TOC) can be attained regardless of the current density applied in the range 20-100 mA cm(-2). Oxalic and oxamic acids, and, in lower concentrations, creatol and guanidine were identified as the main intermediates. Chloride ions play a very important role as mediators and contribute not only to obtain a high efficiency in the removal of the organics but also to obtain an efficient removal of nitrogen by the transformation of the various raw nitrogen species into gaseous nitrogen through chloramine formation. The main drawback of the technology is the formation of chlorates and perchlorates as final chlorine products. The increase of current density from 20 to 60 mA cm(-2) led to an increase in the rate of COD and TOC removals although the process becomes less efficient in terms of energy consumption (removals of COD and TOC after applying 18 Ah dm(-3) were 93.94 and 94.94 %, respectively, at 20 mA cm(-2) and 89.17 and 86.72 %, respectively, at 60 mA cm(-2)). The most efficient conditions are low current densities and high temperature reaching total mineralization at an applied charge as low as 20 kAh m(-3). This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of urine. PMID:25399531

  11. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed; Cañizares, Pablo; Rodrigo, Manuel A

    2015-04-01

    In this work, the electrochemical oxidation of synthetic urine by anodic oxidation using boron-doped diamond as anode and stainless steel as cathode was investigated. Results show that complete depletion of chemical oxygen demand (COD) and total organic carbon (TOC) can be attained regardless of the current density applied in the range 20-100 mA cm(-2). Oxalic and oxamic acids, and, in lower concentrations, creatol and guanidine were identified as the main intermediates. Chloride ions play a very important role as mediators and contribute not only to obtain a high efficiency in the removal of the organics but also to obtain an efficient removal of nitrogen by the transformation of the various raw nitrogen species into gaseous nitrogen through chloramine formation. The main drawback of the technology is the formation of chlorates and perchlorates as final chlorine products. The increase of current density from 20 to 60 mA cm(-2) led to an increase in the rate of COD and TOC removals although the process becomes less efficient in terms of energy consumption (removals of COD and TOC after applying 18 Ah dm(-3) were 93.94 and 94.94 %, respectively, at 20 mA cm(-2) and 89.17 and 86.72 %, respectively, at 60 mA cm(-2)). The most efficient conditions are low current densities and high temperature reaching total mineralization at an applied charge as low as 20 kAh m(-3). This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of urine.

  12. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  13. Neurotoxicity by Synthetic Androgen Steroids: Oxidative Stress, Apoptosis, and Neuropathology: A Review

    PubMed Central

    Pomara, Cristoforo; Neri, Margherita; Bello, Stefania; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela

    2015-01-01

    Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS – induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future. PMID:26074748

  14. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review.

    PubMed

    Pomara, Cristoforo; Neri, Margherita; Bello, Stefania; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela

    2015-01-01

    Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future. PMID:26074748

  15. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review.

    PubMed

    Pomara, Cristoforo; Neri, Margherita; Bello, Stefania; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela

    2015-01-01

    Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.

  16. Determination of a kinetic region in catalytic oxidation of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Sultanov, M. Y.; Sadykhova, K. A.

    1981-01-01

    The catalytic activity of cupric oxide activated with ceric oxide in a braod interval of volumetric velocities was investigated. It was determined that for practical catalysts used in the diffuse region, dilution of the active substance by an inert diluent increases the effectiveness of the catalysts.

  17. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling.

    PubMed

    Fitzpatrick, Jessica; Kim, Eunsuk

    2015-08-18

    Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen

  18. Effects of rhamnolipid biosurfactant JBR425 and synthetic surfactant surfyno1465 on the peroxidase-catalyzed oxidation of 2-naphthol.

    PubMed

    Rūta, Ivanec-Goranina; Juozas, Kulys

    2013-07-01

    The kinetics of the recombinant Coprinus cinereus peroxidase-catalyzed 2-naphthol oxidation was investigated in the presence of rhamnolipid biosurfactant JBR425 and synthetic surfactant Surfynol465 at pH 5.5 and 250C, with concentrations of (bio)surfactants both less than critical micelle concentrations (CMC) and larger than CMC. It was shown that monomers of JBR425 as well as monomers of Surfynol465 had an enhancing effect on the conversion of 2-naphthol in dose response manner and did not influence the initial rate of 2-naphthol oxidation. The results were accounted by a scheme, which contains a stadium of enzyme inhibition by oligomeric 2-naphthol oxidation products. The action of the biosurfactant's (or synthetic surfactant's) monomers was explained by avoidance of the enzyme active center clothing with oligomers. Similar results have demonstrated the potential of rhamnolipid biosurfactant JBR425 due to its biodegradability. When biosurfactants' concentrations are larger than CMC, (bio)surfactants have an opposite effect on the oxidation of 2-naphthol by peroxidase.

  19. Effects of Wet Air and Synthetic Combustion Gas Atmospheres on the Oxidation Behavior of Mo-Si-B Alloys

    SciTech Connect

    Kramer, M.J.; Thom, A.J.; Mandal, P.; Behrani, V.; Akinc, M.

    2003-04-24

    Continuing our work on understanding the oxidation behavior of multiphase composite alloys based on the Mo-Si-B system, we investigated three alloys in the Mo-Si-B system, designated as A1, A2, and A3. The nominal phase assemblages of these alloys are: A1 = Mo{sub 5}Si{sub 3}B{sub x} (T1)-MoSi{sub 2}-MoB, A2 = T1-Mo{sub 5}SiB{sub 2} (T2)-Mo{sub 3}Si, and A3 = Mo-T2-Mo{sub 3}Si. Our previous work showed that for exposures to 1100 C, all alloys formed a protective oxide scale in dry air. Exposures to wet air containing about 150 Torr water promoted the formation of a multiphase layer near the scale/alloy interface composed of Mo and MoO{sub 2}. Interrupted mass loss measurements indicated a near zero mass change. In the present study, isothermal mass measurements were conducted in order to quantitatively determine the oxidation rate constants at 1000 C in both dry and wet air. These measurements are critical for understanding the nature of scale development during the initial exposure, as well as the nature of scale stability during the long-term exposure. Isothermal measurements were also conducted at 1600 C in dry air to make an initial determination of alloy stability with respect to Vision 21 goals. We also conducted alloy oxidation testing in a synthetic oxidizing combustion atmosphere. Alloys were exposed up to 300 hours at 1100 C to a gas mixture having an approximate gas composition of N{sub 2} - 13 CO{sub 2} - 10 H{sub 2}O - 4 O{sub 2}. This gas composition simulates oxidizing flue gas, but does not contain a sulfidizing agent that would also be present in flue gas. The oxidized samples were carefully analyzed by SEM/EDS. This analysis will be discussed to provide an understanding of the role of water vapor and the synthetic combustion atmosphere on the oxidative stability of Mo-Si-B alloys.

  20. Chemoselective Pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies.

    PubMed

    Chung, Kevin; Banik, Steven M; De Crisci, Antonio G; Pearson, David M; Blake, Timothy R; Olsson, Johan V; Ingram, Andrew J; Zare, Richard N; Waymouth, Robert M

    2013-05-22

    The regio- and chemoselective oxidation of unprotected vicinal polyols with [(neocuproine)Pd(OAc)]2(OTf)2 (1) (neocuproine = 2,9-dimethyl-1,10-phenanthroline) occurs readily under mild reaction conditions to generate α-hydroxy ketones. The oxidation of vicinal diols is both faster and more selective than the oxidation of primary and secondary alcohols; vicinal 1,2-diols are oxidized selectively to hydroxy ketones, whereas primary alcohols are oxidized in preference to secondary alcohols. Oxidative lactonization of 1,5-diols yields cyclic lactones. Catalyst loadings as low as 0.12 mol % in oxidation reactions on a 10 g scale can be used. The exquisite selectivity of this catalyst system is evident in the chemoselective and stereospecific oxidation of the polyol (S,S)-1,2,3,4-tetrahydroxybutane [(S,S)-threitol] to (S)-erythrulose. Mechanistic, kinetic, and theoretical studies revealed that the rate laws for the oxidation of primary and secondary alcohols differ from those of diols. Density functional theory calculations support the conclusion that β-hydride elimination to give hydroxy ketones is product-determining for the oxidation of vicinal diols, whereas for primary and secondary alcohols, pre-equilibria favoring primary alkoxides are product-determining. In situ desorption electrospray ionization mass spectrometry (DESI-MS) revealed several key intermediates in the proposed catalytic cycle.

  1. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  2. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-10-28

    The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity. PMID:26452408

  3. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26334845

  4. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  5. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Erini, Nina; Krause, Paul; Gliech, Manuel; Yang, Ruizhi; Huang, Yunhui; Strasser, Peter

    2015-10-01

    The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis-activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed.

  6. Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse.

    PubMed

    Abdessamad, NourElHouda; Akrout, Hanene; Hamdaoui, Ghaith; Elghniji, Kais; Ksibi, Mohamed; Bousselmi, Latifa

    2013-10-01

    The efficiency of the electrochemical degradation of synthetic wastewater containing an anthraquinone dye has been comparatively studied in two electrolytic cells with a synthetic boron-doped diamond (Si/BDD) as an anode. The first is an individual cell (Cell 1) with monopolar electrode BDD and the second (Cell 2) has two bipolar electrodes BDD self-polarized. The bulk electrolysis was performed at the same initial operating conditions in order to quantify the influence of the initial pH and current density on dye discoloration and global mineralization removal. The current efficiency and the consumption energy were also evaluated. When the same solutions have been comparatively treated with the two cells, a quite good mineralization is found in Cell 2. This result supposed more fraction of the applied current is used for the electrocombustion reaction on Cell 2 if compared to Cell 1 and small amount rest for the side reaction of oxygen evolution. The HPLC analyses confirmed this hypothesis and showed that the concentration trend of intermediates (sulfanilic acid, phthalate acid and salicylic acid) with electrolysis time was different on two cells. Phototoxicity tests show that the electrochemical oxidation with BDD electrodes could be useful as a pretreatment technique for reducing hazardous wastewater toxicity.

  7. Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse.

    PubMed

    Abdessamad, NourElHouda; Akrout, Hanene; Hamdaoui, Ghaith; Elghniji, Kais; Ksibi, Mohamed; Bousselmi, Latifa

    2013-10-01

    The efficiency of the electrochemical degradation of synthetic wastewater containing an anthraquinone dye has been comparatively studied in two electrolytic cells with a synthetic boron-doped diamond (Si/BDD) as an anode. The first is an individual cell (Cell 1) with monopolar electrode BDD and the second (Cell 2) has two bipolar electrodes BDD self-polarized. The bulk electrolysis was performed at the same initial operating conditions in order to quantify the influence of the initial pH and current density on dye discoloration and global mineralization removal. The current efficiency and the consumption energy were also evaluated. When the same solutions have been comparatively treated with the two cells, a quite good mineralization is found in Cell 2. This result supposed more fraction of the applied current is used for the electrocombustion reaction on Cell 2 if compared to Cell 1 and small amount rest for the side reaction of oxygen evolution. The HPLC analyses confirmed this hypothesis and showed that the concentration trend of intermediates (sulfanilic acid, phthalate acid and salicylic acid) with electrolysis time was different on two cells. Phototoxicity tests show that the electrochemical oxidation with BDD electrodes could be useful as a pretreatment technique for reducing hazardous wastewater toxicity. PMID:23916748

  8. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    PubMed

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  9. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite

    NASA Astrophysics Data System (ADS)

    Lehner, Stephen; Savage, Kaye; Ciobanu, Madalina; Cliffel, David E.

    2007-05-01

    Synthetic pyrite crystals doped with As, Co, or Ni, undoped pyrite, and natural arsenian pyrite from Leadville, Colorado were investigated with electrochemical techniques and solid-state measurements of semiconducting properties to determine the effect of impurity content on pyrite's oxidation behavior. Potential step experiments, cyclic voltammetry, and AC voltammetry were performed in a standard three-electrode electrochemical cell setup. A pH 1.78 sulfuric acid solution containing 1 mM ferric iron, open to atmospheric oxygen, was chosen to approximate water affected by acid drainage. Van der Pauw/Hall effect measurements determined resistivity, carrier concentration and carrier mobility. The anodic dissolution of pyrite and the reduction of ferric iron half-reactions are taken as proxies for natural pyrite oxidation. Pyrite containing no impurities is least reactive. Pyrite with As is more reactive than pyrite with either Ni or Co despite lower dopant concentration. As, Co, and Ni impurities introduce bulk defect states at different energy levels within the band gap. Higher reactivity of impure pyrite suggests that introduced defect levels lead to higher density of occupied surface states at the solid-solution interface and increased metallic behavior. The current density generated from potential step experiments increased with increasing As concentration. The higher reactivity of As-doped pyrite may be related to p-type conductivity and corrosion by holes. The results of this study suggest that considering the impurity content of pyrite in mining waste may lead to more accurate risk assessment of acid producing potential.

  10. Study on synthetic methods of trialkyl phosphate oxide and its extraction behavior of some acids

    SciTech Connect

    Yu, M.J.; Su, Y.F.

    1987-01-01

    Trioctyl phosphine oxide (TOPO) is useful for the extraction of many inorganic and organic compounds. A mixed trialkyl phosphine oxide (TRPO) is similar in property to TOPO. The total number of carbon atoms per molecule of TRPO ranges from 15 to 27. Three methods for synthesizing TRPO are described in this paper. When TRPO is synthesized from an alcohol mixture it is significantly cheaper than a single pure alcohol as required for the production of TOPO; tedious purification steps are eliminated. TRPO is a brown liquid which is very slightly soluble in water. Toxicological measurements of LD50, AMES test, hereditary and accumulative toxicity show that TRPO is safe for use in the extraction of some pharmaceutical and biochemical compounds. Examinations of IR and NMR show that the complex interaction of P=O bond of TRPO with extracted substances is the same as that of TOPO. The distribution coefficients of phosphoric acid, citric acid, malic acid, oxalic acid, and tartaric acid with TRPO are reported. The extraction of these acids is believed to proceed by neutral-complex mechanism.

  11. Reactions of synthetic [2Fe-2S] and [4Fe-4S] clusters with nitric oxide and nitrosothiols.

    PubMed

    Harrop, Todd C; Tonzetich, Zachary J; Reisner, Erwin; Lippard, Stephen J

    2008-11-19

    The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussin's black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.

  12. Quinazolinones, Quinazolinthiones, and Quinazolinimines as Nitric Oxide Synthase Inhibitors: Synthetic Study and Biological Evaluation.

    PubMed

    Camacho, M Encarnación; Chayah, Mariem; García, M Esther; Fernández-Sáez, Nerea; Arias, Fabio; Gallo, Miguel A; Carrión, M Dora

    2016-08-01

    The synthesis of different compounds with a quinazolinone, quinazolinthione, or quinazolinimine skeleton and their in vitro biological evaluation as inhibitors of inducible and neuronal nitric oxide synthase (iNOS and nNOS) isoforms are described. These derivatives were obtained from substituted 2-aminobenzylamines, using diverse cyclization procedures. Furthermore, the diamines were synthesized by two routes: A conventional pathway and an efficient one-pot synthesis in a continuous-flow hydrogenator. The structures of these heterocycles were confirmed by (1) H and (13) C nuclear magnetic resonance and high-resolution mass spectroscopy data. The structure-activity relationships of the target molecules are discussed in terms of the effects of both the R radical and the X heteroatom in the 2-position. In general, the assayed compounds behave as better iNOS than nNOS inhibitors, with the quinazolinone 11e being the most active inhibitor of all tested compounds and the most iNOS/nNOS selective one. PMID:27328401

  13. Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines

    PubMed Central

    Sungsuwan, Suttipun; Yin, Zhaojun; Huang, Xuefei

    2016-01-01

    Although iron oxide magnetic nanoparticles (NPs) have been widely utilized in molecular imaging and drug delivery studies, they have not been evaluated as carriers for glycoconjugate-based anticancer vaccines. Tumor-associated carbohydrate antigens (TACAs) are attractive targets for the development of anticancer vaccines. Due to the weak immunogenicity of these antigens, it is highly challenging to elicit strong anti-TACA immune responses. With their high biocompatibilities and large surface areas, magnetic NPs were synthesized for TACA delivery. The magnetic NPs were coated with phospholipid-functionalized TACA glycopeptides through hydrophobic–hydrophobic interactions without the need for any covalent linkages. Multiple copies of glycopeptides were presented on NPs, potentially leading to enhanced interactions with antibody-secreting B cells through multivalent binding. Mice immunized with the NPs generated strong antibody responses, and the glycopeptide structures important for high antibody titers were identified. The antibodies produced were capable of recognizing both mouse and human tumor cells expressing the glycopeptide, resulting in tumor cell death through complement-mediated cytotoxicities. These results demonstrate that magnetic NPs can be a new and simple platform for multivalently displaying TACA and boosting anti-TACA immune responses without the need for a typical protein carrier. PMID:26200668

  14. Catalytic wet oxidation of the pretreated synthetic pulp and paper mill effluent under moderate conditions.

    PubMed

    Garg, Anurag; Mishra, I M; Chand, Shri

    2007-01-01

    In the present study, catalytic wet oxidation (CWO) was investigated for the destruction of organic pollutants in the thermally pretreated effluent from a pulp and paper mill under moderate temperature and pressure conditions. The thermal pretreatment studies were conducted at atmospheric pressure and 368K using copper sulfate as a catalyst. The thermal pretreatment reduced COD by about 61%. The filtrate of the thermal pretreatment step was used at pH 8.0 for CWO at 383-443K temperature and a total pressure of 0.85MPa for 4h. Catalysts used for the reaction include copper sulfate, 5% CuO/95% activated carbon, 60% CuO/40% MnO(2), and 60% CuO/40% CeO(2). Maximum COD reduction was found to be 89% during CWO step using 5% CuO/95% activated carbon with a catalyst loading of 8gl(-1) at 443K and 0.85MPa total pressure. Overall COD reduction for the pretreatment and the CWO was found to be 96%. Besides this, 60% CuO/40% CeO(2) catalyst also exhibited the similar activity as that of obtained with 5% CuO/95% activated carbon catalyst at 423K temperature and 0.85MPa total pressure. The pH of the solution during the experimental runs decreases initially due to the formation of carboxylic acid and then increases due to the decomposition of acids.

  15. Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides

    PubMed Central

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D.

    2016-01-01

    Conspectus Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper and/or iron ions, those reacting with dioxygen (O2) and/or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2−)). As inspiration for this work, we turn to mitochondrial cytochrome c oxidase which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis and characterization of new O2-adducts whose further study will add insights into O2-reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO’s function, which is intimately tied to cellular O2-balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-FeIII-O-CuII(L) products; their properties are discussed. The O-atom is derived from dioxygen and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo-complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a “naked” synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active-sites. The other sector of research is focused on heme/Cu assemblies mediating the

  16. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.

    PubMed

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D

    2015-08-18

    Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox

  17. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  18. Ferrocene functionalized nanoscale mixed-oxides as a potent phosphate adsorbent from the synthetic and real (Persian Gulf) waters.

    PubMed

    Arshadi, M; Zandi, H; Akbari, J; Shameli, A

    2015-07-15

    The application of covalently attached ferrocene groups to the aluminum-silicate nanoparticles (ASNPs) for phosphate (P) removal from the synthetic and real waters has been studied and the prepared nanomaterials were analyzed by XPS, EDS, BET, TEM, chemical analysis (CHN), FTIR, and ICP-AES. The immobilization of the ferrocene on the surface of the inorganic support (mixed oxides) can lead to reduce the drawback of the pristine ferrocene molecules which may have strong tendency to agglomerate into larger particles, resulting in the negative effect on both available active sites and catalyst performance. XPS of Fe ions evidenced that most of the active sites of the nano-adsorbent is in the form of Fe(III) ions at the surface. The heterogeneous Fe(III) ions were effective toward removal of phosphate. The contact time to obtain equilibrium for maximum adsorption of phosphate (100%) was found to be 120 min. The adsorption kinetics of P has been evaluated in terms of pseudo-first- and -second-order kinetics, and the Freundlich and Langmuir isotherm models have also been tested to the equilibrium adsorption results. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. FTIR, EDS and XPS results confirmed the formation of Fe-O-P bond on the Si/Al@Fe surface after adsorption of P from aqueous media. The Si/Al@Fe displayed high reusability due to its high removal capacity after 10th adsorption-desorption runs. The proposed adsorbent could also be utilized to adsorb the P ions from the real sample (Persian Gulf water). The high removal capacity of P ions from the real water and the high levels of reusability confirmed the versatility of the heterogenized ferrocene groups on the ASNPs.

  19. Incorporation of Hydrogen Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water Oxidation Catalysts

    SciTech Connect

    Hoffert, Wesley A.; Mock, Michael T.; Appel, Aaron M.; Yang, Jenny Y.

    2013-08-06

    Energy storage and conversion schemes based on environmentally benign chemical fuels will require the discovery of faster, cheaper, and more robust catalysts for the oxygen evolution reaction (OER). Although pendant bases have led to enhanced turnover frequencies with non-aqueous substrates, their effect on the catalytic behavior of molecular water oxidation catalysts has received little attention. Herein, the syntheses, structures, and catalytic activities of new iron complexes with pendant bases are reported. Of these, the complex [Fe(mepydz)4(CH3CN)2](OTf)2 (mepydz = N,N'-dimethyl-N,N'-bis(pyridazin-3-ylmethyl)ethane-1,2-diamine, OTf = trifluoromethanesulonate) (8(CH3CN)22+) is the most active catalyst. Initial turnover frequencies of 141 h-1 and 24 h-1 were measured using ceric ammonium nitrate at pH 0.7 and sodium periodate at pH 4.7, respectively. At pH 4.7, 8(CH3CN)22+ the initial turnover frequency is 70% faster than the structurally analogous complex without ancillary proton relays. These results demonstrate that the incorporation of pendant bases into molecular water oxidation catalysts is a synthetic principle that should be considered in the development of new OER catalysts. This work was supported by Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.

  20. Apparent molar and partial molar volumes of aqueous ceric ammonium nitrate solutions at 20, 25, 30, and 35°C

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Wanale, S. G.; Shelke, M. P.

    2014-07-01

    Present paper reports the measured densities (ρ) and refractive indices ( n D) of aqueous solutions of ceric ammonium nitrate (CAN) at 20, 25, 30, and 35°C in different concentrations of solution. Apparent molar volumes (φv) have been calculated from the density data at different temperatures and fitted to Massons relation to get limiting partial molar volumes (ϕ{v/0}) of CAN. Refractive index data were fitted to linear dependence over concentration of solutions and values of constant K and n {D/0} for different temperatures were evaluated. Specific refractions ( R D) of solutions were calculated from the refractive index and density data. Concentration and temperature effects on experimental and derived properties have been discussed in terms of structural interactions.

  1. Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS.

    PubMed

    Qi, Ruifang; Zhou, Xiao; Li, Xiqian; Ma, Jiutong; Lu, Chunmei; Mu, Jun; Zhang, Xuguang; Jia, Qiong

    2014-12-01

    A synthetic protocol for the preparation of an indium oxide nanoparticle-functionalized poly(methacrylic acid-glycidyl methacrylate-ethylene dimethacrylate-ethanediamine) monolithic column is reported. Various techniques, including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis-derivative thermogravimetric analysis were employed to characterize the synthesized monolith. The modified monolithic column was coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for determining synthetic colorants in various food samples. Under optimized conditions, good linearity was obtained for all the targets with squared regression coefficients greater than 0.9982. The limits of detection (S/N = 3) for 12 synthetic colorants were in the range of 0.012-2.97 μg kg(-1). The intra-day and inter-day relative standard deviations, ranging from 2.7% to 8.5%, were within the acceptable range. The developed method was successfully applied to the determination of synthetic colorants in food samples (candy, milk, jelly, jam, canned food, juice, and carbonated drink). Target recoveries at different spiked levels ranged from 73.5% to 112.1% with relative standard deviations of less than 10.3%.

  2. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process.

    PubMed

    Fukahori, S; Fujiwara, T; Ito, R; Funamizu, N

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic urine, however, almost all sulfonamide antibiotic was also incorporated, which is unfavorable from a safety aspect if the methylene urea is to be used as fertilizer. Conversely, RAOC could remove sulfonamide antibiotic without consuming urea. It was also confirmed that the methylene urea could be synthesized from synthetic urine treated by RAOC. Thus, we concluded that RAOC should be inserted prior to the nitrogen recovery process for effective treatment of urine and safe use of methylene urea as fertilizer.

  3. Effect of natural and synthetic antioxidants on protein oxidation and colour and texture changes in refrigerated stored porcine liver pâté.

    PubMed

    Estévez, Mario; Ventanas, Sonia; Cava, Ramón

    2006-10-01

    The antioxidant effect of two plant essential oils (sage and rosemary) and one synthetic antioxidant (BHT) on refrigerated stored porcine liver pâté (4°C/90 days) was evaluated. Pâtés with no added antioxidants were used as controls. Liver pâtés were analysed for protein oxidation, modification of heme (HI) and non-heme iron (NHI) concentrations, and colour and texture characteristics at days 0, 30, 60 and 90 of refrigerated storage. The amount of carbonyls from protein oxidation significantly (p<0.05) increased during refrigerated storage, and this increase was significantly higher in the control pâtés than in their treated counterparts. Antioxidants successfully protected heme molecules from degradation and significantly inhibited the increase of NHI in refrigerated stored liver pâtés. Colour changes seemed not to be directly related to oxidative processes since pâtés with added antioxidants suffered greater colour modifications than the controls. The addition of rosemary essential oil significantly reduced hardness of liver pâtés. Sage and rosemary essential oils exhibited similar antioxidant properties to BHT denoting their suitability as alternatives to synthetic antioxidants.

  4. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.

    PubMed

    Babel, Sandhya; Kurniawan, Tonni Agustiono

    2004-02-01

    In this study, the technical feasibility of coconut shell charcoal (CSC) and commercial activated carbon (CAC) for Cr(VI) removal is investigated in batch studies using synthetic electroplating wastewater. Both granular adsorbents are made up of coconut shell (Cocos nucifera L.), an agricultural waste from local coconut industries. Surface modifications of CSC and CAC with chitosan and/or oxidizing agents, such as sulfuric acid and nitric acid, respectively, are also conducted to improve removal performance. The results of their Cr removal performances are statistically compared. It is evident that adsorbents chemically modified with an oxidizing agent demonstrate better Cr(VI) removal capabilities than as-received adsorbents in terms of adsorption rate. Both CSC and CAC, which have been oxidized with nitric acid, have higher Cr adsorption capacities (CSC: 10.88, CAC: 15.47 mg g(-1)) than those oxidized with sulfuric acid (CSC: 4.05, CAC: 8.94 mg g(-1)) and non-treated CSC coated with chitosan (CSCCC: 3.65 mg g(-1)), respectively, suggesting that surface modification of a carbon adsorbent with a strong oxidizing agent generates more adsorption sites on their solid surface for metal adsorption.

  5. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    PubMed

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation.

  6. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    PubMed

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation. PMID:26247411

  7. Synthesis of the catechols of natural and synthetic estrogens by using 2-iodoxybenzoic acid (IBX) as the oxidizing agent.

    PubMed

    Saeed, Muhammad; Zahid, Muhammad; Rogan, Eleanor; Cavalieri, Ercole

    2005-03-01

    A method for the synthesis of 2-hydroxyestrone/estradiol, 4-hydroxyestrone/estradiol, 3'-hydroxydiethylstilbestrol, 3'-hydroxyhexestrol, and 3'-hydroxydienestrol is reported, in which 2-iodoxybenzoic acid (IBX) and the corresponding phenolic estrogen are reacted. Treatment of the natural estrogens, estrone/estradiol, with stoichiometric amounts of IBX in dimethylformamide initially yielded a mixture of estrone/estradiol-2,3- and -3,4-quinones, which were reduced in situ to the corresponding catechols by treatment with a 1 M aqueous solution of ascorbic acid. Chromatographic separation of the reaction products afforded 2- and 4-hydroxyestrone/estradiol in good overall yields (79%). In the case of the synthetic estrogens containing two identical phenolic rings, protection of one ring is a prerequisite for the synthesis of the monocatechol. Thus, diethylstilbestrol and dienestrol were protected at one phenol ring as their methyl ethers. The resulting monophenols were treated with stoichiometric amounts of IBX for 1 h, followed by treatment with 1 M aqueous ascorbic acid to obtain the corresponding catechols in more than 70% yield. Furthermore, the catechol of diethylstilbestrol, protected at one ring, was reduced by catalytic hydrogenation at the C3-C4 double bond to obtain 3'-hydroxyhexestrol in 90% yield. Removal of the protected methoxy groups of the synthetic estrogen catechols was carried out by treatment with a 1 M solution of boron tribromide in dichloromethane. This method is highly efficient for the preparative scale synthesis of catechols of both natural and synthetic estrogens.

  8. Effects of Mesoporous Silica Coating and Post-Synthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles

    PubMed Central

    Hurley, Katie R.; Lin, Yu-Shen; Zhang, Jinjin; Egger, Sam M.; Haynes, Christy L.

    2013-01-01

    Mesoporous silica nanoparticles have the capacity to load and deliver therapeutic cargo and incorporate imaging modalities, making them prominent candidates for theranostic devices. One of the most widespread imaging agents utilized in this and other theranostic platforms is nanoscale superparamagnetic iron oxide. Although several core-shell magnetic mesoporous silica nanoparticles presented in the literature have provided high T2 contrast in vitro and in vivo, there is ambiguity surrounding which parameters lead to enhanced contrast. Additionally, there is a need to understand the behavior of these imaging agents over time in biologically relevant environments. Herein, we present a systematic analysis of how the transverse relaxivity (r2) of magnetic mesoporous silica nanoparticles is influenced by nanoparticle diameter, iron oxide nanoparticle core synthesis, and the use of a hydrothermal treatment. This work demonstrates that samples which did not undergo a hydrothermal treatment experienced a drop in r2 (75% of original r2 within 8 days of water storage), while samples with hydrothermal treatment maintained roughly the same r2 for over 30 days in water. Our results suggest that iron oxide oxidation is the cause of the r2 loss, and this oxidation can be prevented both during synthesis and storage by the use of deoxygenated conditions during nanoparticle synthesis. The hydrothermal treatment also provides colloidal stability, even in acidic and highly salted solutions, and a resistance against acid degradation of the iron oxide nanoparticle core. The results of this study show the promise of multifunctional mesoporous silica nanoparticles but will also likely inspire further investigation into multiples types of theranostic devices, taking into consideration their behavior over time and in relevant biological environments. PMID:23814377

  9. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Behrends, T.; Osté, L. A.; Schot, P. P.; Wassen, M. J.; Griffioen, J.

    2016-08-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction kinetics, and the characteristics of the produced Fe hydroxyphosphate precipitates in a series of aeration experiments with anoxic synthetic water and natural groundwater. A pH stat device was used to maintain constant pH and to record the H+ production during Fe(II) oxidation in the aeration experiments in which the initial aqueous P/Fe ratios ((P/Fe)ini), oxygen concentration and pH were varied. In general, Fe(II) oxidation proceeded slower in the presence of PO4 but the decrease of the PO4 concentration during Fe(II) oxidation due to the formation of Fe hydroxyphosphates caused additional deceleration of the reaction rate. The progress of the reaction could be described using a pseudo-second-order rate law with first-order dependencies on PO4 and Fe(II) concentrations. After PO4 depletion, the Fe(II) oxidation rates increased again and the kinetics followed a pseudo-first-order rate law. The first-order rate constants after PO4 depletion, however, were lower compared to the Fe(II) oxidation in a PO4-free solution. Hence, the initially formed Fe hydroxyphosphates also affect the kinetics of continuing Fe(II) oxidation after PO4 depletion. Presence of aqueous PO4 during oxidation of Fe(II) led to the formation of Fe hydroxyphosphates. The P/Fe ratios of the precipitates ((P/Fe)ppt) and the recorded ratio of H+ production over decrease in dissolved Fe(II) did not change detectably throughout the reaction despite a changing P/Fe ratio in the solution. When (P/Fe)ini was 0.9, precipitates with a (P/Fe)ppt ratio of about 0.6 were formed. In experiments with (P/Fe)ini ratios below 0.6, the (P/Fe)ppt decreased with decreasing (P/Fe)ini and pH value. Aeration experiments with

  10. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient "one-pot" strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  11. Effects of linseed oil and natural or synthetic vitamin E supplementation in lactating ewes' diets on meat fatty acid profile and lipid oxidation from their milk fed lambs.

    PubMed

    Gallardo, B; Manca, M G; Mantecón, A R; Nudda, A; Manso, T

    2015-04-01

    Forty-eight Churra ewes with their new-born lambs were separated into four dietary treatments: Control (without added fat), LO (with 3% linseed oil), LO-Syn E (LO plus 400 mg/kg TMR of synthetic vitamin E) and LO-Nat E (LO plus 400 g/kg TMR of natural vitamin E). Linseed oil caused an increase in trans-11 C18:1 (VA), trans-10 C18:1, cis-9, trans-11 C18:2 (RA), trans-10, cis-12 C18:2 and C18:3 n-3 (ALA) in milk fat compared to the Control. The addition of vitamin E to the LO diets did not influence significantly the majority of milk fatty acids compared with the LO diet alone. Trans-10 C18:1, VA, RA, trans-10, cis-12 C18:2 and LA levels were higher in intramuscular lamb fat from treatments with linseed oil. No statistically significant differences were observed in these FA due to vitamin E supplementation or the type of vitamin E (synthetic vs. natural). Vitamin supplementation resulted in lipid oxidation levels below the threshold values for detection of rancidity in lamb meat. PMID:25553412

  12. Adsorption and regenerative oxidation of trichlorophenol with synthetic zeolite: Ozone dosage and its influence on adsorption performance.

    PubMed

    Zhang, Yongjun; Prigent, Bastien; Geißen, Sven-Uwe

    2016-07-01

    Regeneration of loaded adsorbents is a key step for the sustainability of an adsorption process. In this study, ozone was applied to regenerate a synthetic zeolite for the adsorption of trichlorophenol (TCP) as an organic model pollutant. Three initial concentrations of TCP in water phase were used in adsorption tests. After the equilibrium, zeolite loaded different amounts of TCP was dried and then regenerated with ozone gas. It was found that the adsorption capacity of zeolite was increased through three regeneration cycles. However, the adsorption kinetics was compromised after the regeneration with slightly declined 2nd order reaction constants. The ozone demand for the regeneration was highly dependent on the TCP mass loaded onto the zeolite. It was estimated that the mass ratio of ozone to TCP was 1.2 ± 0.3 g O3/g TCP. PMID:27043379

  13. Effect Of Inorganic, Synthetic And Naturally Occurring Chelating Agents On Fe(II) Mediated Advanced Oxidation Of Chlorophenols

    EPA Science Inventory

    This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...

  14. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  15. Synthetic and Predictive Approach to Unsymmetrical Biphenols by Iron-Catalyzed Chelated Radical-Anion Oxidative Coupling.

    PubMed

    Libman, Anna; Shalit, Hadas; Vainer, Yulia; Narute, Sachin; Kozuch, Sebastian; Pappo, Doron

    2015-09-01

    An iron-catalyzed oxidative unsymmetrical biphenol coupling in 1,1,1,3,3,3-hexafluoropropan-2-ol that proceeds via a chelated radical-anion coupling mechanism was developed. Based on mechanistic studies, electrochemical methods, and density functional theory calculations, we suggest a general model that enables prediction of the feasibility of cross-coupling for a given pair of phenols. PMID:26287435

  16. Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater.

    PubMed

    Liu, Jia; Tian, Yu; Wang, Dezhen; Lu, Yaobin; Zhang, Jun; Zuo, Wei

    2014-12-01

    The Static Sequencing Batch Worm Reactor (SSBWR) followed by the MBR (S-MBR) is one of the advanced excess sludge treatments. In this paper, the control MBR (C-MBR) and the SSBWR-MBR were operated in parallel to study the changes of NH3-N removal and ammonia oxidizing bacteria (AOB). The results showed that the capacity of NH3-N removal of the S-MBR was improved by the worm reactors along with the operation. The S-MBR was favorable because it selected for the higher activity of the ammonia oxidization and better cells appearance of the sludge. The five species (Nitrosomonas, Betaproteobacteria, Clostridium, Dechloromonas and Bacteria) were found to be significantly correlate with the ammonia oxidization functions and performance of NH3-N removal in the C-MBR and S-MBR. The Nitrosomonas, Betaproteobacteria and Dechloromonas remained and eventually enriched in the S-MBR played a primary role in the NH3-N removal of the S-MBR.

  17. Encapsulated Laccases for the Room-Temperature Oxidation of Aromatics: Towards Synthetic Low-Molecular-Weight Lignins.

    PubMed

    Pistone, Lucia; Ottolina, Gianluca; De, Sudipta; Romero, Antonio A; Martins, Lígia O; Luque, Rafael

    2016-04-01

    A new approach for the encapsulation of laccases with enhanced activity and stability by biomimetic silica mineralisation is reported. A range of lignin model compounds, which includes syringol, syringyl acid, 4-vinylphenol, gallic acid, vanillic acid and guaiacol, was oxidised to lignin-type polymers by the silica-immobilised laccase systems at room temperature. The oxidation rate of the immobilised systems was lower than that of the free enzyme counterparts, but interesting products were observed with the new bio-catalytic materials, which showed reusability and good stability.

  18. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    PubMed

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method.

  19. Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review.

    PubMed

    Costa, D; Savio, L; Pradier, C-M

    2016-07-28

    Amino acids and peptides are often used as "model" segments of proteins for studying their behavior in various types of environments, and/or elaborating functional surfaces. Indeed, though the protein behavior is much more complex than that of their isolated segments, knowledge of the binding mode as well as of the chemical structure of peptides on metal or oxide surfaces is a significant step toward the control of materials in a biological environment. Such knowledge has considerably increased in the past few years, thanks to the combination of advanced characterization techniques and of modeling methods. Investigations of biomolecule-surface interactions in water/solvent environments are quite numerous, but only in a few cases is it possible to reach an understanding of the molecule-(water)-surface interaction with a level of detail comparable to that of the UHV studies. This contribution aims at reviewing the recent data describing the amino acid and peptide interaction with metal or oxide surfaces in the presence of water.

  20. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors

    SciTech Connect

    Gash, A E; Tillotson, T M; Satcher Jr, J H; Hrubesh, L W; Simpson, R L

    2000-09-12

    We have developed a new sol-gel route to synthesize several transition and main-group metal oxide aerogels. The approach is straightforward, inexpensive, versatile, and it produces monolithic microporous materials with high surface areas. Specifically, we report the use of epoxides as gelation agents for the sol-gel synthesis of chromia aerogels and xerogels from simple Cr(III) inorganic salts. The dependence of both gel formation and its rate was studied by varying the solvent used, the Cr(III) precursor salt, the epoxide/Cr(III) ratio, as well as the type of epoxide employed. All of these variables were shown to affect the rate of gel formation and provide a convenient control of this parameter. Dried chromia aerogels were characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses, results of which will be presented. Our studies have shown that rigid monolithic gels can be prepared from many different metal ions salts, provided the formal oxidation state of the metal ion is greater than or equal to +3. Conversely, when di-valent transition metal salts are used precipitated solids are the products.

  1. Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.

    PubMed

    Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe

    2015-01-01

    Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.

  2. Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Al Lafi, Abdul G.; Al Abdullah, Jamal

    2015-08-01

    Molecular scale information is of prime importance to understand ions coordination to mineral surfaces and consequently to aid in the design of improved ion exchange materials. This paper reports on the use of two-dimensional correlation infra-red spectroscopy (2D-COS-IR) to investigate the time dependent adsorptions of cesium and cobalt ions onto nano manganese oxide (NMO). The metal ions uptake was driven mainly by inner-sphere complex formation as demonstrated by the production of new absorption bands at 1160, 1100, 585 and 525 cm-1, which were assigned to the O-O bond vibration and the coupled vibrations of M-O and Mn-O bonds. The progressive development of the 3100 cm-1 band, which is attributed to the stretching vibration of the lattice-OH group, indicates an M+/H+ ion-exchange reaction. The new bands at 700 and 755 cm-1 in the case of cobalt ion adsorption and at 800 and 810 cm-1 in the case of cesium ion adsorption, and the splitting of other bands at 1135 and 875 cm-1 indicate the presence of different O-O bond lengths. This suggests different coordination of the two metal ions with oxygen. The infrared spectroscopy combined with 2D-COS provides a powerful tool to investigate the mechanism of interaction between heavy metals and manganese oxide.

  3. Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.

    PubMed

    Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe

    2015-01-01

    Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface. PMID:25438192

  4. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  5. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility.

    PubMed

    Pardo, Alberto; Pujales, Rosa; Blanco, Mateo; Villar-Alvarez, Eva M; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor

    2016-01-14

    In this work, we analyzed the effects of subtle changes in the synthetic conditions and synthetic parameters on the resulting size, shape, monodispersity, crystallinity and magnetic properties of iron oxide nanocrystals (IONCs) obtained through a modified one pot method for the production of mainly cubic-shaped nanoparticles (NPs). Cubic, octahedral and cuboctahedral shapes with different sizes and monodispersity could be obtained by slightly changing the stabilizer/precursor molar ratio, the precursor concentration, the reaction time and temperature and/or the heating rate. Their physical properties were evaluated using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), selected-area electron diffraction (SAED) and a superconducting quantum interference (SQUID) device. It was found that monodisperse cubic nanocrystals from ca. 25 to 94 nm could be obtained either by changing the precursor concentration, the heating rate or the reaction time. These cubic nanocrystals were ferrimagnetic in the whole temperature rage analyzed, with saturation magnetization values even larger than those of bulk magnetite. In addition, slightly truncated octahedral NPs could be achieved at relatively large heating ramp rates, whereas cubooctahedral NPs were derived by simply increasing the stabilizer/precursor molar ratio. The saturation magnetization of both types of NPs was slightly lower than the cubic ones, but they were still ferrimagnetic in the whole temperature range analyzed. Moreover, transfer to aqueous solution was possible by a ligand exchange with dimercaptosuccinic acid (DMSA) providing, at the same time, chemical groups for additional functionalization if required. The DMSA-coated cubic IONCs were fairly stable in culture medium, allowing their internalization by different cell types. The NPs inside the cells were located in the cytoplasm and most of them showed a perinuclear distribution. Moreover, a great cytocompatibility in a

  6. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility.

    PubMed

    Pardo, Alberto; Pujales, Rosa; Blanco, Mateo; Villar-Alvarez, Eva M; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor

    2016-01-14

    In this work, we analyzed the effects of subtle changes in the synthetic conditions and synthetic parameters on the resulting size, shape, monodispersity, crystallinity and magnetic properties of iron oxide nanocrystals (IONCs) obtained through a modified one pot method for the production of mainly cubic-shaped nanoparticles (NPs). Cubic, octahedral and cuboctahedral shapes with different sizes and monodispersity could be obtained by slightly changing the stabilizer/precursor molar ratio, the precursor concentration, the reaction time and temperature and/or the heating rate. Their physical properties were evaluated using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), selected-area electron diffraction (SAED) and a superconducting quantum interference (SQUID) device. It was found that monodisperse cubic nanocrystals from ca. 25 to 94 nm could be obtained either by changing the precursor concentration, the heating rate or the reaction time. These cubic nanocrystals were ferrimagnetic in the whole temperature rage analyzed, with saturation magnetization values even larger than those of bulk magnetite. In addition, slightly truncated octahedral NPs could be achieved at relatively large heating ramp rates, whereas cubooctahedral NPs were derived by simply increasing the stabilizer/precursor molar ratio. The saturation magnetization of both types of NPs was slightly lower than the cubic ones, but they were still ferrimagnetic in the whole temperature range analyzed. Moreover, transfer to aqueous solution was possible by a ligand exchange with dimercaptosuccinic acid (DMSA) providing, at the same time, chemical groups for additional functionalization if required. The DMSA-coated cubic IONCs were fairly stable in culture medium, allowing their internalization by different cell types. The NPs inside the cells were located in the cytoplasm and most of them showed a perinuclear distribution. Moreover, a great cytocompatibility in a

  7. Effects of Surfactants and Synthetic Conditions on the Sizes and Self-Assembly of Monodisperse Iron Oxide Nanoparticles

    SciTech Connect

    Teng, X.; Yang, H.

    2004-02-17

    (B204)Monodisperse iron oxide nanoparticles made from the thermal decomposition of iron carbonyl in octyl ether in the presence of oleic and stearic acids have been examined under various reaction conditions. Monodisperse particles with diameters of 3, 5, 10, 16 and 25 nm have been made. Ostwald ripening could be the key reason for making monodisperse nanoparticles with diameters of up to 25 nm, above the largest sizes that have been reported so far for this class of materials. When stearic acid was used as surfactant, the reaction mixtures can reflux at a lower temperature than the reaction using oleic acid, and monodisperse 3 nm Fe2O3 particles can be made. By controlling the temperatures during the drop casting, different superstructures and superlattices can be created. The nanoparticles and their assembly have been characterized by transmission electron microscopy, electron diffraction, powder X-ray diffraction, and X-ray photoemission spectroscopy.

  8. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  9. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands.

    PubMed

    Chimalakonda, Krishna C; Seely, Kathryn A; Bratton, Stacie M; Brents, Lisa K; Moran, Cindy L; Endres, Gregory W; James, Laura P; Hollenberg, Paul F; Prather, Paul L; Radominska-Pandya, Anna; Moran, Jeffery H

    2012-11-01

    Abuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB(1)) receptor. Kinetic analysis using human liver microsomes and recombinant human protein identified CYP2C9 and CYP1A2 as major P450s involved in the oxidation of the JWH-018 and AM2201. In vitro metabolite formation mirrored human urinary metabolic profiles, and each of the primary enzymes exhibited high affinity (K(m) = 0.81-7.3 μM) and low to high reaction velocities (V(max) = 0.0053-2.7 nmol of product · min(-1) · nmol protein(-1)). The contribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic clearance of these synthetic cannabinoids was minimal (f(m) = <0.2). In vitro studies demonstrated that the primary metabolites produced in humans display high affinity and intrinsic activity at the CB(1) receptor, which was attenuated by the CB(1) receptor antagonist (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (O-2050). Results from the present study provide critical, missing data related to potential toxicological properties of "K2" parent compounds and their human metabolites, including mechanism(s) of action at cannabinoid receptors.

  10. Cytochrome P450-Mediated Oxidative Metabolism of Abused Synthetic Cannabinoids Found in K2/Spice: Identification of Novel Cannabinoid Receptor Ligands

    PubMed Central

    Chimalakonda, Krishna C.; Seely, Kathryn A.; Bratton, Stacie M.; Brents, Lisa K.; Moran, Cindy L.; Endres, Gregory W.; James, Laura P.; Hollenberg, Paul F.; Prather, Paul L.; Radominska-Pandya, Anna

    2012-01-01

    Abuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB1) receptor. Kinetic analysis using human liver microsomes and recombinant human protein identified CYP2C9 and CYP1A2 as major P450s involved in the oxidation of the JWH-018 and AM2201. In vitro metabolite formation mirrored human urinary metabolic profiles, and each of the primary enzymes exhibited high affinity (Km = 0.81–7.3 μM) and low to high reaction velocities (Vmax = 0.0053–2.7 nmol of product · min−1 · nmol protein−1). The contribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic clearance of these synthetic cannabinoids was minimal (fm = <0.2). In vitro studies demonstrated that the primary metabolites produced in humans display high affinity and intrinsic activity at the CB1 receptor, which was attenuated by the CB1 receptor antagonist (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (O-2050). Results from the present study provide critical, missing data related to potential toxicological properties of “K2” parent compounds and their human metabolites, including mechanism(s) of action at cannabinoid receptors. PMID:22904561

  11. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  12. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  13. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol.

    PubMed

    Meeran, M F Nagoor; Jagadeesh, G S; Selvaraj, P

    2016-05-01

    Nowadays, there are considerable interests in the studies which are more connected with the impact of natural antioxidants against the free radical mediated damage in biological systems. Cardiotoxicity is one of the lethal manifestations of cardiovascular diseases (CVDs) which have been associated with the incidence of apoptotic cell death due to oxidative stress. We evaluated the impact of thymol, a dietary monoterpene phenol on isoproterenol (ISO), a synthetic catecholamine and a β1-adrenergic receptor agonist in rats. Thymol (7.5 mg/kg body weight) was pre and co-treated into male albino Wistar rats daily for a period of 7 days. Induction of cardiotoxicity was done by the subcutaneous administration of ISO (100 mg/kg body weight) into rats on 6th and 7th day. Cardiotoxicity in rats was confirmed by the increased levels/activity of serum troponin-T and creatine kinase in the serum alongwith decreased activity of creatine kinase in the heart. ISO induced cardiotoxic rats also showed a significant increase in the concentrations of lipid peroxidation products and a significant decrease in the activities/levels of antioxidants in the myocardium whereas Reverse Transcription Polymerase Chain Reaction study revealed an increased expression of caspase-8, caspase-9 and Fas genes along with a decreased expression of Bcl-xL gene in the myocardium. Thymol pre and co-treated ISO induced cardiotoxic rats showed considerable protective effects on all the biochemical parameters studied. Histopathological and in vitro findings are found in line with our biochemical findings. Thus, the present study revealed that thymol counters ISO induced cardiotoxicity by inhibiting oxidative stress and apoptotic cell death in rats by virtue of its potent antioxidant property. PMID:26996544

  14. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    NASA Astrophysics Data System (ADS)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  15. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  16. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  17. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  18. Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals

    PubMed Central

    Madlala, Hlengiwe Pretty; Van Heerden, Fanie Retief; Mubagwa, Kanigula; Musabayane, Cephas Tagumirwa

    2015-01-01

    Purpose The triterpene oleanolic acid (OA) is known to possess antihypertensive actions. In the present study we to compared the effects of the triterpene on mean arterial blood pressure (MAP) and kidney function following acute administration in normotensive animals with those of its related oleanane synthetic derivatives (brominated oleanolic acid, Br-OA and oleanolic acid methyl ester, Me-OA). We also used experimental models of hypertension to further explore the effects of sub-chronic oral OA treatment and evaluated influences on oxidative status. Methods OA was extracted from dried flower buds of Syzygium aromaticum using a previously validated protocol in our laboratory. Me-OA and Br-OA were synthesized according to a method described. Rats were supplemented with lithium chloride (12 mmol L-1) prior to experimentation in order to raise plasma lithium to allow measurements of lithium clearance and fractional excretion (FELi) as indices of proximal tubular Na+ handling. Anaesthetized animals were continuously infused via the right jugular with 0.077M NaCl. MAP was measured via a cannula inserted in the carotid artery, and urine was collected through a cannula inserted in the bladder. After a 3.5 h equilibration, MAP, urine flow, electrolyte excretion rates were determined for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods. OA, Me-OA and Br-OA were added to the infusate during the treatment period. We evaluated sub-chronic effects on MAP and kidney function in normotensive Wistar rats and in two animal models of hypertension, spontaneously hypertensive rats (SHR) and Dahl salt-sensitive (DSS) rats, during 9-week administration of OA (p.o.). Tissue oxidative status was examined in these animals at the end of the study. Increasing evidence suggests that and renal function disturbances and oxidative stress play major roles in the pathogenesis of hypertension. Results Acute infusion OA and oleanane derivatives displayed qualitatively similar effects

  19. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  20. Effects of oral micellized natural vitamin E (D-α-tocopherol) v. synthetic vitamin E (DL-α-tocopherol) in feed on α-tocopherol levels, stereoisomer distribution, oxidative stress and the immune response in piglets.

    PubMed

    Amazan, D; Cordero, G; López-Bote, C J; Lauridsen, C; Rey, A I

    2014-03-01

    This study evaluated the strategy of supplementing oral micellized natural vitamin E (D-α-tocopherol) to either piglets and/or sows on α-tocopherol concentrations in piglets serum and tissues after weaning. One first experiment tested the influence of the vitamin E supplementation source (natural form in water v. the synthetic form in feed) and dose administered to piglets and/or sows on serum α-tocopherol concentration, α-tocopherol stereoisomer accumulation, antioxidant capacity and immune response of weaned piglets. A second experiment studied the effect of sow source and dose vitamin E supplementation on some of these parameters in piglets. Oral supplementation to sows with natural vitamin E as a micellized form (D-α-tocopherol) at the lowest dose produced a similar concentration of α-tocopherol in serum at days 2, 14 and 28 postpartum to those supplemented with threefold higher dose of the synthetic form in feed. At day 39 of age, neither piglet supplementation source nor dose significantly affected α-tocopherol accumulation in the serum, muscle, subcutaneous fat or liver. Those piglets from sows supplemented with the micellized alcohol form had higher RRR-α-tocopherol stereoisomers (P<0.001) and lower (P<0.001) RRS- RSS- and RSR-α-tocopherol, at day 39 of age than those from sows supplemented with the synthetic form. A predominant importance of sow over piglet vitamin E supplementation was observed on stereoisomer distribution in piglets. Low doses of oral natural vitamin E supplementation to sows or piglets did not increase the oxidative stress of piglets when compared with the use of the synthetic form in feed. Immunoglobulin levels in piglet serum at day 39 were not affected by natural vitamin E supplementation at low doses in drinking water of piglets or sows when compared with the synthetic form in feed. IgA tended to be higher (P=0.145) at day 39 in piglets supplemented with natural vitamin E when compared with those supplemented with the

  1. Synthetic Cannabinoids.

    PubMed

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  2. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here

  3. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  4. Synthetic Brainbows

    PubMed Central

    Wan, Y.; Otsuna, H.; Hansen, C.

    2014-01-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists. PMID:25018576

  5. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    SciTech Connect

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  6. A Comparison of Natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol Acetate) Vitamin E Supplementation on the Growth Performance, Meat Quality and Oxidative Status of Broilers.

    PubMed

    Cheng, K; Niu, Y; Zheng, X C; Zhang, H; Chen, Y P; Zhang, M; Huang, X X; Zhang, L L; Zhou, Y M; Wang, T

    2016-05-01

    The present study was conducted to compare the supplementation of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-α-tocopherol or DL-α-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of α-tocopherol in the breast muscle was increased by the supplementation of vitamin E (p<0.05). In the thigh, α-tocopherol content was also enhanced by vitamin E inclusion, and this effect was more pronounced in the natural vitamin E group (p<0.05). Vitamin E supplementation increased the redness of breast (p<0.05). In the contrast, the inclusion of synthetic vitamin E decreased lightness of thigh (p<0.05). Dietary vitamin E inclusion reduced drip loss at 24 h of thigh muscle (p<0.05), and this effect was maintained for drip loss at 48 h in the natural vitamin E group (p<0.05). Broilers given diet supplemented with vitamin E showed decreased malondialdehyde (MDA) content in the breast (p<0.05). Additionally, natural rather than synthetic vitamin E reduced MDA accumulation in the thigh (p<0.05). Neither natural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular α-tocopherol, improve meat quality and muscular antioxidant capacity of broilers. PMID:26954216

  7. A Comparison of Natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol Acetate) Vitamin E Supplementation on the Growth Performance, Meat Quality and Oxidative Status of Broilers

    PubMed Central

    Cheng, K.; Niu, Y.; Zheng, X. C.; Zhang, H.; Chen, Y. P.; Zhang, M.; Huang, X. X.; Zhang, L. L.; Zhou, Y. M.; Wang, T.

    2016-01-01

    The present study was conducted to compare the supplementation of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-α-tocopherol or DL-α-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of α-tocopherol in the breast muscle was increased by the supplementation of vitamin E (p<0.05). In the thigh, α-tocopherol content was also enhanced by vitamin E inclusion, and this effect was more pronounced in the natural vitamin E group (p<0.05). Vitamin E supplementation increased the redness of breast (p<0.05). In the contrast, the inclusion of synthetic vitamin E decreased lightness of thigh (p<0.05). Dietary vitamin E inclusion reduced drip loss at 24 h of thigh muscle (p<0.05), and this effect was maintained for drip loss at 48 h in the natural vitamin E group (p<0.05). Broilers given diet supplemented with vitamin E showed decreased malondialdehyde (MDA) content in the breast (p<0.05). Additionally, natural rather than synthetic vitamin E reduced MDA accumulation in the thigh (p<0.05). Neither natural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular α-tocopherol, improve meat quality and muscular antioxidant capacity of broilers. PMID:26954216

  8. A Comparison of Natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol Acetate) Vitamin E Supplementation on the Growth Performance, Meat Quality and Oxidative Status of Broilers.

    PubMed

    Cheng, K; Niu, Y; Zheng, X C; Zhang, H; Chen, Y P; Zhang, M; Huang, X X; Zhang, L L; Zhou, Y M; Wang, T

    2016-05-01

    The present study was conducted to compare the supplementation of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E on the growth performance, meat quality, muscular antioxidant capacity and genes expression related to oxidative status of broilers. A total of 144 1 day-old Arbor Acres broiler chicks were randomly allocated into 3 groups with 6 replicates of 8 birds each. Birds were given a basal diet (control group), and basal diet supplemented with either 20 IU D-α-tocopherol or DL-α-tocopherol acetate for 42 days, respectively. The results indicated that treatments did not alter growth performance of broilers (p>0.05). Compared with the control group, concentration of α-tocopherol in the breast muscle was increased by the supplementation of vitamin E (p<0.05). In the thigh, α-tocopherol content was also enhanced by vitamin E inclusion, and this effect was more pronounced in the natural vitamin E group (p<0.05). Vitamin E supplementation increased the redness of breast (p<0.05). In the contrast, the inclusion of synthetic vitamin E decreased lightness of thigh (p<0.05). Dietary vitamin E inclusion reduced drip loss at 24 h of thigh muscle (p<0.05), and this effect was maintained for drip loss at 48 h in the natural vitamin E group (p<0.05). Broilers given diet supplemented with vitamin E showed decreased malondialdehyde (MDA) content in the breast (p<0.05). Additionally, natural rather than synthetic vitamin E reduced MDA accumulation in the thigh (p<0.05). Neither natural nor synthetic vitamin E supplementation altered muscular mRNA abundance of genes related to oxidative stress (p>0.05). It was concluded that vitamin E supplementation, especially the natural vitamin E, can enhance the retention of muscular α-tocopherol, improve meat quality and muscular antioxidant capacity of broilers.

  9. Synthetic peptides.

    PubMed

    Francis, M J

    1996-01-01

    Efforts to produce more stable and defined vaccines have concentrated on studying, in detail, the immune response to many infectious diseases in order to identify the antigenic sites on the pathogens that are involved in stimulating protective immumty. Armed with this knowledge, it is possible to mimic such sites by producing short chains of amino acids (peptides) and to use these as the basis for novel vaccines. The earliest documented work on peptide immunization is actually for a plant virus, tobacco mosaic virus. In 1963, Anderer (1) demonstrated that rabbit antibodies to an isolated hexapeptide fragment from the virus-coat protein coupled to bovine serum albumm would neutralize the infectious vn-us in culture. Two years later, he used a synthetically produced copy of the same peptide to confirm this observation. This was pioneering work, and it was over 10 years before the next example of a peptide that elicited antivirus antibody appeared following work by Sela and his colleagues (2) on a virus, MS2 bacteriophage, which infects bacteria. The emergence of more accessible techniques for sequencing proteins in 1977, coupled with the ability to synthesize readily peptides already developed in 1963, heralded a decade of intensive research into experimental peptide vaccines. The first demonstration that peptides could elicit protective immunity in vivo, in addition to neutralizing activity in vitro, was obtained using a peptide from the VP1 coat protein of foot-and-mouth disease virus (FMDV) in 1982, with the guinea pig as a laboratory animal model (3, 4). PMID:21359696

  10. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.

    PubMed

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-09-15

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO.

  11. Selective separation and determination of the synthetic colorants in beverages by magnetic solid-phase dispersion extraction based on a Fe3 O4 /reduced graphene oxide nanocomposite followed by high-performance liquid chromatography with diode array detection.

    PubMed

    Wang, Xi; Chen, Ning; Han, Qing; Yang, Zaiyue; Wu, Jinhua; Xue, Cheng; Hong, Junli; Zhou, Xuemin; Jiang, Huijun

    2015-06-01

    A facile adsorbent, a nanocomposite of Fe3 O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid-phase dispersion extraction. The nanocomposite was synthesized in a one-step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π-π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05-10 μg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95-95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3 O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment. PMID:25864558

  12. Selective separation and determination of the synthetic colorants in beverages by magnetic solid-phase dispersion extraction based on a Fe3 O4 /reduced graphene oxide nanocomposite followed by high-performance liquid chromatography with diode array detection.

    PubMed

    Wang, Xi; Chen, Ning; Han, Qing; Yang, Zaiyue; Wu, Jinhua; Xue, Cheng; Hong, Junli; Zhou, Xuemin; Jiang, Huijun

    2015-06-01

    A facile adsorbent, a nanocomposite of Fe3 O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid-phase dispersion extraction. The nanocomposite was synthesized in a one-step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π-π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05-10 μg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95-95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3 O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment.

  13. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    SciTech Connect

    Roth, Justine P.

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  14. Phosphine Oxide-Sc(OTf)3 Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (E)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules.

    PubMed

    Pan, Hongjie; Huang, Hu; Liu, Weigang; Tian, Hua; Shi, Yian

    2016-03-01

    A highly regio- and enantioselective bromoaminocyclization of (E)-cinnamyl tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex is described. A wide variety of optically active aryl 5-bromo-1,3-oxazinan-2-ones can be obtained with high yield and enantioselectivity.

  15. Phosphine Oxide-Sc(OTf)3 Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (E)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules.

    PubMed

    Pan, Hongjie; Huang, Hu; Liu, Weigang; Tian, Hua; Shi, Yian

    2016-03-01

    A highly regio- and enantioselective bromoaminocyclization of (E)-cinnamyl tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex is described. A wide variety of optically active aryl 5-bromo-1,3-oxazinan-2-ones can be obtained with high yield and enantioselectivity. PMID:26894481

  16. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  17. The effect of the synthetic route on the structural, textural, morphological and catalytic properties of iron(iii) oxides and oxyhydroxides.

    PubMed

    Oulego, Paula; Villa-García, María A; Laca, Adriana; Diaz, Mario

    2016-06-21

    A variety of iron(iii) oxides and oxyhydroxides were synthesised and characterised using three distinct methods of preparation: microemulsion, precipitation and sol-gel. The results clearly showed that the structure, textural properties, crystal morphology and catalytic performance of the phases obtained were highly dependent on the chemical routes used for the synthesis. Precipitation and microemulsion methods allowed obtaining mesoporous nanostructured iron(iii) oxides with mean particle sizes of 4 nm (amorphous hematite) and 7 nm (ferrihydrite), which exhibited a high surface area (291.4 m(2) g(-1) and 192.3 m(2) g(-1), respectively) and a very good catalytic behaviour in the advanced oxidation of highly non-biodegradable wastewaters. The different conditions employed in the synthesis of these materials through the sol-gel method yielded two goethites with practically the same catalytic properties, but dissimilar morphologies and texture. When soft agitation and slow addition of the precipitating agent were used, the resulting material (G1) was made up of shorter and finer particles, markedly acicular, with an average length of 400 ± 50 nm and width of 15 ± 5 nm. However, vigorous agitation and rapid addition of the precipitating agent led to the formation of longer and coarser particles, moderately acicular, the average length and width being 950 ± 100 nm and 140 ± 20 nm, respectively. The use of the sol-gel technique also resulted in the formation of a solid consisting of a mixture of hematite as the main crystalline phase and goethite particles dispersed among the hematite particles. This solid presented a low specific surface area (13.2 m(2) g(-1)) and lower catalytic activity. Therefore, precipitation and microemulsion proved to be the most suitable techniques to synthesise catalytically active disordered iron(iii) oxide nanoparticles, due to the presence of highly reactive non-stoichiometric iron(iii) ions, a higher surface area and smaller particle

  18. The effect of the synthetic route on the structural, textural, morphological and catalytic properties of iron(iii) oxides and oxyhydroxides.

    PubMed

    Oulego, Paula; Villa-García, María A; Laca, Adriana; Diaz, Mario

    2016-06-21

    A variety of iron(iii) oxides and oxyhydroxides were synthesised and characterised using three distinct methods of preparation: microemulsion, precipitation and sol-gel. The results clearly showed that the structure, textural properties, crystal morphology and catalytic performance of the phases obtained were highly dependent on the chemical routes used for the synthesis. Precipitation and microemulsion methods allowed obtaining mesoporous nanostructured iron(iii) oxides with mean particle sizes of 4 nm (amorphous hematite) and 7 nm (ferrihydrite), which exhibited a high surface area (291.4 m(2) g(-1) and 192.3 m(2) g(-1), respectively) and a very good catalytic behaviour in the advanced oxidation of highly non-biodegradable wastewaters. The different conditions employed in the synthesis of these materials through the sol-gel method yielded two goethites with practically the same catalytic properties, but dissimilar morphologies and texture. When soft agitation and slow addition of the precipitating agent were used, the resulting material (G1) was made up of shorter and finer particles, markedly acicular, with an average length of 400 ± 50 nm and width of 15 ± 5 nm. However, vigorous agitation and rapid addition of the precipitating agent led to the formation of longer and coarser particles, moderately acicular, the average length and width being 950 ± 100 nm and 140 ± 20 nm, respectively. The use of the sol-gel technique also resulted in the formation of a solid consisting of a mixture of hematite as the main crystalline phase and goethite particles dispersed among the hematite particles. This solid presented a low specific surface area (13.2 m(2) g(-1)) and lower catalytic activity. Therefore, precipitation and microemulsion proved to be the most suitable techniques to synthesise catalytically active disordered iron(iii) oxide nanoparticles, due to the presence of highly reactive non-stoichiometric iron(iii) ions, a higher surface area and smaller particle

  19. A novel alkaloid antioxidant, Boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR(-/-) mice.

    PubMed

    Santanam, N; Penumetcha, M; Speisky, H; Parthasarathy, S

    2004-04-01

    A corollary to the oxidation hypothesis of atherosclerosis is that the consumption of antioxidants is beneficial. However, the literature is divided in support of this conclusion. In this study, Boldine, an alkaloid of Peumus boldus and reduced form of RU486, was tested for their antioxidant potency both in, in vitro oxidation system and in mouse models. Boldine decreased the ex-vivo oxidation of low-density lipoprotein (LDL). Two different in vivo studies were performed to study the effect of these compounds on the atherosclerotic lesion formation in LDLR(-/-) mice. In study I, three groups of LDLR(-/-) mice (N = 12 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 and 3 were given 1mg of Boldine or Red RU per day for 12 weeks. In study II, two groups of LDLR(-/-) mice N = 10 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 was given 5mg of Boldine per day. The results indicated that there was a decrease in lesion formation reaching a 40% reduction due to Boldine and 45% reduction by Red RU compared to controls. The in vivo tolerance of Boldine in humans (has been used as an herbal medicine in other diseases) should make it an attractive alternative to Vitamin E. PMID:15064093

  20. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    PubMed

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. PMID:25935408

  1. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  2. Chemical probes for water-oxidation: synthetic manganese complexes in photoactivation of water splitting complex and as exogenous electron donors to photosystem II.

    PubMed

    Bernát, G; Padhye, S; Barta, C; Kovács, L; Demeter, S

    2001-01-01

    Photoactivation of the water splitting enzyme was performed with 13 different synthetic manganese complexes and characterized by oxygen evolution yield, thermoluminescence and chlorophyll fluorescence induction kinetics. The efficiency of different compounds in photoactivation correlated with the rate of linear electron transport in the presence of these compounds. The organic ligands, associated with the manganese ions, do not prevent the photoactivation of the water splitting complex (WOC). Photoactivation with different manganese complexes depended on the number of the Mn-ions in the complex, their valence state and the nature of their donor atoms. The most efficient restorations were achieved by using tetrameric complexes having a dimer+dimer structure, complexes containing Mn(II) ions, and having 4-6 oxygen and 0-2 nitrogen atoms as donor atoms. Further, the effectiveness of photoactivation depended largely on the structure of the complexes. Our data support the notion that WOC in intact thylakoids requires the cooperation and well determined arrangement of all four manganese ions, and argue against the hypothesis that two manganese ions are sufficient for water splitting. Photoactivation by some complexes led to anomalous flash-oxygen patterns, which are explained by a modified/perturbed water splitting complex.

  3. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  4. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed.

  5. Oxidation and deprotonation of synthetic Fe{sup II}-Fe{sup III} (oxy)hydroxycarbonate Green Rust: An X-ray photoelectron study

    SciTech Connect

    Mullet, M. Guillemin, Y.; Ruby, C.

    2008-01-15

    X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rusts (GRs). GRs with variable composition, i.e. Fe{sup II}{sub 6(1-x)}Fe{sup III}{sub 6x}O{sub 12}H{sub 2(7-3x)} CO{sub 3}.3H{sub 2}O where the Fe{sup III} molar fraction of the positively charged hydroxide sheets, x=[Fe(III)]/[Fe(total)] belongs to [1/3, 1], were synthesised under an inert atmosphere. The broadened Fe(2p{sub 3/2}) spectra were fitted using Gupta and Sen multiplets peaks and additional satellite and surface features. The [Fe(III)]/[Fe(total)] surface atomic ratios closely agree with the x ratios expected from the bulk composition, which gives a high degree of confidence on the validity of the proposed fitting procedure. The valence band spectra are also reported and show dependencies on iron speciation. The O(1s) spectra revealed the presence of O{sup 2-}, OH{sup -} species and adsorbed water. The hydroxyl component decreases with increasing x values, i.e. with the amount of ferric iron, while the oxide component increases. This study provides direct spectroscopic evidence of the deprotonation of hydroxyl groups that occurs simultaneously with the oxidation of ferrous iron within the GR structure. - Graphical abstract: X-ray photoelectron spectroscopy (XPS) is used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rust (GR) compounds. First spectroscopic evidence of the deprotonation of hydroxyls groups occurring simultaneously to the oxidation of Fe(II) into Fe(III) species is provided.

  6. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias

    2015-11-01

    Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation.

  7. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.

    PubMed

    Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon

    2016-11-01

    A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants.

  8. Three Members of Polyamine Modulon under Oxidative Stress Conditions: Two Transcription Factors (SoxR and EmrR) and a Glutathione Synthetic Enzyme (GshA)

    PubMed Central

    Sakamoto, Akihiko; Terui, Yusuke; Yoshida, Taketo; Yamamoto, Taku; Suzuki, Hideyuki; Yamamoto, Kaneyoshi; Ishihama, Akira; Igarashi, Kazuei; Kashiwagi, Keiko

    2015-01-01

    Members of polyamine modulon whose synthesis is enhanced at the level of translation were looked for under oxidative stress conditions caused by 0.6 μM K2TeO3. When an Escherichia coli polyamine-requiring mutant MA261 was cultured in the presence of K2TeO3, the degree of polyamine stimulation of cell growth was greater than in cells cultured in the absence of K2TeO3. Under these conditions, synthesis of SoxR, a transcriptional factor for expression of the superoxide response regulon, EmrR, a negative transcriptional factor for expression of the genes for drug excretion proteins, EmrA and EmrB, and of GshA, γ-glutamylcysteine synthetase necessary for glutathione (GSH) synthesis, were stimulated by polyamines at the level of translation. Polyamine stimulation of SoxR and EmrR synthesis was dependent on the existence of an unusually located Shine-Dalgarno (SD) sequence in soxR and emrR mRNAs. Polyamine stimulation of GshA synthesis was due to the existence of the inefficient initiation codon UUG instead of AUG. Polyamine stimulation of the synthesis of EmrR was mainly observed at the logarithmic phase of growth, while that of the synthesis of SoxR and GshA was at the stationary phase. These results strongly suggest that polyamines are involved in easing of oxidative stress through stimulation of synthesis of SoxR, EmrR and GshA together with RpoS, previously found as a member of polyamine modulon at the stationary phase. PMID:25898225

  9. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.

    PubMed

    Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon

    2016-11-01

    A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants. PMID:27591594

  10. Biochemical, oxidative and histological changes caused by sub-acute oral exposure of some synthetic cyanogens in rats: ameliorative effect of α-ketoglutarate.

    PubMed

    Bhattacharya, Rahul; Rao, Pooja; Singh, Poonam; Yadav, Shiv Kumar; Upadhyay, Preeti; Malla, Sandhya; Gujar, Niranjan Laxman; Lomash, Vinay; Pant, Satish Chandra

    2014-05-01

    Time-dependent cyanide generation and acute toxicity of six different cyanogens were reported earlier, out of which malononitrile (MCN), propionitrile (PCN), and sodium nitroprusside (SNP) were found to be very toxic. We report here 14 d sub-acute toxicity of MCN, PCN, and SNP (oral; 1/10 LD50 daily) in female rats, and its amelioration by α-ketoglutarate (α-KG; oral; 5.26 mmol/kg; +5 min), a potential cyanide antidote. Significant decrease in white blood cells (PCN, SNP), platelets count (PCN), and blood glucose levels (MCN, PCN, SNP) was accompanied by elevated levels of alanine aminotransferase, lactate dehydrogenase (MCN, PCN, SNP), and aspartate aminotransferase (PCN, SNP). Oxidative damage was evidenced by diminished total antioxidant status in plasma and enhanced malondialdehyde levels in liver and kidney. This was accompanied by diminished levels of reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase in the brain, liver and kidney. We also observed increased levels of blood cyanide and thiocyanate, together with inhibition of cytochrome c oxidase and thiosulfate-sulfur transferase activities in total brain and liver homogenate, respectively. Cyanogens also produced several histological changes in all the organs studied. Post-treatment with α-KG significantly abrogated the toxicity of cyanogens, indicating its utility as an antidote for long-term cyanogen exposure.

  11. The thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. XI. Solubility of synthetic chalcomenite analog and zinc selenite at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Krivovichev, V. G.; Ivanova, N. M.; Semenova, V. V.

    2015-12-01

    The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist's Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10-10.63), ZnSeO3·2H2O (10-8.35), and ZnSeO3·H2O (10-7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh-pH diagrams of the Zn-Se-H2O and Cu-Se-H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.

  12. Optimization and modelling of synthetic azo dye wastewater treatment using Graphene oxide nanoplatelets: Characterization toxicity evaluation and optimization using Artificial Neural Network.

    PubMed

    Banerjee, Priya; Sau, Shubhra; Das, Papita; Mukhopadhayay, Aniruddha

    2015-09-01

    Azo dyes pose a major threat to current civilization by appearing in almost all streams of wastewater. The present investigation was carried out to examine the potential of Graphene oxide (GO) nanoplatelets as an efficient, cost-effective and non-toxic azo dye adsorbent for efficient wastewater treatment. The treatment process was optimized using Artificial Neural Network for maximum percentage dye removal and evaluated in terms of varying operational parameters, process kinetics and thermodynamics. A brief toxicity assay was also designed using fresh water snail Bellamya benghalensis to analyze the quality of the treated solution. 97.78% removal of safranin dye was obtained using GO as adsorbent. Characterization of GO nanoplatelets (using SEM, TEM, AFM and FTIR) reported the changes in its structure as well as surface morphology before and after use and explained its prospective as a good and environmentally benign adsorbent in very low quantities. The data recorded when subjected to different isotherms best fitted the Temkin isotherm. Further analysis revealed the process to be endothermic and chemisorption in nature. The verdict of the toxicity assay rendered the treated permeate as biologically safe for discharge or reuse in industrial and domestic purposes. PMID:25966335

  13. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  14. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  15. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  16. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, Carlos E.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  17. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  18. Variable Synthetic Capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1986-01-01

    Feedback amplifier circuit synthesizes electronically variable capacitance. Variable Synthetic Capacitor is amplifier circuit with follower/feedback configuration. Effective input capacitance depends on input set current. If synthetic capacitor is connected across resonant element of oscillator, oscillator frequency controlled via input set current. Circuit especially suitable for fine frequency adjustments of piezoelectric-crystal or inductor/capacitor resonant oscillators.

  19. Saga of synthetic rubber

    SciTech Connect

    Solo, R.A.

    1980-04-01

    The proposal to establish an Energy Mobilization Board and a synthetic fuels industry is reminiscent of World War II efforts to produce synthetic rubber. To avoid the mistakes made in the earlier effort, Mr. Solo suggests that the synthetic-fuel program should (1) use a more-successful technological development project as a model; (2) commit public funding and not rely on profit-oriented private enterprise; and (3) avoid entrusting social planning to single-purpose entities that have not been sensitive to social values. (DCK)

  20. Synthetic Base Fluids

    NASA Astrophysics Data System (ADS)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  1. Building synthetic memory

    PubMed Central

    Inniss, Mara C.; Silver, Pamela A.

    2013-01-01

    Synopsis Cellular memory – conversion of a transient signal into a sustained response – is a common feature of biological systems. Synthetic biologists aim to understand and reengineer such systems in a reliable and predictable manner. Synthetic memory circuits have been designed and built in vitro and in vivo based on diverse mechanisms such as oligonucleotide hybridization, recombination, transcription, phosphorylation, and RNA editing. Thus far, building these circuits has helped us explore the basic principles required for stable memory and ask novel biological questions. Here we discuss strategies for building synthetic memory circuits, their use as research tools, and future applications of these devices in medicine and industry. PMID:24028965

  2. Requiem for synthetic fuels

    SciTech Connect

    Myers, R.

    1982-01-27

    US plans to launch a synthetic fuels industry revive whenever a price or supply crisis occurs, but industrial hopes descend as soon as the short-term market begins improving in terms of real prices. The capital requirements of a synthetic fuels project combined with fears of a noncompetitive product have caused several major oil companies to scale down or cancel their plans. In the author's view, the Reagan administration's hands-off policy and false sense of security from the current oil supply glut have further discouraged industry. The Synthetic Fuels Corporation has been slow to organize, and appears to be favoring small-size plants. (DCK)

  3. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. PMID:25044528

  4. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.

  5. What Are Synthetic Cannabinoids?

    MedlinePlus

    ... those produced by marijuana: elevated mood relaxation altered perception —awareness of surrounding objects and conditions symptoms of ... those produced by marijuana: elevated mood relaxation altered perception symptoms of psychosis Synthetic cannabinoids can also cause ...

  6. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  7. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H.; Thaller, L. H.

    1982-01-01

    The group of techniques that as a class are referred to as synthetic battery cycling are described with reference to spacecraft battery systems. Synthetic battery cycling makes use of the capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system.

  8. Synthetic approaches to monofluoroalkenes.

    PubMed

    Landelle, Grégory; Bergeron, Maxime; Turcotte-Savard, Marc-Olivier; Paquin, Jean-François

    2011-05-01

    Monofluoroalkenes are an important fluorinated class of compounds with applications in medicinal chemistry, material sciences and organic chemistry. An overview of methods allowing synthetic access to these fluorinated building blocks is provided. In particular, this critical review, which covers publications up to October 2010, will be divided according to the substitution pattern of the monofluoroalkenes, i.e. di-, tri- or tetra-substituted. Within each group, the various synthetic approaches will be divided according to the reaction type (282 references).

  9. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  10. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  11. Synthetic biology and biosecurity.

    PubMed

    Robienski, Jürgen; Simon, Jürgen

    2014-01-01

    This article discusses the conflict fields and legal questions of synthetic biology, esp. concerning biosecurity. A respective jurisprudential discussion has not taken place yet in Germany apart from few statements and recommendations. But in Germany, Europe and the USA, it is generally accepted that a broad discussion is necessary. This is esp. true for the question of biosecurity and the possible dangers arising from Synthetic Biology. PMID:25845204

  12. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  13. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  14. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential. PMID:20214593

  15. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  16. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  17. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  18. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  19. Synthetic Visibility System

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Test pilot Lee Person evaluates a Synthetic Visibility System - in essence, two helmet-mounted eyepieces connected to video cameras that swivel in response to head movements. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 113), by James Schultz.

  20. Adaptive synthetic vision

    NASA Astrophysics Data System (ADS)

    Julier, Simon J.; Brown, Dennis; Livingston, Mark A.; Thomas, Justin

    2006-05-01

    Through their ability to safely collect video and imagery from remote and potentially dangerous locations, UAVs have already transformed the battlespace. The effectiveness of this information can be greatly enhanced through synthetic vision. Given knowledge of the extrinsic and intrinsic parameters of the camera, synthetic vision superimposes spatially-registered computer graphics over the video feed from the UAV. This technique can be used to show many types of data such as landmarks, air corridors, and the locations of friendly and enemy forces. However, the effectiveness of a synthetic vision system strongly depends on the accuracy of the registration - if the graphics are poorly aligned with the real world they can be confusing, annoying, and even misleading. In this paper, we describe an adaptive approach to synthetic vision that modifies the way in which information is displayed depending upon the registration error. We describe an integrated software architecture that has two main components. The first component automatically calculates registration error based on information about the uncertainty in the camera parameters. The second component uses this information to modify, aggregate, and label annotations to make their interpretation as clear as possible. We demonstrate the use of this approach on some sample datasets.

  1. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  2. Towards a Synthetic Chloroplast

    PubMed Central

    Agapakis, Christina M.; Niederholtmeyer, Henrike; Noche, Ramil R.; Lieberman, Tami D.; Megason, Sean G.; Way, Jeffrey C.; Silver, Pamela A.

    2011-01-01

    Background The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. Results We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. Conclusion Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices. PMID:21533097

  3. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  4. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  5. Synthetic Confrontation Therapy.

    ERIC Educational Resources Information Center

    Gilliam, Larry

    After initially dispelling predictable fears that his paper might suggest that computers can be equated with man, the author states the problem: what part, if any, might computers play in counseling. Specifically, the possibilities for therapeutic synthetic (artificial) counseling encounters are discussed. Two propositions are significant: (1) the…

  6. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  7. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  8. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  9. Nanoparticles as synthetic vaccines.

    PubMed

    Smith, Josiah D; Morton, Logan D; Ulery, Bret D

    2015-08-01

    As vaccines have transitioned from the use of whole pathogens to only the required antigenic epitopes, unwanted side effects have been decreased, but corresponding immune responses have been greatly diminished. To enhance immunogenicity, a variety of controlled release vehicles have been proposed as synthetic vaccines, but nanoparticles have emerged as particularly impressive systems due to many exciting publications. In specific, nanoparticles have been shown capable of not only desirable vaccine release, but can also be targeted to immune cells of interest, loaded with immunostimulatory substances termed adjuvants, or even induce desirable immune activating effects on their own. In the present review, recent advances in the utilization of inorganic, polymeric, and biomolecular nanoparticles as synthetic vaccines are discussed.

  10. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  11. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors.

  12. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  13. A synthetic zero air standard

    NASA Astrophysics Data System (ADS)

    Pearce, Ruth

    2016-04-01

    A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol-1 for CO2 (northern hemisphere) and < 2 nmolmol-1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol-1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol-1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically assigned

  14. Relative toxicity of pyrolysis products of some synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Slattengren, C. L.; Furst, A.; Kourtides, D. A.; Parker, J. A.

    1976-01-01

    Nineteen samples of synthetic polymers were evaluated for relative toxicity in the course of characterizing materials intended for aircraft interior applications. The generic polymers included ABS, chlorinated PVC, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyaryl sulfone, polyether sulfone, polybismaleimide, and polyvinyl fluoride. Test results are presented, and compared in relative rankings with similar results on cellulosic materials and other synthetic polymers. Under these test conditions, the samples of synthetic polymers were either comparable to or significantly less toxic than the samples of commercial cellulosic materials.

  15. Chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Luisi, Pier Luigi

    2014-01-01

    Although both the most popular form of synthetic biology (SB) and chemical synthetic biology (CSB) share the biotechnologically useful aim of making new forms of life, SB does so by using genetic manipulation of extant microorganism, while CSB utilises classic chemical procedures in order to obtain biological structures which are non-existent in nature. The main query concerning CSB is the philosophical question: why did nature do this, and not that? The idea then is to synthesise alternative structures in order to understand why nature operated in such a particular way. We briefly present here some various examples of CSB, including those cases of nucleic acids synthesised with pyranose instead of ribose, and proteins with a reduced alphabet of amino acids; also we report the developing research on the "never born proteins" (NBP) and "never born RNA" (NBRNA), up to the minimal cell project, where the issue is the preparation of semi-synthetic cells that can perform the basic functions of biological cells.

  16. Optical synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  17. Synthetic surgical gloves.

    PubMed

    2002-06-01

    Surgical gloves are used by healthcare workers to protect them against bloodborne pathogens and other potential infectants and to prevent wound contamination in patients. In response to the increasing prevalence of allergies to natural rubber latex (NRL) among patients and medical staff, the trend toward purchasing gloves made of synthetic materials is on the rise. However, latex continues to dominate the market, and some people still perceive synthetic gloves as providing less protection and being less comfortable than NRL gloves. For this Update Evaluation, we present our findings for three newly evaluated glove models from three manufacturers and summarize our findings for the seven previously evaluated models that are still on the market. (Our earlier Evaluation was published in the February-March 2000 Health Devices.) As in the previous Evaluation, our ratings are based on the gloves' barrier effectiveness--that is, their resistance to viral penetration and their durability--and comfort. We also compared these characteristics of the synthetic gloves to those of NRL gloves. We found that all the evaluated gloves offer adequate barrier protection but that their level of comfort varies considerably. We rate three models Preferred, five models Acceptable, and two models Not Recommended. PMID:12116503

  18. Synthetic biology in plastids.

    PubMed

    Scharff, Lars B; Bock, Ralph

    2014-06-01

    Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

  19. Raman spectrum of natural and synthetic stishovite

    USGS Publications Warehouse

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  20. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  1. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology. PMID:24502956

  2. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  3. Hypersensitivity reactions to synthetic haemodialysis membranes.

    PubMed

    Sánchez-Villanueva, Rafael J; González, Elena; Quirce, Santiago; Díaz, Raquel; Alvarez, Laura; Menéndez, David; Rodríguez-Gayo, Lucía; Bajo, M Auxiliadora; Selgas, Rafael

    2014-01-01

    Undergoing a haemodialysis (HD) session poses a certain risk of hypersensitivity adverse reactions as large quantities of blood are in contact with various synthetic materials. Hypersensitivity reactions to ethylene oxide and non-biocompatible membranes, such as cuprophane, have been described in HD. Cases of hypersensitivity with biocompatible membranes, such as polysulfone, and even polysulfone-polyvinylpyrrolidone, have also been reported. In this article we describe six cases of mostly early-stage hypersensitivity reactions to HD occurring in our department, characterised by malaise, desaturation, bronchospasm and arterial hypotension, with good response to the session’s temporary suspension and with reappearance in subsequent sessions that used a synthetic dialyser. No hypersensitivity reactions reappeared in successive observations when the sessions were carried out using a cellulose membrane.

  4. Bio-based polycarbonate as synthetic toolbox

    NASA Astrophysics Data System (ADS)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  5. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-06-15

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  6. Bio-based polycarbonate as synthetic toolbox

    PubMed Central

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  7. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  8. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  9. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  10. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  11. Effect of micellized natural (D-α-tocopherol) vs. synthetic (DL-α-tocopheryl acetate) vitamin E supplementation given to turkeys on oxidative status and breast meat quality characteristics.

    PubMed

    Rey, A I; Segura, J; Olivares, A; Cerisuelo, A; Piñeiro, C; López-Bote, C J

    2015-06-01

    This study evaluates the effect of vitamin E supplementation source (micellized natural vs. the synthetic form) and dosage (40, 80, or 120 mg/kg) on α-tocopherol concentration in plasma and muscle, antioxidant capacity, and breast meat quality in turkeys. Three hundred female turkeys were randomly selected at an average live weight 63.2 g±0.5 and distributed into 7 groups. One group (control) was fed a standard diet without vitamin E supplementation and the other 6 were given mixed diets supplemented with the natural (d-α-tocopherol) or synthetic (dl-α-tocopheryl acetate) form of vitamin E in 3 dosages (40, 80, or 120 mg/kg). Following 11 wk feeding, results showed that performance parameters were not modified either by source or dosage of vitamin E supplementation to the turkeys. Plasma and muscle α-tocopherol at d 9 of refrigerated storage were higher when turkeys were supplemented with the natural form at higher doses. Losses in the concentration of α-tocopherol in meat between the beginning and the end of the 9 d refrigerated storage were greater in the groups supplemented with the synthetic form of vitamin E compared to those receiving the natural supplementation. The relationship between plasma α-tocopherol and the Trolox equivalent antioxidant capacity followed a different trend depending on the vitamin E source. Intramuscular fat was not significantly affected by the vitamin E source supplementation; however the slope of the linear regression equation was lower for the natural form than for the synthetic form. Turkeys given the natural form had higher C18:1n-9 but lower C15:1, C17:1, C20:5n-3, and C22:6n-3 in breast muscle. Meat samples from turkeys supplemented with natural vitamin E had higher deoxymyoglobin at d 3, 6, and 9 and lower metmyoglobin at d 9 of refrigerated storage than those receiving the synthetic form. Dietary supplementation with medium doses (80 mg/kg) micellized d-α-tocopherol is an interesting feeding strategy for

  12. Effect of micellized natural (D-α-tocopherol) vs. synthetic (DL-α-tocopheryl acetate) vitamin E supplementation given to turkeys on oxidative status and breast meat quality characteristics.

    PubMed

    Rey, A I; Segura, J; Olivares, A; Cerisuelo, A; Piñeiro, C; López-Bote, C J

    2015-06-01

    This study evaluates the effect of vitamin E supplementation source (micellized natural vs. the synthetic form) and dosage (40, 80, or 120 mg/kg) on α-tocopherol concentration in plasma and muscle, antioxidant capacity, and breast meat quality in turkeys. Three hundred female turkeys were randomly selected at an average live weight 63.2 g±0.5 and distributed into 7 groups. One group (control) was fed a standard diet without vitamin E supplementation and the other 6 were given mixed diets supplemented with the natural (d-α-tocopherol) or synthetic (dl-α-tocopheryl acetate) form of vitamin E in 3 dosages (40, 80, or 120 mg/kg). Following 11 wk feeding, results showed that performance parameters were not modified either by source or dosage of vitamin E supplementation to the turkeys. Plasma and muscle α-tocopherol at d 9 of refrigerated storage were higher when turkeys were supplemented with the natural form at higher doses. Losses in the concentration of α-tocopherol in meat between the beginning and the end of the 9 d refrigerated storage were greater in the groups supplemented with the synthetic form of vitamin E compared to those receiving the natural supplementation. The relationship between plasma α-tocopherol and the Trolox equivalent antioxidant capacity followed a different trend depending on the vitamin E source. Intramuscular fat was not significantly affected by the vitamin E source supplementation; however the slope of the linear regression equation was lower for the natural form than for the synthetic form. Turkeys given the natural form had higher C18:1n-9 but lower C15:1, C17:1, C20:5n-3, and C22:6n-3 in breast muscle. Meat samples from turkeys supplemented with natural vitamin E had higher deoxymyoglobin at d 3, 6, and 9 and lower metmyoglobin at d 9 of refrigerated storage than those receiving the synthetic form. Dietary supplementation with medium doses (80 mg/kg) micellized d-α-tocopherol is an interesting feeding strategy for

  13. Progress toward synthetic cells.

    PubMed

    Blain, J Craig; Szostak, Jack W

    2014-01-01

    The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems. PMID:24606140

  14. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  15. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  16. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  17. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in het...

  18. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  19. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  20. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  1. Recent advances in synthetic biosafety.

    PubMed

    Simon, Anna J; Ellington, Andrew D

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

  2. Synthetic cannabis and respiratory depression.

    PubMed

    Jinwala, Felecia N; Gupta, Mayank

    2012-12-01

    In recent years, synthetic cannabis use has been increasing in appeal among adolescents, and its use is now at a 30 year peak among high school seniors. The constituents of synthetic cannabis are difficult to monitor, given the drug's easy accessibility. Currently, 40 U.S. states have banned the distribution and use of some known synthetic cannabinoids, and have included these drugs in the Schedule I category. The depressive respiratory effect in humans caused by synthetic cannabis inhalation has not been thoroughly investigated in the medical literature. We are the first to report, to our knowledge, two cases of self-reported synthetic cannabis use leading to respiratory depression and necessary intubation. PMID:23234589

  3. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment.

  4. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

  5. Ecotoxicology of synthetic pyrethroids.

    PubMed

    Maund, S J; Campbell, P J; Giddings, J M; Hamer, M J; Henry, K; Pilling, E D; Warinton, J S; Wheeler, J R

    2012-01-01

    In this chapter we review the ecotoxicology of the synthetic pyrethroids (SPs). SPs are potent, broad-spectrum insecticides. Their effects on a wide range of nontarget species have been broadly studied, and there is an extensive database available to evaluate their effects. SPs are highly toxic to fish and aquatic invertebrates in the laboratory, but effects in the field are mitigated by rapid dissipation and degradation. Due to their highly lipophilic nature, SPs partition extensively into sediments. Recent studies have shown that toxicity in sediment can be predicted on the basis of equilibrium partitioning, and whilst other factors can influence this, organic carbon content is a key determining variable. At present for SPs, there is no clear evidence for adverse population-relevant effects with an underlying endocrine mode of action. SPs have been studied intensively in aquatic field studies, and their effects under field conditions are mitigated from those measured in the laboratory by their rapid dissipation and degradation. Studies with a range of test systems have shown consistent aquatic field endpoints across a variety of geographies and trophic states. SPs are also highly toxic to bees and other nontarget arthropods in the laboratory. These effects are mitigated in the field through repellency and dissipation of residues, and recovery from any adverse effects tends to be rapid.

  6. Synthetic retinoids in dermatology

    PubMed Central

    Heller, Elizabeth H.; Shiffman, Norman J.

    1985-01-01

    The potential of vitamin A, or retinol, in the treatment of a variety of skin diseases has long been recognized, but because of serious toxic effects this substance generally could not be used. The recent development and marketing of two relatively nontoxic synthetic analogues, which are known as retinoids, has made it possible to treat some of the diseases that are resistant to standard forms of therapy. Isotretinoin is very effective in cystic and conglobate acne, while etretinate is especially useful in the more severe forms of psoriasis. Good results have also been obtained in other disorders of keratinization. Vitamin A and its derivatives apparently have an antineoplastic effect as well and may come to be used in both the prevention and the treatment of epithelial cancer. In many of these diseases the retinoids act by enhancing the normal differentiation and proliferation of epidermal tissues, but the exact mechanisms are not well understood. Their influence on the intracellular polyamines that control the synthesis of nucleic acids and proteins may be an important factor. Although the retinoids have few serious systemic effects, they are teratogenic, and because they persist in the body their use in women of childbearing potential is limited. ImagesFig. 3 PMID:3158386

  7. Synthetic molecular walkers.

    PubMed

    Leigh, David A; Lewandowska, Urszula; Lewandowski, Bartosz; Wilson, Miriam R

    2014-01-01

    In biological systems, molecular motors have been developed to harness Brownian motion and perform specific tasks. Among the cytoskeletal motor proteins, kinesins ensure directional transport of cargoes to the periphery of the cell by taking discrete steps along microtubular tracks. In the past decade there has been an increasing interest in the development of molecules that mimic aspects of the dynamics of biological systems and can became a starting point for the creation of artificial transport systems.To date, both DNA-based and small-molecule walkers have been developed, each taking advantage of the different chemistries available to them. DNA strollers exploit orthogonal base pairing and utilize strand-displacement reactions to control the relative association of the component parts. Small-molecule walkers take advantage of the reversibility of weak noncovalent interactions as well as the robustness of dynamic covalent bonds in order to transport molecular fragments along surfaces and molecular tracks using both diffusional processes and ratchet mechanisms. Here we review both types of synthetic systems, including their designs, dynamics, and how they are being used to perform functions by controlled mechanical motion at the molecular level.

  8. Computing with synthetic protocells.

    PubMed

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  9. Synthetic biology: lessons from the history of synthetic organic chemistry.

    PubMed

    Yeh, Brian J; Lim, Wendell A

    2007-09-01

    The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them--including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems. PMID:17710092

  10. Synthetic biology: Understanding biological design from synthetic circuits

    PubMed Central

    Mukherji, Shankar; van Oudenaarden, Alexander

    2011-01-01

    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to intuitively grasp the ranges of behavior generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes such as gene expression and population dynamics. PMID:19898500

  11. Inorganic chemistry: Deconstructing water oxidation

    NASA Astrophysics Data System (ADS)

    Cook, Sarah A.; Borovik, A. S.

    2013-04-01

    During photosynthesis, the oxygen-evolving complex oxidizes water to produce molecular oxygen. Now, a possible role for the calcium ion in this complex has been proposed based on the electrochemical properties of a series of synthetic heterometallic clusters.

  12. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway.

    PubMed

    Zhao, Yue; Sun, Yang; Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-09-22

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.

  13. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway

    PubMed Central

    Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-01-01

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis. PMID:26327408

  14. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  15. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  16. Spicing thing up: Synthetic cannabinoids

    PubMed Central

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  17. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  18. 21 CFR 73.2250 - Iron oxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including...

  19. Approaches to chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology.

  20. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  1. Synthetic Biology for Specialty Chemicals.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  2. Synthetic Turf Multiplies Stadium Use.

    ERIC Educational Resources Information Center

    Leach, Richard

    1979-01-01

    The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

  3. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented. PMID:22132053

  4. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  5. SYNTHETIC SLING FAILURE - EVALUATIONS & RECOMMENDATIONS

    SciTech Connect

    MACKEY TC; HENDERSON CS

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall industry safety.

  6. Compounding in synthetic aperture imaging.

    PubMed

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-09-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic property of how the compound images are constructed using synthetic aperture data and an improvement compared with how spatial compounding is obtained using conventional methods. The synthetic aperture compound images are created by exploiting the linearity of delay-and-sum beamformation for data collected from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution and clutter levels are measured using a wire phantom setup and compared with conventional application of the array, as well as to synthetic aperture imaging without compounding. If the full aperture is used for synthetic aperture compounding, the cystic resolution is improved by 41% compared with conventional imaging, and is at least as good as what can be obtained using synthetic aperture imaging without compounding. PMID:23007781

  7. Superresolution and Synthetic Aperture Radar

    SciTech Connect

    DICKEY,FRED M.; ROMERO,LOUIS; DOERRY,ARMIN W.

    2001-05-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.

  8. Symmetry-Driven Strategy for the Assembly of the Core Tetracycle of (+)-Ryanodine: Synthetic Utility of a Cobalt-Catalyzed Olefin Oxidation and α-Alkoxy Bridgehead Radical Reaction.

    PubMed

    Nagatomo, Masanori; Hagiwara, Koji; Masuda, Kengo; Koshimizu, Masaki; Kawamata, Takahiro; Matsui, Yuki; Urabe, Daisuke; Inoue, Masayuki

    2016-01-01

    Ryanodine (1) is a potent modulator of intracellular calcium release channels, designated as ryanodine receptors. The exceptionally complex molecular architecture of 1 comprises a highly oxygenated pentacyclic system with eleven contiguous stereogenic centers, which makes it a formidable target for organic synthesis. We identified the embedded C2 -symmetric tricyclic substructure within 1. This specific recognition permitted us to design a concise synthetic route to enantiopure tricycle 9 by utilizing a series of pairwise functionalizations. The four tetrasubstituted carbon centers of 9 were effectively constructed by three key reactions, a dearomatizing Diels-Alder reaction, the kinetic resolution of the obtained racemic 14 through asymmetric methanolysis, and the transannular aldol reaction of the eight-membered diketone 10. A new combination of cobalt-catalyzed hydroperoxidation and NfF-promoted elimination enabled conversion of the hindered olefin of 9 into the corresponding ketone, thus realizing the desymmetrization. Finally, the tetrasubstituted carbon was stereospecifically installed by utilizing the α-alkoxy bridgehead radical to deliver the core tetracycle 7 with the six contiguous tetrasubstituted carbon centers. Consequently, the present work not only accomplishes efficient assembly of four out of the five fused rings of 1, but also develops two new powerful methodologies: two-step ketone formation and bridgehead radical reaction.

  9. Synthetic biology as red herring.

    PubMed

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy.

  10. Toward synthetic models for high oxidation state forms of the photosystem II active site metal cluster: the first tetranuclear manganese cluster containing a [Mn4(mu-O)5]6+ core.

    PubMed

    Mukhopadhyay, Sumitra; Staples, Richard J; Armstrong, William H

    2002-04-21

    The first tetrameric high valent manganese complex consisting of a MnIV4(mu-O)5 bridged core, [Mn4(mu-O)5(dmb)4(dmbO)2](ClO4)4, [symbol: see text] was isolated via dimanganese (III,IV) and (IV,IV) intermediates in presence of the oxidant tert-butyl hydroperoxide and was characterized by X-ray crystallography, electrochemistry, infrared, UV-visible, 1H NMR, and mass spectroscopy; the structure found differs greatly from a proposal for the putative Mn4O5 aggregate found in Photosystem II.

  11. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  13. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms.

  14. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  15. Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system.

    PubMed

    Rodríguez-Nava, Odín; Ramírez-Saad, Hugo; Loera, Octavio; González, Ignacio

    2016-12-01

    Pharmaceutical degradation in conventional wastewater treatment plants (WWTP) represents a challenge since municipal wastewater and hospital effluents contain pharmaceuticals in low concentrations (recalcitrant and persistent in WWTP) and biodegradable organic matter (BOM) is the main pollutant. This work shows the feasibility of coupling electro-oxidation with a biological system for the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole (BGIS)) and BOM from wastewater. High removal efficiencies were attained without affecting the performance of activated sludge. BGIS degradation was performed by advanced electrochemical oxidation and the activated sludge process for BOM degradation in a continuous reactor. The selected electrochemical parameters from microelectrolysis tests (1.2 L s(-1) and 1.56 mA cm(-2)) were maintained to operate a filter press laboratory reactor FM01-LC using boron-doped diamond as the anode. The low current density was chosen in order to remove drugs without decreasing BOM and chlorine concentration control, so as to avoid bulking formation in the biological process. The wastewater previously treated by FM01-LC was fed directly (without chemical modification) to the activated sludge reactor to remove 100% of BGIS and 83% of BOM; conversely, the BGIS contained in wastewater without electrochemical pre-treatment were persistent in the biological process and promoted bulking formation.

  16. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. X. thermal stability and dehydration features of synthetic analogs of the cobaltomenite-ahlfeldite solid solution series

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Fokina, E. L.; Krivovichev, V. G.; Yakovenko, O. S.; Klimova, E. V.; Semenova, V. V.

    2015-12-01

    The aim of this study is the experimental investigation of the synthetic analogs of cobaltomenite, CoSeO3 • 2H2O, ahlfeldite, NiSeO3 • 2H2O, members of the cobaltomenite-ahlfeldite solid solution series (Ni x Co1- x )SeO3 • 2H2O, and singularities of their dehydration and dissociation. The intermediate members of the cobaltomenite (CoSeO3 • 2H2O)-ahlfeldite (NiSeO3 • 2H2O) series have been synthesized and studied with a combination of X-ray diffraction, scanning electron microscopy, and the simultaneous application of thermogravimetry (TG) and differential scanning calorimetry (DSC) within the temperature range from 25 to 640°C. The complete solid solution series corresponds to the monoclinic space group P21/ n. Unit-cell dimensions decrease in all crystallographic directions as the amount of Ni increases. The angle β increases from 98.82(1) (cobaltomenite) to 99.05(1)° (ahlfeldite). It has been established that CoSeO3 • 2H2O and NiSeO3 • 2H2O dehydrate at 120-340°C through two stages apparently corresponding, to the formation of intermediate hydrated species CoSeO3 • H2O and NiSeO3 • 1/3H2O. The reaction enthalpies for each dehydration stage of CoSeO3 • 2H2O and NiSeO3 • 2H2O have been determined. Changes of the unit-cell dimensions and dehydration temperatures are rationalized in terms of the Co and Ni site occupancy in the structure of the cobaltomenite-ahlfeldite solid-solution series members.

  17. Synthetic applications of pseudocyclic hypervalent iodine compounds.

    PubMed

    Yoshimura, Akira; Yusubov, Mekhman S; Zhdankin, Viktor V

    2016-06-01

    Hypervalent iodine compounds have found wide practical application as versatile, efficient, and sustainable reagents for organic synthesis. Pseudocyclic hypervalent iodine derivatives are characterized by the presence of additional intramolecular non-covalent coordination at the iodine center, which leads to significant alteration of their physical and chemical properties. In comparison with common hypervalent iodine reagents, these pseudocyclic compounds have higher thermal stability, better solubility, and improved reactivity. In recent years, pseudocyclic hypervalent iodine reagents are increasingly used in organic synthesis as environmentally friendly selective oxidants and electrophiles. Furthermore, numerous enantioselective reactions mediated by chiral pseudocyclic hypervalent iodine species have been recently developed. In the present review, the preparation and structural features of pseudocyclic iodine(iii) and iodine(v) derivatives are discussed, and recent developments in their synthetic applications are summarized. PMID:27143521

  18. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    DOE PAGES

    Jain, P.; Wang, Q.; Roldan, M.; Glavic, A.; Lauter, V.; Urban, C.; Bi, Z.; Ahmed, T.; Zhu, J.; Varela, M.; et al

    2015-03-13

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less

  19. Synthetic dye decolourization by white rot fungi.

    PubMed

    Murugesan, K; Kalaichelvan, P T

    2003-09-01

    Synthetic dyes are integral part of many industrial products. The effluents generated from textile dyeing units create major environmental problems and issues both in public and textile units. Industrial wastewater treatment is one of the major problems in the present scenario. Though, the physical and chemical methods offer some solutions to the problems, it is not affordable by the unit operators. Biological degradation is recognized as the most effective method for degrading the dye present in the waste. Research over a period of two decades had provided insight into the various aspects of biological degradation of dyes. It is observed that the white rot fungi have a non-specific enzyme system, which oxidizes the recalcitrant dyes. Detailed and extensive studies have been made and process developed for treatment of dye containing wastewaters by white rot fungi and their enzyme systems. An attempt is made to summarize the detailed research contributions on these lines.

  20. Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin.

    PubMed

    Rauschenberg, Melanie; Fritz, Eva-Corrina; Schulz, Christian; Kaufmann, Tobias; Ravoo, Bart Jan

    2014-01-01

    The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors ("synthetic lectins") constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepared a fluorescently labeled synthetic lectin consisting of a cyclic dimer of the tripeptide Cys-His-Cys, which forms spontaneously by air oxidation of the monomer. Amine-tethered derivatives of N-acetylneuraminic acid (NANA), β-D-galactose, β-D-glucose and α-D-mannose were microcontact printed on epoxide-terminated self-assembled monolayers. Successive prints resulted in simple microarrays of two carbohydrates. The selectivity of the synthetic lectin was investigated by incubation on the immobilized carbohydrates. Selective binding of the synthetic lectin to immobilized NANA and β-D-galactose was observed by fluorescence microscopy. The selectivity and affinity of the synthetic lectin was screened in competition experiments. In addition, the carbohydrate binding of the synthetic lectin was compared with the carbohydrate binding of the lectins concanavalin A and peanut agglutinin. It was found that the printed carbohydrates retain their characteristic selectivity towards the synthetic and natural lectins and that the recognition of synthetic and natural lectins is strictly orthogonal.

  1. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  2. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  3. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  4. Content metamorphosis in synthetic holography

    NASA Astrophysics Data System (ADS)

    Desbiens, Jacques

    2013-02-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  5. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  6. Designer Drugs: A Synthetic Catastrophe

    PubMed Central

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2016-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are “Not for Human Consumption”, therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants. PMID:27617301

  7. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  8. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  9. Synthetic neurosteroids on brain protection

    PubMed Central

    Rey, Mariana; Coirini, Héctor

    2015-01-01

    Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions. PMID:25788907

  10. US Competitiveness in Synthetic Biology.

    PubMed

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized. PMID:26690379

  11. US Competitiveness in Synthetic Biology.

    PubMed

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  12. The design of synthetic genes.

    PubMed Central

    Presnell, S R; Benner, S A

    1988-01-01

    Computer programs are described that aid in the design of synthetic genes coding for proteins that are targets of a research program in site directed mutagenesis. These programs "reverse-translate" protein sequences into general nucleic acid sequences (those where codons have not yet been selected), map restriction sites into general DNA sequences, identify points in the synthetic gene where unique restriction sites can be introduced, and assist in the design of genes coding for hybrids and evolutionary intermediates between homologous proteins. Application of these programs therefore facilitates the use of modular mutagenesis to create variants of proteins, and the implementation of evolutionary guidance as a strategy for selecting mutants. PMID:2451218

  13. The Case for Synthetic Injectables.

    PubMed

    Joseph, John H

    2015-11-01

    There are several different classes of synthetic dermal fillers and volume enhancers including semipermanent and permanent products available in the United States. Based on clinical and scientific evidence, this article reviews the chemical and polymeric properties, clinical data, patient selection, indications for use, injection technique, and adverse event profiles of permanent synthetic injectables currently used in clinical practice in the United States: medical-grade liquid injectable silicone and polymethyl methacrylate. Understanding the unique characteristics of these two products reinforces the advantages and disadvantages of each, including under what circumstances they should be used and why they perform the way they do. PMID:26505540

  14. Synthetic biology in cellular immunotherapy

    PubMed Central

    Chakravarti, Deboki; Wong, Wilson W.

    2015-01-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

  15. The Case for Synthetic Injectables.

    PubMed

    Joseph, John H

    2015-11-01

    There are several different classes of synthetic dermal fillers and volume enhancers including semipermanent and permanent products available in the United States. Based on clinical and scientific evidence, this article reviews the chemical and polymeric properties, clinical data, patient selection, indications for use, injection technique, and adverse event profiles of permanent synthetic injectables currently used in clinical practice in the United States: medical-grade liquid injectable silicone and polymethyl methacrylate. Understanding the unique characteristics of these two products reinforces the advantages and disadvantages of each, including under what circumstances they should be used and why they perform the way they do.

  16. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  17. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities.

  18. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities. PMID:27484613

  19. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    PubMed Central

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  20. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    PubMed

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  1. Methods for preparing synthetic freshwaters.

    PubMed

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis. PMID:11902783

  2. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  3. Digital 'faces' of synthetic biology.

    PubMed

    Friedrich, Kathrin

    2013-06-01

    In silicio design plays a fundamental role in the endeavour to synthesise biological systems. In particular, computer-aided design software enables users to manage the complexity of biological entities that is connected to their construction and reconfiguration. The software's graphical user interface bridges the gap between the machine-readable data on the algorithmic subface of the computer and its human-amenable surface represented by standardised diagrammatic elements. Notations like the Systems Biology Graphical Notation (SBGN), together with interactive operations such as drag & drop, allow the user to visually design and simulate synthetic systems as 'bio-algorithmic signs'. Finally, the digital programming process should be extended to the wet lab to manufacture the designed synthetic biological systems. By exploring the different 'faces' of synthetic biology, I argue that in particular computer-aided design (CAD) is pushing the idea to automatically produce de novo objects. Multifaceted software processes serve mutually aesthetic, epistemic and performative purposes by simultaneously black-boxing and bridging different data sources, experimental operations and community-wide standards. So far, synthetic biology is mainly a product of digital media technologies that structurally mimic the epistemological challenge to take both qualitative as well as quantitative aspects of biological systems into account in order to understand and produce new and functional entities.

  4. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  5. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  6. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  7. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  8. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  9. The synthetic biology open language.

    PubMed

    Myers, Chris; Clancy, Kevin; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline; Roehner, Nicholas; Sauro, Herbert M

    2015-01-01

    The design and construction of engineered organisms is an emerging new discipline called synthetic biology and holds considerable promise as a new technological platform. The design of biologically engineered systems is however nontrivial, requiring contributions from a wide array of disciplines. One particular issue that confronts synthetic biologists is the ability to unambiguously describe novel designs such that they can be reengineered by a third-party. For this reason, the synthetic biology open language (SBOL) was developed as a community wide standard for formally representing biological designs. A design created by one engineering team can be transmitted electronically to another who can then use this design to reproduce the experimental results. The development and the community of the SBOL standard started in 2008 and has since grown in use with now over 80 participants, including international, academic, and industrial interests. SBOL has stimulated the development of repositories and software tools to help synthetic biologists in their design efforts. This chapter summarizes the latest developments and future of the SBOL standard and its supporting infrastructure.

  10. Chemical aspects of synthetic biology.

    PubMed

    Luisi, Pier Luigi

    2007-04-01

    Synthetic biology as a broad and novel field has also a chemical branch: whereas synthetic biology generally has to do with bioengineering of new forms of life (generally bacteria) which do not exist in nature, 'chemical synthetic biology' is concerned with the synthesis of chemical structures such as proteins, nucleic acids, vesicular forms, and other which do not exist in nature. Three examples of this 'chemical synthetic biology' approach are given in this article. The first example deals with the synthesis of proteins that do not exist in nature, and dubbed as 'the never born proteins' (NBPs). This research is related to the question why and how the protein structures existing in our world have been selected out, with the underlying question whether they have something very particular from the structural or thermodynamic point of view (for example, the folding). The NBPs are produced in the laboratory by the modern molecular biology technique, the phage display, so as to produce a very large library of proteins having no homology with known proteins. The second example of chemical synthetic biology has also to do with the laboratory synthesis of proteins, but, this time, adopting a prebiotic synthetic procedure, the fragment condensation of short peptides, where short means that they have a length that can be obtained by prebiotic methods; for example, from the condensation of N-carboxy anhydrides. The scheme is illustrated and discussed, being based on the fragment condensation catalyzed by peptides endowed with proteolitic activity. Selection during chain growth is determined by solubility under the contingent environmental conditions, i.e., the peptides which result insoluble are eliminated from further growth. The scheme is tested preliminarily with a synthetic chemical fragment-condensation method and brings to the synthesis of a 44-residues-long protein, which has no homology with known proteins, and which has a stable tertiary folding. Finally, the third

  11. Synthetic musk fragrances in human milk from the United States.

    PubMed

    Reiner, Jessica L; Wong, Chung M; Arcaro, Kathleen F; Kannan, Kurunthachalam

    2007-06-01

    Synthetic musk compounds are used as additives in many consumer products, including perfumes, deodorants, and detergents. Earlier studies have reported the occurrence of synthetic musks in environmental and wildlife samples collected in the United States. In this study, human breast milk samples collected from Massachusetts, were analyzed for the determination of concentrations of synthetic musks such as musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene), musk ketone (4-tert-butyl-2,6-dimethyl-3,5-dinitroacetophenone), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[gamma]-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), and HHCB-lactone, the oxidation product of HHCB. In addition, we estimated the daily intake of synthetic musks by infants based on the ingestion rate of breast milk. Synthetic musks were found in most of the samples analyzed, and the concentrations ranged from < 2 to 150 ng musk xylene/g, < 2 to 238 ng musk ketone/ g, < 5 to 917 ng HHCB/g, < 5 to 144 ng AHTN/g, and < 10 to 88.0 ng HHCB-lactone/g, on a lipid weight basis. The concentrations of HHCB were higher than the concentrations of other synthetic musks in breast milk samples. The mean concentration of HHCB (220 ng/g, lipid weight) was 5 times greater than the concentrations reported 10 years ago for breast milk samples collected in Germany and Denmark. Maternal age was not correlated with the concentrations of musk xylene, musk ketone, HHCB, or AHTN. There was a trend of decreasing concentrations of musk xylene, musk ketone, HHCB, and AHTN, with the number of children previously breast-fed, although the correlation was not significant. Based on average daily ingestion rate of breast milk, an infant is estimated to ingest 297 +/- 229 ng musk xylene, 780 +/- 805 ng musk ketone, 1830 +/- 1170 ng HHCB, 565 +/- 614 ng AHTN, and 649 +/- 598 ng HHCB-lactone per day. The ingestion rate of synthetic musks by infants in the United States is

  12. Process for gasification using a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1980-01-01

    A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  13. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  14. Synthetic cannabinoids: analysis and metabolites.

    PubMed

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  15. DNA recognition by synthetic constructs.

    PubMed

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-01

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability.

  16. Synthetic microbial ecosystems for biotechnology.

    PubMed

    Pandhal, Jagroop; Noirel, Josselin

    2014-06-01

    Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

  17. Cell microencapsulation with synthetic polymers

    PubMed Central

    Olabisi, Ronke M

    2015-01-01

    The encapsulation of cells into polymeric microspheres or microcapsules has permitted the transplantation of cells into human and animal subjects without the need for immunosuppressants. Cell-based therapies use donor cells to provide sustained release of a therapeutic product, such as insulin, and have shown promise in treating a variety of diseases. Immunoisolation of these cells via microencapsulation is a hotly investigated field, and the preferred material of choice has been alginate, a natural polymer derived from seaweed due to its gelling conditions. Although many natural polymers tend to gel in conditions favorable to mammalian cell encapsulation, there remain challenges such as batch to batch variability and residual components from the original source that can lead to an immune response when implanted into a recipient. Synthetic materials have the potential to avoid these issues; however, historically they have required harsh polymerization conditions that are not favorable to mammalian cells. As research into microencapsulation grows, more investigators are exploring methods to microencapsulate cells into synthetic polymers. This review describes a variety of synthetic polymers used to microencapsulate cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 846–859, 2015. PMID:24771675

  18. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  19. Nano-enabled synthetic biology

    PubMed Central

    Doktycz, Mitchel J; Simpson, Michael L

    2007-01-01

    Biological systems display a functional diversity, density and efficiency that make them a paradigm for synthetic systems. In natural systems, the cell is the elemental unit and efforts to emulate cells, their components, and organization have relied primarily on the use of bioorganic materials. Impressive advances have been made towards assembling simple genetic systems within cellular scale containers. These biological system assembly efforts are particularly instructive, as we gain command over the directed synthesis and assembly of synthetic nanoscale structures. Advances in nanoscale fabrication, assembly, and characterization are providing the tools and materials for characterizing and emulating the smallest scale features of biology. Further, they are revealing unique physical properties that emerge at the nanoscale. Realizing these properties in useful ways will require attention to the assembly of these nanoscale components. Attention to systems biology principles can lead to the practical development of nanoscale technologies with possible realization of synthetic systems with cell-like complexity. In turn, useful tools for interpreting biological complexity and for interfacing to biological processes will result. PMID:17625513

  20. Synthetic metabolons for metabolic engineering.

    PubMed

    Singleton, Chloe; Howard, Thomas P; Smirnoff, Nicholas

    2014-05-01

    It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular location or minimizing the escape of reactive intermediates. Metabolons can be formed by relatively loose non-covalent protein-protein interaction, anchorage to membranes, and (in bacteria) by encapsulation of enzymes in protein-coated microcompartments. Evidence that non-coated metabolons are effective at channelling substrates is scarce and difficult to obtain. In plants there is strong evidence that small proportions of glycolytic enzymes are associated with the outside of mitochondria and are effective in substrate channelling. More recently, synthetic metabolons, in which enzymes are scaffolded to synthetic proteins or nucleic acids, have been expressed in microorganisms and these provide evidence that scaffolded enzymes are more effective than free enzymes for metabolic engineering. This provides experimental evidence that metabolons may have a general advantage and opens the way to improving the outcome of metabolic engineering in plants by including synthetic metabolons in the toolbox.

  1. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  2. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  3. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Paraffin (synthetic). 175.250 Section 175.250 Food....250 Paraffin (synthetic). Synthetic paraffin may be safely used as an impregnant in, coating on, or... catalytically converted to a mixture of paraffin hydrocarbons. Lower molecular-weight fractions are removed...

  4. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Paraffin (synthetic). 175.250 Section 175.250 Food... for Use as Components of Coatings § 175.250 Paraffin (synthetic). Synthetic paraffin may be safely... process from carbon monoxide and hydrogen, which are catalytically converted to a mixture of...

  5. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Paraffin (synthetic). 175.250 Section 175.250 Food... for Use as Components of Coatings § 175.250 Paraffin (synthetic). Synthetic paraffin may be safely... process from carbon monoxide and hydrogen, which are catalytically converted to a mixture of...

  6. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Paraffin (synthetic). 175.250 Section 175.250 Food... for Use as Components of Coatings § 175.250 Paraffin (synthetic). Synthetic paraffin may be safely... process from carbon monoxide and hydrogen, which are catalytically converted to a mixture of...

  7. Different lattice geometries with a synthetic dimension

    NASA Astrophysics Data System (ADS)

    Suszalski, Dominik; Zakrzewski, Jakub

    2016-09-01

    The possibility of creating different geometries with the help of an extra synthetic dimension in optical lattices is studied. The additional linear potential together with Raman-assisted tunnelings are used to engineer well-controlled tunnelings between available states. The great flexibility of the system allows us to obtain different geometries of synthetic lattices with the possibility for adding synthetic gauge fields.

  8. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  9. Synthetic mononuclear nonheme iron-oxygen intermediates.

    PubMed

    Nam, Wonwoo

    2015-08-18

    Mononuclear nonheme iron-oxygen species, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, are key intermediates involved in dioxygen activation and oxidation reactions catalyzed by nonheme iron enzymes. Because these iron-oxygen intermediates are short-lived due to their thermal instability and high reactivity, it is challenging to investigate their structural and spectroscopic properties and reactivity in the catalytic cycles of the enzymatic reactions themselves. One way to approach such problems is to synthesize biomimetic iron-oxygen complexes and to tune their geometric and electronic structures for structural characterization and reactivity studies. Indeed, a number of biologically important iron-oxygen species, such as mononuclear nonheme iron(III)-superoxo, iron(III)-peroxo, iron(III)-hydroperoxo, iron(IV)-oxo, and iron(V)-oxo complexes, were synthesized recently, and the first X-ray crystal structures of iron(III)-superoxo, iron(III)-peroxo, and iron(IV)-oxo complexes in nonheme iron models were successfully obtained. Thus, our understanding of iron-oxygen intermediates in biological reactions has been aided greatly from the studies of the structural and spectroscopic properties and the reactivities of the synthetic biomimetic analogues. In this Account, we describe our recent results on the synthesis and characterization of mononuclear nonheme iron-oxygen complexes bearing simple macrocyclic ligands, such as N-tetramethylated cyclam ligand (TMC) and tetraamido macrocyclic ligand (TAML). In the case of iron-superoxo complexes, an iron(III)-superoxo complex, [(TAML)Fe(III)(O2)](2-), is described, including its crystal structure and reactivities in electrophilic and nucleophilic oxidative reactions, and its properties are compared with those of a chromium(III)-superoxo complex, [(TMC)Cr(III)(O2)(Cl)](+), with respect to its reactivities in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions. In the case of iron-peroxo intermediates

  10. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics.

    PubMed

    Bhowmick, Debasish; Mugesh, Govindasamy

    2015-11-01

    Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.

  11. Synthetic Fuels Corporation's progress in aiding synthetic fuels development

    SciTech Connect

    Not Available

    1984-07-11

    It has been difficult for the Corporation to make progress toward the goals of the Energy Security Act of June 1980 because of the changing economic and energy conditions. Relative to the 1987 production goal of 500,000 barrels of crude oil equivalent per day, the Corporation had awarded contracts for two projects expected to have a total production equivalent of 9500 barrels of crude oil per day. Including these two projects, the Corporation has said that it plans to award by early 1985 up to $14.8 billion in financial assistance for about 12 projects representing a diverse range of technologies, which would have a combined total production of about 132,000 barrels of crude oil equivalent per day. These plans may be affected by a recent administration proposal to rescind $9 billion of the Corporation's remaining unobligated funds. Private industry officials said that synthetic fuels projects have been abandoned or postponed primarily because of an unfavorable economic climate, a world oil glut that has caused declines in crude oil prices, the uncertainty of future crude oil prices, and the large capital investment needed for project construction. These officials also said that 1982 tax legislation, by reducing the after-tax return on investment, has also caused industry to abandon or delay going forward with synthetic fuels projects.

  12. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  13. Synthetic Biology Guides Biofuel Production

    PubMed Central

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  14. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  15. Synthetic Studies in Phytochrome Chemistry

    PubMed Central

    Jacobi, Peter A.; Adel Odeh, Imad M.; Buddhu, Subhas C.; Cai, Guolin; Rajeswari, Sundaramoorthi; Fry, Douglas; Zheng, Wanjun; DeSimone, Robert W.; Guo, Jiasheng; Coutts, Lisa D.; Hauck, Sheila I.; Leung, Sam H.; Ghosh, Indranath; Pippin., Douglas

    2008-01-01

    An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1. PMID:18633455

  16. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  17. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... specifications: Arsenic (as As), not more than 3 parts per million. Lead (as Pb), not more than 10 parts per... use shall conform to the following specifications: Arsenic (as As), not more than 5 parts per...

  18. 21 CFR 73.200 - Synthetic iron oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... specifications: Arsenic (as As), not more than 3 parts per million. Lead (as Pb), not more than 10 parts per... use shall conform to the following specifications: Arsenic (as As), not more than 5 parts per...

  19. Behavior of a synthetic nickel matte under suspension smelting conditions

    SciTech Connect

    Jyrkoenen, S.; Jokilaakso, A.

    1998-11-01

    A single-particle laminar-flow technique was used to study oxidation reactions of a synthetic nickel matte. The matte was granulated, ground and screened into small size fractions three of which were used namely < 37 micrometers, 62--88 micrometers and 125--177 micrometers. The gas preheating temperatures ranged from 500 to 1100 C and the reaction gas compositions varied between N{sub 2} + 21 and 75 vol% O{sub 2}. Chemical analysis of the particles was used to determine the oxidation behavior of the material, and optical and scanning electron microscopy were used to detect particle morphology, internal composition and structure. The best sulfur removal from the synthetic nickel matte was achieved with the finest size fraction. Also, the ignition temperature was strongly dependent on the particle size: particles of the fine size fraction ignited at the least oxidizing conditions. The particle disintegration took place when using reaction gas with higher oxygen content than 21 vol% and the phenomenon increased with increasing oxygen content of the reaction gas.

  20. Catalysts from synthetic genetic polymers.

    PubMed

    Taylor, Alexander I; Pinheiro, Vitor B; Smola, Matthew J; Morgunov, Alexey S; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M; Herdewijn, Piet; Holliger, Philipp

    2015-02-19

    The emergence of catalysis in early genetic polymers such as RNA is considered a key transition in the origin of life, pre-dating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (arabino nucleic acids, ANA; 2'-fluoroarabino nucleic acids, FANA; hexitol nucleic acids, HNA; and cyclohexene nucleic acids, CeNA) directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on Earth and elsewhere in the Universe.

  1. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. PMID:27284033

  2. A Synthetic Multicellular Memory Device.

    PubMed

    Urrios, Arturo; Macia, Javier; Manzoni, Romilde; Conde, Núria; Bonforti, Adriano; de Nadal, Eulàlia; Posas, Francesc; Solé, Ricard

    2016-08-19

    Changing environments pose a challenge to living organisms. Cells need to gather and process incoming information, adapting to changes in predictable ways. This requires in particular the presence of memory, which allows different internal states to be stored. Biological memory can be stored by switches that retain information on past and present events. Synthetic biologists have implemented a number of memory devices for biological applications, mostly in single cells. It has been shown that the use of multicellular consortia provides interesting advantages to implement biological circuits. Here we show how to build a synthetic biological memory switch using an eukaryotic consortium. We engineered yeast cells that can communicate and retain memory of changes in the extracellular environment. These cells were able to produce and secrete a pheromone and sense a different pheromone following NOT logic. When the two strains were cocultured, they behaved as a double-negative-feedback motif with memory. In addition, we showed that memory can be effectively changed by the use of external inputs. Further optimization of these modules and addition of other cells could lead to new multicellular circuits that exhibit memory over a broad range of biological inputs. PMID:27439436

  3. The major synthetic evolutionary transitions.

    PubMed

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431528

  4. Catalysts from synthetic genetic polymers

    PubMed Central

    Taylor, Alexander I.; Pinheiro, Vitor B.; Smola, Matthew J.; Morgunov, Alexey S.; Peak-Chew, Sew; Cozens, Christopher; Weeks, Kevin M.; Herdewijn, Piet; Holliger, Philipp

    2014-01-01

    The emergence of catalysis in early genetic polymers like RNA is considered a key transition in the origin of life1, predating the appearance of protein enzymes. DNA also demonstrates the capacity to fold into three-dimensional structures and form catalysts in vitro2. However, to what degree these natural biopolymers comprise functionally privileged chemical scaffolds3 for folding or the evolution of catalysis is not known. The ability of synthetic genetic polymers (XNAs) with alternative backbone chemistries not found in nature to fold into defined structures and bind ligands4 raises the possibility that these too might be capable of forming catalysts (XNAzymes). Here we report the discovery of such XNAzymes, elaborated in four different chemistries (ANA (arabino nucleic acids)5, FANA (2′-fluoroarabino nucleic acids)6, HNA (hexitol nucleic acids) and CeNA (cyclohexene nucleic acids)7 directly from random XNA oligomer pools, exhibiting in trans RNA endonuclease and ligase activities. We also describe an XNA-XNA ligase metalloenzyme in the FANA framework, establishing catalysis in an entirely synthetic system and enabling the synthesis of FANA oligomers and an active RNA endonuclease FANAzyme from its constituent parts. These results extend catalysis beyond biopolymers and establish technologies for the discovery of catalysts in a wide range of polymer scaffolds not found in nature8. Evolution of catalysis independent of any natural polymer has implications for the definition of chemical boundary conditions for the emergence of life on earth and elsewhere in the universe9. PMID:25470036

  5. The major synthetic evolutionary transitions.

    PubMed

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

  6. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  7. Synthetic population system user guide

    SciTech Connect

    Roberts, D.J.

    1998-03-01

    The Los Alamos National Laboratory (LANL) TRansportation Analysis SIMulatiuon System (TRANSIMS) synthetic population system (SYN) is designed to produce populations (family households, non-family households, and group quarters) that are statistically equivalent to actual populations when compared at the level of block group or higher. The methodology used by this system is described in a report entitled Creating Synthetic Baseline Populations. The inputs to the system are US Census Bureau data (STF3A and PUMS) and MABLE/GEOCORR data. Census Bureau STF3A and PUMS data formats are commonly used and are available on CD-ROM from the Census Bureau. These data inputs will not be described in any detail in this guide. The primary function of MABLE/GEOCORR data is to cross-reference STF3 block group data to PUMS areas. The outputs of the system are files that contain family household, non-family household, and group quarters data in the form of household and person records. SYN will run on a variety of Unix platforms.

  8. Synthetic vision display evaluation studies

    NASA Technical Reports Server (NTRS)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  9. CFIT prevention using synthetic vision

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.

    2003-09-01

    In commercial aviation, over 30 percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot's ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach / departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.

  10. CFIT Prevention Using Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.

    2003-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.

  11. Towards developing algal synthetic biology.

    PubMed

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.

  12. Synthetic biology in Streptomyces bacteria.

    PubMed

    Medema, Marnix H; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that the potential of Streptomyces species for the production of valuable secondary metabolites is even larger than previously realized. Accessing this rich genomic resource to discover new compounds by activating "cryptic" pathways is an interesting challenge for synthetic biology. This approach is facilitated by the inherent natural modularity of secondary metabolite biosynthetic pathways, at the level of individual enzymes (such as modular polyketide synthases), but also of gene cassettes/operons and entire biosynthetic gene clusters. It also benefits from a long tradition of molecular biology in Streptomyces, which provides a number of specific tools, ranging from cloning vectors to inducible promoters and translational control elements. In this chapter, we first provide an overview of the synthetic biology challenges in Streptomyces and then present the existing toolbox of molecular methods that can be employed in this organism. PMID:21601100

  13. Word selection affects perceptions of synthetic biology.

    PubMed

    Pearson, Brianna; Snell, Sam; Bye-Nagel, Kyri; Tonidandel, Scott; Heyer, Laurie J; Campbell, A Malcolm

    2011-01-01

    Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008). Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create". PMID:21777466

  14. Nature's chemicals and synthetic chemicals: Comparative toxicology

    SciTech Connect

    Ames, B.N.; Profet, M.; Gold, L.S. )

    1990-10-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50{percent} for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests.

  15. Synthetic cannabinoids as drugs of abuse.

    PubMed

    Ashton, John C

    2012-06-01

    In the last decade a number of products have appeared in various countries that contain synthetic cannabinoids. This article reviews the history of the sale of these drugs, and the evidence that they contain synthetic cannabinoids. The biochemistry of the synthetic cannabinoids identified thus far is discussed, including a discussion of chemical structures and biochemical targets. The cannabinoid receptor targets for these drugs are discussed, as well as other possible targets such as serotonin receptors. Evidence for the abuse potential of these drugs is reviewed. The toxicity of synthetic cannabinoids and cannabinoid products is reviewed and compared to that of the phytocannabinoid Δ9- tetrahydrocannabinol (THC). As cannabinoids are a structurally diverse class of drugs, it is concluded that synthetic cannabinoids should be classified by biological activity rather than by structure, and that if this isn't done, novel synthetic cannabinoids will continue to emerge that fall outside of current regulatory classification models.

  16. Nature's chemicals and synthetic chemicals: comparative toxicology.

    PubMed Central

    Ames, B N; Profet, M; Gold, L S

    1990-01-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50% for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests. PMID:2217211

  17. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  18. [Mephedrone: a new synthetic drug].

    PubMed

    Petit, Aymeric; Karila, Laurent; Sananes, Michel; Lejoyeux, Michel

    2013-10-01

    Mephedrone is a synthetic psychostimulant derived from cathinone belonging to the family of phenylethylamines. Sold on the Internet, it has recently emerged in France in recreational settings, and is mostly consumed by young people from the gay community and festive environment. Identified in 2008 by the European Monitoring Centre for Drugs and Drug Addiction as a new drug on the market, the use of mephedrone has attracted media attention following the suspicious deaths of two young adults in Sweden and in England. Its legal aspect, ease of getting it on the Internet and cheap price coupled and an alternative-seeking to other psychostimulants make mephedrone a prime target for these populations and a source of abuse, with psychiatric and somatic complications. There is no curative pharmacological treatment approved by health authorities.

  19. Synthetic aperture interferometry: error analysis

    SciTech Connect

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  20. Synthetic biology of antimicrobial discovery.

    PubMed

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  1. Synthetic biology: a utilitarian perspective.

    PubMed

    Smith, Kevin

    2013-10-01

    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio.

  2. Synthetic Jets in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Yao, C. S.; Chen, F. J.; Neuhart, D.; Harris, J.

    2007-01-01

    An oscillatory jet with zero net mass flow is generated by a cavity-pumping actuator. Among the three test cases selected for the Langley CFD validation workshop to assess the current CFD capabilities to predict unsteady flow fields, this basic oscillating jet flow field is the least complex and is selected as the first test case. Increasing in complexity, two more cases studied include jet in cross flow boundary layer and unsteady flow induced by suction and oscillatory blowing with separation control geometries. In this experiment, velocity measurements from three different techniques, hot-wire anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), documented the synthetic jet flow field. To provide boundary conditions for computations, the experiment also monitored the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature.

  3. Engineering life through Synthetic Biology.

    PubMed

    Chopra, Paras; Kamma, Akhil

    2006-01-01

    Synthetic Biology is a field involving synthesis of novel biological systems which are not generally found in nature. It has brought a new paradigm in science as it has enabled scientists to create life from the scratch, hence helping better understand the principles of biology. The viability of living organisms that use unnatural molecules is also being explored. Unconventional projects such as DNA playing tic-tac-toe, bacterial photographic film, etc. are taking biology to its extremes. The field holds a promise for mass production of cheap drugs and programming bacteria to seek-and-destroy tumors in the body. However, the complexity of biological systems make the field a challenging one. In addition to this, there are other major technical and ethical challenges which need to be addressed before the field realizes its true potential.

  4. Synthetically Simple, Highly Resilient Hydrogels

    PubMed Central

    Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.

    2014-01-01

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639

  5. Synthetic biology of antimicrobial discovery

    PubMed Central

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  6. Synthetic biology: a utilitarian perspective.

    PubMed

    Smith, Kevin

    2013-10-01

    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio. PMID:24010857

  7. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  8. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases.

    PubMed

    Ellefsen, Kayla N; Concheiro, Marta; Huestis, Marilyn A

    2016-05-01

    Synthetic cathinones are commonly abused novel psychoactive substances (NPS). We present a comprehensive systematic review addressing in vitro and in vivo synthetic cathinone pharmacokinetics, analytical methods for detection and quantification in biological matrices, and toxicological findings from human performance and postmortem toxicology cases. Few preclinical administration studies examined synthetic cathinone pharmacokinetic profiles (absorption, distribution, metabolism, and excretion), and only one investigated metabolite pharmacokinetics. Synthetic cathinone metabolic profiling studies, primarily with human liver microsomes, elucidated metabolite structures and identified suitable biomarkers to extend detection windows beyond those provided by parent compounds. Generally, cathinone derivatives underwent ketone reduction, carbonylation of the pyrrolidine ring, and oxidative reactions, with phase II metabolites also detected. Reliable analytical methods are necessary for cathinone identification in biological matrices to document intake and link adverse events to specific compounds and concentrations. NPS analytical methods are constrained in their ability to detect new emerging synthetic cathinones due to limited commercially available reference standards and continuous development of new analogs. Immunoassay screening methods are especially affected, but also gas-chromatography and liquid-chromatography mass spectrometry confirmation methods. Non-targeted high-resolution-mass spectrometry screening methods are advantageous, as they allow for retrospective data analysis and easier addition of new synthetic cathinones to existing methods. Lack of controlled administration studies in humans complicate interpretation of synthetic cathinones in biological matrices, as dosing information is typically unknown. Furthermore, antemortem and postmortem concentrations often overlap and the presence of other psychoactive substances are typically found in combination

  9. Novel synthetic chalcones induces apoptosis in human glioblastoma cells.

    PubMed

    Bittencourt, Lucas Felipe Fernandes; Oliveira, Karen Andrinéia de; Cardoso, Carine Bropp; Lopes, Flávia Garcia; Dal-Cim, Tharine; Chiaradia-Delatorre, Louise Domeneghini; Mascarello, Alessandra; Maluf, Sharbel Weidner; Yunes, Rosendo Augusto; Garcez, Ricardo Castilho; Tasca, Carla Inês; Nedel, Cláudia Beatriz

    2016-05-25

    Glioblastoma multiforme is the main and most frequent tumor in adults' central nervous system. With a survival average of 5% two years after diagnosis, this type of cancer is a main health problem. Substances like the chalcones have been tested in order to develop new treatments. Here, we studied the effects of three synthetic chalcones (A23, C31 and J11) on A172 and surgery obtained-glioma cells. All chalcones showed a decrease in cell viability, mainly C31. An increase in apoptosis levels with no further increase of necrosis was observed. This augmentation may be linked to the high oxidative effect found, caused by the increased presence of reactive oxygen species and nitric oxide production. Cell cycle distribution showed an arrest at G0/G1 and S phases, suggesting that C31 interferes in cell cycle control. Our results shall aid in directing future research with this substance and its antitumor effect.

  10. Synthesis and properties of synthetic fulvic acid derived from hematoxylin

    NASA Astrophysics Data System (ADS)

    Litvin, Valentina A.; Minaev, Boris F.; Baryshnikov, Gleb V.

    2015-04-01

    A model fulvic acid (FA) was synthesized from a natural dye, hematoxylin, in a slow oxidative polymerization/condensation reaction catalysed by OH- at pH ca. 12. The resulting dark-brown product, acidified to pH ca. 2, did not precipitate from the reaction solution. It was isolated and purified by cation-exchange resin. Its physicochemical and spectroscopic properties, as determined by means of elemental analysis, molecular weight analyses, Fourier transform infra red (FTIR) and ultraviolet-visible (UV-VIS) spectroscopy, X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, showed a close resemblance to natural FA. The similarity and differences between synthetic fulvic acids derived from hematoxylin and the natural fulvic acids substances are discussed. Quantum-chemical calculations of the supposed primary oxidation products of hematoxylin are performed and compared with observations.

  11. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma

    PubMed Central

    Cottini, Francesca; Hideshima, Teru; Suzuki, Rikio; Tai, Yu-Tzu; Bianchini, Giampaolo; Richardson, Paul G.; Anderson, Kenneth C.; Tonon, Giovanni

    2015-01-01

    Ongoing DNA damage is a common feature of epithelial cancers. Here we show that tumor cells derived from multiple myeloma (MM), a disease of clonal plasma cells, demonstrate DNA replicative stress leading to DNA damage. We identified a poor prognosis subset of MM with extensive chromosomal instability and replicative stress which rely on ATR to compensate for DNA replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers MM cell apoptosis. We show that oncogenes such as MYC induce DNA damage in MM cells not only by increased replicative stress, but also via increased oxidative stress, and that ROS-inducer piperlongumine triggers further DNA damage and apoptosis. Importantly, ATR inhibition combined with piperlongumine triggers synergistic MM cytotoxicity. This synthetic lethal approach, enhancing oxidative stress while concomitantly blocking replicative stress response, provides a novel combination targeted therapy to address an unmet medical need in this subset of MM. PMID:26080835

  12. 21 CFR 186.1300 - Ferric oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric oxide. 186.1300 Section 186.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD... as the mineral hematite. It may be prepared synthetically by heating brown iron hydroxide oxide....

  13. Correlation of the oxidation state of cerium in sol?gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies

    NASA Astrophysics Data System (ADS)

    Assefa, Zerihun; Haire, R. G.; Caulder, D. L.; Shuh, D. K.

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce 3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 °C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 °C and up to ˜1000 °C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 °C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  14. Opportunities for microfluidic technologies in synthetic biology

    PubMed Central

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed. PMID:19474079

  15. 78 FR 22209 - Additional Synthetic Drug Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... COMMISSION 10 CFR Part 26 Additional Synthetic Drug Testing AGENCY: Nuclear Regulatory Commission. ACTION... NRC amend its Fitness for Duty program regulations to amend drug testing requirements to test for additional synthetic drugs currently not included in the regulations. The NRC determined that the...

  16. Synthetic diagnostics platform for fusion plasmas (invited)

    NASA Astrophysics Data System (ADS)

    Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.; Chen, M.

    2016-11-01

    A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

  17. Synthetic therapeutic gene circuits in mammalian cells.

    PubMed

    Ye, Haifeng; Fussenegger, Martin

    2014-08-01

    In the emerging field of synthetic biology, scientists are focusing on designing and creating functional devices, systems, and organisms with novel functions by engineering and assembling standardised biological building blocks. The progress of synthetic biology has significantly advanced the design of functional gene networks that can reprogram metabolic activities in mammalian cells and provide new therapeutic opportunities for future gene- and cell-based therapies. In this review, we describe the most recent advances in synthetic mammalian gene networks designed for biomedical applications, including how these synthetic therapeutic gene circuits can be assembled to control signalling networks and applied to treat metabolic disorders, cancer, and immune diseases. We conclude by discussing the various challenges and future prospects of using synthetic mammalian gene networks for disease therapy.

  18. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  19. Development of synthetic lethality anticancer therapeutics.

    PubMed

    Fang, Bingliang

    2014-10-01

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy.

  20. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  1. Synthetic biology: an emerging engineering discipline.

    PubMed

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  2. Synthetic mammalian gene circuits for biomedical applications.

    PubMed

    Ye, Haifeng; Aubel, Dominique; Fussenegger, Martin

    2013-12-01

    Synthetic biology is the science of reassembling cataloged and standardized biological items in a systematic and rational manner to create and engineer functional biological designer devices, systems and organisms with novel and useful, preferably therapeutic functions. Synthetic biology has significantly advanced the design of complex genetic networks that can reprogram metabolic activities in mammalian cells and provide novel therapeutic strategies for future gene-based and cell-based therapies. Synthetic biology-inspired therapeutic strategies provide new opportunities for improving human health in the 21st century. This review covers the most recent synthetic mammalian circuits designed for therapy of diseases such as metabolic disorders, cancer, and immune disorders. We conclude by discussing current challenges and future perspectives for biomedical applications of synthetic mammalian gene networks.

  3. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  4. Nanostructures from Synthetic Genetic Polymers

    PubMed Central

    Beuron, Fabienne; Peak‐Chew, Sew‐Yeu; Morris, Edward P.; Herdewijn, Piet

    2016-01-01

    Abstract Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano‐objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2′‐fluro‐2′‐deoxy‐ribofuranose nucleic acid (2′F‐RNA), 2′‐fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all‐FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano‐objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability. PMID:26992063

  5. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  6. Electrospun Synthetic Polypeptide Nanofibrous Biomaterials

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan; Haynie, Donald

    2011-03-01

    Water-insoluble nanofiber mats of synthetic polypeptides of defined composition have been prepared from fibers electrospun from aqueous solution in the absence of organic co-solvents. 20-50 kDa poly(L-glutamate, L-tyrosine) 4:1 (PLGY) but not 15-50 kDa or 50-100 kDa poly(L-glutamate) was spinnable at 20-55% (w/v) polymer in water. Applied voltage and needle-collector distance were crucial for spinnability. Attractive fibers were obtained at 50% polymer. Fiber diameter and mat morphology have been characterized by electron microscopy. Exposure of spun fiber mats to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), which reacts with carboxylate, decreased fiber solubility. Fluorescein-conjugated poly(L-lysine) (FITC-PLL) but not the fluorophore alone was able bind PLGY fiber mats electrostatically, judging by fluorescence microscopy. Key advances of this work are the avoidance of an animal source of peptides and of an inorganic co-solvent to achieve polypeptide spinnability. Polypeptide fiber mats are a promising type of nano-structured biomaterial for applications in biomedicine and biotechnology.

  7. Disease, dysfunction, and synthetic biology.

    PubMed

    Holm, Sune

    2014-08-01

    Theorists analyzing the concept of disease on the basis of the notion of dysfunction consider disease to be dysfunction requiring. More specifically, dysfunction-requiring theories of disease claim that for an individual to be diseased certain biological facts about it must be the case. Disease is not wholly a matter of evaluative attitudes. In this paper, I consider the dysfunction-requiring component of Wakefield's hybrid account of disease in light of the artifactual organisms envisioned by current research in synthetic biology. In particular, I argue that the possibility of artifactual organisms and the case of oncomice and other bred or genetically modified strains of organism constitute a significant objection to Wakefield's etiological account of the dysfunction requirement. I then develop a new alternative understanding of the dysfunction requirement that builds on the organizational theory of function. I conclude that my suggestion is superior to Wakefield's theory because it (a) can accommodate both artifactual and naturally evolved organisms, (b) avoids the possibility of there being a conflict between what an organismic part is supposed to do and the health of the organism, and (c) provides a nonarbitrary and practical way of determining whether dysfunction occurs.

  8. Synthetic polymers for solar harvesting.

    PubMed

    Ghiggino, Kenneth P; Bell, Toby D M; Hooley, Emma N

    2012-01-01

    Synthetic polymers incorporating appropriate chromophores can act as light harvesting antennae for artificial photosynthetic systems. The photophysical processes occurring in a polymer based on phenylene vinylene have been investigated at the single chain level and in bulk solution to study energy transfer processes. Most single chains of an alternating copolymer of 2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene and 1,4-phenylene vinylene (alt-co-MEH-PPV) dispersed in a transparent polymer matrix act as single chromophore emitters demonstrating that energy transfer is an efficient process in these polymers. However for individual polymer chains there are fluctuations in emission intensity ('blinking') and shifts in emission spectra, decay lifetimes and emission dipole orientation occurring on a time-scale of tens of seconds. Fluorescence blinking also occurs on a sub-millisecond time-scale and follows exponential kinetics, whereas the longer blinking is better described by a power law. These observations can be interpreted as arising from environmental relaxation processes and/or changes in the emitter and demonstrate the wide distribution of photophysical behaviours that can be observed among the individual molecules of a polymer sample. The relevance of these studies to the application of polymer materials for solar harvesting is highlighted.

  9. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock-Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen-Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  10. The major synthetic evolutionary transitions

    PubMed Central

    Solé, Ricard

    2016-01-01

    Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528

  11. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons. PMID:27281214

  12. Effects of the Synthetic Neurosteroid

    PubMed Central

    Parésys, Lucie; Hoffmann, Kerstin; Bianchi, Massimiliano; Villey, Isabelle; Baulieu, Etienne-Emile; Fuchs, Eberhard

    2016-01-01

    Background: Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3β-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3β-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. Methods: During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. Results: We found that treatment with 3β-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3β-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3β-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. Conclusions: Taken together, these data strongly suggest

  13. New synthetic drugs in addictovigilance.

    PubMed

    Chavant, François; Boucher, Alexandra; Le Boisselier, Reynald; Deheul, Sylvie; Debruyne, Danièle

    2015-01-01

    New substances, also known as "designer drugs" or "legal highs" are increasingly available to drug users. Two hundred and fifteen hitherto unlisted substances have been notified by European Union member states since 2005. These synthetic drugs, which have been developed to side-step the legislation on drugs, are analogues or derivatives of existing drugs and medications. The availability of these "legal highs", sold on Internet under various denominations such as bath salt, plant fertilizer, chemical not intended for human use, or spice, is unlimited. The effects felt by users vary, and the substances may be stimulant, entactogenic, hallucinogenic, psychedelic or dissociative. The pharmacological targets also vary, and may be either the increase of extracellular levels of neurotransmitters via different mechanisms (reuptake inhibition, stimulation of intracellular release) or else fixation on specific receptors. Several chemical classes, themselves divided into sub-classes, are involved: phenethylamines, tryptamines, piperazines, cathinones, cannabinoids etc. The toxicity of the main members of these categories is increasingly well known, the most deleterious being behavioural effects, physical manifestations, and cardiovascular consequences. However, small variations in their chemical structure can generate effects that are quantitatively different, thus enhancing their toxicity or addictive potential, and much remains to be achieved in terms of knowledge about these new drugs. These substances are indeed present on the French territory, as shown by data provided by the Observatoire Français des Drogues et Toxicomanies, and notifications by the French Addictovigilance network. Screening in clinical toxicology laboratories is not widespread, since these molecules are not detected by the standard screening tests, so that there is probably an under-estimation of the use of these new drugs. The legislation on these substances changes regularly, with more and more

  14. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  15. Synthetic biology: mapping the scientific landscape.

    PubMed

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves.

  16. Synthetic Biology: Mapping the Scientific Landscape

    PubMed Central

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  17. Ensemble Modeling of Hepatic Fatty Acid Metabolism with a Synthetic Glyoxylate Shunt

    PubMed Central

    Dean, Jason T.; Rizk, Matthew L.; Tan, Yikun; Dipple, Katrina M.; Liao, James C.

    2010-01-01

    Abstract The liver plays a central role in maintaining whole body metabolic and energy homeostasis by consuming and producing glucose and fatty acids. Glucose and fatty acids compete for hepatic substrate oxidation with regulation ensuring glucose is oxidized preferentially. Increasing fatty acid oxidation is expected to decrease lipid storage in the liver and avoid lipid-induced insulin-resistance. To increase hepatic lipid oxidation in the presence of glucose, we previously engineered a synthetic glyoxylate shunt into human hepatocyte cultures and a mouse model and showed that this synthetic pathway increases free fatty acid β-oxidation and confers resistance to diet-induced obesity in the mouse model. Here we used ensemble modeling to decipher the effects of perturbations to the hepatic metabolic network on fatty acid oxidation and glucose uptake. Despite sampling of kinetic parameters using the most fundamental elementary reaction models, the models based on current metabolic regulation did not readily describe the phenotype generated by glyoxylate shunt expression. Although not conclusive, this initial negative result prompted us to probe unknown regulations, and malate was identified as inhibitor of hexokinase 2 expression either through direct or indirect actions. This regulation allows the explanation of observed phenotypes (increased fatty acid degradation and decreased glucose consumption). Moreover, the result is a function of pyruvate-carboxylase, mitochondrial pyruvate transporter, citrate transporter protein, and citrate synthase activities. Some subsets of these flux ratios predict increases in fatty acid and decreases in glucose uptake after glyoxylate expression, whereas others predict no change. Altogether, this work defines the possible biochemical space where the synthetic shunt will produce the desired phenotype and demonstrates the efficacy of ensemble modeling for synthetic pathway design. PMID:20409457

  18. Grand challenges in space synthetic biology

    PubMed Central

    Montague, Michael G.; Cumbers, John; Hogan, John A.

    2015-01-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  19. Synthetic Cathinones: Chemical Phylogeny, Physiology, and Neuropharmacology

    PubMed Central

    De Felice, Louis J; Glennon, Richard A; Negus, Sidney S

    2014-01-01

    This mini-review summarizes the history of cathinone and its synthesized derivatives from early records to the present day, including the appearance of synthetic cathinones in the drug combination known as bath salts. Bath salts may consist of one compound (MDPV) or combinations of MDPV and one or more other synthetic cathinones, which may also appear alone without MDPV. We briefly review recent in vitro studies of bath salts components alone or in combination, focusing on pharmacological and biophysical studies. Finally we summarize new data from in vivo procedures that characterize the abuse-related neurochemical and behavioral effects of synthetic cathinones in rats. PMID:24231923

  20. Grand challenges in space synthetic biology.

    PubMed

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  1. Synthetic promoter design for new microbial chassis

    PubMed Central

    Gilman, James; Love, John

    2016-01-01

    The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design. PMID:27284035

  2. Grand challenges in space synthetic biology.

    PubMed

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.

  3. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil

    PubMed Central

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-01-01

    ABSTRACT A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision. PMID:27365537

  4. Biological Applications of Synthetic Nanomachines

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel Robert

    The field of synthetic nano/microscale propulsion devices has been rapidly expanding because of their ability to possess many key features necessary for bioanalytical applications on biological microchip devices and targeted in vivo delivery. Past studies focused on developing powerful and easily controllable motors by investigating different propulsion schemes (e.g. electrophoretic, bubble release, magnetically propelled) for use in physiological environments. These engineering advancements and the nanomotors inherit capabilities have allowed for their use in three research areas: motion-based biosensing, cellular and biomolecular isolation, and targeted drug delivery. The first research area investigates a unique speed increase of electrophoretically propelled nanomotors when in the presence of silver ions. Au/Pt nanomotors propel by the electrocatalytic decomposition of H2O2 fuel. While most metal ions resulted in a decrease in speed to near Brownian levels, Ag+ has shown a steady increase in speed from 10microm/s to 52microm/s over the micro-molar range. This phenomenon was exploited by tagging nucleic acid detector probes with Ag nanoparticles when conducting simple sandwich assays. This resulted in a cheap, fast, and sensitive, motion-based readout of the concentration-dependent DNA target present on the sandwich assay. The second area of research involved the bioisolation of nucleic acids, protein, bacteria, and cancer cells by bubble-based microrockets. These microrockets contain a platinum interior to catalyze peroxide fuel and can be easily functionalized with antibodies and nucleic acid capture probes to isolate target biomolecules. The motion of these micro-isolation devices creates convection for faster isolation and can be used to transport the biomolecules to a clean environment. The third area of research is focused on targeted drug delivery by various propulsion methods. The ability of nanomotors to transport PLGA and liposome drug vesicles to

  5. [Progress in synthetic biology of "973 Funding Program" in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  6. [Synthetic lethal genes to mutant p53].

    PubMed

    Tongyang, Liu; Haiqiang, Guo; Meiyan, Zhu; Yingze, Huang; Shuting, Jia; Ying, Luo; Jihong, Zhang

    2015-04-01

    Targeted therapy has become a powerful approach for cancer treatment. Better understanding of oncogenes as well as synthetic lethal interactions with oncogenes will lead to new strategies for tumor-specific treatment. It is well known that mutant p53 plays an important role in tumorigenesis and tumor development. Thus, understanding the synthetic lethal relationship between p53 mutations and interacting genes in tumor is critical for the personalized treatments of p53 mutant tumors. Synthetic lethal genes to mutant p53 can be divided into cell cycle regulators and non-cell cycle regulators. This paper review show these two types of target genes contribute to synthetic lethal interactions with p53 mutations and potential applications of these interactions in anticancer therapy.

  7. Eliminating Clutter in Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    Diffusion technique reduces clutter noise in coherent SAR (synthetic-aperature radar) image signal without degrading its resolution. Technique makes radar-mapped terrain features more obvious.It also has potential application in holographic microscopy.

  8. The emerging world of synthetic genetics.

    PubMed

    Chaput, John C; Yu, Hanyang; Zhang, Su

    2012-11-21

    For over 20 years, laboratories around the world have been applying the principles of Darwinian evolution to isolate DNA and RNA molecules with specific ligand-binding or catalytic activities. This area of synthetic biology, commonly referred to as in vitro genetics, is made possible by the availability of natural polymerases that can replicate genetic information in the laboratory. Moving beyond natural nucleic acids requires organic chemistry to synthesize unnatural analogues and polymerase engineering to create enzymes that recognize artificial substrates. Progress in both of these areas has led to the emerging field of synthetic genetics, which explores the structural and functional properties of synthetic genetic polymers by in vitro evolution. This review examines recent advances in the Darwinian evolution of artificial genetic polymers and their potential downstream applications in exobiology, molecular medicine, and synthetic biology.

  9. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi; Ganguly, Kumkum; Silks, Louis A.

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  10. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  11. Validation and acceptance of synthetic infrared imagery

    NASA Astrophysics Data System (ADS)

    Smith, Moira I.; Bernhardt, Mark; Angell, Christopher R.; Hickman, Duncan; Whitehead, Philip; Patel, Dilip

    2004-08-01

    This paper describes the use of an image query database (IQ-DB) tool as a means of implementing a validation strategy for synthetic long-wave infrared images of sea clutter. Specifically it was required to determine the validity of the synthetic imagery for use in developing and testing automatic target detection algorithms. The strategy adopted for exploiting synthetic imagery is outlined and the key issues of validation and acceptance are discussed in detail. A wide range of image metrics has been developed to achieve pre-defined validation criteria. A number of these metrics, which include post processing algorithms, are presented. Furthermore, the IQ-DB provides a robust mechanism for configuration management and control of the large volume of data used. The implementation of the IQ-DB is reviewed in terms of its cardinal point specification and its central role in synthetic imagery validation and EOSS progressive acceptance.

  12. Synthetic Aperture Radar Missions Study Report

    NASA Technical Reports Server (NTRS)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  13. Synthetic biology of fungal natural products

    PubMed Central

    Mattern, Derek J.; Valiante, Vito; Unkles, Shiela E.; Brakhage, Axel A.

    2015-01-01

    Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools. PMID:26284053

  14. Standardization for natural product synthetic biology.

    PubMed

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  15. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  16. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    PubMed

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  17. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    PubMed

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow. PMID:24911500

  18. Synthetic jet actuation for load control

    NASA Astrophysics Data System (ADS)

    de Vries, H.; van der Weide, E. T. A.; Hoeijmakers, H. W. M.

    2014-12-01

    The reduction of wind turbine blade loads is an important issue in the reduction of the costs of energy production. Reduction of the loads of a non-cyclic nature requires so-called smart rotor control, which involves the application of distributed actuators and sensors to provide fast and local changes in aerodynamic performance. This paper investigates the use of synthetic jets for smart rotor control. Synthetic jets are formed by ingesting low-momentum fluid from the boundary layer along the blade into a cavity and subsequently ejecting this fluid with a higher momentum. We focus on the observed flow phenomena and the ability to use these to obtain the desired changes of the aerodynamic properties of a blade section. To this end, numerical simulations and wind tunnel experiments of synthetic jet actuation on a non-rotating NACA0018 airfoil have been performed. The synthetic jets are long spanwise slits, located close to the trailing edge and directed perpendicularly to the surface of the airfoil. Due to limitations of the present experimental setup in terms of performance of the synthetic jets, the main focus is on the numerical flow simulations. The present results show that high-frequency synthetic jet actuation close to the trailing edge can induce changes in the effective angle of attack up to approximately 2.9°.

  19. Biomedical synthetic biology: an overview for physicians.

    PubMed

    Keret, Ophir

    2013-06-01

    Synthetic bioiogy is a ,relatively new fieild of bologlcal research and development that focases on the engineering of genetic molecular machlnes wIth a specific predefined function. Plainly put the newly engineered organism functions as a machine. It can process information. manufature, heal and even diagnose. We just have to engineer It to do so. The famous quote "Biology Is the nanotechnology that works" is currently being put to the test on a worldwide scale. The application of these machines Is theoretically boundless. In laboratories worldwide synthetic biology technologies are being rationally designed to assist in diagnosis or disrupt disease mechnisms. In the not too distant future they are expected to reach the clinical setting. This new field should be distinguished from classic genetic engineering. The latter researches naturalfy found DNA segments via cloning. It is weakly associated with engineering. Synthetic biology focuses on the engineering of molecular biological machines for the benefit of mankind. This is done via synthetic (computer printed) DNA sequences, man-designed or altered in silico. In this article I will briefly introduce synthetic biology, elaborate on the BiobrickFoundation as an independent fast-growing synthetic biology-sharing movement, and report on selected developing applications for medicine.

  20. Synthetic cannabinoids and potential reproductive consequences

    PubMed Central

    Sun, Xiaofei; Dey, Sudhansu K.

    2013-01-01

    Increases in emergency room visits due to abuse of designer drugs, popularly known by the street names “K2” and “Spice,” are a cause for social, judicial, and clinical concerns. The psychoactive components in these herbal drugs mainly consist of different synthetic cannabinoids, and users of these street drugs are primarily within the age group of 12 to 20 years old. The abusive use of synthetic cannabinoids results in anxiety, nausea, vomiting, tachycardia, elevated blood pressure, tremors, seizures, hallucinations, and paranoid behavior, but the effects of maternal use of synthetic cannabinoids during pregnancy are ambiguous due to limited studies in humans and a relative short history of the drugs. In this review, we discuss the known and potential adverse effects of synthetic cannabinoids on human pregnancy using knowledge gathered from studies in mice and limited studies in humans. In mice, multiple sites and stages of pregnancy are potential targets of synthetic cannabinoids, including preimplantation embryo development, oviductal embryo transport, implantation, placentation, and parturition. It is anticipated that maternal use of synthetic cannabinoids would result in severely compromised female fertility and pregnancy outcome. PMID:23827241

  1. The Fifth Annual Sc2.0 and Synthetic Genomes Conference: Synthetic Genomes in High Gear.

    PubMed

    Walker, Roy S K; Cai, Yizhi

    2016-09-16

    The Sc2.0 project is perhaps the largest synthetic biology project in the public domain, and ultimately aims to construct a new version of the humble brewer's yeast, Saccharomyces cerevisiae. Each year, the Sc2.0 consortium gather to discuss progress in this ambitious project and highlight new developments at the forefront of synthetic genome engineering. This viewpoint summarizes some of the key moments of the 2016 conference, including updates on the Sc2.0 project itself, mammalian synthetic biology, DNA assembly automation, HGP-Write and a panel discussion on the social and ethical perspectives of synthetic biology. PMID:27633830

  2. Rhodium oxides in unusual oxidation states

    NASA Astrophysics Data System (ADS)

    Reisner, Barbara Alice

    measurements were used to verify this formal oxidation state. The synthetic methodology developed for the synthesis of rhodium oxides in high formal oxidation states has also been applied to the synthesis of other members of the platinum group metals. LiSr3RuO6, NaSr3RuO6, LiSr3IrO6, NaSr 3IrO6, LiSr3PtO6,and NaSr3PtO 6 were crystallized from mixed alkali metal-alkaline earth metal hydroxide fluxes. The synthesis and structural characterization of these materials is presented.

  3. Severe Toxicity Following Synthetic Cannabinoid Ingestion

    PubMed Central

    LAPOINT, J.; JAMES, L. P.; MORAN, C. L.; NELSON, L. S.; HOFFMAN, R. S.; MORAN, J. H.

    2014-01-01

    Objective To report a case of seizures and supraventricular tachycardia (SVT) following confirmed synthetic cannabinoid ingestion. Background Despite widespread use of legal synthetic cannabinoids, reports of serious toxicity following confirmed use of synthetic cannabinoids are rare. We report severe toxicity including seizures following intentional ingestion of the synthetic cannabinoid JWH-018 and detail confirmation by laboratory analysis. Case Report A healthy 48 year old man had a generalized seizure within thirty minutes of ingesting an ethanol mixture containing a white powder he purchased from the Internet in an attempt to get high. Seizures recurred and abated with lorazepam. Initial vital signs were: pulse, 106/min; BP, 140/88 mmHg; respirations, 22/min; temperature, 37.7 °C. A noncontrast computed tomography of the brain and EEG were negative, and serum chemistry values were normal. The blood ethanol concentration was 3.8 mg/dL and the CPK 2,649 U/L. Urine drug screening by EMIT was negative for common drugs of abuse, including tetrahydrocannabinol. On hospital day 1, he developed medically refractory SVT. The patient had no further complications and was discharged in his normal state of health 10 days after admission. The original powder was confirmed by gas chromatography mass spectrometry to be JWH-018, and a primary JWH-018 metabolite was detected in the patient’s urine (200 nM) using liquid chromatography tandem mass spectrometry. Discussion Synthetic cannabinoids are legal in many parts of the world and easily obtained over the Internet. Data on human toxicity are limited and real-time confirmatory testing is unavailable to clinicians. The potential for toxicity exists for users mistakenly associating the dose and side effect profiles of synthetic cannabinoids to those of marijuana. Conclusion Ingestion of JWH-018 can produce seizures and tachyarrhythmias. Clinicians, lawmakers, and the general public need to be aware of the potential for

  4. Carnosic acid biosynthesis elucidated by a synthetic biology platform.

    PubMed

    Ignea, Codruta; Athanasakoglou, Anastasia; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-03-29

    Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies. PMID:26976595

  5. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    PubMed Central

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  6. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes.

    PubMed

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  7. WISB: Warwick Integrative Synthetic Biology Centre

    PubMed Central

    McCarthy, John

    2016-01-01

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary ‘build to apply’ and ‘build to understand’ approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. PMID:27284024

  8. Volatility of synthetic oils in engines

    SciTech Connect

    Nepogod'ev, A.V.; Mitin, I.V.; Vipper, A.B.

    1984-01-01

    This article compares the volatilities of mineral and synthetic oils in automotive and tractor engines, and defines the conditions under which synthetic oils have substantial advantages in volatility over the polymer-compounded mineral oils. The oil vaporization rates in a Petter W-1 single-cylinder carburetor engine is measured by means of a specially developed procedure. The oils used to lubricate automotive and tractor engines in the northern and arctic regions consist of a lowviscosity mineral oil base stock compounded with a polymeric additive. It is determined that the main factor influencing the vaporization of oils in the engine is the distillation range of the oil; that synthetic and mineral oils that are similar in distillation range will vaporize at approximately the same rate; that the rate of oil vaporization depends to a considerable degree on the cylinder temperature; that the advantages of synthetic and semisynthetic oils in volatility in comparison with polymer-compounded mineral oils, will be greater for higher cylinder temperatures; and that the use of synthetic components is advisable in 5W/30 and 10W/30 oils intended for use in engines with upper cylinder temperatures above 150/sup 0/C and in 5W/30, 10W/30, and 15W/30 oils intended for use in engines with upper cylinder temperatures of 180-190/sup 0/C.

  9. WISB: Warwick Integrative Synthetic Biology Centre.

    PubMed

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia.

  10. Synthetic cathinones: a new public health problem.

    PubMed

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder". PMID:26074740

  11. Synthetic biology and the technicity of biofuels.

    PubMed

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic.

  12. WISB: Warwick Integrative Synthetic Biology Centre.

    PubMed

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. PMID:27284024

  13. [Treatment approaches for synthetic drug addiction].

    PubMed

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives. PMID:26394511

  14. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a mixture of solid hydrocarbons, paraffinic in...

  15. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is...

  16. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is...

  17. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is...

  18. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is...

  19. 40 CFR 49.158 - Synthetic minor source permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... already has synthetic minor source or synthetic minor HAP source status prior to the effective date of... of the following: (i) Allow you to maintain the synthetic minor status for your source through your... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Synthetic minor source permits....

  20. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions.

  1. Screening of pi-basic naphthalene and anthracene amplifiers for pi-acidic synthetic pore sensors.

    PubMed

    Hagihara, Shinya; Gremaud, Ludovic; Bollot, Guillaume; Mareda, Jiri; Matile, Stefan

    2008-04-01

    Synthetic ion channels and pores attract current attention as multicomponent sensors in complex matrixes. This application requires the availability of reactive signal amplifiers that covalently capture analytes and drag them into the pore. pi-Basic 1,5-dialkoxynaphthalenes (1,5-DAN) are attractive amplifiers because aromatic electron donor-acceptor (AEDA) interactions account for their recognition within pi-acidic naphthalenediimide (NDI) rich synthetic pores. Focusing on amplifier design, we report here the synthesis of a complete collection of DAN and dialkoxyanthracene amplifiers, determine their oxidation potentials by cyclic voltammetry, and calculate their quadrupole moments. Blockage experiments reveal that subtle structural changes in regioisomeric DAN amplifiers can be registered within NDI pores. Frontier orbital overlap in AEDA complexes, oxidation potentials, and, to a lesser extent, quadrupole moments are shown to contribute to isomer recognition by synthetic pores. Particularly important with regard to practical applications of synthetic pores as multianalyte sensors, we further demonstrate that application of the lessons learned with DAN regioisomers to the expansion to dialkoxyanthracenes provides access to privileged amplifiers with submicromolar activity.

  2. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  3. Parity-Time Synthetic Phononic Media.

    PubMed

    Christensen, J; Willatzen, M; Velasco, V R; Lu, M-H

    2016-05-20

    Classical systems containing cleverly devised combinations of loss and gain elements constitute extremely rich building units that can mimic non-Hermitian properties, which conventionally are attainable in quantum mechanics only. Parity-time (PT) symmetric media, also referred to as synthetic media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection.

  4. Simulation of realistic synthetic reflection sequences

    SciTech Connect

    Walden, A.T. )

    1993-04-01

    It is useful to be able to calculate synthetic primary reflection sequences from which to generate synthetic seismic sections which can be used for testing new processing algorithms. However, these synthetic reflection sequences should closely match real properties found in recent studies. Using the ARMA(1,1) model resulting from such studies to describe the correlation (or spectral) structure of the sequences, and by matching moments up to fourth order (since the sequences are non-Gaussian in practice), realistic sequences can be generated. A simple scheme is provided which also eliminate the necessity of throwing away large numbers of simulated values at start-up. The procedure is illustrated on three real sequences and is seen to reproduce all the important features.

  5. Alternate differencing technique for the synthetic method

    SciTech Connect

    Gelbard, E.M.; Khalil, H.

    1983-01-01

    Larsen and coworkers have shown that the effectiveness of the synthetic method is often determined by the techniques used to difference the diffusion equation, the equation taken, in current forms of the synthetic method, as the low-order approximation. They have also developed their own differencing technique. On the other hand, the Los Alamos (LA) approach generates point-centered diffusion difference equations, a feature which is inconvenient for the many people now using box-centered codes. More importantly, for the weighted-diamond scheme the LA method yields difference equations involving not only the scalar fluxes, but also the currents and, at this point, no way to eliminate the currents has been devised. A different differencing technique is proposed for the synthetic method, one which gives, for the XY weighted-diamond scheme, box-centered equations in the scalar flux alone.

  6. Parity-Time Synthetic Phononic Media.

    PubMed

    Christensen, J; Willatzen, M; Velasco, V R; Lu, M-H

    2016-05-20

    Classical systems containing cleverly devised combinations of loss and gain elements constitute extremely rich building units that can mimic non-Hermitian properties, which conventionally are attainable in quantum mechanics only. Parity-time (PT) symmetric media, also referred to as synthetic media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection. PMID:27258882

  7. Synthetic polymer-layer silicate clay composites

    SciTech Connect

    Carrado, K.A.; Elder, D.L.; Thiyagarajan, P.

    1995-07-01

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of water-soluble polyvinyl alcohol (PVA), a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two cellulosic polymers: hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). The molecular weight of polyvinyl alcohols had little effect on the success of hydrothermal hectorite synthesis, d-spacing, or amount of polymer incorporated; the basal spacings range from 19.5 {angstrom} to 20.8 {angstrom} and the percent of polymer incorporated ranges from 20.4 wt% to 23.0 wt%. Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {angstrom}, and less cationic PDDA is incorporated into hectorite (7.8 wt% organic) than the other neutral polymers (17.8-23.0 wt% organic). The basal spacing for synthetic HPMC-hectorite is the largest at 25.2 {angstrom}. Small angle neutron scattering was used to further examine the PVA-clay systems.

  8. Tuning the dials of Synthetic Biology

    PubMed Central

    Arpino, James A. J.; Hancock, Edward J.; Anderson, James; Barahona, Mauricio; Stan, Guy-Bart V.; Polizzi, Karen

    2013-01-01

    Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others. PMID:23704788

  9. A Personalist Ontological Approach to Synthetic Biology.

    PubMed

    Gómez-Tatay, Lucía; Hernández-Andreu, José Miguel; Aznar, Justo

    2016-07-01

    Although synthetic biology is a promising discipline, it also raises serious ethical questions that must be addressed in order to prevent unwanted consequences and to ensure that its progress leads toward the good of all. Questions arise about the role of this discipline in a possible redefinition of the concept of life and its creation. With regard to the products of synthetic biology, the moral status that they should be given as well as the ethically correct way to behave towards them are not clear. Moreover, risks that could result from a misuse of this technology or from an accidental release of synthetic organisms into the environment cannot be ignored; concerns about biosecurity and biosafety appear. Here we discuss these and other questions from a personalist ontological framework, which defends human life as an essential value and proposes a set of principles to ensure the safeguarding of this and other values that are based on it. PMID:26644292

  10. Axial superresolution by synthetic aperture generation

    NASA Astrophysics Data System (ADS)

    Micó, V.; García, J.; Zalevsky, Z.

    2008-12-01

    The use of tilted illumination onto the input object in combination with time multiplexing is a useful technique to overcome the Abbe diffraction limit in imaging systems. It is based on the generation of an expanded synthetic aperture that improves the cutoff frequency (and thus the resolution limit) of the imaging system. In this paper we present an experimental validation of the fact that the generation of a synthetic aperture improves not only the lateral resolution but also the axial one. Thus, it is possible to achieve higher optical sectioning of three-dimensional (3D) objects than that defined by the theoretical resolution limit imposed by diffraction. Experimental results are provided for two different cases: a synthetic object (micrometer slide) imaged by a 0.14 numerical aperture (NA) microscope lens, and a biosample (swine sperm cells) imaged by a 0.42 NA objective.

  11. Light-activated communication in synthetic tissues.

    PubMed

    Booth, Michael J; Schild, Vanessa Restrepo; Graham, Alexander D; Olof, Sam N; Bayley, Hagan

    2016-04-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  12. Light-activated communication in synthetic tissues

    PubMed Central

    Booth, Michael J.; Schild, Vanessa Restrepo; Graham, Alexander D.; Olof, Sam N.; Bayley, Hagan

    2016-01-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  13. Parity-Time Synthetic Phononic Media

    NASA Astrophysics Data System (ADS)

    Christensen, J.; Willatzen, M.; Velasco, V. R.; Lu, M.-H.

    2016-05-01

    Classical systems containing cleverly devised combinations of loss and gain elements constitute extremely rich building units that can mimic non-Hermitian properties, which conventionally are attainable in quantum mechanics only. Parity-time (P T ) symmetric media, also referred to as synthetic media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic P T synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection.

  14. Synthetic gene networks in plant systems.

    PubMed

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  15. Khat and synthetic cathinones: a review.

    PubMed

    Valente, Maria João; Guedes de Pinho, Paula; de Lourdes Bastos, Maria; Carvalho, Félix; Carvalho, Márcia

    2014-01-01

    For centuries, 'khat sessions' have played a key role in the social and cultural traditions among several communities around Saudi Arabia and most East African countries. The identification of cathinone as the main psychoactive compound of khat leaves, exhibiting amphetamine-like pharmacological properties, resulted in the synthesis of several derivatives structurally similar to this so-called natural amphetamine. Synthetic cathinones were primarily developed for therapeutic purposes, but promptly started being misused and extensively abused for their euphoric effects. In the mid-2000's, synthetic cathinones emerged in the recreational drug markets as legal alternatives ('legal highs') to amphetamine, 'ecstasy', or cocaine. Currently, they are sold as 'bath salts' or 'plant food', under ambiguous labels lacking information about their true contents. Cathinone derivatives are conveniently available online or at 'smartshops' and are much more affordable than the traditional illicit drugs. Despite the scarcity of scientific data on these 'legal highs', synthetic cathinones use became an increasingly popular practice worldwide. Additionally, criminalization of these derivatives is often useless since for each specific substance that gets legally controlled, one or more structurally modified analogs are introduced into the legal market. Chemically, these substances are structurally related to amphetamine. For this reason, cathinone derivatives share with this drug both central nervous system stimulating and sympathomimetic features. Reports of intoxication and deaths related to the use of 'bath salts' have been frequently described over the last years, and several attempts to apply a legislative control on synthetic cathinones have been made. However, further research on their pharmacological and toxicological properties is fully required in order to access the actual potential harm of synthetic cathinones to general public health. The present work provides a review on

  16. Spectroscopic studies of excitons in cuprous oxide: Natural crystals and synthetic thick films on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    2001-10-01

    We observed exciton photoluminescence from Cu2O natural bulk crystals under two-photon excitation to the 1s, as well as to the 2s level, over a wide temperature range. The direct recombination emission, denoted as Xo, and a phonon- assisted, electric-dipole radiative transition involving G-12 longitudinal optical phonons, denoted as Xo- G-12 , were observed for 1s excitation. We have studied the angular (at 1.8K) and temperature (from 1.8K to 297K) dependence of the time integrated photoluminescence intensity of both emission features. For resonant pumping to the 1s level, the direct emission is strongly enhanced at low temperature. It is forward directed, however, with an angular width substantially larger than the divergence of the excitation beam; excitation to the 2s level (which subsequently decays into a 1s level) results in a more isotropic angular distribution of Xo emission. The lifetime of the Xo emission resulting from resonant excitation to the 1s level at 1.8K is ~2ns, shorter than the decay time of thermalized orthoexcitons. The results support the idea that resonant two-photon excitation to the 1s level results primarily in a quadrupole-orthoexciton-polariton formation. A theory involving the Green's function and coupled photon-exciton wave equations was developed to simulate the coherent polariton propagation. To study excitons in a spatially confined geometry, we developed an ex situ growth technique to obtain single-crystal like Cu2O thick films on MgO substrates. The optical absorption spectrum exhibits the exciton absorption series up to n = 5p at low temperature. 1s orthoexciton direct emission and phonon-assisted emission features were observed to split into three (on MgO (110)) and two (on MgO (111)) peaks. The distortion of film crystal structure and the effective Hamiltonian including a deformation potential were used to explain the energy level splitting and shift of the 1s orthoexcitons in Cu2O films. Cu2O dots and waveguides were also prepared by the ex situ growth technique. Distinguishable exciton emission peaks were observed from the waveguides. Only broad exciton emission features were observed from Cu2O dots.

  17. A brief history of synthetic biology.

    PubMed

    Cameron, D Ewen; Bashor, Caleb J; Collins, James J

    2014-05-01

    The ability to rationally engineer microorganisms has been a long-envisioned goal dating back more than a half-century. With the genomics revolution and rise of systems biology in the 1990s came the development of a rigorous engineering discipline to create, control and programme cellular behaviour. The resulting field, known as synthetic biology, has undergone dramatic growth throughout the past decade and is poised to transform biotechnology and medicine. This Timeline article charts the technological and cultural lifetime of synthetic biology, with an emphasis on key breakthroughs and future challenges.

  18. Synthetic biology expands chemical control of microorganisms.

    PubMed

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories.

  19. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  20. Synthetic biology and the ethics of knowledge

    PubMed Central

    Douglas, Thomas; Savulescu, Julian

    2011-01-01

    Synthetic biologists aim to generate biological organisms according to rational design principles. Their work may have many beneficial applications, but it also raises potentially serious ethical concerns. In this article, we consider what attention the discipline demands from bioethicists. We argue that the most important issue for ethicists to examine is the risk that knowledge from synthetic biology will be misused, for example, in biological terrorism or warfare. To adequately address this concern, bioethics will need to broaden its scope, contemplating not just the means by which scientific knowledge is produced, but also what kinds of knowledge should be sought and disseminated. PMID:20935316

  1. New Synthetic Methods for Hypericum Natural Products

    SciTech Connect

    Jeon, Insik

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  2. Aerosol delivery of synthetic lung surfactant

    PubMed Central

    Hernández-Juviel, José M.; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C) and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant), a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant), with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity), we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg), aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory support

  3. [Dangerous drugs: products containing synthetic chemicals].

    PubMed

    Kamijo, Yoshito

    2016-02-01

    When the patients poisoned with "dangerous drugs", that is, products containing synthetic chemicals such as synthetic cannabinoids and cathinones, are transferred to the emergency facilities, the chemicals really consumed cannot be determined there. So, supportive care may be the most important strategy for treating them. For example, those with serious consciousness disturbance should be supported with ventilator after intubation. Those with remarkable excitatory CNS or sympathetic symptoms, benzodiazepines such as diazepam and midazolam, should be administered. Those with hallucination or delusion, antipsychotics such as haloperidol or risperidone should be administered. Those with rhabdomyolysis, hypermyoglobinemia and acute kidney injury, intravenous fluids and hemodialysis should be introduced. PMID:26915246

  4. Synthetic immunology: modulating the human immune system.

    PubMed

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts.

  5. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Synthetic Biology Approaches to Engineer T cells

    PubMed Central

    Wu, Chia-Yung; Rupp, Levi J.; Roybal, Kole T.; Lim, Wendell A.

    2015-01-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. PMID:26218616

  7. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona.

    PubMed

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2013-01-01

    Purified laccase from Trametes polyzona WR710-1 was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT) was studied. The quantitative analysis by HPLC showed that bisphenol A rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 h and 4-isopropenylphenol was found as the oxidative degradation product from bisphenol A when identified by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by Trametes laccase and the percentage of decolorization increased when 2 mM HBT was added in the reaction mixture. This is the first report showing that laccase from T. polyzona is an affective enzyme having high potential for environmental detoxification, bisphenol A degradation and synthetic dye decolorization.

  8. A COMPARISON OF LIQUID AND GAS-PHASE PHOTOOXIDATION TREATMENT OF METHYL TERTIARY BUTYL ETHER: SYNTHETIC AND FIELD SAMPLES

    EPA Science Inventory

    The feasibility of photo-oxidation treatment of metyl tert-butyl either (MTBE) in water was investigated using two systems, 1) a slurry falling film photo-reactor, and 2) an integrated air-stripping with gas phase photooxidation system. MTBE-contaminated synthetic water and field...

  9. A nanostructured synthetic collagen mimic for hemostasis.

    PubMed

    Kumar, Vivek A; Taylor, Nichole L; Jalan, Abhishek A; Hwang, Lyahn K; Wang, Benjamin K; Hartgerink, Jeffery D

    2014-04-14

    Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat.

  10. Synthetic analog computation in living cells.

    PubMed

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  11. New synthetic surfactant - how and when?

    PubMed

    Curstedt, Tore; Johansson, Jan

    2006-01-01

    Animal-derived surfactant preparations are very effective in the treatment of premature infants with respiratory distress syndrome but they are expensive to produce and supplies are limited. In order to widen the indications for surfactant treatment there is a need for synthetic preparations, which can be produced in large quantities and at a reasonable cost. However, development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. The hydrophobic surfactant proteins, SP-B and SP-C, which are involved in the adsorption of surface-active lipids to the air-liquid interface of the alveoli and increase alveolar stability, are either too big to synthesize, structurally complex or unstable in pure form. A new generation of synthetic surfactants containing simplified phospholipid mixtures and small amounts of peptides replacing the hydrophobic proteins is currently under development and will in the near future be introduced into the market. However, more trials need to be performed before any conclusions can be drawn about the effectiveness of these synthetic surfactants in relation to natural animal-derived preparations.

  12. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  13. Synthetic Biology: Applications in the Food Sector.

    PubMed

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  14. A nanostructured synthetic collagen mimic for hemostasis.

    PubMed

    Kumar, Vivek A; Taylor, Nichole L; Jalan, Abhishek A; Hwang, Lyahn K; Wang, Benjamin K; Hartgerink, Jeffery D

    2014-04-14

    Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat. PMID:24694012

  15. Possibility of sweet corn synthetic seed production.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2009-08-01

    Somatic embryogenesis in sweet corn has been reported by a number of workers. However, the knowledge maintaining storage life, vigor and viability of these somatic embryos are limited. A model system of synchronous somatic embryos production combined with encapsulation to synthetic seed was studied in sweet corn (Zea mays var. saccharata). In this study immature zygotic embryo cultured on N6 medium, contained 2, 4-D 2 mg L(-1) and sucrose 60 g L(-1) form the embryogenic callus. Higher 2, 4-D levels did not show increasing in inducing embryogenic callus. If the concentration of 2, 4-D decreased globular-stage, somatic zygote form the roots. Somatic embryo develop without surrounding nutritive tissues and protective seed coat has been devoted to causing somatic embryos to functionally mimic embryo, then was encapsulated by 3% (w/v) sodium alginate with 4-6 mm in diameter. It was found that when synthetic seed were treated with 60 g L(-1) sucrose and stored at 15+/-2 degree Celsius for 2 weeks, the survival rate of synthetic seed were 44%, after 8 days of germination test, it was found that there were 91% of which were normal seedling and 9% were abnormal seedling. This result indicated that there is a possibility in sweet corn synthetic seed production. Anyhow, more research for better technique are further required. PMID:19943466

  16. Vulnerability synthetic indices: a literature integrative review.

    PubMed

    Schumann, Lívia Rejane Miguel Amaral; Schumann, Lívia Amaral; Moura, Leides Baroso Azevedo

    2015-07-01

    The concept of vulnerability is delimited by dynamic social and multigenerational processes involving at least three dimensions: exposure to risk trajectories, internal and external capabilities of reaction and possibilities of adaptation based on both the intensity of risk and the resilience of people. In order to identify and describe the synthetic indices of vulnerability, there was an integrative literature review. We consulted free access articles indexed in the following databases: BioMed, Bireme, PubMed, Reldalyc, SciELO and Web of Science; and we used controlled descriptors in English and Portuguese for all time slots available with selection and analysis of 47 studies that reported results of 23 synthetic indices of vulnerability. The results showed that the synthetic indices of vulnerability address four themes: social determinants of health; environmental and climatic conditions; family and course of life; territories and specific geographic areas. It was concluded that the definition of the components and indicators, as well as the methodologies adopted for the construction of synthetic indices need to be evaluated by means of the limitations and advantages of reporting the vulnerability through summary measures in policy formulation and decision-making aimed at human development. PMID:26132249

  17. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  18. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  19. Chemical synthetic biology: a mini-review

    PubMed Central

    Chiarabelli, Cristiano; Stano, Pasquale; Luisi, Pier Luigi

    2013-01-01

    Chemical synthetic biology (CSB) is a branch of synthetic biology (SB) oriented toward the synthesis of chemical structures alternative to those present in nature. Whereas SB combines biology and engineering with the aim of synthesizing biological structures or life forms that do not exist in nature – often based on genome manipulation, CSB uses and assembles biological parts, synthetic or not, to create new and alternative structures. A short epistemological note will introduce the theoretical concepts related to these fields, whereas the text will be largely devoted to introduce and comment two main projects of CSB, carried out in our laboratory in the recent years. The “Never Born Biopolymers” project deals with the construction and the screening of RNA and peptide sequences that are not present in nature, whereas the “Minimal Cell” project focuses on the construction of semi-synthetic compartments (usually liposomes) containing the minimal and sufficient number of components to perform the basic function of a biological cell. These two topics are extremely important for both the general understanding of biology in terms of function, organization, and development, and for applied biotechnology. PMID:24065964

  20. Clutter free synthetic aperture radar correlator

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    A synthetic aperture radar correlation system including a moving diffuser located at the image plane of a radar processor is described. The output of the moving diffuser is supplied to a lens whose impulse response is at least as wide as that of the overall processing system. A significant reduction in clutter results is given.

  1. Bone formation on synthetic precursors of hydroxyapatite.

    PubMed

    Suzuki, O; Nakamura, M; Miyasaka, Y; Kagayama, M; Sakurai, M

    1991-05-01

    The aim of this study was to investigate the reaction of skeletal tissue to various synthetic calcium phosphate (Ca-P) compounds in vivo. Five synthetic Ca-P compounds were implanted into the subperiosteal area of the calvaria of 7-week-old BALB/c mice for one to 15 weeks. Synthetic compounds were dicalcium phosphate (DCP), octacalcium phosphate (OCP), amorphous calcium phosphate (ACP), Ca-deficient hydroxyapatite and hydroxyapatile (HA). Implanted DCP, OCP and ACP were found to be converted to apatitic phase by x-ray microdiffraction analysis using undecalcified specimens. Structure of bone was found out on all of Ca-P compounds eventually at late stage under the light microscope, but the rate of bone formation calculated from a number of experiments varied on respective synthetic Ca-P compound. It was high as 80% for DCP, OCP and ACP, but was low as 5.6% for Ca-deficient HA, and no reaction was found for HA at the stage of 3 weeks. Fine filaments and granular materials in the newly formed bone matrix were detected at 7 days around the remnants of OCP particles which already converted to apatitic phase by ultrastructural study of decalcified specimens. These structures were very similar to the components of bone nodules seen in intramembranous osteogenesis. It is postulated that the precursors of HA have an important role in intramembranous osteogenesis.

  2. Synthetic Biology: Applications in the Food Sector.

    PubMed

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented. PMID:25365334

  3. 21 CFR 175.250 - Paraffin (synthetic).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... its components by a solvent separation method, using synthetic isoparaffinic petroleum hydrocarbons... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances... determined by ASTM method D938-71 (Reapproved 1981), “Standard Test Method for Congealing Point of...

  4. [Pharmacodynamics of synthetic estrogens. Review article].

    PubMed

    Sojo-Aranda, I; Cortés-Gallegos, V

    1990-10-01

    Some details about the function of natural and synthetical hormonas are reviewed, particularly estrogens as ethynyl estradiol and its 3, Methyl ether (mestranol); its peripheral concentration vs tissular hormonal contents, a relationship of biological importance as the first step in its hormonal action and the cummulative local effects that could explain some intra and extracellular phenomena.

  5. [Pharmacodynamics of synthetic estrogens. A review].

    PubMed

    Sojo-Aranda, I; Cortés-Gallegos, V

    1990-10-01

    Some details about the function of natural and synthetical hormonas are reviewed, particularly estrogens as ethynyl estradiol and its 3, Methyl ether (mestranol); its peripheral concentration vs tissular hormonal contents, a relationship of biological importance as the first step in its hormonal action and the cumulative local effects that could explain some intra and extracellular phenomena.

  6. [Pharmacodynamics of synthetic estrogens. Review article].

    PubMed

    Sojo-Aranda, I; Cortés-Gallegos, V

    1990-10-01

    Some details about the function of natural and synthetical hormonas are reviewed, particularly estrogens as ethynyl estradiol and its 3, Methyl ether (mestranol); its peripheral concentration vs tissular hormonal contents, a relationship of biological importance as the first step in its hormonal action and the cummulative local effects that could explain some intra and extracellular phenomena. PMID:2292429

  7. Synthetic vision for rotorcraft: low level flight

    NASA Astrophysics Data System (ADS)

    Szoboszlay, Zoltan; Jennings, Chad; Tiana, Carlo

    2006-05-01

    Two topics are discussed in this paper. The first is the Integrated Multi-sensor Synthetic Imagery System (IMSIS), being developed under an Army SBIR contract. The system updates on-board, pre-stored, terrain elevation data with 3D terrain elevation sensor data (such as radar). The system also merges 2D image contrast sensor data (such as infrared imagery) with the updated 3D terrain elevation data to render a synthetic image of the terrain on the rotorcraft pilot's display. The second topic is the testing of a new flight path marker, to show the pilot the predicted location of the aircraft with respect to the synthetic terrain (at 100m distance), as well as the predicted height above the terrain, the desired height above the terrain, and the point on the terrain the aircraft is expected to fly over. The Altitude and ground Track Predicting Flight Path Marker (ATP-FPM) symbol takes advantage of knowledge of terrain elevations ahead of the aircraft from a synthetic vision system, such as IMSIS. In simulation, the maximum low altitude error and maximum ground track error were both reduced by a factor of 2 with the ATP-FPM compared to the traditional instantaneous flight path marker. Pilot-to-pilot variations in performance were reduced and workload decreased with the ATP-FPM.

  8. Flight testing an integrated synthetic vision system

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-05-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream G-V aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  9. Targeting of Synthetic Gene Delivery Systems

    PubMed Central

    2003-01-01

    Safe, efficient, and specific delivery of therapeutic genes remains an important bottleneck for the development of gene therapy. Synthetic, nonviral systems have a unique pharmaceutical profile with potential advantages for certain applications. Targeting of the synthetic vector improves the specificity of gene medicines through a modulation of the carriers' biodistribution, thus creating a dose differential between healthy tissue and the target site. The biodistribution of current carrier systems is being influenced to a large extent by intrinsic physicochemical characteristics, such as charge and size. Consequently, such nonspecific interactions can interfere with specific targeting, for example, by ligands. Therefore, a carrier complex should ideally be inert, that is, free from intrinsic properties that would bias its distribution away from the target site. Strategies such as coating of DNA carrier complexes with hydrophilic polymers have been used to mask some of these intrinsic targeting effects and avoid nonspecific interactions. Preexisting endogenous ligand-receptor interactions have frequently been used for targeting to certain cell types or tumours. Recently exogenous ligands have been derived from microorganisms or, like antibodies or phage-derived peptides, developed de novo. In animal models, such synthetic vectors have targeted remote sites such as a tumour. Furthermore, the therapeutic proof of the concept has been demonstrated for fitting combinations of synthetic vectors and therapeutic gene. PMID:12721518

  10. Methods of characterization of synthetic opal films

    NASA Astrophysics Data System (ADS)

    Koryukin, A. V.; Akhmadeev, A. A.; Salakhov, M. Kh

    2013-12-01

    We developed methods for determination of thickness, number of layers and filling fraction of silica particles for synthetic opals. We show that the filling fraction is considerably less than for ideal close-packed structure, which is important for practical and theoretical applications.

  11. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  12. Immobilization of radioiodine in synthetic boracite

    DOEpatents

    Babad, H.; Strachan, D.M.

    1982-09-23

    A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.

  13. Synthetic Output by Simulation. An Introductory Paper.

    ERIC Educational Resources Information Center

    Mason, Thomas R.

    Simulation is the process of synthetically manipulating the variables in a model of a system for the purpose of understanding, experimenting with, and predicting the behavior of that system. Many different models are now being developed by university administrators to aid them in making decisions. Simulation models have been developed for…

  14. Synthetic biology advances for pharmaceutical production

    PubMed Central

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  15. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  16. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  17. Physical and chemical characterization of synthetic calcined sludge

    SciTech Connect

    Slates, R.V.; Mosley, W.C. Jr.; Tiffany, B.; Stone, J.A.

    1982-03-01

    Calcined synthetic sludge was chemically characterized in support of engineering studies to design a processing plant to solidify highly radioactive waste at the Savannah River Plant. An analytical technique is described which provides quantitative data by mass spectrometric analysis of gases evolved during thermogravimetric analysis without measurements of gas flow rates or mass spectrometer sensitivities. Scanning electron microprobe analysis, Mossbauer spectroscopy, and several other common analytical methods were also used. Calcined sludge consists primarily of amorphous particles of hydrous oxides with iron, manganese, nickel, and calcium distributed fairly uniformly throughout the powder. Iron, manganese, nickel, and calcium exist in forms that are highly insoluble in water, but aluminum, sulfate, nitrate, and sodium exhibit relative water solubilities that increase in the given order from 60% to 94%. Evolved gas analysis in a helium atmosphere showed that calcined sludge is completely dehydrated by heating to 400/sup 0/C, carbon dioxide is evolved between 100 to 700/sup 0/C with maximum evolution at 500/sup 0/C, and oxygen is evolved between 400 and 1000/sup 0/C. Evolved gas analyses are also reported for uncalcined sludge. A spinel-type oxide similar to NiFe/sub 2/O/sub 4/ was detected by x-ray diffraction analysis at very low-level in calcined sludge.

  18. Catalytic migratory oxidative coupling of nitrones.

    PubMed

    Hashizume, Shogo; Oisaki, Kounosuke; Kanai, Motomu

    2011-08-19

    A Cu(I)-catalyzed migratory oxidative coupling between nitrones and heterocycles or a methylamine is described. Selective C-C bond-formation proceeds through cleavage of two C(sp(3))-H bonds concomitant with C═N double bond-migration. The reaction provides an alternating nitrone moiety, allowing for further synthetically useful transformations. Radical clock studies suggest that the nucleophilic addition of nitrones to an oxidatively generated carbocation is a key step. PMID:21766802

  19. Rapid production of synthetic influenza vaccines.

    PubMed

    Dormitzer, Philip R

    2015-01-01

    The strain composition of influenza vaccines must be changed regularly to track influenza virus antigenic evolution. During outbreaks with pandemic potential, strain changes are urgent. The systems for accomplishing vaccine strain changes have required the shipment of viruses and other biological materials around the globe, with delays in vaccine availability, and have used legacy techniques of egg-based virus cultivation, resulting in vaccine mismatches. In collaboration with Synthetic Genomics Vaccines Inc. and the US Biomedical Advanced Research and Development Authority, Novartis has developed a synthetic approach to influenza vaccine virus generation. Synthetic influenza vaccine viruses and mammalian cell culture technology promise influenza vaccines that match circulating influenza strains more closely and are delivered in greater quantities, more rapidly than vaccines produced by conventional technologies. These new technologies could yield an improved influenza vaccine response system in which viral sequence data from many sources are posted on the Internet, are downloaded by vaccine manufacturers, and are used to rescue multiple, attenuated vaccine viruses directly on high yielding backbones. Elements of this system were deployed in the response to the 2013 H7N9 influenza outbreak in China. The result was the production, clinical testing, and stockpiling of an H7N9 vaccine before the second wave of the outbreak struck at the end of 2013. Future directions in synthetic influenza vaccine technology include the automation of influenza virus rescue from sequence data and the merger of synthetic and self-amplifying mRNA vaccine technologies. The result could be a more robust and effective influenza vaccine system.

  20. Synthetic Cathinones: A New Public Health Problem

    PubMed Central

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: “new psychoactive substances”, “synthetic cathinones”, “substituted cathinones”, “mephedrone”, “methylone”, “MDPV”, “4-MEC”, “addiction”, and “substance use disorder”. PMID:26074740

  1. Caffeine in your drink: natural or synthetic?

    PubMed

    Zhang, Lijun; Kujawinski, Dorothea M; Federherr, Eugen; Schmidt, Torsten C; Jochmann, Maik A

    2012-03-20

    Owing to possible adulteration and health concerns, it is important to discriminate between natural and synthetic food ingredients. A new method for compound-specific isotope analysis (CSIA) by coupling high-temperature reversed-phase liquid chromatography to isotope ratio mass spectrometry (HT-RPLC/IRMS) was developed for discrimination of natural and synthetic caffeine contained in all types of drinks. The analytical parameters such as stationary phase, column inner diameter, and column temperature were optimized for the separation of caffeine directly from drinks (without extraction). On the basis of the carbon isotope analysis of 42 natural caffeine samples including coffee beans, tea leaves, guaraná powder, and maté leaves, and 20 synthetic caffeine samples from different sources by high-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry, it is concluded that there are two distinguishable groups of caffeine δ(13)C-values: one between -25 and -32‰ for natural caffeine, and the other between -33 and -38‰ for synthetic caffeine. Isotope analysis by HT-RPLC/IRMS has been applied to identify the caffeine source in 38 drinks. Four mislabeled products were detected due to added but nonlabeled synthetic caffeine with δ(13)C-values lower than -33‰. This work is the first application of HT-RPLC/IRMS to real-world food samples, which showed several advantages: simple sample preparation (only dilution), high throughput, long-term column stability, and high precision of δ(13)C-value. Thus, HT-RPLC/IRMS can be a very promising tool in stable isotope analysis of nonvolatile compounds. PMID:22339647

  2. Supernova Driving. III. Synthetic Molecular Cloud Observations

    NASA Astrophysics Data System (ADS)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin; Haugbølle, Troels; Nordlund, Åke

    2016-08-01

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T B,min = 1.4 K, of the J = 1 - 0 12CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.

  3. Supernova Driving. III. Synthetic Molecular Cloud Observations

    NASA Astrophysics Data System (ADS)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin; Haugbølle, Troels; Nordlund, Åke

    2016-08-01

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T B,min = 1.4 K, of the J = 1 ‑ 0 12CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity–size and mass–size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity–size relation is slightly too steep for some of the models, while the mass–size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity–size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.

  4. Synthetic biology and biosecurity: challenging the "myths".

    PubMed

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  5. Synthetic biology and biosecurity: challenging the "myths".

    PubMed

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance. PMID:25191649

  6. Oxidative para-triflation of acetanilides.

    PubMed

    Pialat, Amélie; Liégault, Benoît; Taillefer, Marc

    2013-04-01

    Direct triflation of acetanilide derivatives with silver triflate has been accomplished under mild iodine(III)-mediated oxidative conditions. The reaction shows excellent regioselectivity for the para position and tolerates a range of ortho and meta substituents on the aromatic ring. This method is also compatible with the preparation of arylnonaflates in synthetically useful yields. PMID:23534500

  7. Exploratory comparative study on the diffusion of synthetic cannabinoids and synthetic cathinones.

    PubMed

    Arfken, Cynthia L; Owens, Darlene; Madeja, Cheryl; DeAngelis, Christina

    2014-01-01

    The use of synthetic cannabinoids and cathinones in southeastern Michigan was explored using Roger's Diffusion of Innovation theory. A mixed methods approach after specific synthetic cannabinoids and cathinone compounds were scheduled was used that included analysis of treatment admissions for two years, surveys of 15 substance abuse treatment providers, and qualitative interviews with a purposive sample of 24 participants. The participant system norm supported trying new drugs, and both drugs were confirmed to have been easier to access than traditional drugs. The participants had negative views of synthetic cathinones due to one sensational news story without counterbalancing positive experiences in their social environment. Although synthetic cannabinoids were also linked to a sensational news story, it was counterbalanced by positive personal experiences. These differences contributed to greater use of synthetic cannabinoids compared to synthetic cathinones as evidenced by admissions, providers' reports, and participants' reports. All participants expressed a preference for traditional drugs, indicating that novel drugs had no relative advantage over other drugs of abuse. Diffusion of Innovation theory can provide a framework for understanding the differential use of novel drugs.

  8. Thermoelectricity in natural and synthetic hydrogels.

    PubMed

    Brown, Brandon R; Hughes, Mary E; Russo, Clementina

    2004-09-01

    We describe a technique for measuring a Seebeck effect in gels and present data for three systems. Notably distinct signals are obtained for gel originating in the electrosensitive organs of marine sharks, synthetic collagen-based gel, and as a control, seawater, the gels' solvent. Only the gel of sharks shows a reversible thermoelectric signal. The difference between gel samples and seawater simply confirms that gels suppress mass transport. The difference between synthetic gel and the gel of sharks shows that the charged polymers of the shark gel restrict mass transport much more successfully than the polymers of the collagen gel, and we submit that this sort of ion localization is key to the emergence of thermoelectricity in a gelatinous substance. We compare the properties of the natural gel to those of established thermoelectrics. PMID:15524559

  9. Synthetic Cannabinoid 'Bonzai' Intoxication: Six Case Series.

    PubMed

    Ergül, Dursun Fırat; Ekemen, Serdar; Yelken, Birgül Büyükkıdan

    2015-10-01

    In the language of the streets, 'bonzai', known as '1-naphthalenyl of methanol', also known as JWH-18 group, is a drug belonging to the group of synthetic cannabinoids. At the beginning of 2004, it started to be sold on the internet and it is seen that private markets. It has structurally similar chemical characteristics as delta 9-tetrahydrocannabinol (THC), the active substance in marijuana. In 2013, in a study conducted by the European Monitoring Centre of Drugs and Drug Addiction (EMCDDA), 102 varieties of synthetic cannabinoids were identified; however, more than 200 substances have been reported since 1997. In this study, we report the difficulties in the clinical course, treatment and management of six patients that had a use history of bonzai although it was not detected in blood in a short period of time in the intensive care unit. PMID:27366526

  10. Theoretical Modelling of Synthetic Molecular Motors

    NASA Astrophysics Data System (ADS)

    Barbu, Corina; Sofo, Jorge; Crespi, Vincent

    2004-03-01

    Synthetic molecular motors with sizes of few nanometers offer prospects to control molecular-scale mechanical motion. Motors with electric dipoles designed into their structure can undergo conformational changes in response to an external electric field and thereby, in principle, perform mechanical work. The synthetic rotary motor of our interest consists of a molecular caltrop with a three-legged base for attachment to a substrate and a molecular shaft functionalized with a molecular rotor at the upper end. Both the static dipole and the electric field-induced dipole of the molecular rotor are relevant to producing rotation. Also, the combination of external electrostatic torque and the internal thermal fluctuations must be sufficient to overcome any rotational barriers on experimentally relevant timescales. Density functional theory calculations at the B3LYP/TZV level coupled to analytical modelling reveal the dynamical response of the motor.

  11. Acute Rhabdomyolysis Following Synthetic Cannabinoid Ingestion

    PubMed Central

    Adedinsewo, Demilade A.; Odewole, Oluwaseun; Todd, Taylor

    2016-01-01

    Context: Novel psychoactive substances, including synthetic cannabinoids, are becoming increasingly popular, with more patients being seen in the emergency room following acute ingestion. These substances have been associated with a wide range of adverse effects. However, identification of complications, clinical toxicity, and management remain challenging. Case Report: We present the case of a young African-American male who developed severe agitation and bizarre behavior following acute K2 ingestion. Laboratory studies revealed markedly elevated serum creatine phosphokinase (CPK) with normal renal function. The patient was managed with aggressive intravenous (IV) fluid hydration and treatment of underlying psychiatric illness. Conclusion: We recommend the routine evaluation of renal function and CPK levels with early initiation of IV hydration among patients who present to the emergency department following acute ingestion of synthetic cannabinoids to identify potential complications early as well as institute early supportive therapy. PMID:27500131

  12. Macrocyclic drugs and synthetic methodologies toward macrocycles

    PubMed Central

    Yu, Xufen; Sun, Dianqing

    2015-01-01

    Macrocyclic scaffolds are commonly found in bioactive natural products and pharmaceutical molecules. So far, a large number of macrocyclic natural products have been isolated and synthesized. The construction of macrocycles is generally considered as a crucial and challenging step in the synthesis of macrocyclic natural products. Over the last several decades, numerous efforts have been undertaken toward the synthesis of complex naturally occurring macrocycles and great progresses have been made to advance the field of total synthesis. The commonly used synthetic methodologies toward macrocyclization include macrolactonization, macrolactamization, transition metal-catalyzed cross coupling, ring-closing metathesis, and click reaction, among others. Selected recent examples of macrocyclic synthesis of natural products and druglike macrocycles with significant biological relevance are highlighted in each class. The primary goal of this review is to summarize currently used macrocyclic drugs, highlight the therapeutic potential of this underexplored drug class and outline the general synthetic methodologies for the synthesis of macrocycles. PMID:23708234

  13. Health safety issues of synthetic food colorants.

    PubMed

    Amchova, Petra; Kotolova, Hana; Ruda-Kucerova, Jana

    2015-12-01

    Increasing attention has been recently paid to the toxicity of additives used in food. The European Parliament and the Council published the REGULATION (EC) No. 1333/2008 on food additives establishing that the toxicity of food additives evaluated before 20th January 2009 must be re-evaluated by European Food Safety Authority (EFSA). The aim of this review is to survey current knowledge specifically on the toxicity issues of synthetic food colorants using official reports published by the EFSA and other available studies published since the respective report. Synthetic colorants described are Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black and Brown HT. Moreover, a summary of evidence on possible detrimental effects of colorant mixes on children's behaviour is provided and future research directions are outlined.

  14. Carbon nanotube-based synthetic gecko tapes.

    PubMed

    Ge, Liehui; Sethi, Sunny; Ci, Lijie; Ajayan, Pulickel M; Dhinojwala, Ali

    2007-06-26

    We have developed a synthetic gecko tape by transferring micropatterned carbon nanotube arrays onto flexible polymer tape based on the hierarchical structure found on the foot of a gecko lizard. The gecko tape can support a shear stress (36 N/cm(2)) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micrometer-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak van der Waals interactions into high shear forces. We have demonstrated for the first time a macroscopic flexible patch that can be used repeatedly with peeling and adhesive properties better than the natural gecko foot. The carbon nanotube-based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics, and space applications.

  15. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  16. Experience with synthetic fluorinated fluid lubricants

    NASA Technical Reports Server (NTRS)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  17. Triazolinediones as Highly Enabling Synthetic Tools.

    PubMed

    De Bruycker, Kevin; Billiet, Stijn; Houck, Hannes A; Chattopadhyay, Subrata; Winne, Johan M; Du Prez, Filip E

    2016-03-23

    Triazolinediones (TADs) are unique reagents in organic synthesis that have also found wide applications in different research disciplines, in spite of their somewhat "exotic" reputation. In this review, we offer two case studies that demonstrate the possibilities of these versatile and reliable synthetic tools, namely, in the field of polymer science as well as in more recently emerging applications in the field of click chemistry. As the general use of triazolinediones has always been hampered by the limited commercial and synthetic availability of such reagents, we also offer a review of the available TAD reagents, together with a detailed discussion of their synthesis and reactivity. This review thus aims to serve as a practical guide for researchers that are interested in exploiting and further developing the exceptional click-like reactivity of triazolinediones in various applications. PMID:26900710

  18. Epigenetics knocks on synthetic biology's door

    PubMed Central

    Rodriguez-Escamilla, Zuemy; Martínez-Núñez, Mario A.; Merino, Enrique

    2016-01-01

    Epigenetics is the study of heritable changes in gene expression without concomitant changes in DNA sequence. Due to its relevance in development, differentiation and human health, epigenetics has recently become an emerging area of science with regard to eukaryotic organisms and has shown enormous potential in synthetic biology. However, significant examples of epigenetic regulation in bacterial synthetic biology have not yet been reported. In the current study, we present the first model of such an epigenetic circuit. We termed the circuit the alternator circuit because parental cells carrying this circuit and their progeny alternate between distinct and heritable cellular fates without undergoing changes in genome sequence. Furthermore, we demonstrated that the alternator circuit exhibits hysteresis because its output depends not only on its present state but also on its previous states.

  19. Low abundances of synthetics lipids in phantoms

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Santiago-Alvarado, A.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Aguilar-Soto, J.; Delgado-Atencio, J. A.

    2012-03-01

    Phantoms simulate optical characteristics of tissues. Phantoms use to mimic light distributions in living tissue. Several Phantoms compositions made of silicone, polyester, polyurethane, and epoxy resin have been described in the literature. These kinds of phantoms have the problem of long time preservation. In this work, we describe the fabrication and characterization of phantoms with low concentrations of synthetic lipid using Raman spectroscopy. We fabricate four phantoms made of Polydimethylsiloxane (PDMS). These phantoms have synthetic lipid content of cholesterol and triglycerides. The size of our phantoms is 1 x 1 cm and 5 mm of thickness.We used the point-to-point mapping technique. Finally, we compared advantages and performance of made PDMS and gelatin phantoms.

  20. Complex synthetic aperture radar data compression

    NASA Astrophysics Data System (ADS)

    Cirillo, Francis R.; Poehler, Paul L.; Schwartz, Debra S.; Rais, Houra

    2002-08-01

    Existing compression algorithms, primarily designed for visible electro-optical (EO) imagery, do not work well for Synthetic Aperture Radar (SAR) data. The best compression ratios achieved to date are less than 10:1 with minimal degradation to the phase data. Previously, phase data has been discarded with only magnitude data saved for analysis. Now that the importance of phase has been recognized for Interferometric Synthetic Aperture Radar (IFSAR), Coherent Change Detection (CCD), and polarimetry, requirements exist to preserve, transmit, and archive the both components. Bandwidth and storage limitations on existing and future platforms make compression of this data a top priority. This paper presents results obtained using a new compression algorithm designed specifically to compress SAR imagery, while preserving both magnitude and phase information at compression ratios of 20:1 and better.