Science.gov

Sample records for synthetic sapphire crystal

  1. Sapphire shaped crystals for medicine

    NASA Astrophysics Data System (ADS)

    Shikunova, A.; Kurlov, V. N.

    2016-01-01

    The favorable combination of excellent optical and mechanical properties of sapphire makes it an attractive structural material for medicine. We have developed a new kind of medical instruments and devices for laser photodynamic and thermal therapy, laser surgery, fluorescent diagnostics, and cryosurgery based on sapphire crystals of various shapes with capillary channels in their volume.

  2. A Century of Sapphire Crystal Growth

    DTIC Science & Technology

    2004-05-17

    process • 1904: Full publication: A. Verneuil, “Memoire sur la reproduction du rubis par fusion,” Annales de Chimie et de Physique Ser. 8, 3: 20-48...quality 54 Sapphire from Atlas Russian Research and Production Company Kyropoulos growth method, also called GOI in Russia 55 Verneuil Sapphire from... Atlas Russian Research and Production Company 56 Acknowledgements: • Kurt Nassau, Gems Made by Man Bell Labs • Fred Schmid and Chandra Khattak Crystal

  3. Secondary particle emission from sapphire single crystal

    NASA Astrophysics Data System (ADS)

    Minnebaev, K. F.; Khvostov, V. V.; Zykova, E. Yu.; Tolpin, K. A.; Colligon, J. S.; Yurasova, V. E.

    2015-07-01

    Secondary ion emission from sapphire single crystal has been studied experimentally and by means of computer simulation. The particular oscillations of secondary ion energy spectra and two specific maxima of O+ and Al+ ions were observed under irradiation of (0001) sapphire face by 1 and 10 keV Ar+ ions. We have explained this by the interplay of the charge exchange processes between moving particles and solids. The existence of two maxima in energy spectra of O+ and Al+ secondary ions can be also connected with special features of single-crystal sputtering: the low-energy peak can be formed by random sputtering and the high-energy peak from focusing collisions. In addition some similarity was found between the positions of low-energy maximum in energy spectra of Al+ ions emitted from sapphire and the principal maxima of Al+ ions ejected from the aluminum single crystal. This indicates a possibility to explain the presence of low-energy maximum in energy spectra of secondary ions ejecting from sapphire by emission of Al+ ions from aluminum islands appearing in a number of cases on the sapphire surface due to preferential sputtering of oxygen. These different mechanisms of creating the energy spectra of ions emitted from sapphire should be taken in account.

  4. Thermal debracketing of single crystal sapphire brackets.

    PubMed

    Rueggeberg, F A; Lockwood, P E

    1992-01-01

    Because of their optical clarity, single crystal sapphire brackets provide an esthetic advantage over many other types of orthodontic brackets. However, debonding of these brackets has caused iatrogenic damage to enamel. Thermal debonding has been proposed for use in removing sapphire brackets without causing damage to teeth. This study determined the temperature required at the enamel/resin interface to thermally debond sapphire brackets from etched bovine enamel using 23 different commercially available orthodontic resins and one experimental product. The results indicate a wide range of debonding temperatures for the various resins. As a group, the powder-liquid materials had a statistically lower debonding temperature than the two-paste, the no-mix products, or the light-cured materials, for which the temperatures were all similar. This paper presents relative information a clinician can use in selecting an orthodontic bonding resin to minimize thermal damage to the teeth while debonding sapphire brackets.

  5. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  6. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  7. Anisotropy of sapphire single crystal sputtering

    SciTech Connect

    Minnebaev, K. F.; Tolpin, K. A.; Yurasova, V. E.

    2015-08-15

    We have studied the spatial distribution of particles sputtered from the base (0001) plane of a sapphire single crystal with trigonal crystalline lattice (α-Al{sub 2}O{sub 3}) that can be considered a superposition of two hexagonal close packed (hcp) structures–the ideal sublattice of oxygen and a somewhat deformed sublattice of aluminum. It is established that the particles sputtered from the base plane of sapphire are predominantly deposited along the sides of an irregular hexagon with spots at its vertices. The patterns of spots have been also studied for sputtering of particles from the (0001) face of a zinc single crystal with the hcp lattice. The spots of sputtered Zn atoms are arranged at the vertices of concentric equilateral hexagons. In both cases, the observed anisotropy of sputtering is related to focused collisions (direct and assisted focusing) and the channeling process. The chemical composition of spots has been determined in various regions of sputtered sapphire deposition. The results are discussed in comparison to analogous earlier data for secondary ion emission from an α-Al{sub 2}O{sub 3} single crystal.

  8. Study of the crystal structure of silicon nanoislands on sapphire

    SciTech Connect

    Krivulin, N. O. Pirogov, A. V.; Pavlov, D. A.; Bobrov, A. I.

    2015-02-15

    The results of studies of the crystal structure of silicon nanoislands on sapphire are reported. It is shown that the principal defects in silicon nanoislands on sapphire are twinning defects. As a result of the formation of such defects, different crystallographic orientations are formed in silicon nanoislands on sapphire. In the initial stages of the molecular-beam epitaxy of silicon on sapphire, there are two basic orientations: the (001) orientation parallel to the surface and the (001) orientation at an angle of 70° to the surface.

  9. Blocks and residual stresses in shaped sapphire single crystals

    NASA Astrophysics Data System (ADS)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul‧pina, I. L.; Nikolaev, V. I.

    2017-01-01

    The formation of blocks and residual stresses in shaped sapphire crystals grown from the melt by the Stepanov method (EFG) has been studied. The probability of block formation is higher for the growth along the c axis compared to that grown in the a-axis direction. The distribution of residual stress in sapphire crystals of tubular, rectangular and round cross section was measured by the conoscopy method. It was found that the magnitude of the residual stress increases from the center to the periphery of the crystal and reaches up to about 20 MPa. Residual stress tensor components for solid round rod and tubular single crystals were determined by numerical integration.

  10. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2002-09-10

    In this research program, several optical instruments for high temperature measurement based on single crystal sapphire material are introduced and tested for real-time, reliable, long-term monitoring of temperatures for coal gasifier. These are sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; intensity-measurement based polarimetric sapphire sensor and broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development. This approach is based on the self-calibrating measurement of optical path differences (OPD) in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes. The BPDI sensor system extracts absolute temperature information by absolute measurement of phase delays. By encoding temperature information in optical spectrum instead of optical intensity, this sensor guarantees its relative immunity to optical source power fluctuations and fiber losses, thus providing a high degree of long-term measurement stability which is highly desired in industrial applications. The entire prototype for BPDI system including the single crystal sapphire probe, zirconia prism, alumina extension tube, optical components and signal processing hardware and software have shown excellent performance in the laboratory experiments shown in this report.

  11. Neurosurgery contact handheld probe based on sapphire shaped crystal

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  12. A peek into the history of sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  13. Broadband IR supercontinuum generation using single crystal sapphire fibers.

    PubMed

    Kim, Jae Hun; Chen, Meng-Ku; Yang, Chia-En; Lee, Jon; Yin, Stuart Shizhuo; Ruffin, Paul; Edwards, Eugene; Brantley, Christina; Luo, Claire

    2008-03-17

    In this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2microm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115microm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range. Furthermore, the mechanism of supercontinuum generation in single crystal sapphire fibers is briefly addressed. When the fiber length is shorter than the dispersion length, the self-phase modulation dominates the broadening effect. In this case, the broad supercontinuum spectrum with a smooth profile can be obtained. However, when the fiber length is longer than the dispersion length, the soliton-related dynamics accompanied by the self-phase modulation dominates the broadening effect. There are discrete spikes in the spectrum (corresponding to different order solitons). The above assumption of supercontinuum generation mechanism is quantitatively modeled by the computer simulation program and verified by the experimental results. Thus, one can adjust the spectral profile by properly choosing the length of the sapphire fibers. The broad IR spectral nature of this supercontinuum source can be very useful in a variety of applications such as broadband LADAR, remote sensing, and multi-spectrum free space communications.

  14. Modal reduction in single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2015-10-12

    A new type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high and low index regions in the azimuthal direction. The structure retains a “core” region of pure single crystal (SC) sapphire in the center of the fiber and a “cladding” region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying themore » effective core diameter and the dimensions of the “windmill” shaped cladding. The simulation results showed that the number of guided modes were significantly reduced in the “windmill” fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the “windmill” SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.« less

  15. Modal reduction in single crystal sapphire optical fiber

    SciTech Connect

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2015-10-12

    A new type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high and low index regions in the azimuthal direction. The structure retains a “core” region of pure single crystal (SC) sapphire in the center of the fiber and a “cladding” region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying the effective core diameter and the dimensions of the “windmill” shaped cladding. The simulation results showed that the number of guided modes were significantly reduced in the “windmill” fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the “windmill” SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.

  16. Investigating Multi-Dimensional Effects in Single-Crystal Sapphire

    NASA Astrophysics Data System (ADS)

    Reinhart, W. D.; Chhabildas, L. C.; Trott, W. M.; Dandekar, D. P.

    2002-07-01

    Most studies in the past have focused on obtaining uni-axial strain states in shocked materials. In this study, however, results of symmetric impact gas gun experiments on single-crystal C-cut sapphire are described to observe edge relief waves as they propagate toward the center of the sapphire target shocked to high pressures. This is made possible by the recent development of a LINE ORVIS, which measures both spatial and time-resolved particle-velocity variations in materials. A series of experiments have been conducted over the impact velocity from approx0.25 to 0.8 km/s, and in the elastic regime (except the 0.8km/s experiment). In these experiments, a new line imaging optically recording velocity interferometer system is used over a line segment of 13mm. Edge relief waves are unmistakably visible with local variations following the edge relief wave. Heterogeneous effects following dynamic yielding is also observed.

  17. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Pickrell, Gary; Scott, Brian; Wang, Anbo; Yu, Zhihao

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  18. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2002-09-10

    Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire

  19. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2002-10-18

    Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire

  20. Growth of Sapphire Single Crystals Transparent Armor by a Modified Verneuil Technique.

    DTIC Science & Technology

    modified Verneuil technique for transparent armor applications. Seeded single crystals of sapphire were grown with widths in excess of 2 1/2 inches, lengths...single crystals by the ’strip’ Verneuil technique is feasible. An engineering cost analysis indicated that 8 inch by 1/4 inch sapphire windows could

  1. Investigating Effects of Edge Release in Single-Crystal Sapphire

    NASA Astrophysics Data System (ADS)

    Reinhart, W. D.; Chhabildas, L. C.; Trott, W. M.; Dandekar, D. P.

    2001-06-01

    Most studies in the past have focussed on obtaining uni-axial strain states in shocked materials. In this study, however, we describe the results of symmetric impact gas gun experiments on single crystal sapphire to observe edge relief waves as they propagate toward the center of the sapphire target shocked to high pressures. This is made possible by the recent development of a LINE ORVIS, which measures both spatial and time-resolved particle-velocity variations in materials. A series of experiments have been conducted over the impact velocity from 0.25 to 0.6 km/s, and in the elastic regime. In these experiments, a new line-imaging ORVIS is used over a line segment of 13mm. Edge relief waves are unmistakably visible with local variations following the edge relief wave. Results of these experiments will be discussed in detail. * This work was supported by the U.S. DOE under contract DE-AC04-94AL85000. Sandia is a multi-program laboratory operated by Sandia Corporation a Lockheed Martin Company, for the U.S. DOE.

  2. Sapphire: Relation between luminescence of starting materials and luminescence of single crystals

    NASA Astrophysics Data System (ADS)

    Mogilevsky, R.; Nedilko, S.; Sharafutdinova, L.; Burlay, S.; Sherbatskii, V.; Boyko, V.; Mittl, S.

    2009-10-01

    A relation between photoluminescence (PL) characteristics of different starting materials used for crystal growth and un-doped sapphire single crystals manufactured using various methods of crystal growth (Kyropolus, HEM, Czochralski, and EFG) was found. The crystals grown using the Verneuil starting material exhibited significant PL when any method of crystal growth was used. On the contrary, sapphire samples grown by the same technologies wherein the starting material was EMT HPDA R revealed very low PL. (HPDA R is produced by EMT, Inc., with proprietary and patented technology.)

  3. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    NASA Astrophysics Data System (ADS)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  4. The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    NASA Astrophysics Data System (ADS)

    Haughian, K.; Douglas, R.; van Veggel, A. A.; Hough, J.; Khalaidovski, A.; Rowan, S.; Suzuki, T.; Yamamoto, K.

    2015-04-01

    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa.

  5. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-09-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  6. Ion beam modification of single crystal sapphire for high temperature optical waveguiding

    NASA Astrophysics Data System (ADS)

    Spratt, William T.

    High temperature environments (>1000°C) provide a significant challenge for fiber optic based sensing due to the poor physical properties of silica fiber at elevated temperature. Not only does silica soften above 1000°C, but the dopants that are responsible for the refractive index change between the core and cladding diffuse, reducing the fibers effectiveness as a waveguide. Single-crystal sapphire fiber has the potential to supplement fiber sensing at high temperature however sapphire fiber is unclad and no cladding methods exist that withstand high temperatures. In addition to higher losses the lack of a cladding also leads to decreased sensitivity due to the large number of modes. This thesis explores a cladding method for sapphire based on ion beam modification and annealing, which initial results indicate is suitable for high temperature applications. Ion beam modification of planar sapphire using hydrogen is conducted and analyzed using Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), and transmission electron microscopy (TEM) to determine the structural changes and prism coupling, spectroscopic ellipsometry (SE), and UV absorption to determine the optical effects. Sapphire fibers are modified through the use of a rotating implant holder and examined using end face coupling. Substantial change in refractive index does not occur until annealing above 600°C and persists to at least 1700°C. From the measurements of planar sapphire the root cause of the refractive index change at high temperature is determined and verified through finite element simulations. Modified sapphire fibers exhibit increased containment of light to the core region and a novel annular waveguide is fabricated with potential for sensing applications. This work adds to the understanding of the optical effects of ion beam modification and high temperature annealing of sapphire, and provides a foundation for future high temperature sensing applications of

  7. Morphology and formation mechanism of metallic inclusions in VB-grown sapphire crystals

    NASA Astrophysics Data System (ADS)

    Taishi, T.; Kobayashi, T.; Shinozuka, M.; Ohba, E.; Miyagawa, C.; Hoshikawa, K.

    2014-09-01

    Morphologies of metallic inclusions observed in sapphire crystals grown by the vertical Bridgman (VB) technique using a tungsten (W) crucible were investigated. Square- or hexagonal-shaped inclusions 2-5 μm in size were observed in sapphire crystals around the interface between the seed and the grown crystal. It was found that such inclusions consisted of W metal used for the crucible. The morphology of some of the inclusions reflects a rhombic dodecahedron which is based on the cubic structure of W and is surrounded by {110} faces. It is probable that inclusions form in the sapphire melt during the crystal growth process, and then sink in the melt to the growth interface due to the high density of W.

  8. Photoelastic lensing effect in Ti:sapphire crystal pumped by high-energy pulses.

    PubMed

    Zheng, Wei; Lüpke, Gunter

    2012-04-20

    We have built a setup with high temporal resolution to measure the very fast photoelastic lensing effect, which is on the scale of microseconds in a Ti:sapphire crystal pumped by very strong laser pulses (up to 5 J/cm2). The experimental results measured by this method and the real multimode beam profile taken by a CCD camera are applied to a three-dimensional crystal model to calculate one of the photoelastic constants of Ti:sapphire crystal, which is found to be p31=-0.03±0.01. This value is helpful to evaluate the photoelastic lensing effect in Ti:sapphire crystal for a laser beam polarized along the c axis, commonly used for laser amplification.

  9. Optical Properties of Single-Crystal Sapphire Fibers

    NASA Astrophysics Data System (ADS)

    Merberg, Glenn N.

    1992-01-01

    The optical properties of edge-defined, film-fed growth (EFG) and laser heated pedestal growth (LHPG) sapphire fibers were characterized, and the utility of these fibers for medical and industrial applications assessed. While EFG fibers are not yet produced with good optical quality, they offer enormous potential for mass production of sapphire fibers. The LHPG process has been successfully employed to produce good optical quality sapphire. This dissertation focussed on the optical attenuation mechanisms which limit the transmission properties of both EFG and LHPG sapphire fibers. The EFG fibers obtained for this research were found to contain bubbles along the fiber axes. As a result of the bubble inclusions, the measured optical scattering coefficients of the fibers were quite high. At a wavelength of 2.94 mum, a typical 280 μm diameter EFG fiber had a total attenuation coefficient of 18 dB/m. The contribution of scattering to this loss was measured as 17 dB/m, and the absorptive component as measured by laser calorimetry was 1 dB/m. The wavelength dependence of the scattering in EFG fibers was found to be lambda^{-1.5}, which is consistent with a Mie scattering model for scattering of light by bubbles on the dimensional order of the wavelength. Some of the LHPG fibers grown at Rutgers had measured attenuation coefficients of less than 2 dB/m at 2.94 μm wavelength. The absorptive component of this loss was measured by laser calorimetry as 0.7 dB/m, while the scattering loss was 1 dB/m. Optical scattering in Rutgers LHPG fibers had a lambda^ {-4} wavelength dependence, although the scattering coefficients were considerably higher than predicted for intrinsic scattering. Although visible absorbing color -centers were discovered in Rutgers LHPG fibers, excessive optical scattering dominated the attenuation in this spectral region. Melt extruded Teflon-FEP claddings were applied to LHPG fibers. The claddings were very effective in reducing evanescent coupling of Er

  10. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    NASA Astrophysics Data System (ADS)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  11. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    SciTech Connect

    A. Wang; G. Pickrell; R. May

    2001-10-31

    Testing results of a Broadband Polarized-Light Interferometric (BPLI) high temperature sensor is presented in this report. The state of polarization of the broadband incident light is modulated by the high birefringence of the sapphire disk used as the sensing element and becomes a wavelength-encoded signal, which is detected by an Optical Spectrum Analyzer (OSA) and then is processed by a computer, an internally developed algorithm is employed to directly calculate gap changes between two optical path between two orthogonal linear polarizations of light in a sapphire phase retarder, its phase retardation changes with temperature. The great advantages of this sensor are its simplicity and long-term stability in harsh environment. The system has been laboratory successfully tested up to 1600 C.

  12. Evaluation of the Quality of Sapphire Using X-Ray Rocking Curves and Double-Crystal X-Ray Topography

    DTIC Science & Technology

    1994-05-01

    hard, high-strength, chemically resistant optical windows; and sub- srates for the growth of epitaxial films. The quality of a sapphire crystal can... crystal diffractometer. Single- crystal sapphire may be grown by a variety of different methods, of which the more common are Verneuil (flame fusion...Linear features (L), which may represent slight variations in lattice parameter along the crystal growth front, or dislocation networks, ad small

  13. Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen; Alombert-Goget, Guillaume; Sen, Gourav; Barthalay, Nicolas; Lebbou, Kheirreddine; Duffar, Thierry

    2017-07-01

    Large ingot Ti-doped sapphire crystals were successfully grown by Kyropoulos method. Optical characterization of 10 cm diameter crystals shows non-uniform radial distribution of titanium. The measurements of Ti3+ ion distribution in several slices cut perpendicular to the growth direction show that the concentration is higher at the periphery of the crystal as compared to the central part of the ingot. Numerical modeling is applied to investigate heat transfer, melt convection and species transport during the Kyropoulos growth process. The transient simulation shows an unsteady convection generated by the strong interaction between the flow and the thermal field. The distribution of Ti in the melt is nearly uniform due to the intense convective mixing. The radial distribution of titanium depends mainly on the shape of the crystal-melt interface. The measured U-shaped concentration profile is explained by accounting the conical shape of the interface. High curvatures of the growth interface observed in experiments are explained by the increased thermal conductivity of the sapphire crystal, which is participating to the radiative heat transfer. The interface curvature depends on the absorption coefficient, which is higher for Ti-doped sapphire crystals than for undoped crystals. Therefore, the initial Ti concentration in the melt should be decreased in order to reduce the absorption coefficient and the interface curvature. The comparison of numerically computed titanium distribution in the crystals to experimental measurements shows a good agreement.

  14. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  15. Control of melt-crystal interface shape during sapphire crystal growth by heat exchanger method

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Liu, Lijun; Ma, Wencheng

    2017-09-01

    We numerically investigate the melt-crystal interface shape during the early stage of the solidification process when the crystal diameter increases. The contact angle between the melt-crystal interface and the crucible bottom wall is found obtuse during this stage, which is unfavorable for the crystal quality. We found that the obtuse contact angle is caused by the thermal resistance difference between the sapphire crystal and melt as well as the insufficient cooling effect of the crucible bottom. Two approaches are proposed to suppress the obtuse contact angle. The first approach is to increase the emissivity of the outer surface of crucible bottom. The second approach is to install a heat shield near the crucible bottom. The reduction of the emissivity of the heat shield is also favorable for the suppression of the obtuse contact angle. Compared with the increase of the emissivity of the crucible bottom, the installation of a heat shield is a more effective approach to prevent the appearance of an obtuse contact angle for the sake of reliability since a molybdenum heat shield can be reused and will not induce other impurities.

  16. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    SciTech Connect

    Vetrov, V. N. Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  17. Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate.

    PubMed

    Ku, Hao Ming; Huang, Chen Yang; Chao, Shiuh

    2011-03-20

    We applied the laser interference lithography method to form a patterned sapphire substrate (PSS). A three-dimensional photonic crystal was formed by autocloning the PSS with alternate Ta2O5/SiO2 coatings. A high total integrated reflectance (TIR) band was obtained around the 410 to 470 nm wavelength range that matched the emission spectrum of the gallium nitride (GaN) light-emitting diode (LED) for application in manipulating the light extraction of the sapphire-based GaN LED.

  18. Single-crystal sapphire tubes as economical probes for optical pyrometry in harsh environments

    SciTech Connect

    Ruzicka, Jakub; Houzvicka, Jindrich; Bok, Jiri; Praus, Petr; Mojzes, Peter

    2011-12-20

    One-end-sealed single-crystal sapphire tubes are presented as a simple, robust, and economical alternative for bulky lightpipe probes. Thermal radiation from a blackbody cavity created at the inner surface of the sealed end is gathered by a simple lens-based collecting system and transmitted via optical fiber to the remote detection unit. Simplicity and applicability of the concept are demonstrated by the combination of commercially available sapphire tubes with a common optical pyrometer. Radiation thermometers with sapphire tubes as invasive probes can be useful for applications requiring immunity to electromagnetic interference, resistance to harsh environments, simple replacement in the case of failure, and enhanced mechanical firmness, enabling wider range probe positioning inside the medium of interest.

  19. A century of sapphire crystal growth: origin of the EFG method

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2009-08-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Edge-Defined Film-Fed Growth (EFG) was invented by H. Labelle in the 1960s and the Heat Exchanger Method (HEM) was invented by F. Schmid and D. Viechnicki in 1967. Both methods were commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) was invented by Kh. S. Bagdasorov in the Soviet Union in the 1960s. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s. Today, half of the world's sapphire is produced by the GOI method.

  20. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  1. Low temperature rhombohedral single crystal SiGe epitaxy on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.; Choi, Sang H.

    2016-04-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100°C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550°C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  2. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  3. Parametric sensitivity and temporal dynamics of sapphire crystal growth via the micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Samanta, Gaurab; Yeckel, Andrew; Bourret-Courchesne, Edith D.; Derby, Jeffrey J.

    2012-11-01

    The micro-pulling-down (μ-PD) crystal growth of sapphire fibers, whose steady-state limits were the focus of our prior study [Samanta et al., Journal of Crystal Growth 335 (2011) 148-159], is further examined using a parametric sensitivity computation derived by linearizing the nonlinear model around a quasi-steady-state (QSS). In addition, transient analyses are performed to assess inherent stability and dynamic responses in this μ-PD system. Information from these two approaches enlarges our understanding of this particular process, and the approaches themselves are put forth as valuable complements to classical QSS analysis.

  4. Modelling of Verneuil process for the sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Barvinschi, Floricica; Santailler, Jean-Louis; Duffar, Thierry; Le Gal, Hervé

    1999-03-01

    The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.

  5. Pulsed Laser Deposition of VO2 Single Crystal Thin Films on Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Pei-ran; S, Yamamoto; A, Miyashita; H, Naramoto

    1998-12-01

    Thin films of VO2 single-crystalline on (0001) sapphire substrates have been prepared by visible pulsed laser ablation technique. The crystal quality and properties of the films are evaluated through electrical resistance measurement, x-ray diffraction (XRD), and Rutherford-backscattering spectroscopy/channeling (RBS/C) analysis. The dependence of the surface electrical resistance of the films on the temperature shows semiconductor-to-metal transitions with the resistance change of 7 × 103-2 × 104. The hysteresis widths are from less than 1 to 3 K. XRD and RBS/C data reveal that the films prepared in particular conditions are single-crystalline VO2 with the (010) planes parallel to the surface of the sapphire substrate.

  6. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  7. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    SciTech Connect

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  8. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; ...

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  9. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    SciTech Connect

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; Alexeev, Pavel; Cecilia, Angelica; Baumbach, Tilo; Bessas, Dimitrios; Danilewsky, Andreas N.; Sergueev, Ilya; Wille, Hans -Christian; Hermann, Raphael P.

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality.

  10. Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high- Q factor whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Tobar, Michael E.; Le Floch, Jean-Michel; Reshitnyk, Yarema; Duty, Timothy

    2010-09-01

    Resonance modes in single crystal sapphire (α-Al2O3) exhibit extremely high electrical and mechanical Q factors ( ≈109 at 4 K), which are important characteristics for electromechanical experiments at the quantum limit. We report the cool down of a bulk sapphire sample below superfluid liquid-helium temperature (1.6 K) to as low as 25 mK. The electromagnetic properties were characterized at microwave frequencies, and we report the observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T3 dependence on thermal conductivity and the ultralow dielectric loss tangent. We identify “magic temperatures” between 80 and 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultrastable clock applications, including the possible realization of the quantum-limited sapphire clock.

  11. Quartz: Anomalous Weakness of Synthetic Crystals.

    PubMed

    Griggs, D T; Blacic, J D

    1965-01-15

    The strength of a synthetic quartz crystal drops rapidly at 400 degrees C, and at 600 degrees C is a hundredfold lower than at 300 degrees C. Large plastic deformations can be produced without fracture. The predominant mechanism of deformation is translation gliding. The preferred explanation for this anomalous weakness is that this synthetic quartz contains water which has hydrolyzed the silicon-oxygen bonds. The silanol groups so formed are presumed to be rendered sufficiently mobile by elevating the temperature to 400 degrees C so that they align themselves in dislocation lines and move through the crystal with the dislocation under the small applied shear stress.

  12. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    SciTech Connect

    Zou, Yi E-mail: swapnajit.chakravarty@omegaoptics.com Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-08-24

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve.

  13. Rocking curve imaging of high quality sapphire crystals in backscattering geometry

    DOE PAGES

    Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...

    2017-01-23

    Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10-4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10-8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areas exhibit amore » relative difference in the lattice parameters on the order of deltad/d = 10-20.10-8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less

  14. Rocking curve imaging of high quality sapphire crystals in backscattering geometry

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Sergueev, I.; Bessas, D.; Klobes, B.; Roschin, B. S.; Asadchikov, V. E.; Alexeev, P.; Härtwig, J.; Chumakov, A. I.; Wille, H.-C.; Hermann, R. P.

    2017-01-01

    We report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ˜10-4 in lattice parameter variations, δd /d . However, investigations using backscattering rocking curve imaging with a lattice spacing resolution of δd /d ˜5 ×10-8 show very diverse quality maps for all crystals. Our results highlight nearly ideal areas with an edge length of 0.2-0.5 mm in most crystals, but a comparison of the back reflection peak positions shows that even neighboring ideal areas exhibit a relative difference in the lattice parameters on the order of δd /d =10 - 20 ×10-8 ; this is several times larger than the rocking curve width. Stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ˜100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.

  15. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  16. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model.

  17. Comparison between numerical modeling and experimental measurements of the interface shape in Kyropoulos growth of Ti-doped sapphire crystals

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Sen, G.; Barthalay, N.; Duffar, T.

    2016-11-01

    Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the growth of Ti-doped sapphire crystals by using the Kyropoulos method. Numerical results are compared to experimental visualization of the growth interface in the case of ingots grown in crucibles of 15 cm in diameter. The transient computations of the heat transfer and melt convection show that the interface curvature depends on the internal radiative effect in the sapphire crystal. The effective thermal conductivity increases significantly in the case of Ti-doped crystals, leading to conical shapes of the interface with large curvatures. The growth interface is less curved in the case of non-doped sapphire crystals which have a smaller absorption coefficient. The convection driven by buoyancy and Marangoni effects has also a strong effect on the interface shape. The intensity of the Marangoni flow increases significantly during the shouldering stage of the growth, leading to a more curved interface with a convex-concave shape. The comparison between numerically computed interface deflection and the experimental results shows a good agreement. According to present numerical analysis, the formation of a plateau and the temporal concave shape of the crystal are related to unfavorable thermal conditions at the beginning of the growth process.

  18. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    PubMed

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga2O3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga(3+) sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P63mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga2O3 [10-10] direction being parallel to the Al2O3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  19. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Barthalay, N.; Duffar, T.

    2017-07-01

    Numerical modeling is used to investigate the shape of the crystal-melt interface in edge-defined film-fed growth (EFG) of large size sapphire rods and sheets. The present analysis shows that the temperature distribution in the meniscus is significantly affected by the internal radiative exchanges in the sapphire crystal. 2D axisymmetric computations performed in the case of sapphire rods, show a concave shape of the interface for opaque crystals, and a convex shaped interface for semi-transparent crystals. The temperature gradient across the meniscus increases significantly in the case which accounts for the internal radiative effect in the crystal. Large temperature differences along the free surface of the meniscus generate intense Marangoni flow, which can influence the shape of the growth interface. In this case, the meniscus height increases, producing instabilities in the growth process. The effect of die geometry on the interface shape is analyzed by increasing the angle between the working edges of the die. Computations shows that the interface curvature decreases as this angle increases, but the solidification isotherm moves up, leading to an increased meniscus height. 3D modeling is applied to investigate the EFG growth of large size sapphire sheets. Numerical results show a non-uniform temperature distribution in the meniscus, and a complex 3D flow pattern. However, the intensity of the flow is low in this case, having no influence on the temperature field and interface shape.

  20. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Wu, Feng; tahtamouni, T. M. Al; Alfaraj, Nasir; Li, Kuang-Hui; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang

    2017-10-01

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0 0 0 1) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  1. Single-crystal germanium grown on (1-1 0 2) sapphire by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Qadri, S. B.; Twigg, M. E.; Richmond, E. D.

    1989-06-01

    Crystalline germanium films have been successfully grown on the (1-1 0 2) sapphire surface using molecular beam epitaxy. Growth at temperatures above 700 C and after preannealing the sapphire substrates above 1100 C resulted in germanium films with a (110) orientation. A 500 nm germanium film grown at 800 C after preannealing the sapphire substrate at 1400 C gave an X-ray rocking curve width that measured 317 arcsec at half maximum for the (220) reflection.

  2. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures.

    PubMed

    Juodkazis, S; Nishimura, K; Tanaka, S; Misawa, H; Gamaly, E G; Luther-Davies, B; Hallo, L; Nicolai, P; Tikhonchuk, V T

    2006-04-28

    Extremely high pressures (approximately 10 TPa) and temperatures (5 x 10(5) K) have been produced using a single laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an intensity over 10(14) W/cm2 converting material within the absorbing volume of approximately 0.2 microm3 into plasma in a few fs. A pressure of approximately 10 TPa, far exceeding the strength of any material, is created generating strong shock and rarefaction waves. This results in the formation of a nanovoid surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of the void and the shock-affected zone versus the deposited energy shows that the experimental results can be understood on the basis of conservation laws and be modeled by plasma hydrodynamics. Matter subjected to record heating and cooling rates of 10(18) K/s can, thus, be studied in a well-controlled laboratory environment.

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  4. Thermal Conductance through Sapphire-Sapphire Bonding

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Tomaru, T.; Haruyama, T.; Shintomi, T.; Uchinyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.

    2003-07-01

    Thermal conductance on sapphire-sapphire bonded interface has been investigated. Two pieces of single crystal sapphire bar with square cross section were bonded together by adhesion free bonding. In two sections of the bar, thermal conductivity was measured between 5 K to 300K. One section contains a bonded interface and the other section measured a thermal conductivity of the sapphire as a reference. No significant thermal resistance due to bonded interface was found from this measurement. Obtained thermal conductivity reaches κ 1 × 104 [W/m·K] in temperature range of T = 20 ˜ 30 K which is a planned operating temperature of a cryogenic mirror of the Large scale Cryogenic Gravitational wave telescope. It looks promising for sapphire bonding technique to improve a heat transfer from a large cryogenic mirror to susp ension wires.

  5. DOE SAPPHIRE PROJECT

    SciTech Connect

    Dr. Gary R. Pickrell

    2000-03-01

    Since this is the first report for this project an extensive background section follows on the theory of operation of the single crystal sapphire sensor technology which will be developed and field tested at the Wabash River Coal Gasification Facility. Requirements for the temperature sensors for implementation in the coal gasifiers has been established in conjunction with the industrial partner, Dynegy. Coal slag immersion tests indicate good corrosion resistance of the single crystal sapphire. However, a more sophisticated corrosion apparatus has been constructed in order to test the optical attenuation of a single crystal sapphire fiber immersed in the coal slag at high temperature. These results will be reported in the next period. The data to date for sapphire sensor development is promising. More extensive data on the sapphire fiber sensor development will be reported for the next period.

  6. Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Spratt, William; Huang, Mengbing; Murray, Thomas; Xia, Hua

    2013-11-01

    The excellent material properties of single crystal sapphire fibers promise great advantages in applications related to harsh environment optical sensing, high laser power delivery, and high-resolution/sensitivity optical spectroscopy. However, the lack of viable cladding for confining light propagation in sapphire fibers with negligible transmission loss has restricted their practical applications. Despite great efforts in engineering either a low-refractive-index cladding layer or highly reflective mirror layer as sapphire fiber surface coatings, confining light propagation within sapphire fibers remains difficult in practice since such surface coatings fail to function due to increased thermal stress and fast erosion in environments with extremely high temperatures (>1000 °C) and chemically reactive species/gases. Here, we demonstrate a method for creating nanoscale cavities/voids in sapphire as effective fiber cladding structures that are thermally robust even at 1700 °C using hydrogen ion implantation. Material analysis of implanted sapphire crystals indicates that such nanoscale cavities play a key role in reducing the refractive index in sapphire crystals.

  7. Crystal Quality and Light Output Power of GaN-Based LEDs Grown on Concave Patterned Sapphire Substrate.

    PubMed

    Wu, YewChung Sermon; Isabel, A Panimaya Selvi; Zheng, Jian-Hsuan; Lin, Bo-Wen; Li, Jhen-Hong; Lin, Chia-Chen

    2015-04-22

    The crystal quality and light output power of GaN-based light-emitting diodes (LEDs) grown on concave patterned sapphire substrate (CPSS) were investigated. It was found that the crystal quality of GaN-based LEDs grown on CPSS improved with the decrease of the pattern space (percentage of c-plane). However, when the pattern space decreased to 0.41 μm (S0.41-GaN), the GaN crystallinity dropped. On the other hand, the light output power of GaN-based LEDs was increased with the decrease of the pattern space due to the change of the light extraction efficiency.

  8. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  9. Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber.

    PubMed

    Kim, Jae Hun; Chen, Meng-Ku; Yang, Chia-En; Lee, Jon; Shi, Kebin; Liu, Zhiwen; Yin, Stuart Shizhuo; Reichard, Karl; Ruffin, Paul; Edwards, Eugene; Brantley, Christina; Luo, Claire

    2008-09-15

    In this paper, we demonstrate that the the bandwidth of the supercontinuum spectrum generated in a large mode area sapphire fiber can be enhanced by employing triple pumping sources. Three pumping sources with wavelengths of 784 nm, 1290 nm, and 2000 nm are launched into a single crystal sapphire fiber that is 5 cm in length and has a core diameter of 115 microm. The nonlinear interactions due to self-phase modulation and four-wave mixing form a broadband supercontinuum that covers the UV, visible, near-IR and lower mid-IR regions. Furthermore, we explore the possibility of generating a broadband supercontinuum expanding from the UV to far-IR region by increasing the number of pumping sources with wavelengths in the mid- and far-IR.

  10. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire

    NASA Astrophysics Data System (ADS)

    Reddy, Kongara M.; Gledhill, Andrew D.; Chen, Chun-Hu; Drexler, Julie M.; Padture, Nitin P.

    2011-03-01

    The current method of growing large-area graphene on polycrystalline Cu surfaces (foils or thin films) and its transfer to arbitrary substrates is technologically attractive. However, the quality of graphene can be improved significantly by growing it on single-crystal Cu surfaces. Here we show that high quality, large-area graphene can be grown on epitaxial single-crystal Cu(111) thin films on reusable basal-plane sapphire [α-Al2O3(0001)] substrates for transfer to another substrate. While enabling graphene growth on Cu single-crystal surfaces, this method has the potential to avoid the high cost and extensive damage to graphene associated with sacrificing bulk single-crystal Cu during graphene transfer.

  11. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2017-04-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  12. Birefringence measurements in single crystal sapphire and calcite shocked along the a axis

    NASA Astrophysics Data System (ADS)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2017-01-01

    Calcite and sapphire were shock compressed along the <10 1 ¯0 > direction (a axis) in a plate impact configuration. Polarimetery and Photonic Doppler Velocimetery (PDV) were used to measure the change in birefringence with particle velocity in the shock direction. Results for sapphire agree well with linear photoelastic theory and current literature showing a linear relationship between birefringence and particle velocity up to 310 m s-1. A maximum change in birefringence of 5% was observed. Calcite however showed anomolous behaviour with no detectable change in birefringence (less than 0.1%) over the range of particle velocities studied (up to 75 m s-1).

  13. Effect of crucible and crystal rotations on the convexity and the thermal stress in large size sapphire crystals during Czochralski growth

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran Phu; Hsieh, Yao-Te; Chen, Jyh-Chen; Hu, Chieh; Nguyen, Huy Bich

    2017-06-01

    In this study, the effect of the temperature and flow fields generated by the rotation of the crucible and the crystal on the convexity of a c-axis, large-diameter sapphire crystal during the Czochralski growth process is investigated numerically. The thermal stress distributions in different sizes of crystal are also considered. The computational results show that the convexity and the thermal stress of the crystal are strongly dependent on the crucible and crystal rotation rates. The counter rotation between the crucible and the crystal results in a flatter crystal-melt interface, compared to the case of no crucible rotation or crystal rotation. Maximum thermal stress occurs at the highest curvature of the crystal-melt interface which appears near the center of the growing crystal, and the value is directly proportional to the crystal's size. Moreover, there is a significant decrease in the von Mises stress for the crystal-melt interface with lower convexity due to a reduction in the temperature gradient in the radial direction along the interface. As the crystal length gets larger, the maximum von Mises stress rapidly reduces.

  14. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  15. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  16. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  17. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  18. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    SciTech Connect

    Nakasu, T. Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-28

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  19. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  20. Effect of surface pretreatment of r-plane sapphire substrates on the crystal quality of a-plane AlN

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Yasui, Daiki; Tamaki, Shinya; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-05-01

    Single-crystal a-plane AlN(11\\bar{2}0) films were grown on r-plane sapphire (1\\bar{1}02) substrates by hydride vapor phase epitaxy (HVPE). We performed the optimization of thermal cleaning and nitridation conditions for r-plane sapphire substrates, and investigated the effect of ammonia (NH3) preflow on the crystallinity of a-plane AlN. An r-plane sapphire substrate with uniformly straight atomic steps was formed at 1000 °C, and NH3 preflow was subsequently supplied. The growth mode of a-plane AlN was promoted to be three-dimensional (3D) growth by the nitridation of r-plane sapphire substrates, and sizes of 3D islands were modified by changing the NH3 preflow time. The crystallinity of a-plane AlN films was improved by varying the NH3 preflow time from 30 to 90 s. The optimum crystal quality of a-plane AlN films was obtained with NH3 preflow for 30 s.

  1. Updating of the interpretation of the optical absorption and emission of Verneuil synthetic and natural metamorphic blue sapphire: the role of V2+, V3+ and Cr2+

    NASA Astrophysics Data System (ADS)

    Palanza, V.; Chiodini, N.; Galli, A.; Lorenzi, R.; Moretti, F.; Paleari, A.; Spinolo, G.

    2010-11-01

    In the blue colored sapphires of metamorphic origin and Verneuil synthetic studied here, the absorption-emission properties in the VIS-NIR range are largely determined by Cr3+ and Ti3+, as we have been able to demonstrate recently. In that work a sharp radio-luminescence band occurring at 870 nm in Verneuil blue sapphires was left unattributed: here we give evidence for the attribution of that band to the 2E emission transition of V2+, and for the existence of such an emission also in natural samples of metamorphic origin. After such a result, we accurately evaluated by EDXRF the V concentrations in various samples and found the ion more ubiquitous than foreseen. We then searched for and found, weak but diagnostic spin forbidden transitions and phonon sequencies in the absorption spectra of samples sufficiently rich in V. The experimental results just mentioned allowed us to discuss the effects of the overlap of V3+ and Cr3+ spin-allowed absorption bands on the spectrum of the varieties of corundum under study. To complete the updating of the interpretation, we spent a further effort to strengthen the attribution of the absorption band at 14500 cm-1 (currently interpreted as an IVCT (Fe2+ → Fe3+)) to the 5E→5T2 transitions of Cr2+.

  2. Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique

    NASA Astrophysics Data System (ADS)

    Alombert-Goget, G.; Li, H.; Faria, J.; Labor, S.; Guignier, D.; Lebbou, K.

    2016-01-01

    The distributions of Ti3+ and Ti4+ ions were evaluated by photoluminescence measurement in the wafers cut from different positions of the ingots grown by Czochralski and Verneuil techniques. Particular radial distributions of Ti4+ as function of the position in the ingot were observed in the crystals grown by Verneuil technique different than the crystals grown by Czochralski method.

  3. Modeling of dopant segregation in sapphire single crystal fibre growth by Micro-Pulling-Down method

    NASA Astrophysics Data System (ADS)

    Wenjia, Su; Duffar, Thierry; Nehari, Abdeljelil; Kononets, Valerii; Lebbou, Kheirreddine

    2017-09-01

    Experiments and numerical simulations are conducted in order to study the causes and solutions for the Ti inhomogeneity problem in Ti doped sapphire Micro-Pulling-Down (μ-PD) growth. The measurement and modeling of the thermal and flow fields, electromagnetic field, Ti concentration in the molten zone and along the fibre axis are compared. For the mean Ti concentration along the fibre and temperature along the iridium crucible, the modeling results are consistent with experiments. Results showed that for high pulling rate, the mass transfer in the capillary is dominated by convection. Marangoni convection is strong in the meniscus due to the large temperature gradient, which has great impact on the Ti distribution for different fibre radii. For high pulling rate, Ti concentration increases quickly from the seed along the fibre axis, and reaches a constant value after about 0.5-2 mm. Radial segregation is high for large diameter fibres. The constant Ti concentration along the fibre axis is increasing when increasing the fibre radius from 0.2 to 0.6 mm. For 0.8 mm, it decreases due to the change of the vortex. At low growth rate, the transport in the capillary is diffusive, back to the crucible, which leads to a Scheil-like Ti distribution, in full agreement with the experimental results.

  4. Hydrogen effect on the properties of sapphire

    NASA Astrophysics Data System (ADS)

    Mogilevsky, Radion N.; Sharafutdinova, Liudmila G.; Nedilko, Sergiy; Gavrilov, Valeriy; Verbilo, Dmitriy; Mittl, Scott D.

    2009-05-01

    Sapphire is a widely used material for optical, electronic and semiconductor applications due to its excellent optical properties and very high durability. Optical and mechanical properties of sapphire depend on many factors such as the starting materials that are used to grow crystals, methods to grow sapphire crystals, etc. Demand for highest purity and quality of sapphire crystals increased ten fold for the last several years due to new applications for this material. In this work we studied the effect of starting materials and crystal growth methods on the optical and mechanical properties of sapphire, especially concentrating on the effect of hydrogen on the properties of sapphire. It was found that the infrared (IR) absorption which is traditionally used to measure the hydrogen content in sapphire crystals cannot be reliably used and the data obtained by this method provides a much lower hydrogen concentration than actual. We have shown for the first time that Nuclear Magnetic Resonance techniques can be successfully used to determine hydrogen concentration in sapphire crystals. We have shown that hydrogen concentration in sapphire can reach thousands of ppm if these crystals are grown from Verneuil starting material or aluminum oxide powder. Alternatively, the hydrogen concentration is very low if sapphire crystals are grown from High Purity Densified Alumina (HPDA®) as a starting material. HPDA® is produced by EMT, Inc through their proprietary patented technology. It was found that optical and mechanical properties of sapphire crystals grown using EMT HPDA® starting material are much better than those sapphire crystals grown using a starting material of Verneuil crystals or aluminum oxide powder.

  5. Some Properties Of Synthetic Single Crystal And Thin Film Diamonds

    NASA Astrophysics Data System (ADS)

    Yazu, Shuji; Sato, Shuichi; Fujimori, Naoji

    1989-01-01

    Large synthetic diamond single crystals, in sizes up to 1.4 ct, are produced on 4 commercial basis for some industrial application fields by Sumitomo Electric. The crystals are yellow colored type Ib stones which contain lower amounts of nitrogen (up to about 100 ppm) dispersed through the crystal structure in the form of singly substituting atoms. The impurity controlled type lb crystals have the highest thermal conductivity which is equivalent to that of pure type IIa crystals. Optical and thermal properties of diamond crystals are strongly affected by dispersed impurities. We studied the kinds of dispersed impurities and amounts of those impurity atoms in our synthesized crystals by SIMS. A relation of the thermal conductivities and the nitrogen concentrations of the crystals was examined. The state of nitrogen impurity in the crystals could be transformed by electron irradiation and subsequent high temperature annealing. The reaction rates for the transformation Ib nitrogen to type IaA aggregates and differences in crystal growth sectors have been studied. Vapor phase deposited diamond films are hopeful candidates for optical application of diamond. Preliminary spectroscopic analysis has been done for the free standing polycrystalline films.

  6. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    SciTech Connect

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico; Penn, R. Lee; Whitelam, Stephen B.; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D.; Navrotsky, Alexandra; Banfield, Jillian F.; Wallace, Adam F.; Michel, F. M.; Meldrum, Fiona C.; Colfen, Helmut; Dove, Patricia M.

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.

  7. Electric-field gradient characterization at 181Ta impurities in sapphire single crystals

    NASA Astrophysics Data System (ADS)

    Rentería, M.; Darriba, G. N.; Errico, L. A.; Muñoz, E. L.; Eversheim, P. D.

    2005-07-01

    We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al2O3 single crystals implanted with 181Hf/181Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with 111In/111Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor.

  8. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  9. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  10. Optical Properties of Natural and Synthetic Beryl Crystals

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.; Merkulov, V.

    2015-03-01

    The results of investigation of photoluminescence and UV-Visible absorption spectra of natural beryl crystals from Ural Mountains before and after fast neutron irradiation and synthetic crystal grown in Belarus and Russia are presented. Photoluminescence (PL) spectra of synthetic beryl crystals contain a broad band with maxima 740 nm excited both by UV light (λex = 260 nm, 271 nm) and laser excitation (λex =263 nm). This band is connected with Fe2+ ions. The temperature lowering down to 8 K leads to appearance of narrow lines in the 680 - 720 nm regions. Emission lines observed in the luminescence spectra are connected with electron transition 2Eg→4A2g of the Cr3+ ions: R-lines (682.5 nm) arise from isolated Cr3+ ions occupying Al3+ sites; N-lines (691, 698, 703, 706 and 711 nm) arise from several types of exchange-coupled pairs of Cr3+ ions occupying first, second and third nearest and related neighbour Al3+ sites. It is shown that the absorption bands in the 690-580 nm region of natural pale blue beryl crystals caused by neutron irradiation belong to a complex center, which consists of Cr3+ ions and radiation defect - F or F+- center. Presence of Fe2+ ions contributes to the persistence of the complex defect.

  11. Tridimensional morphology and kinetics of etch pit on the {l_brace}0 0 0 1{r_brace} plane of sapphire crystal

    SciTech Connect

    Zhang Lunyong; Sun Jianfei; Zuo Hongbo; Yuan Zhiyong; Zhou Ji; Xing Dawei; Han Jiecai

    2012-08-15

    The tridimensional morphology and etching kinetics of the etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal ({alpha}-Al{sub 2}O{sub 3}) in molten KOH were studied experimentally. It was shown that the etch pit takes on tridimensional morphologies with triangular symmetry same as the symmetric property of the sapphire crystal. Pits like centric and eccentric triangular pyramid as well as hexagonal pyramid were observed, but the latter is less in density. In-depth analyses show the side walls of the etch pits belong to the {l_brace}1 1{sup Macron} 0 2{sup Macron }{r_brace} family, and the triangular pit contains edges full composed by Al{sup 3+} ions on the etching surface so it is more stable than the hexagonal pit since its edges on the etching surface contains Al{sup 2+} ions. The etch pits developed in a manner of kinematic wave by the step moving with constant speed, which is controlled by the chemical reaction with activation energy of 96.6 kJ/mol between Al{sub 2}O{sub 3} and KOH. - Graphical abstract: Schematic showing the atomic configuration of the predicted side walls of regular triangular pyramid shaped etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal. Highlights: Black-Right-Pointing-Pointer Observed the tridimensional morphology of etch pits. Black-Right-Pointing-Pointer Figured out the atomic configuration origin of the etch pits. Black-Right-Pointing-Pointer Quantitatively determined the etch rates of the etch pits.

  12. The crystallization of new synthetic organo-clays

    SciTech Connect

    Carrado, K.A.

    1994-03-01

    A novel method for the preparation of new synthetic, potentially catalytic clays has been discovered. In this method, a diverse variety of organic and-organometallic molecules can be directly incorporated during crystallization of the clay. This method has great potential for the incorporation of catalytically active species to create new heterogeneous catalysts. The catalyst precursors are organic-inorganic composites comprised of a layered silicate intercalated with such molecules as porphyrins or metalloporphyrins, organic aromatic dyes, a Cu(II) phthalocyanine dye, or bulky transition metal chelates. This procedure is readily applicable for introducing specific molecules for highly tailored applications, because successful templates include a variety of catalytically, electrochemically, and photochemically active species. Characterization studies were performed to establish the composition of the synthetic products, including x-ray absorption spectroscopy at NSLS.

  13. Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Hao; Wu, YewChung Sermon; Liao, Wei-Chih; Lin, Bo-Wen

    2010-02-01

    Periodic triangle pyramidal array patterned sapphire substrates (PSSs) with various slanted angles were fabricated by wet etching. It was found beside normal wurtzite GaN, zinc blende GaN was found on the sidewall surfaces of PSS. The crystal quality and performance of PSS-LEDs improved with decrease in slanted angle from 57.4° to 31.6°. This is because most of the growth of GaN was initiated from c-planes. As the growth time increased, GaN epilayers on the bottom c-plane covered these pyramids by lateral growth causing the threading dislocation to bend toward the pyramids.

  14. Redistribution of nitrogen implanted in the crystals of synthetic diamond

    NASA Astrophysics Data System (ADS)

    Cherepov, E. I.; Tishkovsky, E. G.; Obodnikov, V. I.; Pal'yanov, Ju. N.; Sokol, A. G.; Sobolev, N. V.

    2001-10-01

    The redistribution of nitrogen atoms implanted in synthetic diamond crystals was investigated by secondary ion mass-spectrometry in course of an isothermal annealing program at 1400°C during 1, 5 and 20 h. It was shown that the nitrogen profiles spread at a macroscopic scale, and the broadening is well described in terms of the diffusion movement of impurity atoms. The preliminary estimates of diffusion coefficients were obtained: 2.3×10 -15 cm2/ s for 1 h annealing, 8.5×10 -16 cm2/ s for 5 h annealing and 3.7×10 -16 cm2/ s for 20 h annealing.

  15. Synthetic antibodies for specific recognition and crystallization of structured RNA

    PubMed Central

    Ye, Jing-Dong; Tereshko, Valentina; Frederiksen, John K.; Koide, Akiko; Fellouse, Frederic A.; Sidhu, Sachdev S.; Koide, Shohei; Kossiakoff, Anthony A.; Piccirilli, Joseph A.

    2008-01-01

    Antibodies that bind protein antigens are indispensable in biochemical research and modern medicine. However, knowledge of RNA-binding antibodies and their application in the ever-growing RNA field is lacking. Here we have developed a robust approach using a synthetic phage-display library to select specific antigen-binding fragments (Fabs) targeting a large functional RNA. We have solved the crystal structure of the first Fab–RNA complex at 1.95 Å. Capability in phasing and crystal contact formation suggests that the Fab provides a potentially valuable crystal chaperone for RNA. The crystal structure reveals that the Fab achieves specific RNA binding on a shallow surface with complementarity-determining region (CDR) sequence diversity, length variability, and main-chain conformational plasticity. The Fab–RNA interface also differs significantly from Fab–protein interfaces in amino acid composition and light-chain participation. These findings yield valuable insights for engineering of Fabs as RNA-binding modules and facilitate further development of Fabs as possible therapeutic drugs and biochemical tools to explore RNA biology. PMID:18162543

  16. Structural studies in the epitaxial-growth of indium nitride crystals with flower-like structure on a sapphire (112¯0) substrate

    NASA Astrophysics Data System (ADS)

    Wakasugi, Satoshi; Sugiura, Haruka; Shimomura, Masaru; Nakamura, Takato; Takahashi, Naoyuki

    2007-11-01

    Indium nitride crystals with flower-like structure are grown on a-plane sapphire substrate by means of chemical vapor deposition using InCl 3 and NH 3 as starting materials under atmospheric pressure. They have similar shape and size. It was found that a style and petals which constitute flower-like structure were grown homoepitaxially. This was deduced by the results of the reciprocal space mappings. Also, it was suggested that there are the following relationships between the style and petals: the directions [//[ and [//[//[ are parallel and perpendicular to the substrate, respectively. Selective growth of the flower-like InN crystals is explained in terms of the homoepitaxy.

  17. Epitaxial Growth of Mo Single Crystal on Sapphire by H2 Reduction of MoO3 and Characterization by Reflection High-Energy Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Igarashi, Osamu

    1995-05-01

    Mo depositions on sapphire ( Al2O3) were effected by H2 reduction of MoO3, and the crystallinity of the films was characterized by reflection high-energy electron diffraction (RHEED). In the case of growth on the (1\\=102) Al2O3 substrates, single-crystal epitaxial growth of (001) Mo was realized. On (0001) Al2O3, single-crystal Mo was not obtained; Mo deposited on (0001) Al2O3 was composed of three sets of (110)-oriented crystallites. To obtain Debye-Scherrer ring-free Mo films whose RHEED patterns did not include arcs, growth temperatures of 890 and 920° C were required in growths on (1\\=102) and (0001) Al2O3 substrates, respectively.

  18. Differences in crystal habitus of natural and synthetic colloids

    NASA Astrophysics Data System (ADS)

    Wieczorek, Arkadiusz K.; Händel, Matthias; Totsche, Kai Uwe

    2014-05-01

    The formation of colloids from natural aqueous solutions is influenced by a multitude of biogeochemical and physicochemical processes and the presence of a large diversity of geogen and biogen, inorganic and organic solution phase components. A thereby frequently neglected class of components is the dissolved and colloidal phase organic matter (DOM). As DOM will interact with other solution phase components, we hypothesize that nanosized and colloidal particles formed in DOM bearing solutions may differ from synthetic precipitates either by size, shape, crystal habitus, crystallinity, composition or combinations of that. To investigate this, we analyzed natural colloidal particles collected from a limestone aquifer of the Upper Muschelkalk formation at Hainich National Park, Thuringia, Germany. Major groundwater components are Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- , and about 1 ppm of total organic carbon (TOC) in dissolved and colloidal form. Synthetic nanoparticles were precipitated from a series of oversaturated solutions containing single or mixtures of the following salts CaSO4, MgSO4, Ca(HCO3)2 NaCl typical for limestone environments. The solutions were produced with both natural groundwater and pure water (milli-Q). Droplets of such produced colloidal suspension were pipetted on silicon wafers and subject to air drying. The wafers were then analyzed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We found that particles from oversaturated CaSO4 solution in pure water precipitate as large needle shaped crystals, whereas precipitates from CaSO4 solution in natural water were much smaller and showed a rosette like shape - similar in size and shape to gypsum crystals collected from the limestone formation water. Similar differences we found for other aqueous solution compositions. From this pilot study we presume that even minute amounts of dissolved and colloidal phase organic matter in

  19. Eutectic bonding of sapphire to sapphire

    NASA Technical Reports Server (NTRS)

    Deluca, J. J.

    1973-01-01

    Eutectic mixture of aluminum oxide and zirconium oxide provides new bonding technique for sapphires and rubies. Technique effectively reduces possibility of contamination. Bonding material is aluminum oxide and zirconium oxide mixture that matches coefficient of thermal expansion of sapphire.

  20. Synthetic single crystal diamond diodes for radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.; Ciancaglioni, I.

    2008-09-01

    Synthetic single crystal diamonds in a p-type/intrinsic/metal structure were tested as dosimeters for radiotherapy. The devices have been analyzed by using 6 and 10 MV Bremsstrahlung X-ray beams and electron beams from 6 MeV up to 18 MeV from a CLINAC DHX Varian accelerator. All measurements have been performed in a water phantom and ionization chambers were used for calibration and comparison. The dosimeters were operated in photovoltaic regime with no external bias voltage applied. A few Gy pre-irradiation was performed in order to stabilize the device output, resulting in fluctuations sensitivity below ±0.5%. No dose rate dependence of the detector response was observed. Very good reproducibility and linearity were obtained as well.

  1. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals.

    PubMed Central

    Paul, H; Reginato, A J; Schumacher, H R

    1983-01-01

    Transmission electron microscopic studies of synthetic and natural monosodium urate crystals dried on formvar coated grids showed identical internal structures in all crystals. At higher magnification the crystals' surface showed angular or wavy irregularities, and more rarely some crystals appeared to have other tiny crystals on the surface. Protein-like surface coating was not observed except in crystals from one asymptomatic patient in whom synovial fluid was loaded with monosodium urate crystals, but no inflammatory cells were present. Heated synthetic monosodium urate crystals retained the ultrastructural characteristics in their interior but they lost their needle or rod-like shape. Transmission electron microscopic study of monosodium urate crystals dried on formvar coated grids provides a quick method of investigating crystal ultrastructure. Images PMID:6830327

  2. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals.

    PubMed

    Paul, H; Reginato, A J; Schumacher, H R

    1983-02-01

    Transmission electron microscopic studies of synthetic and natural monosodium urate crystals dried on formvar coated grids showed identical internal structures in all crystals. At higher magnification the crystals' surface showed angular or wavy irregularities, and more rarely some crystals appeared to have other tiny crystals on the surface. Protein-like surface coating was not observed except in crystals from one asymptomatic patient in whom synovial fluid was loaded with monosodium urate crystals, but no inflammatory cells were present. Heated synthetic monosodium urate crystals retained the ultrastructural characteristics in their interior but they lost their needle or rod-like shape. Transmission electron microscopic study of monosodium urate crystals dried on formvar coated grids provides a quick method of investigating crystal ultrastructure.

  3. Surface modification of a-plane sapphire substrates and its effect on crystal orientation of ZnTe layer

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu

    2017-01-01

    Domain structures of ZnTe layers grown on a-plane sapphire substrates were investigated by changing the crystallographic properties of the surface and interface. Pole figure images were obtained and we investigated the domain structure in the grown film and the orientation relationships between films and substrates. It was confirmed that two kinds of {111} domains were oriented by annealing the buffer layer at 350 °C, while the (100) domain was obtained by annealing the buffer layer at 300 °C. From the results of the rocking curve measurement, the introduction of a step-terrace surface through the high-temperature treatment of the substrate resulted in an improved crystallographic quality. However, it did not affect the domain structure in the layer. The introduction of an off-angle on the substrate surface resulted in the formation of a single (111) domain layer. These crystallographic features were mainly affected by the surface atom arrangement of the sapphire substrate and its chemical nature.

  4. Crystal chemistry of natural and synthetic trioctahedral micas: Exploring the limits of geometric crystal chemical models

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick H. J.

    Seventy-five synthetic powder trioctahedral mica samples (between Mg, Co, Ni, and Fe end members, with different degrees of oxidation, vacancy and Al/Si contents, and including an OH/F substitution series) were studied by room-temperature powder X-ray diffraction. The iron-bearing samples were studied by 57Fe Mossbauer spectroscopy. Subsets of the samples were also characterized by scanning electron microscopy combined with energy dispersive spectroscopy, optical microscopy, X-ray fluorescence spectroscopy, and gas chromatography. Lattice parameters (refined under the 1M stacking polytype, space group C2/m) were determined for all powder samples and iron site populations ([4]Fe 3+, [6]Fe2+, and [6]Fe 2+) were obtained from Mossbauer spectroscopy. The relation (c/a)cosbeta* = 113 was found to hold exactly (within experimental error) for all synthetic powders whereas it does not hold in general for synthetic and natural 1M single-crystals. The above relation is predicted to hold for geometric home-octahedral sheets (having equal M1 and M2 site bond lengths) and not to hold for geometric meso-octahedral sheets (having unequal M1 and M2 site bond lengths). The counter-rotation of the M2 site of 1M single-crystals exactly (within experimental error) follows the geometric meso-octahedral sheet model, which, assuming a uniform octahedral sheet height and site-specific M1 and M2 bond lengths, predicts site-specific flattening angles and a counter-rotation angle for the M2 site which is uniquely determined by the bond length difference between the M1 and M2 sites. A geometric meso-octahedral 2:1 layer silicate was shown to require corrugated tetrahedral sheets composed of bond-distorted tetrahedra. Key geometric meso-octahedral distortions in 1M single-crystals were identified and elucidated: (i) intra-layer top-bottom displacements within a TOT layer; and (ii) a tetrahedral bending angle between the apical bond and the pyramidal base formed by the three basal bonds. Plots

  5. Naturally produced crystals obtained from kidney stones are less injurious to renal tubular epithelial cells than synthetic crystals.

    PubMed

    Escobar, Carla; Byer, Karen J; Khan, Saeed R

    2007-10-01

    To determine the differences in cell responses to synthetic and biological crystals of calcium oxalate (CaOx) and brushite Nephrolithiasis depends on crystal retention within the kidneys, often promoted by crystal attachment to the injured renal epithelium; studies often use various crystals that might be injurious to cells and cause the exposure of crystal binding molecules on cell surfaces, thus promoting crystal attachment and retention. The synthetic crystals used in these studies might be more injurious than the biological crystals naturally produced in the kidneys and that form kidney stones. We exposed the renal epithelial cell line NRK 52E in vitro to CaOx or brushite crystals at 67 or 133 microg/cm(2) for 3 or 6 h. Synthetic crystals were purchased and the biocrystals were obtained by pulverizing CaOx and brushite stones. We determined the release of lactate dehydrogenase (LDH), hydrogen peroxide (H(2)O(2)) and 8-isoprostane (8-IP), and monocyte chemoattractant protein-1 (MCP-1), as markers of injury, oxidative stress and inflammation, respectively. Cells were also examined after trypan blue staining to determine their membrane integrity. We also examined crystals of CaOx by scanning electron microscopy both in the native state as well as after decalcification. Exposure to both the synthetic and biological crystals resulted in a significant increase in LDH release and trypan blue staining, as a sign of crystal-induced injury. There was increased production of H(2)O(2) and 8-IP, suggesting the development of oxidative stress. In addition MCP-1 production was also significantly increased. However, the synthetic crystals caused significantly higher increases in all the indicators than the biological crystals. These results indicate that even though both synthetic and naturally produced biocrystals invoke a response from the renal epithelial cells, the latter are significantly less injurious and inflammatory. Exposure to low concentrations of these crystals

  6. Thermal characteristics of sapphire contact probe delivery systems for laser angioplasty.

    PubMed

    Ashley, S; Brooks, S G; Gehani, A A; Kester, R C; Rees, M R

    1990-01-01

    Contact probes made from synthetic sapphire crystal, designed for general laser surgery, are currently being evaluated for use in laser angioplasty. Their mode of action and safety in the context of arterial recanalisation is unknown, particularly with respect to the degree of probe and catheter heating. Infrared thermal imaging was used to investigate the surface temperature rise of various rounded sapphire probes during emission of continuous wave Nd-YAG (1,064 nm) laser energy. Catheter safety was addressed by analyzing the temperature of the metal interface between the optical fiber and sapphire, as well as the catheter proximal to this junction. Transmission of Nd-YAG energy through each probe was also measured. Five rounded probes of 1.8-3.0 mm diameter (three supplied by Surgical Laser Technologies [SLT], two by Living Technology [LT]), along with their respective optical catheters, were compared. There was a large temperature gradient between the front and rim of the probes. The maximum surface temperature rise of the sapphire (at 20 W, 5-second exposure) was 314-339 degrees C (SLT) and 90-108 degrees C (LT) [P less than 0.001, 3-way ANOVA]. The reason for this difference may be related to "crazing" of the front surface of the SLT sapphires. At all energy levels sapphire temperatures were considerably lower than attained by metal laser thermal angioplasty probes. Forward transmission was slightly higher in the SLT probes (75-85%) than the LT sapphires (54-69%). With fiber perfusion at 2 ml/minute, a minor degree of heating of the metal sapphire holders was recorded (maximum rise 35 degrees C), but heating of the catheter proximal to this was negligible. Therefore, it would appear that the risk of tip detachment or arterial injury due to heating of the connecting metal interface is extremely low. Without perfusion, however, there was a greater degree of interface heating in the LT delivery system suggestive of more laser backscattering by these sapphires

  7. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    SciTech Connect

    Nian, Qiong; Zhang, Martin Y.; Schwartz, Bradley D.; Cheng, Gary J.

    2014-05-19

    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm{sup 2}/V s at a low carrier concentration of 7.9 × 10{sup +19} cm{sup −3}. This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity.

  8. High-temperature strength of sapphire

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2000-10-01

    The Sapphire Statistical Characterization and Risk Reduction Program tested approximately 1500 4-point flexure bars with different crystal orientations at different temperatures to establish a mechanical strength database for engineering design. Sapphire coupons were selected to represent surfaces on two different missile windows and a missile dome. Sapphire was obtained from the same suppliers used for the windows or dome and, as much as possible, coupons were fabricated in the same manner as the corresponding part of the window or dome. Perhaps the most interesting result was that sapphire from one fabricator was 50% stronger than sapphire made to the same specifications from the same blanks by another fabricator. In laser heating tests, sapphire performed better than predicted from flexure tests. When a compliant layer of graphite was used as a pad between the test specimens and the load fixture, sapphire in which the principal axis of tension and compression was parallel to the c-axis increased in apparent strength by a factor of 2 - 3. Strengths of other crystal orientations were not significantly affected by the graphite pads, but the incidence of twinning at 883 K was reduced by graphite.

  9. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  10. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  11. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  12. Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites.

    PubMed

    Sugahara, Michihiro; Asada, Yukuhiko; Morikawa, Yuko; Kageyama, Yuichi; Kunishima, Naoki

    2008-06-01

    Protein crystallization is still a major bottleneck in structural biology. As the current methodology of protein crystallization is a type of screening, it is usually difficult to crystallize important target proteins. It was thought that hetero-epitaxic growth from the surface of a mineral crystal acting as a nucleant would be an effective enhancer of protein crystallization. However, in spite of almost two decades of effort, a generally applicable hetero-epitaxic nucleant for protein crystallization has yet to be found. Here we introduce the first candidate for a universal hetero-epitaxic nucleant, microporous zeolite: a synthetic aluminosilicate crystalline polymer with regular micropores. It promotes a form-selective crystal nucleation of proteins and acts as a crystallization catalyst. The most successful zeolite nucleant was molecular sieve type 5A with a pore size of 5 A and with bound Ca2+ ions. The zeolite-mediated crystallization improved the crystal quality in five out of six proteins tested. It provided new crystal forms with better resolution in two cases, larger crystals in one case, and zeolite-dependent crystal formations in two cases. The hetero-epitaxic growth of the zeolite-mediated crystals was confirmed by a crystal-packing analysis which revealed a layer-like structure in the crystal lattice.

  13. Advances in sapphire optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.

    1993-01-01

    We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

  14. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  15. An approach to crystallizing proteins by metal-mediated synthetic symmetrization

    SciTech Connect

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B.; Sawaya, Michael R.; Cascio, Duilio; Yeates, Todd O.

    2011-12-09

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures-eight for T4L and eight for MBP-displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.

  16. Pressure measurement using the R fluorescence peaks and 417 cm-1 Raman peak of an anvil in a sapphire-anvil cell

    NASA Astrophysics Data System (ADS)

    Gao, Rong; Li, Heping

    2012-06-01

    In this study, synthetic sapphire crystals were used as anvils, coupled with a metal gasket, in a Merrill-Bassett-type pressure cell (sapphire-anvil cell (SAC)). Quartz and ruby chips were compressed in the cell and used as pressure calibrators for the SAC. In the sample-anvil interface, the relationship of the frequency shifts of the R1, R2 and 417 cm-1 peaks with pressure was studied. They were constructed as new pressure calibrators. To test the applicability of the newly calibrated SAC, the Raman spectra of dolomite and calcite were measured in situ at room temperature.

  17. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  18. Performance of a polarizer using synthetic mica crystal in the 12-25 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Cui, Ming-Qi; Chen, Kai; Zhao, Jia; Sun, Li-Juan; Xi, Shi-Bo; Yan, Fen

    2011-05-01

    To develop polarizer functioning in the extreme ultraviolet (EUV) and soft X-ray region, the polarization performance of synthetic mica has been investigated theoretically with a simulation code using Fresnel equations and optical constants from the Henke database. The reflectance of synthetic mica crystal for s and p polarization was measured to investigate its polarization performance in a home-made synchrotron radiation soft X-ray polarimeter at beamline 3W1B, Beijing Synchrotron Radiation Facility (BSRF). The reflectivity of the synthetic mica crystal at an angle of grazing incidence of 48° was obtained from the experimental data, which is about 4.8×10-3 at 25 nm and 6.0×10-4 at 12 nm, and the linear polarizance of the X-ray reflected by the synthetic mica crystal that we measured using an analyzer-rotating method increases from 80% to 96.6% in this EUV region, while higher than 98.2% in the simulation. The result indicates that this synthetic mica crystal works as a practical polarizer in this EUV region of 12-25 nm, and also in an extensive wavelength region higher than 25 nm.

  19. Post-synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals

    PubMed Central

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2016-01-01

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, via acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, among these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution. PMID:26458081

  20. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.

    PubMed

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2015-11-23

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.

  1. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    SciTech Connect

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia; Moras, Dino; Ruff, Marc

    2008-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins.

  2. Thermal neutron dosimeter by synthetic single crystal diamond devices.

    PubMed

    Almaviva, S; Marinelli, Marco; Milani, E; Prestopino, G; Tucciarone, A; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M

    2009-07-01

    We report on a new solid state dosimeter based on chemical vapor deposition (CVD) single crystal diamond fabricated at Roma "Tor Vergata" University laboratories. The dosimeter has been specifically designed for direct neutron dose measurements in boron neutron capture therapy (BNCT). The response to thermal neutrons of the proposed diamond dosimeter is directly due to (10)B and, therefore, the dosimeter response is directly proportional to the boron absorbed doses in BNCT. Two single crystal diamond detectors are fabricated in a p-type/intrinsic/metal configuration and are sandwiched together with a boron containing layer in between the metallic contacts (see Fig.1). Neutron irradiations were performed at the Frascati Neutron Generator (FNG) using the 2.5 MeV neutrons produced through the D(d,n)(3)He fusion reaction. Thermal neutrons were then produced by slowing down the 2.5 MeV neutrons using a cylindrical polymethylmethacrylate (PMMA) moderator. The diamond dosimeter was placed in the center of the moderator. The products of (10)B(n,alpha)Li nuclear reaction were collected simultaneously giving rise to a single peak. Stable performance, high reproducibility, high efficiency and good linearity were observed.

  3. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  4. Control of macromolecule distribution within synthetic and biogenic single calcite crystals

    SciTech Connect

    Aizenberg, J.; Weiner, S.; Addadi, L.; Hanson, J.; Koetzle, T.F.

    1997-02-05

    The ability of organisms to exercise control over crystal growth is wonderfully exemplified by skeleton formation in echinoderms. A sea urchin spine is a unique composite of a single crystal of calcite and glycoproteins intercalated inside the crystal during its growth. Here we performed a detailed morphological and high-resolution synchrotron X-ray diffraction study of the textures of synthetic and biogenic calcite crystals. We show that the intracrystalline macromolecules from sea urchin spines, when allowed to interact with growing calcite crystals in vitro, selectively reduce the coherence lengths and degrees of alignment of the perfect domains in specific crystallographic directions. These directions also correspond to the newly-developed stable faces. In contrast, the defect distribution of young sea urchin spines composed entirely of spongy stereomic structure is much more isotropic. In mature spines containing secondarily filled-in wedges of calcite, the degree of anisotropy is intermediate between that of the synthetic crystals and the young spines. The macromolecules extracted from young and mature spines are, however, very similar. These observations demonstrate the inherent capability of occluded matrix macromolecules to finely differentiate between crystal planes by stereochemical recognition processes. 20 refs., 5 figs., 2 tabs.

  5. A neutron sensor based on synthetic single crystal diamond

    SciTech Connect

    Schmid, G J; Koch, J A; Lerche, R A; Moran, M J

    2003-10-17

    We report the first neutron data for a single crystal Chemical Vapor Deposition (CVD) diamond sensor. Results are presented for 2.5, 14.1, and 14.9 MeV incident neutrons. We show that the energy resolution for 14.1 MeV neutrons is at least 2.9% (as limited by the energy spread of the incident neutrons), and perhaps as good as 0.4% (as extrapolated from high resolution {alpha} particle data). This result could be relevant to fusion neutron spectroscopy at machines like the International Thermonuclear Experimental Reactor (ITER). We also show that our sensor has a high neutron linear attenuation coefficient, due to the high atomic density of diamond, and this could lead to applications in fission neutron detection.

  6. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  7. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  8. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    SciTech Connect

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P.U.P.A; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  9. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  10. Crystallization and Stress Relaxation in Highly Stretched Samples of Natural Rubber and its Synthetic Analogue

    SciTech Connect

    Tosaka,M.; Kawakami, D.; Senoo, K.; Kohjiya, S.; Toki, S.; Hsiao, B.

    2006-01-01

    Vulcanizates of natural rubber (NR) and its synthetic analogue (IR) were quickly stretched to 6 times the original length. The post stretch relaxation of tensile stress and the development of strain-induced crystallization (SIC) were studied by simultaneous measurements of the stress and the diffraction intensities using the synchrotron X-ray source. In the range of 8 s, NR crystallized much faster than IR. Accordingly, the origin of the superior toughness of NR was thought to come from the ability of rapid SIC. Time constants of the post-stretch crystallization were estimated from the X-ray study. Then the crystallization time constants were used to decompose the contribution of SIC from the total magnitude of the post-stretch relaxation. The contribution of SIC was dominant for the total magnitude of the post-stretch relaxation during several seconds.

  11. What Color is Sapphire

    DTIC Science & Technology

    1975-12-23

    acitelyr needed in the’’Various branches of industry. 1 1& n&h.e-j--We--ffst(i-synthesized by--th-WorK6e-r- 6-•l-t - AS1ISMR amethyst occupies a special...synthesize amethyst . This was done for the Cirst time by our country. Becaure of the intensity of its color and reddish gleam fJ ashing in its depths...even under electric lighting, it surpasses :!se--amethyset& -but-&so-the- unique Uralian amethysts . , Synthetic violet crystals are distinguished by

  12. Enhancement of spin-wave nonreciprocity in magnonic crystals via synthetic antiferromagnetic coupling

    PubMed Central

    Di, K.; Feng, S. X.; Piramanayagam, S. N.; Zhang, V. L.; Lim, H. S.; Ng, S. C.; Kuok, M. H.

    2015-01-01

    Spin-wave nonreciprocity arising from dipole-dipole interaction is insignificant for magnon wavelengths in the sub-100 nm range. Our micromagnetic simulations reveal that for the nanoscale magnonic crystals studied, such nonreciprocity can be greatly enhanced via synthetic antiferromagnetic coupling. The nonreciprocity is manifested as highly asymmetric magnon dispersion curves of the magnonic crystals. Furthermore, based on the study of the dependence of the nonreciprocity on an applied magnetic field, the antiparallel alignment of the magnetizations is shown to be responsible for the enhancement. Our findings would be useful for magnonic and spintronics applications. PMID:25950082

  13. Phonoritonic Crystals with a Synthetic Magnetic Field for an Acoustic Diode

    NASA Astrophysics Data System (ADS)

    Poshakinskiy, A. V.; Poddubny, A. N.

    2017-04-01

    We develop a rigorous theoretical framework to describe light-sound interaction in the laser-pumped periodic multiple-quantum-well structure accounting for hybrid phonon-polariton excitations, termed phonoritons. We show that phonoritons exhibit the pumping-induced synthetic magnetic field in the artificial "coordinate-energy" space that makes transmission of left- and right- going waves different. The sound transmission nonreciprocity allows one to use such phonoritonic crystals with realistic parameters as optically controlled nanoscale acoustic diodes.

  14. Improvement of crystal quality and optical property in (11-22) semipolar InGaN/GaN LEDs grown on patterned m-plane sapphire substrate

    NASA Astrophysics Data System (ADS)

    Jang, Jongjin; Lee, Kwanhyun; Hwang, Junghwan; Jung, Joocheol; Lee, Seunga; Lee, Kyuho; Kong, Bohyun; Cho, Hyunghoun; Nam, Okhyun

    2012-12-01

    Semipolar GaN layers were grown on the m-plane hemispherical patterned sapphire substrates (HPSS) using metal organic chemical vapor deposition in order to reduce the defect density and enhance the extraction efficiency of light. The roughness values of the GaN surface grown on the planar sapphire and the HPSS were 30 and 23 nm root-mean-square roughness for a 20×20-μm2 area, respectively. The reduction of basal stacking fault density was demonstrated by x-ray rocking curve of off-axis planes and cross-sectional transmission electron microscopy. The low-temperature photoluminescence measurement showed that the near band-edge emission from HPSS semipolar GaN was approximately one order of magnitude stronger than that from planar semipolar GaN layer. The InGaN light emitting diode grown on the HPSS showed an output power approximately 1.5 times that on the planar m-sapphire.

  15. Damage testing of sapphire and Ti: sapphire laser materials

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Diffusion bonded sapphire and Ti (Titanium). Sapphire laser materials that will be damage tested to determine if there is an increase in damage threshold. Photographed in building 1145, photographic studio.

  16. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A.; Ralchenko, V. G.; Bolshakov, A. P.; Polskiy, A. V.; Vlasov, A. V.; Subbotin, I. A.; Podurets, K. M.; Pashaev, E. M.; Sozontov, E. A.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likely due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.

  17. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate

    PubMed Central

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P. U. P. A.; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC⇒anhydrous ACC ∼ biogenic anhydrous ACC⇒vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO2 sequestration. PMID:20810918

  18. Crystallization studies of lunar igneous rocks: crystal structure of synthetic armalcolite.

    PubMed

    Lind, M D; Housley, R M

    1972-02-04

    Crystals of armalcolite, Mg(0.5)Fe(0.5)Ti(2)O(5), up to several millimeters in length have been grown from a glass initially having the composition of lunar rock 10017. A single-crystal x-ray study has confirmed that the crystals are isomorphous with pseudobrookite and has shown that the cations are strongly ordered, with the Ti(4+) ions occupying the 8f sites and the Fe(2+) and Mg(2+) ions randomly distributed over the 4c sites. An examination of karrooite, MgTi(2)O(5), has revealed a similar distribution of Mg(2+) and Ti(4+) ions. A reexamination of earlier x-ray and Mössbauer data for pseudobrookite, Fe(2)TiO(5), has shown that it is more consistent with this type of ordering than with the inverse structure that has been generally assumed.

  19. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches

    PubMed Central

    2017-01-01

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527

  20. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches.

    PubMed

    McLemore, Gabrielle L; Toker, Salih; Boone-Kukoyi, Zainab; Ajifa, Hillary; Lansiquot, Carisse; Nwawulu, Chinenye; Onyedum, Stanley; Kioko, Bridgit M; Aslan, Kadir

    2017-09-30

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5-10 W) and variable heating time (5-60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm(2) in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20-200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60-100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported.

  1. Petrogenesis of alkaline basalt-hosted sapphire megacrysts. Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R. O. C.; Wirth, R.; Geisler, T.; Nagel, T.

    2017-06-01

    Megacrystic sapphires are frequently associated with alkaline basalts, most notably in Asia and Australia, although basalt is not generally normative in corundum. Most of these sapphire occurrences are located in alluvial or eluvial deposits, making it difficult to study the enigmatic relationship between the sapphires and their host rocks. Here, we present detailed petrological and geochemical investigations of in situ megacrystic sapphires within alkaline basalts from the Cenozoic Siebengebirge Volcanic Field (SVF) in Germany. Markedly, the sapphires show several micrometer thick spinel coronas at the contact with the host basalt, indicating chemical disequilibrium between the sapphire and the basaltic melt, supporting a xenogenetic relationship. However, in situ U-Pb dating of a Columbite Group inclusion within one Siebengebirge sapphire using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) indicates a close genetic relationship between sapphire crystallization and alkaline mafic volcanism in the SVF. The syngenetic mineral inclusion suite including carbonates, members of the Pyrochlore, Betafite and Columbite Groupe minerals, as well as a high abundance of HFSE and of gaseous low-density CO2 inclusions support a parentage of a highly evolved, MgO and FeO deficient carbonatitic melt. We identified CO2 to be the link between alkaline basaltic volcanism and the xenocrystic sapphires. Only alkaline volcanic suites can build up enough CO2 in this magma chamber upon fractionation so that at high degrees of fractionation a carbonatitic melt exsolves which in turn can crystallize sapphires.

  2. Crystals, colloids, or molecules?: Early controversies about the origin of life and synthetic life.

    PubMed

    Deichmann, Ute

    2012-01-01

    Crystals, colloids, and (macro-)molecules have played major roles in theoretical concepts and experimental approaches concerning the generation of life from the mid-19th century on. The notion of the crystallization of life out of a nonliving fluid, a special case of the doctrine of spontaneous generation, was most prominently incorporated into Schleiden's and Schwann's version of cell theory. Refutation at the end of the 19th century of spontaneous generation of life and cells, in particular by Pasteur, Remak, and Virchow, not only gave rise to the flourishing fields of microbiology and cytology, but it also opened up research on synthetic life. These approaches focused on growth and form and colloidal chemistry on the one hand, and on the specificity of organisms' macromolecules and chemical reactions on the other. This article analyzes the contribution of these approaches to synthetic life research and argues that researchers' philosophical predilections and basic beliefs have played important roles in the choice of experimental and theoretical approaches towards synthetic life.

  3. Ti:sapphire - A theoretical assessment for its spectroscopy

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.

    2017-03-01

    This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.

  4. Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Hu, Wei; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-09-01

    In this paper, a new kind of liquid-crystal microlens array with graphene electrodes controlled electrically are designed and fabricated successfully. The graphene-based liquid-crystal microlens arrays (GLCMAs) exhibit excellent beam focusing performances in both the visible and near infrared (NIR) wavelength regions and also synthetic aperture imaging function. The graphene films used to fabricate the electrodes of the GLCMAs are grown by chemical vapor deposition over copper foils, demonstrating several characters of low sheet resistance and high transmittance in both wavelength ranges above. The key processes for shaping the GLCMAs include: transferring graphene films from copper foils to wafers selected, conventional UV-photolithography, ICP etching, and liquid-crystal encapsulation. Through performing common optical measurements, the point spread functions of incident lasers with different wavelength, such as red lasers of ∼600 nm, green lasers of ∼532 nm, and NIR lasers of ∼980 nm, have been obtained. Several key parameters including focal spots size, average normalized light intensity, focal length, average deviation rate and contrast ratio have been acquired and analyzed. A particular synthetic-aperture imaging based on the GLCMA is realized so as to certify a fact that a single target pattern can be constructed effectively based on some sub-aperture patterns with several tens or hundreds of micrometer scale, and thus highlight a way to fast process partial or small-zoned patterns for enhancing the detection efficiency of special targets.

  5. Design and X-ray crystal structures of human thrombin with synthetic cyanopeptide-analogues.

    PubMed

    Radau, G; Fokkens, J

    2007-02-01

    Based on the X-ray crystals of cocrystallized cyanopeptide-trypsin and cyanopeptide-thrombin-com-plexes, a rational drug design succeeded in the establishment of suitable lead structures for the development of new potential inhibitors of thrombin. This report deals with the design and X-ray crystallography data of new synthetic, low-molecular weight cyanopeptide-analogues, RA-1008 and RA-1014, complexed with human alpha-thrombin at 1.85 A resolution. The crystal structures of the complexes reveal, by analogy with modeling studies, that the salt bridge of Asp189 to this type of synthetic thrombin inhibitors leads to an almost identically binding into the S1 specificity pocket in comparison to the complex of the natural products, whereas in the overall binding modes the P2-P4 substructures differ from those of the leads. The strongest member of the second series of described thrombin inhibitors, RA-1014, shows in the crystal complex with thrombin a slightly higher affinity towards the enzyme than RA-1008 as confirmed by inhibition tests. This result and other key informations will be helpful to design a more potent series of inhibitors.

  6. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing.

    PubMed

    Deller, Robert C; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2014-01-01

    The cryopreservation of cells, tissue and organs is fundamental to modern biotechnology, transplantation medicine and chemical biology. The current state-of-the-art method of cryopreservation is the addition of large amounts of organic solvents such as glycerol or dimethyl sulfoxide, to promote vitrification and prevent ice formation. Here we employ a synthetic, biomimetic, polymer, which is capable of slowing the growth of ice crystals in a manner similar to antifreeze (glyco)proteins to enhance the cryopreservation of sheep and human red blood cells. We find that only 0.1 wt% of the polymer is required to attain significant cell recovery post freezing, compared with over 20 wt% required for solvent-based strategies. These results demonstrate that synthetic antifreeze (glyco)protein mimics could have a crucial role in modern regenerative medicine to improve the storage and distribution of biological material for transplantation.

  7. Boron analysis by electron microprobe using MoB4C layered synthetic crystals

    USGS Publications Warehouse

    McGee, J.J.; Slack, J.F.; Herrington, C.R.

    1991-01-01

    Preliminary electron microprobe studies of B distribution in minerals have been carried out using MoB4C-layered synthetic crystals to improve analytical sensitivity for B. Any microprobe measurements of the B contents of minerals using this crystal must include analyses for Cl to assess and correct for the interference of Cl X-rays on the BK?? peak. Microprobe analyses for B can be made routinely in tourmaline and other B-rich minerals, and minor B contents also can be determined in common rock-forming minerals. Incorporation of unusually high B contents in minerals other than borosilicates has been discovered in prograde and retrograde minerals in tourmalinites from the Broken Hill district, Australia, and may reflect high B activities produced during the metamorphism of tourmaline-rich rocks. -from Authors

  8. Electron paramagnetic resonance study of doped synthetic crystals of struvite and its zinc analogue

    NASA Astrophysics Data System (ADS)

    Chand, Prem; Agarwal, O. P.

    The electron paramagnetic resonance (EPR) technique has been used to study the Mn 2+ paramagnetic impurity complexes in synthetic struvite (MgNH 4PO 4β6H 2O) and the zinc isomorph (ZnNH 4PO 4β6H 2O). EPR of VO 2+ ion complexes in vanadyl doped crystals of the zinc isomorph of struvite has also been studied. Two differently oriented, but otherwise identical complexes of both Mn 2+ ion and VO 2+ ion are found in these crystals. The spin Hamiltonian parameters indicate a large orthorhombic distortion of the [Mn 2+(H 2O) 6] octahedra and an axial symmetry of the vanadyl complexes. The results indicate that in both manganese and vanadyl complexes, the metal ions have covalent bonding with the ligands.

  9. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    SciTech Connect

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.

  10. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

    PubMed Central

    Yamauchi, Ryosuke; Hamasaki, Yosuke; Shibuya, Takuto; Saito, Akira; Tsuchimine, Nobuo; Koyama, Koji; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates. PMID:26402241

  11. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

    NASA Astrophysics Data System (ADS)

    Yamauchi, Ryosuke; Hamasaki, Yosuke; Shibuya, Takuto; Saito, Akira; Tsuchimine, Nobuo; Koyama, Koji; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-09-01

    Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates.

  12. Study of high-temperature Smart Cut™: Application to silicon-on-sapphire films and to thin foils of single crystal silicon

    NASA Astrophysics Data System (ADS)

    Meyer, Raphaël; Kononchuck, Oleg; Moriceau, Hubert; Lemiti, Mustapha; Bruel, Michel

    2016-01-01

    Two novel processes of elaboration of silicon thin films and silicon foils are proposed, based on the knowledge brought from the Smart Cut™. The first relies on the laser-beam annealing of an implanted silicon wafer in order to induce a separation layer within the implanted wafer and a transfer upon a transparent wafer. The second consists in depositing a layer of liquid silicon upon an implanted silicon wafer and to form a silicon foil by liquid phase epitaxial growth that can be separated from the substrate by Smart Cut™. The separation kinetics of an implanted silicon wafer is characterized for temperature between 450 °C and 700 °C, considering doses of implantation from 3.5 ∗ 1016 H cm-2 to 1.0 ∗ 1017 H cm-2. The out-diffusion of hydrogen is studied by Energy Recoil Detection Analysis and a model of diffusion of hydrogen in implanted silicon is proposed. Based on this analysis, a model for the kinetics of splitting at high temperature is established. Smart Cut™ separation is demonstrated for temperature up to 1250 °C, considering an implanted silicon wafer bonded with a sapphire wafer, through which a laser beam anneals the structure. The kinetics of separation by laser beam annealing is characterized and compared to the kinetics established between 450 °C and 700 °C. The roughness of the silicon on sapphire film is characterized by Atomic Force Microscopy and a transfer is realized considering an implanted silicon bonded with a glass wafer of 200 mm of diameter. Finally, this article presents results of liquid silicon deposition onto an implanted silicon substrate. These results demonstrate the possibility to detach the film grown by liquid phase epitaxy and the upper part of the implanted substrate by Smart Cut™. Electron Backscattering Diffraction Pattern analysis is considered in order to demonstrate the occurrence of epitaxy of the deposited liquid onto the implanted substrate.

  13. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  14. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  15. Orientation relationship between α-Fe precipitate and α-Al2O3 matrix in iron-implanted sapphire.

    PubMed

    Wang, Y; Liu, X P; Qin, G W

    2014-07-01

    Fe ions were implanted into α-Al2O3 single crystals (sapphire) at room temperature and annealed in a reducing atmosphere. The orientation relationships (ORs) between α-Fe particles and sapphire matrix were investigated using transmission electron microscopy (TEM). All the α-Fe particles have the orientation relationship (OR) of (111)α-Fe||(0001)sapphire and [11¯0]α-Fe||[112¯0]sapphire with sapphire. This OR is predicted precisely by the coincidence of reciprocal lattice points (CRLP) method. The other OR of (110)α-Fe||(0001)sapphire and [111]α-Fe||[51¯4¯0]sapphire reported before is confirmed by the same method to be one of the secondary preferred orientation relationships in the α-Fe/sapphire system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A novel synthetic single crystal diamond device for in vivo dosimetry

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Tonnetti, A.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagalà, P.; Pimpinella, M.; Guerra, A. S.; De Coste, V.

    2015-08-15

    Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with {sup 60}Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  17. A novel synthetic single crystal diamond device for in vivo dosimetry.

    PubMed

    Marinelli, Marco; Prestopino, G; Tonnetti, A; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Pimpinella, M; Guerra, A S; De Coste, V

    2015-08-01

    Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of "Tor Vergata" University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with (60)Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  18. Evolution of the sapphire industry: Rubicon Technology and Gavish

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2009-05-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Stepanov in the Soviet Union published his sapphire growth method in 1959. Edge-Defined Film-Fed Growth (EFG), which is similar to the Stepanov method, was developed by H. Labelle in the U. S. in the 1960s and 1970s. The Heat Exchanger Method (HEM), invented by F. Schmid and D. Viechnicki in 1967 was commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) proposed by Kh. S. Bagdasorov in the Soviet Union in the 1960s was further developed at the Institute for Single Crystals in Ukraine. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s and 1980s. At the Institute for Single Crystals in Ukraine, E. Dobrovinskaya characterized Verneuil, Czochralsky, Bagdasarov, and GOI sapphire. In 1995, she emigrated to the United States and joined S&R Rubicon, founded near Chicago by R. Mogilevsky initially to import sapphire and ruby. Mogilevsky began producing sapphire by the Kyropoulos method in 1999. In 2000 the company name was changed to Rubicon Technology. Today, Dobrovinskaya is Chief Scientist and Rubicon produces high quality Kyropoulos sapphire substrates for solid-state lighting. In 1995, H. Branover of Ben Gurion University and a sole investor founded Gavish, which is Hebrew for "crystal." They invited another veteran of the Ukrainian Institute for Single Crystals, V. Pishchik, to become Chief Scientist. Under Pishchik's technical leadership and J. Sragowicz's business leadership, Gavish now

  19. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    In the frame of an extensive project on the optical characterization of the many varieties of corundum (see:www.gemdata.mater.unimib.it ) we reconsidered the current interpretation of the absorption spectra with particular attention to the bands attributed to the IVCT mechanism Fe2+→ Fe3+ and Fe2+→Ti4+. A detailed study was devoted to natural metamorphic and Verneuil synthetic pale blue sapphires . In that paper (I.Fontana et al 2008) we gave experimental evidence that the band at 17500 cm-1 often attributed to Fe2+→Ti4+ IVCT transitions is in reality due to the 4T2 crystal field transition of Cr3+ partially overlapped by the 2E of Ti3+. The results of radio and photoluminescence excitation experiments obtained there, led us to propose that the color of these sapphires is mainly due to Cr in its two valence states ; Ti 3+ and Fe3+ have a minor role. After those encouraging results, we decided to apply the same approach to the study of deep blue and yellow sapphires of magmatic origin. Evaluation of impurity ion concentration by EDXRF revealed that in all these samples the concentration of Fe is quite high (around 1%) while Cr and Ti are barely detectable. Characteristic of the absorption spectra of deep blue samples is the dominant presence of the 5E spin allowed transition of Fe2+; Fe3+ has a minor role due to the fact that all d5 transitions are spin forbidden and ,consequently, very weak. In yellow sapphires Fe is totally in its 3+ valence state. In these cases, the color from yellow to blue, sometimes even within the same sample, depends. on oxidizing or reducing growth conditions. Even if the concentrations of Cr and Ti are very low, their characteristic emissions are the only ones observable down to 10000 cm-1 in radio and photoluminescence spectra. This piece of evidence suggested us to propose for the absorption bands present in the 14000 to 21000 cm-1 range, often attributed to IVCT, the same attribution given to the analogous bands in metamorphic

  20. Optimization of the structural quality of sapphire rods grown by the Stepanov method in a reducing atmosphere

    SciTech Connect

    Kryvonosov, Ye. V.; Konevskiy, P. V. Lytvynov, L. A.; Tkachenko, V. F.

    2015-03-15

    Historically, the Stepanov method has been used for growing long shaped sapphire crystals (rods, tubes, and ribbons) for practical design. The recent intense development of this technique was stimulated by sapphire applications in optics and electronics; thus, the optical and structural quality of these crystals is of great importance. The results of studying the structural quality of sapphire rods up to 18 mm in diameter grown under optimized conditions are reported.

  1. Submillimeter ESR spectra of Fe2+ ions in synthetic and natural beryl crystals

    NASA Astrophysics Data System (ADS)

    Shakurov, G. S.; Khaibullin, R. I.; Tomas, V. G.; Fursenko, D. A.; Mashkovtsev, R. I.; Lopatin, O. N.; Nikolaev, A. G.; Gorshunov, B. P.; Zhukova, E. S.

    2017-08-01

    Electron spin resonance spectra of non-Kramers bivalent iron (Fe2+) ions have been detected in synthetic and natural beryl crystals with an iron impurity. The observed ESR spectra have been attributed to resonance transitions of Fe2+ ions from the ground (singlet) state to excited (doublet) levels with the splitting Δ = 12.7 cm-1 between the levels. The experimental angular and frequency dependences of the resonance field of the ESR signal have been described by the spin Hamiltonian with the effective spin S = 1. The analysis of the ESR data and optical absorption spectra indicates that the Fe2+ ions are situated in tetrahedral positions and substitute Be2+ cations in the beryl structure.

  2. Epitaxy of CdTe on sapphire substrates with titanium buffer layers

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.; Babaev, V. A.; Alikhanov, N. M.-R.

    2017-05-01

    The formation of a developed electrical relief on the sapphire substrate surface is investigated. A technique is proposed for introducing Ti4+ impurity atoms into the sapphire crystal lattice by depositing titanium layers with a thickness of about 5 nm and their annealing in air (oxidizing atmosphere) to a temperature of 1400°C. It is shown that this preliminary treatment of the sapphire substrate surface results in epitaxial growth of (111) CdTe films parallel to the sapphire (0001) plane at a temperature of 350°C.

  3. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology.

    PubMed

    Marković, Smilja; Veselinović, Ljiljana; Lukić, Miodrag J; Karanović, Ljiljana; Bračko, Ines; Ignjatović, Nenad; Uskoković, Dragan

    2011-08-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [00l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 °C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.

  4. Epitaxial growth of hexagonal silicon polytypes on sapphire

    SciTech Connect

    Pavlov, D. A.; Pirogov, A. V. Krivulin, N. O.; Bobrov, A. I.

    2015-01-15

    The formation of a single-crystal silicon polytype is observed in silicon-on-sapphire structures by high-resolution transmission electron microscopy. The appearance of inclusions with a structure different from that of diamond is attributed to the formation of strong-twinning regions and the aggregation of stacking faults, which form their own crystal structure in the crystal lattice of silicon. It is demonstrated that the given modification belongs to the 9R silicon polytype.

  5. General Synthetic Strategy for Hollow Hybrid Microspheres through a Progressive Inward Crystallization Process.

    PubMed

    Yang, Li-Ping; Lin, Xi-Jie; Zhang, Xing; Zhang, Wei; Cao, An-Min; Wan, Li-Jun

    2016-05-11

    Hollow hybrid microspheres have found great potential in different areas, such as drug delivery, nanoreactors, photonics, and lithium-ion batteries. Here, we report a simple and scalable approach to construct high-quality hollow hybrid microspheres through a previously unexplored growth mechanism. Starting from uniform solid microspheres with low crystallinity, we identified that a hollowing process can happen through the progressive inward crystallization process initiated on the particle surface: the gradual encroachment of the crystallization frontline toward the core leads to the depletion of the center and forms the central cavity. We showed that such a synthetic platform was versatile and can be applicable for a large variety of materials. By using the production of Li4Ti5O12-carbon hollow hybrid microspheres as an example, we demonstrated that high-performance anode materials could be achieved through synthesis and structure control. We expect that our findings offer new perspectives in different areas ranging from materials chemistry, energy storage devices, catalysis, to drug delivery.

  6. CRYSTALLIZATION OF SYNTHETIC HAEMOZOIN (β-HAEMATIN) NUCLEATED AT THE SURFACE OF LIPID PARTICLES

    PubMed Central

    Hoang, Anh N.; Ncokazi, Kanyile K.; de Villiers, Katherine A.; Wright, David W.; Egan, Timothy J.

    2010-01-01

    Summary The mechanism of formation of haemozoin, a detoxification by-product of several blood-feeding organisms including malaria parasites, has been a subject of debate; however, recent studies suggest that neutral lipids may serve as a catalyst. In this study, a model system consisting of an emulsion of neutral lipid particles was employed to investigate the formation of β-haematin, the synthetic counterpart of haemozoin, at the lipid-water interface. A solution of monoglyceride, either monostearoylglycerol (MSG) or monopalmitoylglycerol (MPG), dissolved in acetone and methanol was introduced to an aqueous surface. Fluorescence, confocal and transmission electron microscopic (TEM) imaging and dynamic light scattering analysis of samples obtained from beneath the surface confirmed the presence of homogeneous lipid particles existing in two major populations: one in the low micrometer size range and the other in the hundred nanometre range. The introduction of haem (Fe(III)PPIX) to this lipid particle system under biomimetic conditions (37 °C, pH 4.8) produced β-haematin with apparent first order kinetics and an average half life of 0.5 min. TEM of monoglycerides (MSG or MPG) extruded through a 200 nm filter with haem produced β-haematin crystals aligned and parallel to the lipid/water interface. These TEM data, together with a model system replacing the lipid with an aqueous organic solvent interface using either methyl laurate or docosane demonstrated that the OH and C=O groups are apparently necessary for efficient nucleation. This suggests that β-haematin crystallizes via epitaxial nucleation at the lipid-water interface through interaction of Fe(III)PPIX with the polar head group. Once nucleated, the crystal grows parallel to the interface until growth is terminated by the curvature of the lipid particle. The hydrophobic nature of the mature crystal favours an interior transport resulting in crystals aligned parallel to the lipid-water interface and each

  7. Bleaching and micro-cracking phenomena induced in various types of sapphires by keV-electron beam irradiations

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Teraji, Tokuyuki; Ito, Toshimichi

    2006-08-01

    Electron-beam-induced phenomena on α-Al 2O 3 single-crystals have been investigated using a scanning electron microscope with a cathodoluminescence (CL) apparatus. Various types of sapphires were irradiated at room temperature by keV electrons of the total fluences up to ≈6 × 10 20 electrons cm -2. In the case of colored specimens, increasing amounts of electron irradiations induced a reversible "bleaching" phenomenon and subsequently an irreversible "cracking" phenomenon on nanometer scales in the surface and subsurface layers. The details of the fluence dependences of these beam-induced changes differed among the various natural and synthetic sapphires. These changes were dramatically reduced by the presence of thin metal layers on the insulating sapphire surfaces, indicating that these phenomena were induced by the presence of charges accumulated in the specimens. Such electron irradiations also varied CL intensities of the F + center peaked at 330 nm while the Cr 3+ center CL peak observed at 697 nm was almost unchanged in intensity with increasing the electron fluence. Furthermore, information on these CL centers along the depth direction from the specimen surface was obtained using variable incident electron energies ranging from 1 to 25 keV. The above phenomena are discussed in relation to the crystalline quality of the specimens examined.

  8. A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks.

    PubMed

    Zhao, Yingbo; Guo, Lei; Gándara, Felipe; Ma, Yanhang; Liu, Zheng; Zhu, Chenhui; Lyu, Hao; Trickett, Christopher A; Kapustin, Eugene A; Terasaki, Osamu; Yaghi, Omar M

    2017-09-20

    Developing synthetic methodology to crystallize extended covalent structures has been an important pursuit of reticular chemistry. Here, we report a homogeneous synthetic route for imine covalent organic frameworks (COFs) where crystallites emerge from clear solutions without forming amorphous polyimine precipitates. The key feature of this route is the utilization of tert-butyloxycarbonyl group protected amine building blocks, which are deprotected in situ and gradually nucleate the crystalline framework. We demonstrate the utility of this approach by crystallizing a woven covalent organic framework (COF-112), in which covalent organic threads are interlaced to form a three-dimensional woven framework. The homogeneous imine COF synthesis also enabled the control of nucleation and crystal growth leading to uniform nanocrystals, through microwave-assisted reactions, and facile preparation of oriented thin films.

  9. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    NASA Astrophysics Data System (ADS)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  10. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.

    PubMed

    Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  11. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams

    SciTech Connect

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.

    2012-07-15

    Purpose: To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. Methods: The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 Multiplication-Sign 1 cm{sup 2} to 10 Multiplication-Sign 10 cm{sup 2} were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. Results: The detector response shows a deviation from linearity of less than {+-}0.5% in the 0.01-7 Gy range and dose rate dependence below {+-}0.5% in the 1-6 Gy/min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while {approx}3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a {+-}0.2% variation of the detector response is found in the 18-40 Degree-Sign C range. Conclusions: The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  12. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams.

    PubMed

    Ciancaglioni, I; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Consorti, R; Petrucci, A; De Notaristefani, F

    2012-07-01

    To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 × 1 cm(2) to 10 × 10 cm(2) were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. The detector response shows a deviation from linearity of less than ±0.5% in the 0.01-7 Gy range and dose rate dependence below ±0.5% in the 1-6 Gy∕min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while ∼3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a ±0.2% variation of the detector response is found in the 18-40 °C range. The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  13. The kinetics of desilication of synthetic spent Bayer liquor seeded with cancrinite and cancrinite/sodalite mixed-phase crystals

    NASA Astrophysics Data System (ADS)

    Barnes, Mark C.; Addai-Mensah, Jonas; Gerson, Andrea R.

    1999-04-01

    Isothermal, batch desilication kinetics of synthetic, sodium aluminate solution (spent Bayer liquor) via cancrinite and cancrinite/sodalite mixed-phase crystal growth, have been studied under conditions at which sodium aluminosilicate scale forms at the surfaces of steel heat exchangers of alumina plant. Seeding with the pure cancrinite and mixed-phase crystals results in the suppression of scale formation and a faster rate of liquor desilication in comparison with its sodalite dimorph. Cancrinite seed crystals prepared from NO -3-rich solutions exhibited crystal growth mechanism and kinetic behaviour different from dimorphic mixed-phase crystals prepared from CO 2-3-rich solutions, when both were used to desilicate CO 2-3-rich spent Bayer liquor. The rate of desilication due to crystal growth on CO 2-3-cancrinite/sodalite mixed phase crystals followed a second-order dependence on the relative supersaturation of SiO 2. An activation energy of 52 kJ mol -1 was estimated for the crystal growth process. For desilication kinetics involving NO -3-cancrinite seed crystal growth, a third-order dependence on relative supersaturation of SiO 2 and an activation energy of 63 kJ mol -1 were obtained.

  14. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  15. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  16. Determining residual impurities in sapphire by means of electron paramagnetic resonance and nuclear activation analysis

    NASA Astrophysics Data System (ADS)

    Bletskan, D. I.; Bratus', V. Ya.; Luk'yanchuk, A. R.; Maslyuk, V. T.; Parlag, O. A.

    2008-07-01

    Sapphire (α-Al2O3) single crystals grown using the Verneuil and Kyropoulos methods have been analyzed using electron paramagnetic resonance and γ-ray spectroscopy with 12-MeV bremsstrahlung excitation. It is established that uncontrolled impurities in the final sapphire single crystals grown by the Kyropoulos method in molybdenum-tungsten crucibles are supplied both from the initial materials and from the furnace and crucible materials

  17. Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite

    NASA Astrophysics Data System (ADS)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2016-04-01

    The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3 c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.

  18. World's largest sapphire for many applications

    NASA Astrophysics Data System (ADS)

    Khattak, Chandra P.; Shetty, Raj; Schwerdtfeger, C. Richard; Ullal, Saurabh

    2016-10-01

    Sapphire has been used for many high technology applications because of its excellent optical, mechanical, high temperature, abrasion resistance and dielectric properties. However, it is expensive and the volume of sapphire used has been limited. The potential sapphire requirements for LED and consumer electronic applications are very high. Emphasis has been on producing larger sapphire boules to achieve significant cost reductions so these applications are realized. World's largest sapphire boules, 500 mm diameter 300+kg, have been grown to address these markets.

  19. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    SciTech Connect

    Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  20. Sapphire Fiber Optics Sensors for Engine Test Instrumentation

    SciTech Connect

    Janney, MA

    2003-09-19

    This document is the final report for the Cooperative Research and Development Agreement (CRADA) between UT-Battelle and Prime Photonics, Inc. The purpose of this CRADA was to improve the properties of single crystal sapphire optical fibers for sensor applications. A reactive coating process was developed to form a magnesium aluminate spinel cladding on sapphire optical fibers. The resulting clad fiber had a numerical aperture, NA, of 0.09 as compared with 0.83 for the unclad fiber, dramatically enhancing its usefulness for sensor applications. Because the process allows one to control the diameter of the sapphire core within the fiber, it may be possible using this technology to develop waveguides that approach single-mode transmission character.

  1. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  2. Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines

    NASA Astrophysics Data System (ADS)

    Rozhdestvenskaya, I. V.; Setkova, T. V.; Vereshchagin, O. S.; Shtukenberg, A. G.; Shapovalov, Yu. B.

    2012-01-01

    The crystal structures of synthetic tourmalines with a unique composition containing 3 d elements (Ni, Fe, and Co) have been refined: (Ca0.12▭0.88)(Al1.69Ni{0.81/2+}Fe{0.50/2+})(Al5.40Fe{0.60/3+})(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni{1.20/2+}Cr{0.96/3+}Al0.63Fe{0.18/2+}Mg0.03)(Al4.26Ni{1.20/2+}Cr{0.48/3+}Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co{1.20/2+})(Al5.28Co{0.66/2+}Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038-0.057 and wR 2 = 0.041-0.060. It is found that 3 d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.

  3. Low temperature intrinsic defects in x-irradiated hydroxyapatite synthetic single crystals

    SciTech Connect

    Close, D.M.; Mengeot, M.; Gilliam, O.R.

    1981-05-15

    ESR studies of radiation-induced defects have been conducted on synthetic calcium hydroxyapatite single crystals. For a room temperature x-irradiation a major defect (labeled A) was reported to be an O/sup -/ ion. X irradiation at 6 K shows defect A, trapped atomic hydrogen, and a nonaxial holelike center (labeled I). These new centers are stable at 6 K but anneal near 77 K. Observations at 9 and 35 GHz indicate that the I center is a spin-1/2 defect located in six inequivalent sites. In the ab plane, spectra exhibit an isotropic hyperfine doublet (approx.13 G splitting) and an anisotropic doublet (17--27 G splitting) in three symmetry-related sites. For other orientations additional site splitting and ''forbidden transitions'' make the spectra very complex. The hyperfine coupling tensor for the anisotropic doublet has diagonal elements -29.5, -19.2, and +3.11 G. The g tensor for this defect has diagonal elements 2.0068, 2.0032, and 2.0148. The sets of directional cosines associated with the minimum g value and the intermediate A value each indicate a direction corresponding approximately to that of the vector from an OH oxygen to a neighboring PO/sub 4//sup 3 -/ oxygen. The model proposed for the I center is a hole trapped by both an OH/sup -/ and a neighboring PO/sub 4//sup 3 -/. The anisotropic doublet is accounted for with 65% of the spin density on OH/sup -/. The remaining spin density is on a phosphate oxygen. This creates a PO/sup 2 -//sub 4/ defect with the isotropic coupling arising from hyperfine interaction with the /sup 31/P nucleus.

  4. Study of green light-emitting diodes grown on semipolar (11-22) GaN/m-sapphire with different crystal qualities

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Sub; Jang, Jong-Jin; Nam, Okhyun; Song, Keun-Man; Lee, Sung-Nam

    2011-07-01

    We investigated the anisotropic optical and structural properties of semipolar (11-22) InGaN-based green light emitting diodes (LEDs) grown on GaN templates with the different crystallographic properties. By introducing the N 2-GaN as a seed layer grown at a N 2 atmosphere, the full width at half maximum (FWHMs) of X-ray rocking curves (XRCs) for semipolar GaN templates were decreased from 1331 to 727 arcsec and from 1955 to 1076 arcsec with the incident beam directions of [11-2-3] and [1-100], respectively. It was found that the interfacial qualities of InGaN/GaN quantum wells (QWs) would be improved by reducing the FWHMs of XRCs with regardless of crystallographic directions. However, the thickness uniformity of InGaN QWs was significantly deteriorated for the direction of [11-2-3] rather than [1-100]. In addition, the EL intensity of semipolar green LEDs would be increased by enhancing the crystal quality of semipolar GaN template, which could also be resulted in the formation of abrupt interface and the enhancement of homogeneity at InGaN/GaN QWs.

  5. LASE Ti: Sapphire Laser

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the photo, Messrs. Leroy F. Matthews (left) and Frank J. Novak (Lockheed Engineering & Sciences Co.) are preparing the Lidar Atmospheric Sensing Experiment (LASE) Instrument for integration into a NASA/ER-2 aircraft for a field mission. LASE is the first fully- engineered, autonomous differential Absorption Lidar (DIAL) System for the measurement of water vapor, aerosol and cloud in the troposphere. LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is seeded to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere with accuracy having less than 6% of error. No other instrument can provide the spatial coverage and accuracy of LASE. Water vapor is the most radiative active gas in the troposphere, and the lack of understanding about its distribution provides one of the largest uncertainties in modeling climate change. LASE has demonstrated the necessary potential in providing high resolution water vapor measurements that can advance the studies of tropospheric water vapor distributions. LASE has flown 19 times during the development of the instrument and the validation of the science data. A joint international field mission was completed in the summer of 1996; adding 9 more successful flights. The LASE Instrument is being adapted to other aircraft platforms to support planned missions and to increase its utility.

  6. LASE Ti: Sapphire Laser

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the photo, Mr. Leroy F. Matthews (Lockheed Engineering & Sciences Co.) is connecting the Thermal Control Unit cables in preparing the Lidar Atmospheric Sensing Experiment (LASE) Instrument for integration into a NASA/ER-2 aircraft for a field mission. LASE is the first fully-engineered, autonomous differential Absorption Lidar (DIAL) System for the measurement of water vapor, aerosol and cloud in the troposphere. LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is seeded to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere with accuracy having less than 6% of error. No other instrument can provide the spatial coverage and accuracy of LASE. Water vapor is the most radiative active gas in the troposphere, and the lack of understanding about its distribution provides one of the largest uncertainties in modeling climate change. LASE has demonstrated the necessary potential in providing high resolution water vapor measurements that can advance the studies of tropospheric water vapor distributions. LASE has flown 19 times during the development of the instrument and the validation of the science data. A joint international field mission was completed in the summer of 1996; adding 9 more successful flights. The LASE Instument is being adapted to other aircraft platforms to support planned missions and to increase its utility.

  7. Microstructure of spinel islands on the sapphire surface grown by ion implantation and annealing.

    PubMed

    Wang, Y; Liu, X P; Qin, G W

    2014-09-01

    Fe ions were implanted into α-Al2O3 single crystals (sapphire) at energy of 50 keV and annealed in an oxidizing environment. Transmission electron microscopy (TEM) investigation indicated that Fe ions in the near surface region precipitated as α-Fe2O3 islands and spinel islands on the specimen surface, at the same time, Fe ions in the region away from the surface precipitated as α-Fe particles in the interior region of specimen. Two orientation relationships (ORs) between the spinel islands and sapphire substrate were discovered as follows: (111)spinel∥(0001)sapphire, [1 1 2¯]spinel∥[1 1 2¯ 0]sapphire and (1 1 2¯)spinel∥(0 0 0 1)sapphire, [1 1 1]spinel∥[1 1 2¯ 0]sapphire. The first OR was frequently observed in the spinel/sapphire system, however, the second OR has never been reported before. The interfaces between the spinel islands and sapphire substrate are a type-3 incoherent interface (i.e. low-index OR in at least one direction with an ill-matched low-index habit planes). The formation of spinel islands on the specimen surface can be attributed to the oxidizing atmosphere and the low accelerating voltage for ion implantation.

  8. Nano-engineering of colloidal particles, synthetic biomimetic blood cells, synthetic opals, photonic crystals and the physics of self-assembling nanostructures

    NASA Astrophysics Data System (ADS)

    Landon, Preston Boone

    2005-11-01

    Lithographically patterned substrates serving as geometric guides that force colloidal spheres to assemble into a face centered cubic (FCC) crystal lattice vertically along the [100] direction are demonstrated. The self assembly of spherical colloidal particles and their interaction forces are also described. Colloidal silica spheres are shown to sediment over large areas in a way that is similar to that of uncharged particles and to self assemble along the [100] direction of the FCC crystal lattice under the described conditions. The liquid phase in colloidal silica dispersions is shown to be a collection of partially interacting granulated regions and not a global network of interacting spheres resulting from strong horizontal forces. The experimental data is tied together with the traditional interaction forces from colloidal theory to explain the self assembly process for large populations of charged spheres. This new understanding resulted in the formation of opalescent crystallites (1.2cm x 8mm x 4mm) with 250nm diameter silica spheres and was used to create 1 mm wide opalescent crystallites with sphere diameters up to 2.3mum. The model predicts that under certain laboratory created conditions, polystyrene spheres will sediment vertically along the [100] direction of the FCC crystal lattice with sphere volume/volume fractions as high as 10%. Experimental verification was achieved using polystyrene spheres with various diameters between 200--500nm. Metallic, metallodielectric, chalcogenide and electro-luminescent polymer photonic crystals were made from synthetic silica opal templates with various sphere diameters between 200nm and 2.3mum. Hollow colloidal discs 1.5mum thick with 4mum diameters were fabricated using human red blood cells as templates. The blood cells were chemically encapsulated in a thin golden shell of controllable thickness. Control of the osmotic pressure during the encapsulation process allowed control over the shape of the resulting

  9. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-04-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.

  10. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate.

    PubMed Central

    Yoshida, K; Yoshimoto, M; Sasaki, K; Ohnishi, T; Ushiki, T; Hitomi, J; Yamamoto, S; Sigeno, M

    1998-01-01

    A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate. PMID:9545030

  11. Morphology of synthetic chrysoberyl and alexandrite crystals: Analysis of experimental data and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Gromalova, N. A.; Eremin, N. N.; Dorokhova, G. I.; Urusov, V. S.

    2012-07-01

    A morphological analysis of chrysoberyl and alexandrite crystals obtained by flux crystallization has been performed. Seven morphological types of crystals are selected. The surface energies of the faces of chrysoberyl and alexandrite crystals and their isostructural analogs, BeCr2O4 and BeFe2O4, have been calculated by atomistic computer modeling using the Metadise program. A "combined" approach is proposed which takes into account both the structural geometry and the surface energy of the faces and thus provides better agreement between the theoretical and experimentally observed faceting of chrysoberyl and alexandrite crystals.

  12. TH-C-19A-06: Measurements with a New Commercial Synthetic Single Crystal Diamond Detector

    SciTech Connect

    Laub, W; Crilly, R

    2014-06-15

    Purpose: A commercial version of a synthetic single crystal diamond detector in a Scottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg). In this study we investigate the dosimetric properties of this detector and explore if the use of the microDiamond detector can be expanded to high energy photon beams of up to 15MV and to large field measurements. Methods: Energy dependency was investigated. Photon and electron depth-dose curves were measured. Photon PDDs were measured with the Semiflex type 31010, microLion type 31018, P-Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector. Electron depth-dose curves were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E-Diode and microDiamond at dose maximum depths. Results: The microDiamond detector shows no energy dependence in high energy photon or electron dosimetry. Electron PDD measurements with the E-Diode and microDiamond are in good agreement except for the bremsstrahlungs region, where values are about 0.5 % lower with the microDiamond detector. Markus detector measurements agree with E-Diode measurements in this region. For depths larger than dmax, depth-dose curves of photon beams measured with the microDiamond detector are in close agreement to those measured with the microLion detector for small fields and with those measured with a Semiflex 0.125cc ionization chamber for large fields. For profile measurements, microDiamond detector measurements agree well with microLion and P-Diode measurements in the high-dose region and the penumbra region. For areas outside the open field, P-Diode measurements are about 0.5–1.0% higher than microDiamond and microLion measurements. Conclusion: The investigated diamond detector is suitable for a wide range of applications in high energy photon and electron dosimetry and is interesting

  13. Influence of the electron spin resonance saturation on the power sensitivity of cryogenic sapphire resonators

    SciTech Connect

    Giordano, Vincent Grop, Serge; Bourgeois, Pierre-Yves; Kersalé, Yann; Rubiola, Enrico

    2014-08-07

    Here, we study the paramagnetic ions behavior in presence of a strong microwave electromagnetic field sustained inside a cryogenic sapphire whispering gallery mode resonator. The high frequency measurement resolution that can be now achieved by comparing two Cryogenic Sapphire Oscillators (CSOs) permit to observe clearly the non-linearity of the resonator power sensitivity. These observations that, in turn, allow us to optimize the CSO operation are well explained by the electron spin resonance saturation of the paramagnetic impurities contained in the sapphire crystal.

  14. Temperature Compensated Sapphire Resonator for Ultra-Stable Oscillator Capability at Temperatures Above 77 Kelvin

    NASA Technical Reports Server (NTRS)

    Dick, G.; Santiago, D.; Wang, R.

    1994-01-01

    We report on the design and test of a whispering gallery sapphire resonator for which the dominant (WGH xxxsubn11) microwave mode family shows frequency-stable, compensated operation for temperatures above 77 Kelvin. The resonator makes possible a new ultra-stable oscillator (USO) capability that promises performance improvements over the best available crystal quartz oscillators in a compact cryogenic package. A mechanical compensation mechanism, enabled by the difference between copper and sapphire expansion coefficients, tunes the resonator to cancel the temperature variation of sapphire's dielectric constant.

  15. Oxidation states of Fe and Ti in blue sapphire

    NASA Astrophysics Data System (ADS)

    Wongrawang, P.; Monarumit, N.; Thammajak, N.; Wathanakul, P.; Wongkokua, W.

    2016-02-01

    X-ray absorption near-edge spectroscopy (XANES) can be used to study the oxidation state of a dilute system such as transition metal defects in solid-state samples. In blue sapphire, Fe and Ti are defects that cause the blue color. Inter-valence charge transfer (IVCT) between Fe2+ and Ti4+ has been proposed to describe the optical color’s origin. However, the existence of divalent iron cations has not been thoroughly investigated. Fluorescent XANES is therefore employed to study K-edge absorptions of Fe and Ti cations in various blue sapphire samples including natural, synthetic, diffused and heat-treated sapphires. All the samples showed an Fe absorption edge at 7124 eV, corresponding to the Fe3+ state; and Ti at 4984 eV, corresponding to Ti4+. From these results, we propose Fe3+-Ti4+ mixed acceptor states located at 1.75 eV and 2.14 eV above the valence band of corundum, that correspond to 710 nm and 580 nm bands of UV-vis absorption spectra, to describe the cause of the color of blue sapphire.

  16. Synthetic Mimics of Bacterial Lipid A Trigger Optical Transitions in Liquid Crystal Microdroplets at Ultralow Picogram-per-Milliliter Concentrations

    PubMed Central

    2016-01-01

    We report synthetic six-tailed mimics of the bacterial glycolipid Lipid A that trigger changes in the internal ordering of water-dispersed liquid crystal (LC) microdroplets at ultralow (picogram-per-milliliter) concentrations. These molecules represent the first class of synthetic amphiphiles to mimic the ability of Lipid A and bacterial endotoxins to trigger optical responses in LC droplets at these ultralow concentrations. This behavior stands in contrast to all previously reported synthetic surfactants and lipids, which require near-complete monolayer coverage at the LC droplet surface to trigger ordering transitions. Surface-pressure measurements and SAXS experiments reveal these six-tailed synthetic amphiphiles to mimic key aspects of the self-assembly of Lipid A at aqueous interfaces and in solution. These and other results suggest that these amphiphiles trigger orientational transitions at ultralow concentrations through a unique mechanism that is similar to that of Lipid A and involves formation of inverted self-associated nanostructures at topological defects in the LC droplets. PMID:26562069

  17. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder.

    PubMed

    Turci, Francesco; Pavan, Cristina; Leinardi, Riccardo; Tomatis, Maura; Pastero, Linda; Garry, David; Anguissola, Sergio; Lison, Dominique; Fubini, Bice

    2016-06-10

    Exposure to some - but not all - quartz particles is associated to silicosis, lung cancer and autoimmune diseases. What imparts pathogenicity to any single quartz source is however still unclear. Crystallinity and various surface features are implied in toxicity. Quartz dusts used so far in particle toxicology have been obtained by grinding rocks containing natural quartz, a process which affects crystallinity and yields dusts with variable surface states. To clarify the role of crystallinity in quartz pathogenicity we have grown intact quartz crystals in respirable size. Quartz crystals were grown and compared with a fractured specimen obtained by grinding the largest synthetic crystals and a mineral quartz (positive control). The key physico-chemical features relevant to particle toxicity - particle size distribution, micromorphology, crystallinity, surface charge, cell-free oxidative potential - were evaluated. Membranolysis was assessed on biological and artificial membranes. Endpoints of cellular stress were evaluated on RAW 264.7 murine macrophages by High Content Analysis after ascertaining cellular uptake by bio-TEM imaging of quartz-exposed cells. Quartz crystals were grown in the submicron (n-Qz-syn) or micron (μ-Qz-syn) range by modulating the synthetic procedure. Independently from size as-grown quartz crystals with regular intact faces did not elicit cellular toxicity and lysosomal stress on RAW 264.7 macrophages, and were non-membranolytic on liposome and red blood cells. When fractured, synthetic quartz (μ-Qz-syn-f) attained particle morphology and size close to the mineral quartz dust (Qz-f, positive control) and similarly induced cellular toxicity and membranolysis. Fracturing imparted a higher heterogeneity of silanol acidic sites and radical species at the quartz surface. Our data support the hypothesis that the biological activity of quartz dust is not due to crystallinity but to crystal fragmentation, when conchoidal fractures are formed

  18. Transient creep in natural and synthetic, iron-bearing olivine single crystals: Mechanical results and dislocation microstructures

    NASA Astrophysics Data System (ADS)

    Hanson, David R.; Spetzler, Hartmut A.

    1994-09-01

    This study examines transient creep of single crystals of both natural and synthetic iron-bearing olivine under uniaxial compression (0.1 MPa confining pressure and loads of 25-30 MPa) at high temperature (1650 K) and controlled oxygen fugacity. Natural samples were obtained from San Carlos, Arizona and synthetic crystals were grown at Lawrence Livermore National Laboratory. Samples were deformed in the [110] c and [101] c orientations, corresponding to the softest and intermediate strength orientations, respectively, as determined from steady-state creep tests. Dislocation microstructures were examined for samples unloaded at 0%, 0.1%, 0.5% and 5% strain. At 0% strain the dislocation density and morphology were lower and less complex in the synthetic olivine than in San Carlos samples. Nearly all microstructures initially present in undeformed material were overwritten by 0.1% strain. With further straining, little change in microstructure occurred to the 5% strain limit tested here. Dislocation microstruc- tures in [101] c samples were consistent with the activation of the [100](001) and [001](100) slip systems. Microstruc- tures formed in [110] c samples matched those expected from activation of a single slip system, [100](010). These slip systems are the same as those identified as responsible for steady-state creep under similar temperature, oxygen fugacity and stress conditions. Both natural and synthetic crystals deformed under constant stress in [101] c showed normal strain hardening with initial strain rates about an order of magnitude higher than those at 5% strain. After an initial high strain rate that was roughly equal in both sample types, the synthetic samples deformed at higher rates than the natural crystals. Crystals in the [110] c orientation deformed in a strikingly different manner. San Carlos olivine showed inverse or strain-softening creep in the first 1-2% strain, after which there is weak evidence suggesting a change to strain

  19. Epitaxial (100) GaAs Thin Films on Sapphire for Surface Acoustic Wave/Electronic Devices.

    DTIC Science & Technology

    1985-12-01

    demonstrated that undoped -,111> single crystal a’ gallium arsenide could be grown on 򒠰> sapphire using the metalorganic chemical vapor deposition...chip. Metalorganic chemical vapor deposition (MO-CVD) was used for all depositions during this work. Sapphire with an orientation of (01 T2 > was...as quartz. d& I SECTION 2 MO-CVD GROWTH SYSTEMS All GaAs depositions were performed in our second MO-CVD system which is also being used in a

  20. UV-Raman and NMR spectroscopic studies on the crystallization of zeolite A and a new synthetic route.

    PubMed

    Ren, Limin; Li, Caijin; Fan, Fengtao; Guo, Qiang; Liang, Desheng; Feng, Zhaochi; Li, Can; Li, Shougui; Xiao, Feng-Shou

    2011-05-23

    UV-Raman and NMR spectroscopy, combined with other techniques, have been used to characterize crystallization of zeolite A. In situ UV-Raman spectroscopy shows that the starting gel for crystallization of zeolite A contains a lot of four-ring (4R) building units and the appearance of six-ring (6R) building blocks is the signal for crystal formation. (29)Si NMR spectroscopy results suggest that the starting gel is double four-ring (D4R) rich and during crystallization of zeolite A both α and β cages appear. (27)Al NMR spectroscopy results indicate the absence of Al (2Si) species in the starting gel, suggesting the absence of single 4R building units in the starting gel. Furthermore, composition analysis of both solid and liquid samples shows that the solid rather than liquid phase predominates for the crystallization of zeolite A. Therefore, it is proposed that the crystallization of zeolite A mainly occurs in the solid phase by self-assembly or rearrangement starting from the zeolite building units mainly consisting of D4R. The essential role of D4R is directly confirmed by successful conversion from a solution of D4R to zeolite A in the presence of NaCl, and the importance of solid phase is reasonably demonstrated by the successful synthesis of zeolite A from a dry aluminosilicate gel. By considering that the solid phase has a major contribution to crystallization, a novel route was designed to synthesizing zeolite A from the raw materials water glass (Na(2)SiO(3) in aqueous solution) and NaAlO(2), without additional water and NaOH; this route not only simplifies synthetic procedures, but reduces water consumption. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Methodology of growing gigantic sapphire for GSLW project

    NASA Astrophysics Data System (ADS)

    Abgaryan, Artoush A.; Hartounian, Gomidas

    2005-09-01

    In our present world the Crystal Growth Technology does not have the necessary and sufficient conditions to manufacture large sizes; especially in the Sapphire Crystal world. We have a theoretical and methodological development for growing gigantic Sapphire Crystal Lenses. Our gigantic Sapphire Crystal Lenses have a unique optical characteristic which will be used in the Global System of Laser Weapons (GSLW); hence solving one of the crucial problems in the Relay Mirror System; where it captures the Laser beam from the earth surface, cleaning the beam in the Satellite and redirecting the laser energy to the precise desired target. Developed and solution for the temperature and heat-elasticity fields in growth systems are considered theoretical, in order to assess their effects on the optical symmetry of the growing crystal. The process is modeled using three-dimensional curvilinear coordinates to describe a closed, low-strain heat-elasticity system, with allowance made for the temperature variations of the thermal properties of the multilayer growth system, and nonlinear and unsteady-state process with arbitrary boundary conditions. The results presented as plots of the strain, stress, displacement, and temperature fields; demonstrate the potential of the method for designing new growth units and improving the existing ones and suggesting that crystals, in general, without frustration of optical symmetry can, in principle, be grown. In order to solve generalized problem for large optics. It is required to have super and correct mathematical computing calculations, and using basic fundamental laws of nature regarding optical symmetry in the crystal, and discovering the radical "new wave method" for crystal growth technology.

  2. Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir-Blodgett film.

    PubMed

    Kumaki, Jiro; Kawauchi, Takehiro; Yashima, Eiji

    2005-04-27

    Isotactic poly(methyl methacrylate) monolayers deposited from a water surface onto mica at different surface pressures were studied by atomic force microscopy, and their structure formation from single chains to two-dimensional folded chain crystals was clearly observed. Furthermore, gentle crystallization of the monolayer by slow compression on the water surface enabled the observation of crystals at a molecular level, thus visualizing the chain foldings and tie-chains for the first time. The resulting molecular level information will provide an important clue toward the understanding of polymer crystals not only in two dimensions but also in three dimensions.

  3. Monocrystalline germanium film on sapphire

    NASA Astrophysics Data System (ADS)

    Godbey, David J.; Qadri, Syed B.

    1993-04-01

    A monocrystalline germanium film is grown on a sapphire substrate with a (I 102) orientation. The substrate is first pretreated to restructure the (1102) surface plane. Typically, restructuring is accomplished by either an anneal at high temperature or ion bombardment. A monocrystalline germanium layer is grown on the pretreated surface by a vapor deposition process such as molecular beam epitaxy or chemical vapor deposition.

  4. Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector.

    PubMed

    Laub, Wolfram U; Crilly, Richard

    2014-11-08

    A commercial version of a synthetic single crystal diamond detector (SCDD) in a Schottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg, Germany). In this study we investigate the dosimetric properties of this detector to independently confirm that findings from the developing group of the SCDDs still hold true for the commercial version of the SCDDs. We further explore if the use of the microDiamond detector can be expanded to high-energy photon beams of up to 15 MV and to large field measure- ments. Measurements were performed with an Elekta Synergy linear accelerator delivering 6, 10, and 15 MV X-rays, as well as 6, 9, 12, 15, and 20 MeV electron beams. The dependence of the microdiamond detector response on absorbed dose after connecting the detector was investigated. Furthermore, the dark current of the diamond detector was observed after irradiation. Results are compared to similar results from measurements with a diamond detector type 60003. Energy dependency was investigated, as well. Photon depth-dose curves were measured for field sizes 3 × 3, 10 × 10, and 30 × 30 cm2. PDDs were measured with the Semiflex type 31010 detector, microLion type 31018 detector, P Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector (all PTW-Freiburg). Photon profiles were measured at a depth of 10 cm. Electron depth-dose curves normalized to the dose maximum were measured with the 14 × 14 cm2 electron cone. PDDs were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E Diode and microDiamond at half of D90, D90, D70, and D50 depths and for electron cone sizes of 6 × 6 cm2, 14 × 14 cm2, and 20 × 20 cm2. Within a tol- erance of 0.5% detector response of the investigated detector was stable without any preirradiation. After preirradition with approximately 250 cGy the detector response

  5. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  6. Synthetic chemoreceptive membranes. Sensing bitter or odorous substances on a synthetic lipid multibilayer film by using quartz-crystal microbalances and electric responses.

    PubMed

    Okahata, Y; En-na, G; Ebato, H

    1990-07-15

    Specific adsorptions of bitter or odorous substances on a synthetic lipid multibilayer matrix (2C18N+2C1/PSS-) were detected by observing frequency changes of a multibilayer-coated quartz-crystal microbalance (QCM). Partition coefficient (P) and diffusion constants (D) of these substances in the lipid matrix could be obtained quantitatively by using the QCM method. There were good correlations between partition coefficients of various bitter or odor substances to the synthetic multibilayer film on the QCM and the intensity of bitter tastes or olfactory receptions in humans: the stronger the intensity of a bitter substance or odorant, the greater the adsorption on the lipid matrix. This indicates that the lipid-coated QCM acts as a sensitive and selective sensor for bitter taste and odor. Electric responses (changes of membrane potential and membrane resistance) of the 2C18N+2C1/PSS-film occurred consecutively by the adsorption of these substances. The bitter or odor substance showing the stronger intensity induced membrane potential change in lower concentrations. It was found that bitter substances having sterically bulky molecular structures adsorb on the surface of the lipid matrix, and the phase-boundary potential of the membrane is thereby changed. On the contrary, odor substances with relatively small or slender structures can penetrate into the lipid matrix and cause reduction of the membrane resistance (the increase of ion permeability). The selective adsorption behavior of bitter and odor substances by molecular shapes was confirmed by adsorption studies of simple C9-10 hydrophobic alcohols having various molecular structures.

  7. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    PubMed Central

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia; Moras, Dino; Ruff, Marc

    2008-01-01

    The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins. PMID:18097104

  8. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERalpha in complex with synthetic ligands.

    PubMed

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia; Moras, Dino; Ruff, Marc

    2008-01-01

    The ligand-binding domain (LBD) of human oestrogen receptor alpha was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD-ligand-coactivator peptide complexes at 2.3 A resolution. This technique is likely to be applicable to other low-solubility proteins.

  9. New compressed Ti:sapphire femtosecond amplifier layout

    NASA Astrophysics Data System (ADS)

    Carson, Andrew J.; Barnes, Charles C.; Tenyakov, Sergey

    2006-02-01

    A novel new design for an 8-pass multipass Titanium doped sapphire femtosecond amplifier (MPA) is studied. Ultrafast amplifiers based on the chirped pulse amplification (CPA) technique have been widely used to amplify the output pulses of Kerr lens mode locked (KLM) Ti:sapphire lasers from the nanojoule to the microjoule level. The system presented here also takes advantage of CPA to reduce the peak power and thus the potential damage to optical components from self-focusing. The amplifier scheme is based on a single curved mirror and a Brewster cut Ti:sapphire laser rod. Optical excitation of the Ti:sapphire gain medium is achieved by pumping with a Q-switched and frequency doubled Nd:YLF laser at 527 nm. The rear face of the gain crystal is coated to form a high reflector for both the pumping wavelength (490-550 nm) and the amplified seed pulse (740-860 nm). In this configuration the gain crystal itself acts as a second mirror, reducing the size of the amplifier and allowing for the most effective use of the pumping energy. By employing a Brewster cut lasing crystal the amount of active gain material can be adjusted for maximum gain. The advantages of this approach, compared to traditional two curved mirror MPA designs, are the reduced foot print and the ability to easily adjust the amount of gain material. At the same time the system retains the low amplified spontaneous emission (ASE) and temporally clean output pulse characteristic of MPA systems.

  10. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than

  11. 18x36x1.5 inch sapphire panels for visible and infrared windows

    NASA Astrophysics Data System (ADS)

    Montgomery, Matthew; Blockburger, Clark

    2017-05-01

    158 kg sapphire single crystals were grown by horizontal directional solidification method. Bubble-free panels with usable rectangular dimensions of 457 mm x 914 mm x 38 mm (18 x 36 x 1.5 inches) can be cut from the crystals. These are the largest-area sapphire panels ever produced by any technique. Bubble-free sections of the crystal 300 mm x 457 mm and up to 60 mm thick (12 x 18 x 2.36 inches) can also be produced. Growths were performed with graphite heating elements under a controlled atmosphere with automated power control. Results of transmission measurements performed on 5 mm thick samples are presented and the transmission is similar to sapphire grown by other techniques.

  12. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    SciTech Connect

    Raymond, Amy; Lovell, Scott; Lorimer, Don; Walchli, John; Mixon, Mark; Wallace, Ellen; Thompkins, Kaitlin; Archer, Kimberly; Burgin, Alex; Stewart, Lance

    2009-12-01

    With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38{alpha}), viral polymerase (HCV NS5B), and bacterial structural protein (FtsZ) were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  13. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

    SciTech Connect

    Mandapaka, A. K.; Ghebremedhin, A.; Patyal, B.; Marinelli, Marco; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2013-12-15

    Purpose: To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams.Methods: The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up/stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated.Results: A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy/min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters.Conclusions: The observed dosimetric properties of the synthetic single

  14. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that

  15. Crystal structures, in-silico study and anti-microbial potential of synthetic monocarbonyl curcuminoids

    NASA Astrophysics Data System (ADS)

    Ud Din, Zia; Serrano, N. F. G.; Ademi, Kastriot; Sousa, C. P.; Deflon, Victor Marcelo; Maia, Pedro Ivo da Silva; Rodrigues-Filho, Edson

    2017-09-01

    In this work the screening of 20 unsymmetrical chalcone and curcuminoids analogues in regard of their antimicrobial properties was conducted. Electron donating groups in the aromatic rings in the chalcone and curcuminoid derivatives produced higher antimicrobial effect. Compounds 1, 9 and 15 exhibited good activity against Escherichia coli and Staphylococcus aureus. These compounds were further evaluated against nine micro-organisms of pathological interest. Pharmmaper was used for target fishing of compounds against important bacterial targets. Molecular Docking helped to verify the results of these compounds against the selected bacterial target D-alanyl-D-alanine carboxypeptidase (PDB ID: 1PW1). The crystal structure of ligand and docked conformers in the active site of 1PW1 were analyzed. As a result structure-activity relationships are proposed. Structures of compounds 14 and 16 were obtained through single crystals X-ray diffraction studies. Compound 14 crystallizes in monoclinic space group P21/c with unit cell dimensions a = 13.1293(3) Å, b = 17.5364(4) Å, c = 15.1433(3) Å, β = 95.6440(10), V = 3469.70(13) Å3 and Z = 8. Compound 16 crystallizes in triclinic space group Pī with unit cell dimensions a = 6.8226(4) Å, b = 7.2256(4) Å, c = 18.1235(12) Å, β = 87.322(4), V = 850.57(9) Å3 and Z = 2.

  16. Microwave Frequency Discriminator With Sapphire Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John

    1994-01-01

    Cooled sapphire resonator provides ultralow phase noise. Apparatus comprises microwave oscillator operating at nominal frequency of about 8.1 GHz, plus frequency-discriminator circuit measuring phase fluctuations of oscillator output. One outstanding feature of frequency discriminator is sapphire resonator serving as phase reference. Sapphire resonator is dielectric ring resonator operating in "whispering-gallery" mode. Functions at room temperature, but for better performance, typically cooled to operating temperature of about 80 K. Similar resonator described in "Sapphire Ring Resonator for Microwave Oscillator" (NPO-18082).

  17. New sapphire and ruby components and their manufacture using diamond abrasives

    NASA Astrophysics Data System (ADS)

    Sauser, D.

    The properties of synthetic aluminum oxides (sapphire and ruby) and their applications in watchmaking (watch bearings and watchglasses) and as hard-wearing components such as centering devices for optical fibres and water jet nozzles for material cutting are discussed. Examples are given of the use of diamonds tools for machining such components, including sawing, drilling, grinding and polishing operations.

  18. Multistrip synthetic single-crystal-diamond photodiode based on a p-type/intrinsic/Schottky metal transverse configuration

    NASA Astrophysics Data System (ADS)

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2011-04-01

    A synthetic multistrip single-crystal-diamond detector based on a p-type/intrinsic diamond/Schottky metal transverse configuration, operating at zero-bias voltage, was developed. The device was characterized at the Diamond Light Source synchrotron in Harwell (UK) under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of ~3 μm. No significant pixel-to-pixel variation of both spectral responsivity and time response, high spatial resolution and good signal uniformity along each strip were found, suggesting the tested device structure as a promising sensor for X-ray and UV radiation imaging.

  19. Rare earth elements in synthetic zircon. 2. a single-crystal x-ray study of xenotime substitution.

    SciTech Connect

    Finch, R. J.; Hanchar, J. M.; Hoskin, P. W. O.; Burns, P. C.; Chemical Engineering; Australian National Univ.; Univ. of Notre Dame

    2001-05-01

    Zircon crystals synthesized in a Li-Mo oxide melt and doped with trivalent lanthanides and Y (REE), both with and without P, were examined by single-crystal X-ray diffraction (XRD). REE are incorporated into the Zr site in the zircon structure, and some Zr appears to be displaced to the Si site. Crystals doped with middle REE (MREE, Sm to Dy) and Y, plus P follow the xenotime substitution (REE{sup 3+} + P{sup 5+} = Zr{sup 4+} + Si{sup 4+}) rather closely, whereas crystals doped with heavy REE (HREE, Er to Lu) deviate from the xenotime substitution, having REE:P atomic ratios significantly greater than one. Xenotime substitution requires that P{sup 5+} replace Si{sup 4+}, but this substitution becomes limited by strain at the Si site in HREE-doped crystals. As Si sites become saturated with P{sup 5+}, additional charge balance in synthetic zircon crystals may be provided by Mo{sup 6+} and Li{sup +} from the flux entering interstitial sites, accounting for an additional 0.3 to 0.6 at% HREE beyond that balanced by P{sup 5+} ions. Heavy REE are more compatible in the zircon structure than are LREE and MREE, and HREE substitution is ultimately limited by the inability of the zircon structure to further accommodate charge-compensating elements. Thus the limit on REE concentrations in zircon is not a simple function of REE{sup 3+} ionic radii but depends in a complex way on structural strain at Zr and Si sites, which act together to limit REE and P incorporation. The mechanisms that limit the coupled xenotime substitution change from LREE to HREE. This change means that REE fractionation in zircon may vary according to the availability of charge-compensating elements. REE partition coefficients between zircon and melt must also depend in part on the availability of charge-compensating elements and their compatibility in the zircon structure.

  20. Role of Stearic Acid in the Strain-Induced Crystallization of Crosslinked Natural Rubber and Synthetic Cis-1,4-Polyisoprene

    SciTech Connect

    Kohjiya,S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B.

    2007-01-01

    Strain-induced crystallization of crosslinked natural rubber (NR) and its synthetic analogue, cis-1,4-polyisoprene (IR), both mixed with various amounts of stearic acid (SA), were investigated by time-resolved X-ray diffraction using a powerful synchrotron radiation source and simultaneous mechanical (tensile) measurement. No acceleration or retardation was observed on NR in spite of the increase of SA amount. Even the SA-free IR crystallized upon stretching, and the overall crystallization behavior of IR shifted to the larger strain ratio with increasing SA content. No difference due to the SA was detected in the deformation of crystal lattice by stress for both NR and IR. These results suggested that the extended network chains are effective for the initiation of crystallization upon stretching, while the role of SA is trivial. These behaviors are much different from their crystallization at low temperature by standing, where SA acts as a nucleating agent.

  1. Isophthalate-Hydrazone 2D Zinc-Organic Framework: Crystal Structure, Selective Adsorption, and Tuning of Mechanochemical Synthetic Conditions.

    PubMed

    Roztocki, Kornel; Jędrzejowski, Damian; Hodorowicz, Maciej; Senkovska, Irena; Kaskel, Stefan; Matoga, Dariusz

    2016-10-03

    A new layered mixed-linker metal-organic framework [Zn2(iso)2(pcih)2]n (MOF) built from isophthalate ions (iso(2-)) and 4-pyridinecarbaldehyde isonicotinoyl hydrazone (pcih) was prepared using both solution and mechanochemical methods. By use of the latter, the 2D MOF is obtained either in a one-mortar three-component grinding or on the way of a two-step mechanosynthesis. Tuning of mechanochemical synthetic conditions allowed us to identify both necessary and favorable factors for the solid-state formation of the MOF. Single-crystal X-ray diffraction reveals the presence of interdigitated layers in the ABAB arrangement and interlayer 0D cavities filled with guest molecules. Upon thermal activation, the dynamic framework exhibits stepwise and selective adsorption of CO2 over N2 as well as high-pressure H2 adsorption reaching maximum excess of 1.15 wt% at 77 K. The mechanochemical synthetic protocol is expanded to a few other interdigitated structures.

  2. Isolation of brassicasterol, its synthetic prodrug-crystal structure, stereochemistry and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Prakash, Rohit; Srivastava, Sangeeta; Amandeep; Bishnoi, Abha; Singh, Ranvijay Pratap

    2014-07-01

    In the present study brassicasterol (1), was isolated from the chloroform extract of the flowers of Allamanda violacea and identified with the help of different spectroscopic techniques like 1H, 13C, 2D NMR (1H-1H COSY), IR, UV and mass spectrometry. A novel prodrug was synthesized by carrying out esterification of brassicasterol (1) with the well known drug naproxen using Steglich esterification to give 3β-(2-(6-methoxynaphthalene-2yl) propionoxy) 24 methyl cholest-5, 22-dien (2). Compounds 2 was subjected to single crystal X-ray diffraction technique and crystallized out in monoclinic form having P21 space group and stabilized by CH-π interactions. Structure and stereochemistry of compound 2 was established with the help of modern spectroscopic techniques like 1H NMR, IR, UV, mass spectrometry as well as with single crystal X-ray diffraction. Molecular geometry and vibrational frequencies of compounds 1 and 2 were calculated by density functional method (DFT/B3LYP) using 6-31G (d, p) basis set, bond parameters and IR frequencies were correlated with the experimental data. 1H and 13C chemical shifts of compound 1 and 1H chemical shifts of compound 2 were calculated with GIAO method and correlated with experimental data. Hyperconjugative interactions were studied with the help of natural bond order analysis (NBO). Electronic properties of both the compounds such as HOMO-LUMO energies were measured with the help of time dependent DFT method.

  3. Multiscale experimental investigation of crystal plasticity and grain boundary sliding in synthetic halite using digital image correlation

    NASA Astrophysics Data System (ADS)

    Bourcier, M.; Bornert, M.; Dimanov, A.; HéRipré, E.; Raphanel, J. L.

    2013-02-01

    is a renewed interest in the study of the rheology of halite since salt cavities are considered for waste repositories or energy storage. This research benefits from the development of observation techniques at the microscale, which allow precise characterizations of microstructures, deformation mechanisms, and strain fields. These techniques are applied to uniaxial compression tests on synthetic halite done with a classical press and with a specific rig implemented in a scanning electron microscope. Digital images of the surface of the sample have been recorded at several loading stages. Surface markers allow the measurement of displacements by means of digital image correlation techniques. Global and local strain fields may then be computed using ad hoc data processing. Analysis of these results provides a measure of strain heterogeneity at various scales, an estimate of the size of the representative volume element, and most importantly an identification of the deformation mechanisms, namely crystal slip plasticity and grain boundary sliding, which are shown to be in a complex local interaction. Indeed, the applied macroscopic loading gives rise locally to complex stress states owing to relative crystallographic orientations, density and orientation of interfaces, and local deformation history. We have quantitatively estimated the relative importance of crystal slip plasticity and grain boundary sliding for different microstructures and evidenced their dependence on grain size. The two mechanisms of deformation and their link to the microstructure should thus be considered when modeling polycrystalline viscoplasticity.

  4. Synthesis and characterization of large optical grade sapphire windows produced from a horizontal growth process

    NASA Astrophysics Data System (ADS)

    Levine, Jonathan B.; Burks, Timothy; Ciraldo, John; Montgomery, Matthew; Novoselov, Andrey; Podlozhenov, Sergey

    2013-06-01

    As sensor technology and applications have advanced over the years, the size of sensor windows has grown substantially to satisfy current and future demands. Rubicon Technology, with their strong history in scaling sapphire crystal growth and large scale production processes, has successfully produced large sapphire blanks using a highly modified horizontal directional solidification process. Several prototypes have been synthesized up to 1.75 inches thick, 14 inches wide and 20 inches long. Crystal properties and optical characteristics such as transmission and refractive index homogeneity will be presented on several polished bubble-free windows with excellent results. This research sets the standard for high quality monolithic sapphire sheets large enough for use as seamless integrated optical windows in both military and civilian applications.

  5. Experimental analysis of sapphire contact probes for Nd-YAG laser angioplasty.

    PubMed

    Ashley, S; Brooks, S G; Gehani, A A; Kester, R C; Rees, M R

    1990-06-01

    Laser angioplasty may offer percutaneous recanalization of occluded vessels where conventional guidewire and balloon techniques fail. Metal laser thermal angioplasty probes may, however, cause excessive thermal damage due to high tip temperatures (greater than 400.C). Therefore, contact probes made from artificial sapphire crystal designed for general laser surgery are currently being evaluated for use in laser angioplasty with continuous wave Nd-YAG energy. The sapphire modifies the laser energy in various ways, and this paper examines the physical characteristics of five types of rounded sapphire probe (SMTR, MTR, MTRL, OS, LT) and how these properties are affected by clinical usage. The laser beam profile emitted by these probes demonstrates a focal spot 1-2 mm in front of the tip. However, the forward transmission of Nd-YAG energy through the sapphires varied (SMTR, 85%; MTR, 83%; MTRL, 75%; OS, 54%; LT, 69%). Probe heating occurs owing to energy absorption within the sapphire. The surface temperature of the sapphires was measured in air by infrared thermography and the hottest region within the probes localized by an isothermographic technique. At energy settings used clinically (20 J, 10 watts for 2 s) the SMTR, MTR, and MTRL probes exhibited higher temperature rises (94-112.C) than the OS and LT probes (30.C), and heating was localized to the front surface of the former probes. Peak sapphire temperatures remained lower than those of metal probes even at higher energies. After clinical use, the MTR probe demonstrated reduced transmission, beam defocusing, and increased heating, due to surface pitting. Thus, recanalization with sapphire probes occurs by a combination of photothermal and contact thermal effects that are localized to the probe tip and may reduce the degree of thermal injury associated with metal probes. Understanding these basic properties is important to the application and development of contact probes for laser recanalization.

  6. Titanium-doped sapphire laser research and design study

    NASA Technical Reports Server (NTRS)

    Moulton, Peter F.

    1987-01-01

    Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.

  7. Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing

    PubMed Central

    Shang, Yang

    2015-01-01

    Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909

  8. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  9. Characterization of Synthetic Nanocrystalline Mackinawite: Crystal Structure, Particle Size, And Specific Surface Area

    SciTech Connect

    Jeong, H.Y.; Lee, J.H.; Hayes, K.F.

    2009-05-18

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/ nmm) with unit cell parameters a = b = 3.67 {angstrom} and c = 5.20 {angstrom}. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSA{sub ext}) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSA{sub ext} of 103 m{sup 2}/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSA{sub ext} (276-345 m{sup 2}/g by EGME and 424 {+-} 130 m{sup 2}/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation.

  10. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists.

    PubMed

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A

    2016-12-02

    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. An Insight into the Pharmacophores of Phosphodiesterase-5 Inhibitors from Synthetic and Crystal Structural Studies

    SciTech Connect

    Chen,G.; Wang, H.; Robinson, H.; Cai, J.; Wan, Y.; Ke, H.

    2008-01-01

    Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660-683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Angstroms . The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required.

  12. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

    PubMed

    Livingstone, Jayde; Stevenson, Andrew W; Butler, Duncan J; Häusermann, Daniel; Adam, Jean-François

    2016-07-01

    Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. The synthetic diamond detector is now well

  13. Effects of tensile stress on the R lines of Cr(3+) in a sapphire fiber

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Lim, Ki-Soo; Jia, Weiyi; Strauss, E.; Yen, W. M.; Buoncristiani, A. M.; Byvik, C. E.

    1988-01-01

    The spectroscopic properties of a crystalline sapphire fiber unintentionally dOed with Cr(3+) are investigated. It is found that tensile stress produces blue shifts of the R lines and changes in their radiative lifetimes and integrated intensities that can be correlated to stress-induced changes of the crystal-field parameters.

  14. Growth of b-axis rare earths on sapphire by molecular beam epitaxy

    SciTech Connect

    Ritley, K.A.; Flynn, C.P.

    1998-01-01

    A process is described whereby hcp rare-earth metals can be grown heteroepitaxially as high-quality single-crystal films with the b axis normal to the growth plane. The growth employs molecular beam epitaxy, starting from available sapphire substrates. The results of characterization by several techniques are described. {copyright} {ital 1998 American Institute of Physics.}

  15. Vacuum-ultraviolet characterization of sapphire, ALON, and spinel near the band gap

    NASA Astrophysics Data System (ADS)

    Thomas, Michael E.; Tropf, William J.; Gilbert, Summer L.

    1993-06-01

    UV properties are presently investigated immediately above and below the bandgap of polycrystalline Al23O27N5 (ALON), single-crystal sapphire, and spinel. Room-temperature transmission and reflection measurements are conducted on these materials from 2500 to 1150 A; the corresponding absorption coefficient at the band gap is represented by Urbach's rule.

  16. Rhombohedral Super Heteero Epitaxy of Cubic SiGe on Trigonal c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Duzik, Adam J.

    2017-01-01

    New rhombohedral super-hetero-epitaxy technology was developed at NASA. This epitaxy technology enables the growth of unprecedented cubic-trigonal hybrid single crystal structures with lattice match on sapphire (Al2O3) substrates, hence with little strain and very few defects at the interface.

  17. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  18. LASE Ti:Sapphire Laser

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the photo, Dr. Larry B. Petway (Science Applications International Corp.) is making final adjustments to the Ti:Sapphire Laser in preparing the Lidar Atmospheric Sensing Experiment (LASE) Instrument for intergration into a NASA/ER-2 aircraft. LASE is the first fully- engineered, autonomous differential Absorption Lidar (DIAL) System for the measurement of water vapor, aerosol and cloud in the troposphere. LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150mJ/pulse. The laser beam is seeded to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere with accuracy having less than 6% of error. No other instrument can provide the spatial coverage and accuracy of LASE.Water vapor is the most radiative active gas in the troposphere, and the lack of understanding about its distribution provides one of the largest uncertainties in modeling climate change. LASE has demonstrated the necessary potential in providing high resolution water vapor measurements that can advance the studies of tropospheric water vapor distributions. LASE has flown 19 times during the development of the instrument and the validation of the science data. A joint international field mission was completed in the summer of 1996; adding 9 more successful flights. The LASE Instument is being adapted to other aircraft platforms to support planned missions and to increase its utility.

  19. Temperature dependence of sapphire fiber Raman scattering

    SciTech Connect

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  20. Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals.

    PubMed

    Fracaroli, Alejandro M; Siman, Peter; Nagib, David A; Suzuki, Mitsuharu; Furukawa, Hiroyasu; Toste, F Dean; Yaghi, Omar M

    2016-07-13

    The design of enzyme-like complexity within metal-organic frameworks (MOFs) requires multiple reactions to be performed on a MOF crystal without losing access to its interior. Here, we show that seven post-synthetic reactions can be successfully achieved within the pores of a multivariate MOF, MTV-IRMOF-74-III, to covalently incorporate tripeptides that resemble the active sites of enzymes in their spatial arrangement and compositional heterogeneity. These reactions build up H2N-Pro-Gly-Ala-CONHL and H2N-Cys-His-Asp-CONHL (where L = organic struts) amino acid sequences by covalently attaching them to the organic struts in the MOFs, without losing porosity or crystallinity. An enabling feature of this chemistry is that the primary amine functionality (-CH2NHBoc) of the original MOF is more reactive than the commonly examined aromatic amines (-NH2), and this allowed for the multi-step reactions to be carried out in tandem within the MOF. Preliminary findings indicate that the complexity thus achieved can affect reactions that were previously accomplished only in the presence of enzymes.

  1. Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal–Organic Framework Crystals

    PubMed Central

    Fracaroli, Alejandro M.; Siman, Peter; Nagib, David A.; Suzuki, Mitsuharu; Furukawa, Hiroyasu; Toste, F. Dean

    2017-01-01

    The design of enzyme-like complexity within metal–organic frameworks (MOFs) requires multiple reactions to be performed on a MOF crystal without losing access to its interior. Here, we show that seven post-synthetic reactions can be successfully achieved within the pores of a multivariate MOF, MTV-IRMOF-74-III, to covalently incorporate tripeptides that resemble the active sites of enzymes in their spatial arrangement and compositional heterogeneity. These reactions build up H2N-Pro-Gly-Ala-CONHL and H2N-Cys-His-Asp-CONHL (where L = organic struts) amino acid sequences by covalently attaching them to the organic struts in the MOFs, without losing porosity or crystallinity. An enabling feature of this chemistry is that the primary amine functionality (−CH2NHBoc) of the original MOF is more reactive than the commonly examined aromatic amines (−NH2), and this allowed for the multi-step reactions to be carried out in tandem within the MOF. Preliminary findings indicate that the complexity thus achieved can affect reactions that were previously accomplished only in the presence of enzymes. PMID:27346625

  2. Scribing of thin sapphire substrates with a 266-nm Q-switched solid state laser

    NASA Astrophysics Data System (ADS)

    Rea, Edward C., Jr.

    2004-07-01

    Thin sections of single-crystal sapphire are favored as substrates for the epitaxial deposition of gallium nitride and other III-V and II-VI thin films used in the fabrication of electro-optic devices such as blue-green LEDs and laser diodes. Due to difficulties commonly encountered in cutting this hard material, alternatives to traditional mechanical processing techniques are of particular interest. This paper reviews a recent study characterizing the scribing of sapphire using the tightly focused output of an ultraviolet wavelength pulsed solid-state laser.

  3. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  4. Detection of beryllium treatment of natural sapphires by NRA

    NASA Astrophysics Data System (ADS)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  5. Thermal and optical behavior of sapphire fiber tips for laser angioplasty

    NASA Astrophysics Data System (ADS)

    Ashley, Simon; Brooks, Stephen G.; Gehani, Abdurrazak A.; Kester, Ralph C.; Rees, Michael R.

    1990-07-01

    Atraumatic rounded contact probes made from artificial sapphire crystal were developed for general laser surgery and are currently being evaluated for use in percutaneous laser angioplasty utilising continuous wave (cw) Nd-YAG energy (1064nm). The thermal and optical characteristics of five different types of rounded sapphire probe [Surgical Laser Technologies (SLT) - SMTR (1.8mm), MTh (2.2mm), MTRL (3.0mm); Living Technology - LT (2.2mm), OS (2.2mm)] were investigated and related to efficiency of contact ablation of arterial wall in vitro. The sapphire probes were mounted on catheters containing a 0.6 mm quartz optical fiber, coupled to a cw Nd-YAG laser. All probes produced a similar beam profile but there was some variation in their forward transmission of energy (54-85%).Probe heating occurs due to energy absorption within the sapphire and was measured in air by infrared thermography. There was a high temperature gradient from the front surface of the sapphires to the probe rim. But, at energy settings used clinically (10 J pulses, 10 Watts for 1 second) the SMTR, MTR, and MTRL probes exhibited a higher mean temperature rise (63-74 C) than the OS and LT probes (20 C) [3-way ANOVA psapphire temperature rise recorded after 5 seconds exposure at 20 Watts was 340 C, but at all energy settings sapphire temperatures were much lower than attained by metal probes. Furthermore, there was relatively little heating of the metal jacket behind the sapphires (maximum 35 C) reducing the risk of thermal injury to surrounding vessel. These properties enhanced contact ablation by the MTR probe relative to the other 2.2mm probes when applied with a downward force of 80 g, perpendicular to fresh porcine aortic segments immersed in whole blood. Penetration efficiencies at energy levels producing the most efficient ablation by each probe were as follows [mean (SD) microns/JI:- MTR 50 (7), LT 9 (5), 05 4 (2), (p

  6. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  7. High-power solid-state sapphire whispering gallery mode maser.

    PubMed

    Creedon, Daniel L; Benmessaï, Karim; Tobar, Michael E; Hartnett, John G; Bourgeois, Pierre-Yves; Kersale, Yann; Le Floch, Jean-Michel; Giordano, Vincent

    2010-03-01

    We present new results on a cryogenic solid-state maser frequency standard, which relies on the excitation of whispering gallery (WG) modes within a doped monocrystalline sapphire resonator (alpha-Al2O3). Included substitutively within the highest purity HEMEX-grade sapphire crystal lattice are Fe2+ impurities at a concentration of parts per million, an unavoidable result of the manufacturing process. Mass conversion of Fe2+ to Fe3+ ions was achieved by thermally annealing the sapphire in air. Above-threshold maser oscillation was then excited in the resonator at zero applied DC magnetic field by pumping high-Q WG modes coincident in frequency with the electron spin resonance (ESR) energy levels of the Fe3+ spin population. A 2 stage annealing process was undertaken for a sapphire resonator with exceptionally low Fe3+ concentration, resulting in an improvement of 6 orders of magnitude in output power for this particular crystal, and exceeding the previous best implementation of our scheme in another crystal by nearly 20 dB. This represents an output signal 7 orders of magnitude more powerful than a typical commercial hydrogen maser. At this power level, we estimate a limit on the frequency stability of order 1 x 10(-17)/square root(tau) due to the Schawlow-Townes fundamental thermal noise limit.

  8. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  9. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  10. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers

    NASA Astrophysics Data System (ADS)

    Fan, H. J.; Fleischer, F.; Lee, W.; Nielsch, K.; Scholz, R.; Zacharias, M.; Gösele, U.; Dadgar, A.; Krost, A.

    2004-07-01

    Patterned growth of vertically aligned ZnO nanowire arrays on the micrometer and nanometer scale on sapphire and GaN epilayers is reported. In order to control the position and distribution density of the ZnO nanowires, Au seeding nanodots are defined, as regular arrays, with the assistance of deposition shadow masks. Electron micrographs reveal that the wires are single crystals having wire axes along the hexagonal c-axes. The epitaxial growth of ZnO nanowires on sapphire and GaN films on Si substrates was further verified by cross sectional electron microscopy investigations. Compared to the sapphire case, the perfect epitaxial growth on a GaN film on a Si substrate is believed to be more suitable for potential electronic device applications of ZnO nanowire arrays.

  11. Temperature Compensated Sapphire Resonator for Ultrastable Oscillator Operating at Temperatures Near 77 Deg Kelvin

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Santiago, David G. (Inventor)

    1999-01-01

    A sapphire resonator for an ultrastable oscillator capable of substantial performance improvements over the best available crystal quartz oscillators in a compact cryogenic package is based on a compensation mechanism enabled by the difference between copper and sapphire thermal expansion coefficients for so tuning the resonator as to cancel the temperature variation of the sapphire's dielectric constant. The sapphire resonator consists of a sapphire ring separated into two parts with webs on the outer end of each to form two re-entrant parts which are separated by a copper post. The re-entrant parts are bonded to the post by indium solder for good thermal conductivity between parts of that subassembly which is supported on the base plate of a closed copper cylinder (rf shielding casing) by a thin stainless steel cylinder. A unit for temperature control is placed in the stainless steel cylinder and is connected to the subassembly of re-entrant parts and copper post by a layer of indium for good thermal conduction. In normal use, the rf shielding casing is placed in a vacuum tank which is in turn placed in a thermos flask of liquid nitrogen. The temperature regulator is controlled from outside the thermos flask to a temperature in a range of about 40K to 150K, such as 87K for the WGH-811, mode of resonance in response to microwave energy inserted into the rf shielding casing through a port from an outside source.

  12. Carbon nanotube assisted Lift off of GaN layers on sapphire

    NASA Astrophysics Data System (ADS)

    Long, Hao; Feng, Xiaohui; Wei, Yang; Yu, Tongjun; Fan, Shoushan; Ying, Leiying; Zhang, Baoping

    2017-02-01

    Laser lift off (LLO) was one of the most essential processes in fabrication of vertical GaN-based LEDs. However, traditional laser lift off of GaN on sapphire substrates needed high laser energy threshold, which deteriorated the GaN crystal. In this paper, it was found that inserting carbon nanotube between GaN and sapphire could effectively reduce the laser energy threshold in GaN LLO, from 1.5 J /cm2 of conventional GaN/sapphire to 1.3 J /cm2 of CNT inserted GaN/sapphire. The temperature distributions at the GaN/sapphire interfaces with and without CNTs were simulated by the finite elements calculation under laser irradiation. It was found that, due to the higher laser absorption coefficient of CNT, the CNT played as a powerful heating wire, sending out the thermal outside to elevate the GaN's temperature, and thus reduce the laser threshold for LLO. Raman and photoluminescence measurements indicated that residual stress of GaN membranes was as small as 0.3 GPa by the carbon nanotube assisted LLO. This work not only opens new application of CNTs, but also demonstrates the potential of high performance blue and green LEDs.

  13. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    SciTech Connect

    Mancosu, Pietro; Reggiori, Giacomo Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano; Navarria, Piera; Ascolese, Anna; Scorsetti, Marta; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca

    2015-09-15

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  14. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system.

    PubMed

    Mancosu, Pietro; Reggiori, Giacomo; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Navarria, Piera; Ascolese, Anna; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca; Tomatis, Stefano; Scorsetti, Marta

    2015-09-01

    To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  15. Heteroepitaxial growth of Cu{sub 2}ZnSnS{sub 4} thin film on sapphire substrate by radio frequency magnetron sputtering

    SciTech Connect

    Song, Ning E-mail: n.song@student.unsw.edu.au; Huang, Yidan; Li, Wei; Huang, Shujuan; Hao, Xiaojing E-mail: n.song@student.unsw.edu.au; Wang, Yu; Hu, Yicong

    2014-03-03

    The heteroepitaxy of tetragonal Cu2ZnSnS4 (CZTS) thin films on hexagonal sapphire (0001) single crystal substrates is successfully obtained by radio frequency magnetron sputtering. The sputtered CZTS film has a mirror-like smooth surface with a root mean square roughness of about 5.44 nm. X-ray θ-2θ scans confirm that CZTS film is (112) oriented on sapphire with an out of plane arrangement of CZTS (112) ‖ sapphire (0001). X-ray Phi scan further illustrates an in plane ordering of CZTS [201{sup ¯}] ‖ sapphire [21{sup ¯}1{sup ¯}0]. The high resolution transmission electron microscopy image of the interface region clearly shows that the CZTS thin film epitaxially grows on the sapphire (0001) substrate. The band gap of the film is found to be approximately 1.51 eV.

  16. Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser.

    PubMed

    Sawada, Ryota; Tanaka, Hiroki; Sugiyama, Naoto; Kannari, Fumihiko

    2017-02-20

    We experimentally reveal the pump-induced loss in a Ti:sapphire laser crystal with 451-nm indium gallium nitride (InGaN) laser diode pumping and show that 478-nm pumping can reduce such loss. The influence of the pump-induced loss at 451-nm pumping is significant even for a crystal that exhibits higher effective figure-of-merit and excellent laser performance at 520-nm pumping. We demonstrate the power scaling of a Ti:sapphire laser by combining 478- and 520-nm InGaN laser diodes and obtain CW output power of 593 mW.

  17. Anisotropic Transverse Stress in Calcite and Sapphire Measured Using Birefringence

    NASA Astrophysics Data System (ADS)

    Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.

    2015-06-01

    Many significant geological minerals have anisotropic crystal structures leading to material properties that are anisotropic, including compressive elastic behaviour. A non-invasive approach to investigate the directional dependence of transverse stress in these materials during shock compression would supplement current understanding. As many geological minerals are transparent and hence optically anisotropic, measuring the change in birefringence induced by transverse stress in the material offers the possibility of a fast, non-invasive approach to probe transverse behaviour. Shock compression experiments have been performed on a-cut calcite and a-cut sapphire for strain rates of order 105 s-1 and up to longitudinal stresses of 2 GPa for calcite and 12 GPa for sapphire. We present measured changes in birefringence for these materials under shock compression, comparing with current and past literature as well as an in house optical model. The authors would like to thank Mr Steve Johnson and Mr David Pittman for technical support. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.

  18. Sapphire Energy - Integrated Algal Biorefinery

    SciTech Connect

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  19. Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator

    PubMed Central

    Sergueev, I.; Wille, H.-C.; Hermann, R. P.; Bessas, D.; Shvyd’ko, Yu. V.; Zając, M.; Rüffer, R.

    2011-01-01

    A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20–40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of 121Sb at 37.13 keV, 125Te at 35.49 keV, 119Sn at 23.88 keV, 149Sm at 22.50 keV and 151Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150–300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. PMID:21862862

  20. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  1. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  2. The nucleation and growth of germanium on (11¯02) sapphire deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Twigg, M. E.

    1991-04-01

    Single-crystal germanium on (11¯02) sapphire films are grown after a substrate preanneal of 1400 °C and at growth temperatures above 700 °C. At a growth temperature of 800 °C, the nucleation site density was ˜1011 cm-2. For thin germanium films, the isolated islands were singly oriented, with single-crystal films obtained for thicker grown films. A 400 °C growth temperature on sapphire was insufficiently high to get epitaxial growth and produced polycrystallites. Growth at 400 °C on an 800 °C grown germanium template did result in epitaxy. However, a high fraction of the twinned orientation was produced, resulting in a bicrystalline film.

  3. Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hong, Daesun; Kim, Hyungsu; Kim, Byungsoo; Chang, Wenji V.

    2016-11-01

    This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below -15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen's previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to -25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.

  4. The charge state of iron implanted into sapphire

    SciTech Connect

    McHargue, C.J.; Sklad, P.S.; White, C.W.; Farlow, G.C.; Perez, A.; Kornilios, N.; Marest, G.

    1987-08-01

    Several techniques (RBS, TEM, CEMS) have been used to characterize sapphire single crystals implanted with iron at room temperature to fluences of 10/sup 16/ to 10/sup 17/ ions cm/sup -2/. At low fluences the as-implanted iron is found mainly in the ferrous state. As the fluence is increased, Fe/sup 3 +/ and metallic iron clusters became dominant. There is a strong correlation between the probability of finding specific configurations of iron ions within four cation coordination shells and the relative amounts of each charge state observed. The superparamagnetic behavior of the clusters suggest that they are of the order of 2 nm in size but the large amount of irradiation-induced damage and residual stress has prevented their imaging by TEM. 13 refs., 7 figs.

  5. Final EDP Ti: sapphire amplifiers for ELI project

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Kalashnikov, Mikhail; Osvay, Károly

    2015-05-01

    Recently several ultrahigh intensity Chirped Pulse Amplification (CPA) laser systems have reached petawatt output powers [1, 2] setting the next milestone at tens or even hundreds petawatts for the next three to ten years [3, 4]. These remarkable results were reached when laser amplifiers (opposite to Optical Parametric Amplification (OPA) [5]) were used as final ones and from them Ti:Sapphire crystals supposed to be the working horses as well in the future design of these laser systems. Nevertheless, the main limitation that arises on the path toward ultrahigh output power and intensity is the restriction on the pumping and extraction energy imposed by Transverse Amplified Spontaneous Emission (TASE) [6] and/or transverse parasitic generation (TPG) [7] within the large aperture of the disc-shape amplifier volume.

  6. Peripheral laser angioplasty with sapphire tip.

    PubMed

    Fourrier, J L; Van Franchen, B; Henri, M; Lefebvre, J M; Brunetaud, J M; Bertrand, M E

    1991-01-01

    To improve the result of peripheral laser recanalization (less perforation with wider tunnels of vaporization), we used the technique of sapphire laser angioplasty. A Nd:YAG laser with continuous emission was connected to a catheter with a 600 mum fiber and a sapphire probe to its extremity (1.8-3 mm in diameter). Treatment was performed on 127 patients with severe stenosis or occlusion of peripheral arteries (iliac, femoral, or popliteal arteries). Recanalization was obtained in 102 cases (80%) and was further embellished by balloon dilatation. The rate of success decreased proportionally with the length of occlusions (93% for 3 cm, 33% for 15 cm and more). Most failures were due to wall perforation or wall entry of the probe; passage of the sapphire tip was rarely blocked by the occlusion. At follow-up, 26.4% of arteries were reoccluded after 2 months. laser angioplasty with a sapphire tip can totally recanalize occluded arteries with low rate of failure and complications.

  7. Silicon on sapphire for ion implantation studies

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.

    1974-01-01

    Van der Pauw or bridge samples are ultrasonically cut from silicon on sapphire wafers. Contact pad regions are implanted with moderately heavy dose of ions. Ion of interest is implanted into sample; and, before being annealed in vacuum, sample is sealed with sputtered layer of silicon dioxide. Nickel or aluminum is sputtered onto contact pad areas and is sintered in nitrogen atmosphere.

  8. Temperature-Compensated Sapphire Microwave Resonator

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Santiago, David G.

    1996-01-01

    Sapphire-dielectric-ring microwave resonator operating in "whispering-gallery" electromagnetic mode features differential-thermal-expansion design providing temperature compensation for ultrahigh frequency stability. Designed to minimize frequency fluctuations caused by temperature fluctuations at normal temperature equal to or even somewhat greater than temperature of liquid nitrogen. Ancillary equipment needed for operation smaller and less expensive, and liquid nitrogen used as coolant.

  9. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr(VI) adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  10. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.

    PubMed

    Shih, Yu-Jen; Abarca, Ralf Ruffel M; de Luna, Mark Daniel G; Huang, Yao-Hui; Lu, Ming-Chun

    2017-04-01

    The crystallization of struvite in fluidized-bed crystallizer (FBC) was performed to treat synthetic wastewaters that contain phosphorous. Under optimal conditions (pH 9.5, molar ratio Mg/N/P = 1.3/4/1, struvite seed dose (53-297 μm) = 30 g L(-1), total flow rate = 12 ml min(-1), reflux = 120 ml min(-1)), the removal of phosphate (PR) and the crystallization ratio (CR) were 95.8% and 93.5%, respectively. Based on a thermodynamic prediction, the supersaturation, which was obtained from the difference between the theoretical solubility and phosphate concentration, predominated the crystallization efficiency and the properties of the struvite pellets, such as their morphology, particle size and apparent density. Coexisting ions NO3(-) (80, 160 ppm), CH2COOH(-) (260, 520 ppm), F(-) (650, 1300 ppm) and SO4(2-) (650, 1300 ppm), were utilized to prepare P-containing wastewaters. Of these ions, SO4(2-) (1300 ppm) remarkably reduced the capability of FBC to remove phosphate from solution. In the presence of NO3(-) and CH3COO(-) (for synthesizing TFT-LCD wastewater), and F(-) and SO4(2-) (for synthesizing semiconductor wastewater), CR% was lower than in pure water, although the ultimate PR% did not differ significantly.

  11. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    SciTech Connect

    Oleson, Timothy A.; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J.

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  12. New buffer layers for GaN on sapphire by atomic layer and molecular stream epitaxy

    SciTech Connect

    Piner, E.L.; He, Y.W.; Boutros, K.S.; McIntosh, F.G.; Roberts, J.C.; Bedair, S.M.; El-Masry, N.A.

    1996-11-01

    The current approach of depositing a low temperature then annealed AlN or GaN buffer for the growth of GaN on sapphire results in a high dislocation density. These dislocations thread through the GaN layer to the surface. Reducing their density either by growing thicker films or using a strained layer superlattice is ineffective. Two new approaches for AlN/GaN buffer layer growth for GaN on sapphire have been employed: Atomic Layer Epitaxy (ALE) and molecular Stream Epitaxy (MSE). ALE is distinguished by organo-metallic/ammonia separation while MSE is distinguished by cyclic annealing of the growing film. Both ALE and MSE enhance two dimensional growth of single crystal GaN on sapphire. The structural quality of epitaxial GaN grown on these buffer layers was studied by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The initial result for the ALE buffer shows an improved quality GaN film with lower defect densities. The MSE grown buffer layer closely resembles that of conventionally grown MOCVD buffer layers observed by others, with dislocations threading through the GaN epilayer. The effects of these buffer layers on the structural and optical properties of GaN grown on sapphire will be presented.

  13. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis

    NASA Astrophysics Data System (ADS)

    Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw

    2015-01-01

    Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.

  14. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m(2), respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  15. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    PubMed

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF.

  16. Synthetic Hemozoin (β-Hematin) Crystals Nucleate at the Surface of Neutral Lipid Droplets that Control Their Sizes

    PubMed Central

    Ambele, Melvin A.; Sewell, B. Trevor; Cummings, Franscious R.; Smith, Peter J.; Egan, Timothy J.

    2013-01-01

    Emulsions of monopalmitoylglycerol (MPG) and of a neutral lipid blend (NLB), consisting of MPG, monostearoylglycerol, dipalmitoylglycerol, dioleoylglycerol and dilineoylglycerol (4:2:1:1:1), the composition associated with hemozoin from the malaria parasite Plasmodium falciparum, have been used to mediate the formation of β-hematin microcrystals. Transmission electron microscopy (TEM), electron diffraction and electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) have been used to characterize both the lipid emulsion and β-hematin crystals. The latter have been compared with β-hematin formed at a pentanol/aqueous interface and with hemozoin both within P. falciparum parasites and extracted from the parasites. When lipid and ferriprotoporphyrin IX solutions in 1:9 v/v acetone/methanol were thoroughly pre-mixed either using an extruder or ultrasound, β-hematin crystals were found formed in intimate association with the lipid droplets. These crystals resembled hemozoin crystals, with prominent {100} faces. Lattice fringes in TEM indicated that these faces made contact with the lipid surface. The average length of these crystals was 0.62 times the average diameter of NLB droplets and their size distributions were statistically equivalent after 10 min incubation, suggesting that the lipid droplets also controlled the sizes of the crystals. This most closely resembles hemozoin formation in the helminth worm Schistosoma mansoni, while in P. falciparum, crystal formation appears to be associated with the much more gently curved digestive vacuole membrane which apparently leads to formation of much larger hemozoin crystals, similar to those formed at the flat pentanol-water interface. PMID:24244110

  17. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti{sup 3+}:Sapphire

    SciTech Connect

    Apostolopoulos, V.; Laversenne, L.; Colomb, T.; Depeursinge, C.; Salathe, R.P.; Pollnau, M.; Osellame, R.; Cerullo, G.; Laporta, P.

    2004-08-16

    We have employed femtosecond laser writing in order to induce refractive-index changes and waveguides in Ti{sup 3+}-doped sapphire. Doping the sapphire crystal with an appropriate ion significantly reduces the threshold for creating structural changes, thus enabling the writing of waveguide structures. Passive and active buried channel waveguiding is demonstrated and images of the guided modes, propagation-loss values, fluorescence spectra, and output efficiencies are presented. The guiding area is located around the laser-damaged region, indicating that the guiding effect is stress induced. Refractive-index changes are measured by digital holography. Proper active doping should enable femtosecond processing and waveguide writing in various crystalline materials.

  18. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers.

    PubMed

    Pentelute, Brad L; Gates, Zachary P; Tereshko, Valentina; Dashnau, Jennifer L; Vanderkooi, Jane M; Kossiakoff, Anthony A; Kent, Stephen B H

    2008-07-30

    Chemical protein synthesis and racemic protein crystallization were used to determine the X-ray structure of the snow flea antifreeze protein (sfAFP). Crystal formation from a racemic solution containing equal amounts of the chemically synthesized proteins d-sfAFP and l-sfAFP occurred much more readily than for l-sfAFP alone. More facile crystal formation also occurred from a quasi-racemic mixture of d-sfAFP and l-Se-sfAFP, a chemical protein analogue that contains an additional -SeCH2- moiety at one residue and thus differs slightly from the true enantiomer. Multiple wavelength anomalous dispersion (MAD) phasing from quasi-racemate crystals was then used to determine the X-ray structure of the sfAFP protein molecule. The resulting model was used to solve by molecular replacement the X-ray structure of l-sfAFP to a resolution of 0.98 A. The l-sfAFP molecule is made up of six antiparallel left-handed PPII helixes, stacked in two sets of three, to form a compact brick-like structure with one hydrophilic face and one hydrophobic face. This is a novel experimental protein structure and closely resembles a structural model proposed for sfAFP. These results illustrate the utility of total chemical synthesis combined with racemic crystallization and X-ray crystallography for determining the unknown structure of a protein.

  19. X-ray Structure of Snow Flea Antifreeze Protein Determined by Racemic Crystallization of Synthetic Protein Enantiomers

    SciTech Connect

    Pentelute, Brad L.; Gates, Zachary P.; Tereshko, Valentina; Dashnau, Jennifer L.; Vanderkooi, Jane M.; Kossiakoff, Anthony A.; Kent, Stephen B.H.

    2008-08-20

    Chemical protein synthesis and racemic protein crystallization were used to determine the X-ray structure of the snow flea antifreeze protein (sfAFP). Crystal formation from a racemic solution containing equal amounts of the chemically synthesized proteins d-sfAFP and l-sfAFP occurred much more readily than for l-sfAFP alone. More facile crystal formation also occurred from a quasi-racemic mixture of d-sfAFP and l-Se-sfAFP, a chemical protein analogue that contains an additional -SeCH2- moiety at one residue and thus differs slightly from the true enantiomer. Multiple wavelength anomalous dispersion (MAD) phasing from quasi-racemate crystals was then used to determine the X-ray structure of the sfAFP protein molecule. The resulting model was used to solve by molecular replacement the X-ray structure of l-sfAFP to a resolution of 0.98 {angstrom}. The l-sfAFP molecule is made up of six antiparallel left-handed PPII helixes, stacked in two sets of three, to form a compact brick-like structure with one hydrophilic face and one hydrophobic face. This is a novel experimental protein structure and closely resembles a structural model proposed for sfAFP. These results illustrate the utility of total chemical synthesis combined with racemic crystallization and X-ray crystallography for determining the unknown structure of a protein.

  20. Surface modification of sapphire by ion implantation

    SciTech Connect

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  1. Sapphire Viewports for a Venus Probe

    NASA Technical Reports Server (NTRS)

    Bates, Stephen

    2012-01-01

    A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.

  2. Measurement of the dielectric properties of high-purity sapphire at 1.865 GHZ from 2-10 Kelvin

    SciTech Connect

    N. Pogue, P. McIntyre, Akhdiyor Sattarov, Charles Reece

    2012-06-01

    A dielectric test cavity was designed and tested to measure the microwave dielectric properties of ultrapure sapphire at cryogenic temperatures. Measurements were performed by placing a large cylindrical crystal of sapphire in a Nb superconducting cavity operating in the TE01 mode at 1.865 GHz. The dielectric constant, heat capacity, and loss tangent were all calculated using experimental data and RF modeling software. The motivation for these measurements was to determine if such a sapphire could be used as a dielectric lens to focus the magnetic field onto a sample wafer in a high field wafer test cavity. The measured properties have been used to finalize the design of the wafer test cavity.

  3. Acoustic and NMR investigations of melting and crystallization of indium-gallium alloys in pores of synthetic opal matrices

    NASA Astrophysics Data System (ADS)

    Pirozerskii, A. L.; Charnaya, E. V.; Lee, M. K.; Chang, L. J.; Nedbai, A. I.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Lebedeva, E. L.; Bugaev, A. S.

    2016-05-01

    The paper presents the results of studying the crystallization and melting processes of Ga-In eutectic alloys, which are embedded in opal matrices, using acoustic and NMR methods. The indium concentrations in the alloys were 4, 6, 9, and 15 at %. Measurements were performed upon cooling from room temperature to complete crystallization of the alloys and subsequent heating. It is revealed how the size effects and alloy composition influence the formation of phases with α- and β-Ga structures and on changes in the melting-temperature ranges. A difference was observed between the results obtained using acoustic and NMR methods, which was attributed to different temperature measurement conditions.

  4. Computer-controlled fabrication of sapphire windows

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Hasan, Wasim; Dunn, Daniel E.; La Fleur, L. David

    1997-11-01

    Sapphire optical materials have limited index of refraction homogeneity. This homogeneity can limit the degree of transmitted wavefront error achievable with current, conventional optical finishing practices. Current practices can not typically compensate well for the localized inhomogeneities in the sapphire substrates resulting in limited transmitted wavefront values. Emerging transmitted wavefront requirements exceed those achievable with current practices. Hughes Danbury Optical Systems recently completed a successful demonstration program in which computer controlled polishing was applied to the fabrication of very low transmitted wavefront error sapphire window. This technique involves measuring the windows in transmission and then polishing them in localized areas to remove the wavefront errors arising from the material index inhomogeneity. The net effect of each localized correction is a high fidelity transmitted wavefront over each subaperture. In the demonstration completed, we stated with windows fabricated to the limit of current, conventional practices. Applying computer controlled polishing, the transmitted wavefront quality was rapidly improved by a factor of up to five over the starting value. These results not only satisfied emerging requirements, but the process also resulted in satisfying parallel requirements of extreme surface smoothness and scatter as defined by the bi- directional transmittance distribution function. This paper addresses the process developed, its results, benefits and applications.

  5. Failure Analysis of Sapphire Refractive Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Quinn, George D.

    2009-01-01

    Failure analysis was performed on two sapphire, refractive secondary concentrators (RSC) that failed during elevated temperature testing. Both concentrators failed from machining/handling damage on the lens face. The first concentrator, which failed during testing to 1300 C, exhibited a large r-plane twin extending from the lens through much of the cone. The second concentrator, which was an attempt to reduce temperature gradients and failed during testing to 649 C, exhibited a few small twins on the lens face. The twins were not located at the origin, but represent another mode of failure that needs to be considered in the design of sapphire components. In order to estimate the fracture stress from fractographic evidence, branching constants were measured on sapphire strength specimens. The fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins. Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC. Better machining and handling might have prevented the fractures, however, temperature gradients and resultant thermal stresses need to be reduced to prevent twinning.

  6. Effect of oxygen on reaction mechanisms of interface formation in the Cu-Ti-O/sapphire system

    SciTech Connect

    Camargo, P.R.C.; Liu, S.; Edwards, G.R.

    1994-12-31

    It has been reported that in active metal brazing of sapphire using titanium as the active element, titanium segregates to the sapphire-metal interface and reduces the sapphire, forming an intermediate oxide interphase region. In this work, the effect of oxygen on the reaction mechanisms of interface formation by active metal brazing in the Cu-Ti-O/sapphire (single crystal) system was investigated. Spectroscopically pure copper and titanium were used to prepare, in-situ, copper alloys with two different levels of titanium (1 and 2 at.pct). Three brazing temperatures were investigated: 1100, 1150, and 1200{degrees}C. A scavenging system using copper and niobium as getter materials was used to produce atmospheres with a range of oxygen partial pressures covering 1 x 10{sup -5} to 1 x 10{sup -15}atm. Characterization of the interfaces was performed using four techniques: scanning electron microscopy (SEM), energy dispersive X-ray (EDS), X-ray photoelectron spectroscopy (XPS), and oxygen interstitial analysis. The bulk oxygen concentrations in the copper-active metal alloys were determined by a LECO oxygen analyzer, before and after the brazing operation. Wetting of sapphire by Cu-Ti alloys was characterized as a function of time and temperature. Additionally, the work of adhesion in the Cu-Ti-O/sapphire (single crystal) system was found to better correlate with the oxygen concentration in the alloy than with the titanium content itself. The amount of titanium necessary to promote wetting was also optimized to low levels, commensurate with the oxygen content present in the copper alloy.

  7. Latest developments of large-diameter c-axis sapphire grown by CHES method

    NASA Astrophysics Data System (ADS)

    Richard Schwerdtfeger, C.; Ullal, Saurabh; Shetty, Raj; Filgate, Joshua; Dhanaraj, Govindhan

    2014-05-01

    Large diameter c-axis crystal growth of sapphire boules up to 50 kg is in production at many sites world-wide. It has long been known that c-axis growth of sapphire could be the most cost-effective way to produce large diameter substrates for LED applications compared to a-axis growth with orthogonal coring due to the extremely large size boule required to core large diameter cores from the side of the boule. This paper will discuss the latest improvements, characterization, material utilizations, and crystal quality of boules designed specifically for 6-in., 8-in., and 10-in. wafer production. Improvements and continued R&D in slicing, polishing, and MOCVD of 6-in. and 8-in. sapphire has poised the industry for a rapid shift to larger diameter substrates, if the cores can be cost-effective. ARC Energy's CHES technology can produce 170 mm diameter boules optimized for 6-in. (150 mm) diameter wafer production. Additionally it can produce 8-in. or 10-in. diameter cores directly from 220 mm or 260 mm diameter boules, respectively. The latest developments, both equipment and process, will be discussed along with the resulting boule and core quality. Cost reductions for these large diameter cores will be shown to provide much more cost-effective 6-in. and 8-in. substrates. This low-cost enabling technology is poised to spur stable and long-term LED industry growth.

  8. Characterization of Ti:Sapphire Laser Rods for Installation in the Polarized Light Source

    SciTech Connect

    Corum, S

    2004-02-05

    The F1ash:Ti laser in the Polarized Light Source at the Stanford Linear Accelerator Center (SLAC) is used to obtain spin polarized electrons for high-energy particle physics experiments. The F1ash:Ti laser utilizes titanium-doped sapphire (Ti:Sapphire) crystals to produce laser light. The properties of these crystals, or laser rods, greatly affect the quality of the laser beam produced (e.g. power and jitter), which in turn affects the overall quality and reliability of the particle physics experiments at SLAC. In this interest, seven Ti:Sapphire laser rods were tested for absorption and transmission properties as a function of angular position (i.e. the rod was rotated along its geometrical axis). 833 nm light from a diode laser was linearly polarized and passed through the rods to test for transmission properties. The time-averaged power output of the emitted light was measured with a photodiode/powermeter apparatus. Similarly, the absorption properties of the rods were tested by passing linearly polarized light from a 543 nm green He:Ne laser through the rods. The rod with the best combination of absorption and transmission properties was selected for installation in the Polarized Light Source at the Stanford Linear Accelerator Center.

  9. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization of the Performance of Sapphire Optical Fiber in Intense Radiation Fields, when Subjected to Very High Temperatures

    NASA Astrophysics Data System (ADS)

    Petrie, Christian M.

    The U.S. Department of Energy is interested in extending optically-based instrumentation from non-extreme environments to extremely high temperature radiation environments for the purposes of developing in-pile instrumentation. The development of in-pile instrumentation would help support the ultimate goal of understanding the behavior and predicting the performance of nuclear fuel systems at a microstructural level. Single crystal sapphire optical fibers are a promising candidate for in-pile instrumentation due to the high melting temperature and radiation hardness of sapphire. In order to extend sapphire fiber-based optical instrumentation to high temperature radiation environments, the ability of sapphire fibers to adequately transmit light in such an environment must first be demonstrated. Broadband optical transmission measurements of sapphire optical fibers were made in-situ as the sapphire fibers were heated and/or irradiated. The damage processes in sapphire fibers were also modeled from the primary knock-on event from energetic neutrons to the resulting damage cascade in order to predict the formation of stable defects that ultimately determine the resulting change in optical properties. Sapphire optical fibers were shown to withstand temperatures as high as 1300 °C with minimal increases in optical attenuation. A broad absorption band was observed to grow over time without reaching a dynamic equilibrium when the sapphire fiber was heated at temperatures of 1400 °C and above. The growth of this absorption band limits the use of sapphire optical fibers, at least in air, to temperatures of 1300 °C and below. Irradiation of sapphire fibers with gamma rays caused saturation of a defect center located below 500 nm, and extending as far as ~1000 nm, with little effect on the transmission at 1300 and 1550 nm. Increasing temperature during gamma irradiation generally reduced the added attenuation. Reactor irradiation of sapphire fibers caused an initial rapid

  11. Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

    SciTech Connect

    Yerci, S.; Serincan, U.; Dogan, I.; Tokay, S.; Genisel, M.; Aydinli, A.; Turan, R.

    2006-10-01

    Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 deg. C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.

  12. High-Temperature Mechanical Properties of Cr(3+) Doped Sapphire Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, A.; QuispeCancapa, J. J.; deArellanoLopez, A. R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    High-temperature slow-crack growth of single crystal 10 wt% Cr2O3 - Al2O3 (nominal composition) fibers has been studied by tensile rupture experiments at 1400 C, under different stressing rates (0.5 to 41.5 MPa/s). Slow-crack growth (SCG) is less pronounced with increasing Cr2O3. Rupture stresses increased with the stressing rate from 397 MPa to 515 MPa, resulting in a SCG exponent, N=19. The Cr2O3 composition was analyzed by Energy Dispersed X-Ray Spectra (EDS) and fracture surfaces were studied by scanning electron microscopy (SEM). Results are compared with previous studies on 100-300 ppm Cr3(+) doped sapphire fibers and on commercial sapphire fibers.

  13. High-Temperature Mechanical Properties of Cr(3+) Doped Sapphire Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, A.; QuispeCancapa, J. J.; deArellanoLopez, A. R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    High-temperature slow-crack growth of single crystal 10 wt% Cr2O3 - Al2O3 (nominal composition) fibers has been studied by tensile rupture experiments at 1400 C, under different stressing rates (0.5 to 41.5 MPa/s). Slow-crack growth (SCG) is less pronounced with increasing Cr2O3. Rupture stresses increased with the stressing rate from 397 MPa to 515 MPa, resulting in a SCG exponent, N=19. The Cr2O3 composition was analyzed by Energy Dispersed X-Ray Spectra (EDS) and fracture surfaces were studied by scanning electron microscopy (SEM). Results are compared with previous studies on 100-300 ppm Cr3(+) doped sapphire fibers and on commercial sapphire fibers.

  14. Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

    NASA Astrophysics Data System (ADS)

    Yerci, S.; Serincan, U.; Dogan, I.; Tokay, S.; Genisel, M.; Aydinli, A.; Turan, R.

    2006-10-01

    Silicon nanocrystals, average sizes ranging between 3 and 7nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800°C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.

  15. Creation and ESR identification, in single crystals, of synthetic analogs of the S=(1/2) states of the Fe4S4 cores of the reduced ferredoxins and oxidized high-potential proteins

    NASA Astrophysics Data System (ADS)

    Gloux, J.; Gloux, P.; Lamotte, B.; Rius, And G.

    1985-02-01

    The synthetic equivalents of the paramagnetic states of the active sites of the ferredoxin and high-potential Fe4S4 proteins have been created in single crystals. This has been accomplished by induction of in situ redox reactions by ionizing irradiation in the crystal of the compound chosen to be initially in the diamagnetic state. This opens the way for detailed studies with ESR of the magnetic and electronic properties of these important polymetallic iron-sulfur cores.

  16. Optical waveguide formed by cubic silicon carbide on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Tang, Xiao; Wongchotigul, Kobchat; Spencer, Michael G.

    1991-01-01

    Optical confinement in beta silicon carbide (beta-SiC) thin films on sapphire substrate is demonstrated. Measurements are performed on waveguides formed by the mechanical transfer of thin beta-SiC films to sapphire. Recent results of epitaxial films of SiC on sapphire substrates attest to the technological viability of optoelectronic devices made from silicon carbide. Far-field mode patterns are shown. It is believed that this is the first step in validating a silicon carbide optoelectronic technology.

  17. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  18. Leveraging Python Interoperability Tools to Improve Sapphire's Usability

    SciTech Connect

    Gezahegne, A; Love, N S

    2007-12-10

    The Sapphire project at the Center for Applied Scientific Computing (CASC) develops and applies an extensive set of data mining algorithms for the analysis of large data sets. Sapphire's algorithms are currently available as a set of C++ libraries. However many users prefer higher level scripting languages such as Python for their ease of use and flexibility. In this report, we evaluate four interoperability tools for the purpose of wrapping Sapphire's core functionality with Python. Exposing Sapphire's functionality through a Python interface would increase its usability and connect its algorithms to existing Python tools.

  19. Sapphire-fiber-based intrinsic Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Gollapudi, Sridhar; Murphy, Kent A.; May, Russell G.; Claus, Richard O.

    1992-01-01

    A sapphire optical fiber intrinsic Fabry-Perot interferometric sensor is demonstrated. A length of multimode sapphire fiber that functions as a Fabry-Perot cavity is spliced to a silica single-mode fiber. The interferometric signals of this sensor are produced by the interference between the reflection from the silica-sapphire fiber splice and the reflection from the free end face of the sapphire fiber. This sensor has been demonstrated for temperature measurement. A resolution of 0.2 C has been obtained over a measurement range of 310 C to 976 C.

  20. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-10-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  1. Zeta potential orientation dependence of sapphire substrates.

    PubMed

    Kershner, Ryan J; Bullard, Joseph W; Cima, Michael J

    2004-05-11

    The zeta potential of planar sapphire substrates for three different crystallographic orientations was measured by a streaming potential technique in the presence of KCl and (CH3)4NCl electrolytes. The streaming potential was measured for large single crystalline C-plane (0001), A-plane (1120), and R-plane (1102) wafers over a full pH range at three or more ionic strengths ranging from 1 to 100 mM. The roughness of the epi-polished wafers was verified using atomic force microscopy to be on the order of atomic scale, and X-ray photoelectron spectroscopy (XPS) was used to ensure that the samples were free of silica and other contaminants. The results reveal a shift in the isoelectric point (iep) of the three samples by as much as two pH units, with the R-plane surface exhibiting the most acidic behavior and the C-plane samples having the highest iep. The iep at all ionic strengths was tightly centered around a single pH for each wafer. These values of iep are substantially different from the range of pH 8-10 consistently reported in the literature for alpha-Al2O3 particles. Particle zeta potential measurements were performed on a model powder using phase analysis light scattering, and the iep was confirmed to occur at pH 8. Modified Auger parameters (MAP) were calculated from XPS spectra of a monolayer of iridium metal deposited on the sapphire by electron beam deposition. A shift in MAP consistent with the observed differences in iep of the surfaces confirms the effect of surface structure on the transfer of charge between the Ir and sapphire, hence accounting for the changes in acidity as a function of crystallographic orientation.

  2. Experimental and computer-modeled results of titanium sapphire lasers pumped by copper vapor lasers

    NASA Astrophysics Data System (ADS)

    Knowles, Martyn R. H.; Webb, Colin E.; Naylor, Graham A.

    1991-07-01

    The absorption band of titanium sapphire is excellently matched to the 510.6 nm and 578.2 nm emission lines of the copper vapor laser (CVL). The availability of high power and high repetition rate output from CVLs allows the generation of high average power tunable radiation from these crystals at the repetition rate of the pump. Such lasers fulfill the rapid data collection requirement of many spectroscopic applications such as resonance ionization mass spectrometry. A computer model of the absorption of CVL radiation in the crystal which incorporates the polarization and beam quality of the pump laser is used to map the gain distribution in the crystal so enabling parameters such as crystal doping level and length to be optimized. Gain switched analysis of the titanium sapphire laser predicts threshold, slope efficiency, pulse width and pulse build up time which are in good agreement with observed values. Thermal effects have also been computed. The experimental pump energy for threshold is typically 25 (mu) J and the slope efficiency for broadband lasing is greater than 20% with output powers up to 750 mW. The shortest pulse width and build-up time observed are 24 ns and 60 ns, respectively, for a resonator with a 0.85 m round-trip length. Tuning methods and resonator designs are also reviewed.

  3. Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand

    NASA Astrophysics Data System (ADS)

    Yui, Tzen-Fu; Wu, Chao-Ming; Limtrakun, Phisit; Sricharn, Weerapan; Boonsoong, Apichet

    2006-02-01

    Placer sapphire and ruby are common in the western zone and the central/eastern zone, respectively, of the Chanthaburi-Trat (C-T) alkali basaltic gemfield in southeastern Thailand. Sapphires have O-isotope composition in the range from + 5.1‰ to + 6.2‰, while rubies, from + 1.3‰ to + 4.2‰. These data clearly show that the C-T placer sapphires and rubies should have a different primary genesis. Olivine in the nearby alkali basalts exhibits a narrow range of O-isotope composition, i.e., from + 4.8‰ to + 5.0‰, demonstrating that the C-T placer gem corundums cannot be phenocrysts of these basalts. The homogeneous O-isotope compositions of sapphires, combined with other available data, strongly suggest that these sapphires most probably have originally crystallized from evolved mantle magmas at lower crust/upper mantle depths. The varied O-isotope compositions of rubies are consistent with the previous suggestion that these rubies originally formed in mafic metamorphic rocks under upper mantle conditions, although the O-isotope data also require that the mafic rocks would have experienced an earlier surface (sea) water-rock interaction history. Consistent with the available data, a suggestion with garnet pyroxenite in the sub-continental mantle as the primary source for these placer gem corundums is tentatively proposed. The surface distribution of sapphire or ruby in the studied area may be a sign of composition variation of garnet pyroxenite underneath.

  4. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  5. Melt inclusions in alluvial sapphires from Montana, USA: Formation of sapphires as a restitic component of lower crustal melting?

    NASA Astrophysics Data System (ADS)

    Palke, Aaron C.; Renfro, Nathan D.; Berg, Richard B.

    2017-05-01

    We report here compositions of glassy melt inclusions hosted in sapphires (gem quality corundum) from three alluvial deposits in Montana, USA including the Rock Creek, Dry Cottonwood Creek, and Missouri River deposits. While it is likely that sapphires in these deposits were transported to the surface by Eocene age volcanic events, their ultimate origin is still controversial with many models suggesting the sapphires are xenocrysts with a metamorphic or metasomatic genesis. Melt inclusions are trachytic, dacitic, and rhyolitic in composition. Microscopic observations allow separation between primary and secondary melt inclusions. The primary melt inclusions represent the silicate liquid that was present at the time of sapphire formation and are enriched in volatile components (8-14 wt.%). Secondary melt inclusions analyzed here for Dry Cottonwood Creek and Rock Creek sapphires are relatively volatile depleted and represent the magma that carried the sapphires to the surface. We propose that alluvial Montana sapphires from these deposits formed through a peritectic melting reaction during partial melting of a hydrated plagioclase-rich protolith (e.g. an anorthosite). The heat needed to drive this reaction was likely derived from the intrusion of mantle-derived mafic magmas near the base of the continental lithosphere during rollback of the Farallon slab around 50 Ma. These mafic magmas may have ended up as the ultimate carrier of the sapphires to the surface as evidenced by the French Bar trachybasalt near the Missouri River deposit. Alternatively, the trachytic, rhyolitic, and dacitic secondary melt inclusions at Rock Creek and Dry Cottonwood Creek suggests that the same magmas produced during the partial melting event that generated the sapphires may have also transported them to the surface. Determining the genesis of these deposits will further our understanding of sapphire deposits around the world and may help guide future sapphire prospecting techniques. This

  6. On-Orbit Results for Canada's Sapphire Optical Payload

    NASA Astrophysics Data System (ADS)

    Scott, A.; Hackett, J.

    2013-09-01

    Sapphire is the first Space Situational Awareness (SSA) satellite mission flown by Canada's Department of National Defence (DND). On February 25, 2013 Sapphire was successfully launched into a sun synchronous orbit at ~786 km altitude. The commissioning phase was a success and the Sapphire system is entering its operational phase. Canada and the United States signed an SSA Memorandum of Understanding on May 4, 2012. Under the agreement, data from DND's Sapphire satellite will be contributed to the U.S. Space Surveillance Network (SSN), enhancing the ability of both countries to detect and avoid the collision of critical space platforms with orbital debris. The Sapphire system is now collecting SSA data that will be shared with the SSN. This SSA partnership will strengthen the long standing defence relationship between the US and Canada and provide diversity in space based sensors at a time of fiscal constraint. The Sapphire satellite optical imaging payload was designed and built by COM DEV based around a small (13.25 cm) Three Mirror Anastigmat (TMA) telescope similar in design to the Space Based Visible sensor on the US Mid-Course Space Experiment satellite. The paper provides an overview of the design and operational performance of the Sapphire instrument, comparing the actual performance to the requirements. Based on lessons learned on this program we discuss potential improvements that would be feasible in a second generation Sapphire payload including the potential for using this sensor as a hosted payload in other applications.

  7. Mode Orientation Control For Sapphire Dielectric Ring Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John; Prata, Aluizio

    1996-01-01

    Small sapphire tuning wedge used in technique for solving mode-purity problem associated with sapphire dielectric-ring resonator part of cryogenic microwave frequency discriminator. Breaks quasi-degeneracy of two modes and allows selective coupling to just one mode. Wedge mounted on axle entering resonator cavity and rotated while resonator cryogenically operating in vacuum. Furthermore, axle moved vertically to tune resonant frequency.

  8. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions

    NASA Astrophysics Data System (ADS)

    Ravindra, A. V.; Behera, B. C.; Padhan, P.; Lebedev, O. I.; Prellier, W.

    2014-07-01

    Cobalt monoxide (CoO) nanocrystals were synthesized by thermal decomposition of cobalt oleate precursor in a high boiling point organic solvent 1-octadecene. The X-ray diffraction pattern and transmission electron microscopy studies suggest that pure face-centered-cubic (fcc) phase of CoO can be synthesized in the temperature range of 569-575 K. Thermolysis product at higher synthesis temperature 585 K is a mixture of fcc and hexagonal-closed-packed (hcp) phases. These nanocrystals are single crystals of CoO and exhibit mixture of two types of morphologies; one is nearly spherical with 5-25 nm diameter, and other one is 5-10 nm thick flake. The pure fcc-CoO nanocrystals show enhanced, and mixture of fcc- and hcp-CoO nanocrystals show reduced antiferromagnetic ordering temperature. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterials.

  9. Behavior of crystal defects in synthetic type-IIa single-crystalline diamond at high temperatures under normal pressure

    NASA Astrophysics Data System (ADS)

    Tatsumi, Natsuo; Tamasaku, Kenji; Ito, Toshimichi; Sumiya, Hitoshi

    2017-01-01

    The behavior of dislocation lines (DLs) and stacking faults (SFs) in synthetic type-IIa single-crystalline diamond at high temperatures under normal pressure has been investigated. After annealing the diamond at 1500 °C for 60 min in pure N2 atmosphere, straight DLs were bent to converge to fewer curved dislocation bundles, so that some of the stacking faults were extinct while new DLs appeared at the edges of the removed SFs. These results indicate that SFs in the diamond examined belong to the Shockley type, and that the Shockley partials changed to a perfect dislocation. From this result, the following generation mechanism has been proposed for SFs in diamond. On one hand, because [112] dislocations in the (111) growth sector are contained in the slip plane labelled as (1 ̅ 1 ̅ 1), one perfect dislocation tends to be split into two Shockley partials and a SF when an appropriate stress is applied. On the other hand, the angle between the {111} slip plane and the direction of bundled dislocations in the (001) growth sector is as high as 54.7°, so that a perfect dislocation can hardly slip into partial dislocations. Thus, SFs exist only in the (111) growth sector of type IIa diamond.

  10. Study on sapphire microstructure processing technology based on wet etching

    NASA Astrophysics Data System (ADS)

    Shang, Ying-Qi; Qi, Hong; Ma, Yun-Long; Wu, Ya-Lin; Zhang, Yan; Chen, Jing

    2017-03-01

    Aiming at the problem that sapphire surface roughness is quite large after wet etching in sapphire microstructure processing technology, we optimize the wet etching process parameters, study on the influences of concentration and temperature of etching solution and etching time on the sapphire surface roughness and etching rate, choose different process parameters for the experiment and test and analyze the sapphire results after wet etching. Aiming at test results, we also optimize the process parameters and do experiment. Experimental results show that, after optimizing the parameters of etching solution, surface roughness of etched sapphire is 0.39 nm, effectively with reduced surface roughness, improved light extraction efficiency and meeting the production requirements of high-precision optical pressure sensor.

  11. Proton and neutron irradiation effect of Ti: Sapphires

    SciTech Connect

    Wang, G.; Zhang, J.; Yang, J.

    1999-07-01

    Various effects of proton and neutron irradiated Ti: sapphires were studied. Proton irradiation induced F, F{sup +} and V center in Ti: sapphires and 3310 cm{sup -1} infrared absorption, and made ultraviolet absorption edge shift to short wave. Neutron irradiation produced a number of F, F{sup +} and F{sub 2} centers and larger defects in Ti: sapphires, and changed Ti{sup 4+}into Ti{sup 3+} ions. Such valence state variation enhanced characteristic luminescence of Ti: sapphires, and no singular variances of intrinsic fluorescence spectra of Ti: sapphires took place with neutron flux of 1 x 10{sup 17}n/cm{sup 2}, but the fluorescence vanished with neutron flux of 1 x 10{sup 18}n/cm{sup 2} which means the threshold for the concentration of improving Ti{sup 3+} ions by neutron irradiation.

  12. Evaluation of Single Crystal Sapphire Fibers for Medical Applications

    DTIC Science & Technology

    1988-06-08

    have assistance in the theory of breakdown from a superb B numerical physicist, Dr. Curtis Menyuk of the Department of Electrical Engineering of the...University of Maryland. Dr. Menyuk would perform several types of calculations that could be instructive both now and in the transition to the FEL at...contract, we cnuld set up a contract with Dr. Menyuk and handle its administration.

  13. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-08-01

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries ('edge-on' and 'flat-on') for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the 'edge-on' orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the 'edge-on' orientation compared to a 4.6% deviation in the 'flat-on' geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy-1 mm-3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy-1 mm-3 obtained with the diode. The results of this

  14. Formation of Hematite fine crystals by hydrothermal alteration of synthetic Martian basalt, static and fluid flow experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Isobe, H.

    2011-12-01

    Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of

  15. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions

    SciTech Connect

    Ravindra, A. V.; Behera, B. C.; Padhan, P.; Lebedev, O. I.; Prellier, W.

    2014-07-21

    Cobalt monoxide (CoO) nanocrystals were synthesized by thermal decomposition of cobalt oleate precursor in a high boiling point organic solvent 1-octadecene. The X-ray diffraction pattern and transmission electron microscopy studies suggest that pure face-centered-cubic (fcc) phase of CoO can be synthesized in the temperature range of 569–575 K. Thermolysis product at higher synthesis temperature 585 K is a mixture of fcc and hexagonal-closed-packed (hcp) phases. These nanocrystals are single crystals of CoO and exhibit mixture of two types of morphologies; one is nearly spherical with 5–25 nm diameter, and other one is 5–10 nm thick flake. The pure fcc-CoO nanocrystals show enhanced, and mixture of fcc- and hcp-CoO nanocrystals show reduced antiferromagnetic ordering temperature. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterials.

  16. High efficiency light emitting diode with anisotropically etched GaN-sapphire interface

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Tu, P. M.; Wang, C. H.; Hung, C. W.; Hsu, S. C.; Cheng, Y. J.; Kuo, H. C.; Zan, H. W.; Wang, S. C.; Chang, C. Y.; Huang, S. C.

    2009-07-01

    We report the fabrication and study of high efficiency ultraviolet light emitting diodes with inverted micropyramid structures at GaN-sapphire interface. The micropyramid structures were created by anisotropic chemical wet etching. The pyramid structures have significantly enhanced the light output efficiency and at the same time also improved the crystal quality by partially relieving the strain and reducing the dislocation defects in GaN. The electroluminescent output power at normal direction was enhanced by 120% at 20 mA injection current and the output power integrated over all directions was enhanced by 85% compared to a reference sample.

  17. Frequency Stability of 1x10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77K

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Santiago, D. G.; Wang, R. T.

    1996-01-01

    We report on the design and test of a whispering gallery sapphire resonator for which the dominant (WGH(sub n11)) microwave mode family shows frequency-stable, compensated operation for temperatures above 77 kelvin. The resonator makes possible a new ultra-stable oscillator (USO) capability that promises performance improvements over the best available crystal quartz oscillators in a compact cryogenic package.

  18. Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27wt.% V2O3

    DOE PAGES

    Nakano, Jinichiro; Duchesne, Marc; Bennett, James; ...

    2014-11-15

    Thermodynamic phase equilibria in synthetic slags (Al2O3–CaO–FeO–SiO2–V2O3) were investigated with 0–27 wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500 °C in a 64 vol.% CO/36 vol.% CO2 atmosphere (Po2 ≈ 10–8 atm at 1500 °C) for 72 h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity region expanded and a composition range exhibiting crystals wasmore » reduced. The mullite (Al6Si2O13) crystalline phase was not present in the slags above 9 wt.% FeO while the karelianite (V2O3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Furthermore, based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.« less

  19. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    NASA Astrophysics Data System (ADS)

    Confortin, Daria; Neevel, Han; Brustolon, Marina; Franco, Lorenzo; Kettelarij, Albert J.; Williams, Renè M.; van Bommel, Maarten R.

    2010-06-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  20. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    PubMed

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy(-1)mm(-3) determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electron Beam Welder Used to Braze Sapphire to Platinum

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Vannuyen, Thomas

    1998-01-01

    A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

  2. Electron Beam Welder Used to Braze Sapphire to Platinum

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Vannuyen, Thomas

    1998-01-01

    A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

  3. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (11 ̅20) sapphire.

    PubMed

    Oleson, Timothy A; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J

    2012-03-15

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetic membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacked SPBs retain properties (e.g., fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined the role of oxide surface charge (by varying pH and ionic strength) and of divalent Ca(2+) in controlling surface coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (11 ̅20) face of sapphire (α-Al(2)O(3)). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (I=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I≥210 mM, or with addition of 2mM Ca(2+). The latter two effects are not additive, suggesting that Ca(2+) mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on α-Al(2)O(3) particles determined by adsorption isotherms and on single-crystal (10 ̅10) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Crystal-structure and FTIR spectroscopy of synthetic Na(NaMg)Mg5Si8O22(OH)2, a P21/m amphibole

    NASA Astrophysics Data System (ADS)

    Iezzi, G.; Camara, F.; della Ventura, G.; Oberti, R.; Holtz, F.

    2003-04-01

    Na(NaMg)Mg_5Si_8O22(OH)_2 is an interesting amphibole composition never found in nature, which has been the object of much experimental work (Maresch and Langer, 1976; Raudsepp et al., 1991). It typically gives very high-yield run-products, consisting of extremely acicular and well formed crystals, generally less than 1 or 2 μm wide. X-ray powder analysis suggested various symmetries and space groups. The IR spectrum in the OH region consists of two major absorbances: a single well-resolved and rather sharp band at 3714 cm-1, and a broader band, possibly consisting of three overlapping components, centred at 3743 cm-1. No clear explanations for such a pattern have been provided so far. We prepared four samples, using hydrothermal techniques, at the following T and P conditions: 750, 800 and 850^oC and 0.4 GPa and 900^oC and 0.5 GPa. Runs at 800^oC and 900^oC yielded crystals suitable for single-crystal X-ray data collection. All samples have P2_1/m symmetry, similarly to what found by Oberti et al. (2002) for a similar composition with excess water synthesised by W. Maresch. This symmetry implies non equivalence of the two double-chains of tetrahedra facing base-to-base, which is mainly expressed by different degrees of stretching and kinking. There are also two independent anion sites (O3A and O3B) which may be occupied by OH. This feature explains the IR pattern. The band at 3743 cm-1 is assigned to the shorter O3B-H2 bond, whereas the 3715 cm-1 is assigned to the longer O3A-H1 bond. In addition, the broader shape of the higher-frequency, 3743 cm-1 band, suggests a stronger interaction of the O3B-H2 dipole with ^ANa, which is confirmed by structure refinement. Increasing T of syntheses implies progressive departure from the ideal stoichiometry via the ^BMg^ANa-1 exchange, which has been characterised by EMPA, structure refinement and FTIR spectroscopy. The latter in particular can now be used to detect unusual symmetries in X-ray powder patterns of synthetic

  5. Ruby and sapphire from Jegdalek, Afghanistan

    USGS Publications Warehouse

    Bowersox, G.W.; Foord, E.E.; Laurs, B.M.; Shigley, J.E.; Smith, C.P.

    2000-01-01

    This study provides detailed mining and gemological information on the Jegdalek deposit, in east-central Afghanistan, which is hosted by elongate beds of corundum-bearing marble. Some facet-grade ruby has been recovered, but most of the material consists of semitransparent pink sapphire of cabochon or carving quality. The most common internal features are dense concentrations of healed and nonhealed fracture planes and lamellar twin planes. Color zoning is common, and calcite, apatite, zircon, mica, iron sulfide minerals, graphite, rutile, aluminum hydroxide, and other minerals are also present in some samples. Although the reserves appear to be large, future potential will depend on the establishment of a stable government and the introduction of modern mining and exploration techniques. ?? 2000 Gemological Institute of America.

  6. Fe-sapphire and C-Fe-sapphire interactions and their effect on the growth of single-walled carbon nanotubes by chemical vapor deposition.

    PubMed

    Yudasaka, M; Kasuya, Y; Jing, F; Zhang, M; Iijima, S

    2004-04-01

    We previously reported that the quantity of single-walled carbon nanotubes grown on Fe-coated sapphire by chemical vapor deposition depended on the crystallographic faces of sapphires. In this report, we show that the interaction of Fe, sapphire, and carbon depended on the sapphire faces. We deduce that the quantity of Fe available to catalyze the growth of single-walled carbon nanotubes was suppressed by the formation of Fe-Al alloys and whether the Fe-Al alloys were formed on Fe-coated sapphire or not depended on the sapphire-surface structure.

  7. Sapphire fiber interferometer for microdisplacement measurements at high temperatures

    NASA Technical Reports Server (NTRS)

    Murphy, Kent A.; Fogg, Brian R.; Wang, George Z.; Vengsarkar, Ashish M.; Claus, Richard O.

    1991-01-01

    We report the use of a short-length, multimode sapphire rod as an extension to a Michelson configuration, but operated as a low-finesse Fabry-Perot cavity. We demonstrate the performance of such a device as an interferometric sensor, where the interference between the reflections from the sapphire-air interface and an air-metallic surface is observed for microdisplacement of the metallic surface which is placed close to the sapphire endface. We describe in detail the fabrication procedure and present results obtained from the detection of temperature changes, applied strain, and surface acoustic waves.

  8. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: The effects of vicinal sapphire substrates on the properties of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Hao; Zhang, Jin-Cheng; Zhang, Zhong-Fen; Zhu, Qing-Wei; Duan, Huan-Tao; Hao, Yue

    2009-12-01

    AlGaN/GaN heterostructures on vicinal sapphire substrates and just-oriented sapphire substrates (0001) are grown by the metalorganic chemical vapor deposition method. Samples are studied by high-resolution x-ray diffraction, atomic force microscopy, capacitance-voltage measurement and the Van der Pauw Hall-effect technique. The investigation reveals that better crystal quality and surface morphology of the sample are obtained on the vicinal substrate. Furthermore, the electrical properties are also improved when the sample is grown on the vicinal substrate. This is due to the fact that the use of vicinal substrate can promote the step-flow mode of crystal growth, so many macro-steps are formed during crystal growth, which causes a reduction of threading dislocations in the crystal and an improvement in the electrical properties of the AlGaN/GaN heterostructure.

  9. A modified pump laser system to pump the titanium sapphire laser

    NASA Technical Reports Server (NTRS)

    Petway, Larry B.

    1990-01-01

    As a result of the wide tunability of the titanium sapphire laser NASA has sited it to be used to perform differential absorption lidar (DIAL) measurements of H2O vapor in the upper and lower troposphere. The titanium sapphire laser can provide a spectrally narrow (0.3 to 1.0 pm), high energy (0.5 to 1.0 J) output at 727, 762, and 940 nm which are needed in the DIAL experiments. This laser performance can be obtained by addressing the line-narrowing issues in a master oscillator and the high energy requirement in a fundamental mode oscillator. By injection seeding, the single frequency property of the master oscillator can produce a line narrow high energy power oscillator. A breadboard model of the titanium sapphire laser that will ultimately be used in NASA lidar atmospheric sensing experiment is being designed. The task was to identify and solve any problem that would arise in the actual laser system. One such problem was encountered in the pump laser system. The pump laser that is designed to pump both the master oscillator and power oscillator is a Nd:YLF laser. Nd:YLF exhibits a number of properties which renders this material an attractive option to be used in the laser system. The Nd:YLF crystal is effectively athermal; it produces essentially no thermal lensing and thermally induced birefringence is generally insignificant in comparison to the material birefringence resulting from the uniaxial crystal structure. However, in application repeated fracturing of these laser rods was experience. Because Nd:YLF rods are not commercially available at the sizes needed for this application a modified pump laser system to replace the Nd:YLF laser rod was designed to include the more durable Nd:YAG laser rods. In this design, compensation for the thermal lensing effect that is introduced because of the Nd:YAG laser rods is included.

  10. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    SciTech Connect

    Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J; Joyce, D B; Schmid, K; Schmid, F

    2007-10-09

    Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief to transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice

  11. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    NASA Astrophysics Data System (ADS)

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-01

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the 880eV were found to be 0.997±0.002 and 0.993±0.004, respectively.

  12. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure

    2017-05-01

    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  13. Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest, III; Hartnett, Thomas M.; Gentilman, Richard L.

    2011-06-01

    A study of the laser induced damage threshold (LiDT) of anti-reflection (AR) microstructures (ARMs) built in the end facets of metal ion doped yttrium aluminum garnet (YAG) laser gain material, has been conducted. Test samples of undoped and ytterbium-doped polycrystalline YAG produced by Raytheon Company were processed with ARMs in one surface and subjected to standardized pulsed LiDT testing at the near-infrared (NIR) wavelength of 1064nm. As received YAG samples with a simple commercial polish were also submitted to the damage tests for comparison, along with YAG samples that were treated with a single layer thin-film AR coating designed for maximum transmission at 1064nm. Additional samples of single crystal sapphire and quartz, and polycrystalline ALONTM windows were prepared with thin-film AR coatings and ARMs textures to expand the 1064nm laser damage testing to other important NIR transmitting materials. It was found that the pulsed laser damage resistance of ARMs textured ceramic YAG windows is 11 J/cm2, a value that is 43% higher than untreated ceramic YAG windows, suggesting that ARMs fabrication removed residual sub-surface damage, a factor that has been shown to be important for increasing the damage resistance of an optic. This conclusion is also supported by the high damage threshold values found with the single layer AR coatings on ceramic YAG where the coatings may have shielded the sub-surface polishing damage. Testing results for the highly polished sapphire windows also support the notion that better surface preparation produces higher damage resistance. The damage threshold for untreated sapphire windows exceeded 32 J/cm2 for one sample with an average of 27.5 J/cm2 for the two samples tested. The ARMs-treated sapphire windows had similar damage thresholds as the untreated material, averaging 24.9 J/cm2, a value 1.5 to 2 times higher than the damage threshold of the thin film AR coated sapphire windows.

  14. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  15. A high sensitivity sapphire transducer for vibration measurements

    SciTech Connect

    Peng, H.; Blair, D.G.; Ivanov, E.

    1994-12-31

    In this report we describe an interferometric Sapphire Dielectric Resonator (SDR) transducer which avoids the need for an ultra low noise oscillator. An initial performance of the transducer is presented.

  16. Nanostructured sapphire optical fiber for sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  17. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  18. Temperature Compensated Sapphire Resonator for Ultra-Stable Oscillator Capability

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Santiago, D. G.; Wang, R. T.

    1994-01-01

    We report on the design and test of a whispering gallery sapphire resonator for which the dominant microwave mode family shows frequency-stable, compensated operation for temperatures above 77 kelvin.

  19. Progress on 10 Kelvin cryo-cooled sapphire oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John; Diener, William A.

    2004-01-01

    We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).

  20. Numerical Study of Damage Propagation and Dynamic Fracture in Sapphire

    DTIC Science & Technology

    2016-08-30

    ARL-RP-0570 ● JUNE 2016 US Army Research Laboratory Numerical Study of Damage Propagation and Dynamic Fracture in Sapphire by...Research Laboratory Numerical Study of Damage Propagation and Dynamic Fracture in Sapphire by Costas G Fountzoulas Weapons and Materials Research...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1

  1. Progress on 10 Kelvin cryo-cooled sapphire oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John; Diener, William A.

    2004-01-01

    We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).

  2. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams

    NASA Astrophysics Data System (ADS)

    Rapp, L.; Meyer, R.; Giust, R.; Furfaro, L.; Jacquot, M.; Lacourt, P. A.; Dudley, J. M.; Courvoisier, F.

    2016-09-01

    Femtosecond pulses provide an extreme degree of confinement of light matter-interactions in high-bandgap materials because of the nonlinear nature of ionization. It was recognized very early on that a highly focused single pulse of only nanojoule energy could generate spherical voids in fused silica and sapphire crystal as the nanometric scale plasma generated has energy sufficient to compress the material around it and to generate new material phases. But the volumes of the nanometric void and of the compressed material are extremely small. Here we use single femtosecond pulses shaped into high-angle Bessel beams at microjoule energy, allowing for the creation of very high 100:1 aspect ratio voids in sapphire crystal, which is one of the hardest materials, twice as dense as glass. The void volume is 2 orders of magnitude higher than those created with Gaussian beams. Femtosecond and picosecond illumination regimes yield qualitatively different damage morphologies. These results open novel perspectives for laser processing and new materials synthesis by laser-induced compression.

  3. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams

    PubMed Central

    Rapp, L.; Meyer, R.; Giust, R.; Furfaro, L.; Jacquot, M.; Lacourt, P. A.; Dudley, J. M.; Courvoisier, F.

    2016-01-01

    Femtosecond pulses provide an extreme degree of confinement of light matter-interactions in high-bandgap materials because of the nonlinear nature of ionization. It was recognized very early on that a highly focused single pulse of only nanojoule energy could generate spherical voids in fused silica and sapphire crystal as the nanometric scale plasma generated has energy sufficient to compress the material around it and to generate new material phases. But the volumes of the nanometric void and of the compressed material are extremely small. Here we use single femtosecond pulses shaped into high-angle Bessel beams at microjoule energy, allowing for the creation of very high 100:1 aspect ratio voids in sapphire crystal, which is one of the hardest materials, twice as dense as glass. The void volume is 2 orders of magnitude higher than those created with Gaussian beams. Femtosecond and picosecond illumination regimes yield qualitatively different damage morphologies. These results open novel perspectives for laser processing and new materials synthesis by laser-induced compression. PMID:27669676

  4. Effects of neutron irradiation and subsequent annealing on the optical characteristics of sapphire

    NASA Astrophysics Data System (ADS)

    Zhang, M. F.; Zhang, H. L.; Han, J. C.; Guo, H. X.; Xu, C. H.; Ying, G. B.; Shen, H. T.; Song, N. N.

    2011-02-01

    In this paper, the effect of neutron irradiation on sapphire single crystal with fast neutron of 1.0×10 18 and 1.0×10 19 neutrons/cm 2 has been investigated along with the effect of annealing temperature. It is found that the colorless transparent sapphire single crystals were turned yellow after 10 MeV fast neutron irradiation at room temperature. There are peaks at 206, 230, 258, 305, 358 and 452 nm after neutron irradiation. And the intensity of optical absorption bands decrease with wavelength and annealing temperature. A new absorption peak at 452 nm was found after isothermal annealing at 400 °C for 10 min, which was ascribed to F 2+ color center. Because of the recombination of interstitial ions and vacancies, color centers were almost removed after annealing at 1000 °C. The TL peaks were found to shift to higher temperature after neutron irradiation. And a higher fluence of the neutron irradiation would result in deep traps revealed as the new TL peaks at 176 and 227 °C.

  5. Evidence of colour-modification induced charge and structural disorder in natural corundum: Spectroscopic studies of beryllium treated sapphires and rubies

    NASA Astrophysics Data System (ADS)

    Sastry, M. D.; Mane, Sandesh N.; Gaonkar, Mahesh P.; Bagla, H.; Panjikar, J.; Ramachandran, K. T.

    2009-07-01

    Corundum α - Al2O3 single crystals is an important gemstone known by different names depending on the colour it exhibits which in turn depends on the impurities that are present. The colour depends on the valence state of the impurity element present in corundum (Cr3+ in ruby, Fe3+ in yellow sapphire and Fe-Ti complex in blue sapphire). There have been a number of reports of diffusion controlled high temperature chemical reactions to influence the colouration in these materials. Present paper deals with the Raman and FT-IR results on Be treated rubies/sapphires and gives evidence of the disorder brought about by such treatments. This can be effectively used for diagnostic purposes for detecting the treated stones.

  6. Symmetric faceting of a sapphire vicinal surface revealed by grazing incidence small-angle X-ray scattering 3D mapping

    NASA Astrophysics Data System (ADS)

    Matringe, C.; Fakih, A.; Thune, E.; Babonneau, D.; Arnaud, S.; Blanc, N.; Boudet, N.; Guinebretière, R.

    2017-07-01

    A one dimensional periodic vicinal surface of sapphire was obtained through a self-ordering process after high-temperature thermal treatment. The morphology of the surface is described as an assembly of prisms exhibiting a rectangular base and a triangular profile orthogonal to the mean surface. Careful measurements of the whole 3D reciprocal map around the origin of the reciprocal space were performed through grazing incidence small-angle X-ray scattering experiments combined with a strict orientation procedure with respect to specific crystallographic directions of the sapphire crystal. We were thus able to determine accurately the actual shape of the prisms, which exhibit an isosceles triangular profile. Such a profile symmetric with respect to a plane normal to the mean sapphire vicinal surface has never been reported.

  7. Spectroscopic Analysis Of Insulating Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Inge, Addison T.; Byvik, C. E.

    1990-01-01

    New method provides rapid characterization of optical properties. Technique for determining optical properties of insulating single-crystal fibers developed and applied to sapphire, spinel, and YAIO crystalline host fibers doped with triply ionized titanium. Crystal fibers grown more rapidly and less expensively.

  8. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  9. On the generation of charge-carrier recombination centers in the sapphire substrates of silicon-on-sapphire structures

    SciTech Connect

    Aleksandrov, P. A. Belova, N. E.; Demakov, K. D.; Shemardov, S. G.

    2015-08-15

    A method for the production of high-quality radiation-resistant silicon-on-sapphire structures through the fabrication of a layer of nanopores in sapphire by helium ion implantation, i.e., by creating charge-carrier recombination centers, is proposed. In this case, the quality of the silicon layer is simultaneously improved. The problem of the thermal stability of the pores is discussed with the aim of analyzing the possibility of producing a microcircuit on the resultant modified silicon-on-sapphire sample. The layer of pores possesses a large total surface area and, hence, decreases the lifetime of charge carriers generated during irradiation of the operating microcircuit. This effect reduces the charge at the silicon-sapphire interface and improves radiation resistance.

  10. Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire.

    PubMed

    Perillat-Merceroz, G; Thierry, R; Jouneau, P H; Ferret, P; Feuillet, G

    2012-03-30

    Controlling the growth of zinc oxide nanowires is necessary to optimize the performance of nanowire-based devices such as photovoltaic solar cells, nano-generators, or light-emitting diodes. With this in mind, we investigate the nucleation and growth mechanisms of ZnO nanowires grown by metalorganic vapor phase epitaxy either on O-polar ZnO or on sapphire substrates. Whatever the substrate, ZnO nanowires are Zn-polar, as demonstrated by convergent beam electron diffraction. For growth on O-polar ZnO substrate, the nanowires are found to sit on O-polar pyramids. As growth proceeds, the inversion domain boundary moves up in order to remain at the top of the O-polar pyramids. For growth on sapphire substrates, the nanowires may also originate from the sapphire/ZnO interface. The presence of atomic steps and the non-polar character of sapphire could be the cause of the Zn-polar crystal nucleation on sapphire, whereas it is proposed that the segregation of aluminum impurities could account for the nucleation of inverted domains for growth on O-polar ZnO.

  11. A sapphire cell for high-pressure, low-temperature neutron-scattering experiments on gas hydrates

    NASA Astrophysics Data System (ADS)

    Rondinone, A. J.; Jones, C. Y.; Marshall, S. L.; Chakoumakos, B. C.; Rawn, C. J.; Lara-Curzio, E.

    2003-01-01

    A single-crystal sapphire cell for performing neutron-scattering experiments on gas hydrates synthesized in situ was designed and fabricated to operate at pressures up to 350 bar (1 bar = 10(5) Pa) and temperatures between 10 and 300 K. The single-crystal cell is cut off-axis from the c-axis of sapphire to avoid Bragg diffraction in the scattering plane for the Debye-Scherrer geometry. The cell is pressurized from a boosted pumping station via a small-diameter stainless-steel pipe. The cell is cylindrical with no external supports. The design of the cell allows the unobstructed detection of neutrons scattered from the sample. This requirement necessitated a departure from the predominant style of sapphire cells reported in the literature. Several iterations of design modifications and finite-element modeling were performed prior to building the prototype. The cell was tested hydrostatically at room temperature. Preliminary inelastic neutron scattering data are reported to verify the performance of the cell.

  12. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  13. Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses

    NASA Astrophysics Data System (ADS)

    Mori, Kurumi; Tamaki, Yusuke; Obara, Minoru; Midorikawa, Katsumi

    1998-03-01

    The second-harmonic generation (SHG) of ultrashort Ti:sapphire laser pulses in potassium dihydrogen phosphate crystal in type-I phase-matching geometry has been investigated theoretically, including the effects of cubic nonlinearity. It is found that the phase mismatch due to the broad bandwidth associated with the short pulse width limits the maximum conversion efficiency to less than 60%, and the temporal shape of the converted pulse has an intensity modulation at an incident intensity of 100 GW/cm2 for a 100 fs pulse. In order to increase the energy conversion efficiency and improve the temporal pulse shape, a new SHG geometry using two antiparallel tilted crystals is discussed.

  14. Analysis of limits for sapphire growth in a micro-pulling-down system

    NASA Astrophysics Data System (ADS)

    Samanta, Gaurab; Yeckel, Andrew; Daggolu, Parthiv; Fang, Haisheng; Bourret-Courchesne, Edith D.; Derby, Jeffrey J.

    2011-11-01

    A two-dimensional, quasi-steady-state, thermal-capillary model is developed for a micro-pulling-down (μ-PD) system to study limitations to steady growth of sapphire. The model incorporates mass, energy, and momentum conservation equations, and also accounts for the physics of the melt meniscus, the solidification front, and the crystal radius. Limit points with respect to pull rate are found under higher-gradient thermal conditions but are shown to unfold with changes in die heating and ambient temperature. Limit points related to crystal size and capillary effects are also found with respect to static head (melt height); however, classical criteria of capillary instability are shown to be invalid. Thus, a more fundamental understanding is obtained for μ-PD operating limits, their origins, and their possible avoidance.

  15. Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog

    NASA Astrophysics Data System (ADS)

    Piro, Oscar E.; Echeverría, Gustavo A.; González-Baró, Ana C.; Baran, Enrique J.

    2017-06-01

    Synthetic novgorodovaite analog Ca2(C2O4)Cl2·2H2O is identical to its natural counterpart. It crystallizes in the monoclinic I2/m space group with a = 6.9352(3), b = 7.3800(4), c = 7.4426(3) Å, β = 94.303(4)°, V = 379.85(3) Å3 and Z = 2. The heptahydrate analog, Ca2(C2O4)Cl2·7H2O, crystallizes as triclinic twins in the P \\overline{1} space group with a = 7.3928(8), b = 8.9925(4), c = 10.484(2) Å, α = 84.070(7), β = 70.95(1), γ = 88.545(7)°, V = 655.3(1) Å3 and Z = 2. The crystal packing of both calcium oxalate-chloride double salts favors the directional bonding of oxalate, C2O4 2-, ligands to calcium ions as do other related calcium oxalate minerals. The π-bonding between C and O atoms of the C2O4 2- oxalate group leaves sp 2-hydridised orbitals of the oxygen atoms available for bonding to Ca. Thus, the Ca-O bonds in both calcium oxalate-chloride double salts are directed so as to lie in the plane of the oxalate group. This behavior is reinforced by the short O···O distances between the oxygens attached to a given carbon atom, which favors them bonding to a shared Ca atom in bidentate fashion. Strong bonding in the plane of the oxalate anion and wide spacing perpendicular to that plane due to repulsion between oxalate π-electron clouds gives rise to a polymerized structural units which are common to both hydrates, explaining the nearly equal cell constants 7.4 Å which are defined by the periodicity of Ca-oxalate chains in the framework (monoclinic b ≈ triclinic a). When compared with novgorodovaite, the higher water content of Ca2(C2O4)Cl2·7H2O leads to some major differences in their structures and ensuing physical properties. While novgorodovaite has a three-dimensional framework structure, in the higher hydrate, the highly polar water molecules displace chloride ions from the calcium coordination sphere and surround them through OwH···Cl hydrogen bonds. As a result, polymerization in Ca2(C2O4)Cl2·7H2O solid is limited to the formation

  16. Precision measurement of a low-loss cylindrical dumbbell-shaped sapphire mechanical oscillator using radiation pressure

    NASA Astrophysics Data System (ADS)

    Bourhill, J.; Ivanov, E.; Tobar, M. E.

    2015-08-01

    We present first results from a number of experiments conducted on a 0.53-kg cylindrical dumbbell-shaped sapphire crystal. Here we report on an optomechanical experiment utilizing a modification to the typical cylindrical architecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave whispering gallery modes that are simultaneously excited within the crystal. A microwave readout system is implemented, allowing extremely low noise measurements of this frequency modulation near our modes of interest, having a phase noise floor of -165 dBc/Hz at 100 kHz. Fine tuning of the crystal's suspension has allowed for the optimization of mechanical quality factors in preparation for cryogenic experiments, with a value of Q =8 ×107 achieved at 127 kHz. This results in a Q ×f product of 1013, equivalent to the best measured values in a macroscopic sapphire mechanical system. Results are presented that demonstrate the excitation of mechanical modes via radiation pressure force, allowing an experimental method of determining the transducer's displacement sensitivity d f /d x and calibrating the system. Finally, we demonstrate parametric backaction phenomenon within the system. These are all important steps towards the goal of achieving quantum limited measurements of a kilogram-scale macroscopic device for the purpose of detecting deviations from standard quantum theory resulting from quantum gravitational effects.

  17. Single-frequency CW Ti:sapphire laser with intensity noise manipulation and continuous frequency-tuning.

    PubMed

    Jin, Pixian; Lu, Huadong; Wei, Yixiao; Su, Jing; Peng, Kunchi

    2017-01-01

    We present a tunable single-frequency CW Ti:sapphire laser with intensity noise manipulation. The manipulation of the laser intensity noise is realized by varying the frequency of the modulation signal loaded on the electrodes of an intracavity electro-optic etalon. A lithium niobate (LiNbO3) crystal is used to act as the electro-optic etalon, and its electro-optic effect is utilized to modulate the intracavity laser intensity for locking itself to the oscillating wavelength of the laser to implement continuous frequency-tuning. When the electro-optic etalon is locked to the oscillating mode of the Ti:sapphire laser with arbitrarily selected modulation frequency, the maximal continuous frequency-tuning range can reach to 20 GHz, and the laser intensity noise is successfully manipulated simultaneously.

  18. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  19. Surface Structure of Protonated R-Sapphire (1$\\bar{1}$02) Studied by Sum-Frequency Vibrational Spectroscopy

    SciTech Connect

    Sung, Jaeho; Zhang, Luning; Tian, Chuanshan; Waychunas, Glenn A.; Shen, Y. Ron

    2011-03-23

    Sum frequency vibrational spectroscopy was used to study the protonated R-plane (1$\\bar{1}$02 ) sapphire surface. The OH stretch vibrational spectra show that the surface is terminated with three hydroxyl moieties, two from AlOH2 and one from Al2OH functional groups. The observed polarization dependence allows determination of the orientations of the three OH species. The results suggest that the protonated sapphire (1$\\bar{1}$02 ) surface differs from an ideal stoichimetric termination in a manner consistent with previous X-ray surface diffraction (crystal truncation rod) studies. However, in order to best explain the observed hydrogenbonding arrangement, surface oxygen spacing determined from the X-ray diffraction study requires modification.

  20. Response to Comment on '#28;Twin Symmetry Texture of Energetically Condensed 2 Niobium Thin Films on Sapphire Substrate' #29; [J. Appl. Phys. 110, 033523(2011)

    SciTech Connect

    Xin Zhao, Charles Reece, Phillips Larry, Mahadevan Krishnan, Kang Seo

    2012-07-01

    Welander commented that in our article [J. Appl. Phys. 110, 033523(2011)] , Zhao et al claim to have found a new three-dimensional (3D) relationship for niobium-on-sapphire epitaxy”. Welander might have misunderstood the purpose of our article, which was to show that energetic condensation of Nb on sapphire drives crystal growth that is quite distinct from the type of epitaxy encountered in lower energy deposition. Welander is correct about the misidentified crystal-directions in the top-view sapphire lattice (Fig.4[ref.1]). He is also correct about the misorientation of the pole figures in Fig4[ref.1]. In Fig.1 of this response, we have corrected these errors. Perhaps because of these errors, Welander misconstrued our discussion of the Nb crystal growth as claiming a new 3D registry. That was not our intention. Rather, we wished to highlight the role of energetic condensation that drives low-defect crystal growth by a combination of non-equilibrium sub-plantation that disturbs the substrate lattice and thermal annealing that annihilates defects and promotes large-grain crystal growth.

  1. Crystal Structures of Type-II Inositol Polyphosphate 5-Phosphatase INPP5B with Synthetic Inositol Polyphosphate Surrogates Reveal New Mechanistic Insights for the Inositol 5-Phosphatase Family

    PubMed Central

    2016-01-01

    The inositol polyphosphate 5-phosphatase INPP5B hydrolyzes the 5-phosphate group from water- and lipid-soluble signaling messengers. Two synthetic benzene and biphenyl polyphosphates (BzP/BiPhPs), simplified surrogates of inositol phosphates and phospholipid headgroups, were identified by thermodynamic studies as potent INPP5B ligands. The X-ray structure of the complex between INPP5B and biphenyl 3,3′,4,4′,5,5′-hexakisphosphate [BiPh(3,3′,4,4′,5,5′)P6, IC50 5.5 μM] was determined at 2.89 Å resolution. One inhibitor pole locates in the phospholipid headgroup binding site and the second solvent-exposed ring binds to the His-Tag of another INPP5B molecule, while a molecule of inorganic phosphate is also present in the active site. Benzene 1,2,3-trisphosphate [Bz(1,2,3)P3] [one ring of BiPh(3,3′,4,4′,5,5′)P6] inhibits INPP5B ca. 6-fold less potently. Co-crystallization with benzene 1,2,4,5-tetrakisphosphate [Bz(1,2,4,5)P4, IC50 = 6.3 μM] yielded a structure refined at 2.9 Å resolution. Conserved residues among the 5-phosphatase family mediate interactions with Bz(1,2,4,5)P4 and BiPh(3,3′,4,4′,5,5′)P6 similar to those with the polar groups present in positions 1, 4, 5, and 6 on the inositol ring of the substrate. 5-Phosphatase specificity most likely resides in the variable zone located close to the 2- and 3-positions of the inositol ring, offering insights to inhibitor design. We propose that the inorganic phosphate present in the INPP5B–BiPh(3,3′,4,4′,5,5′)P6 complex mimics the postcleavage substrate 5-phosphate released by INPP5B in the catalytic site, allowing elucidation of two new key features in the catalytic mechanism proposed for the family of phosphoinositide 5-phosphatases: first, the involvement of the conserved Arg-451 in the interaction with the 5-phosphate and second, identification of the water molecule that initiates 5-phosphate hydrolysis. Our model also has implications for the proposed “moving metal” mechanism

  2. Crystal Structures of Type-II Inositol Polyphosphate 5-Phosphatase INPP5B with Synthetic Inositol Polyphosphate Surrogates Reveal New Mechanistic Insights for the Inositol 5-Phosphatase Family.

    PubMed

    Mills, Stephen J; Silvander, Camilla; Cozier, Gyles; Trésaugues, Lionel; Nordlund, Pär; Potter, Barry V L

    2016-03-08

    The inositol polyphosphate 5-phosphatase INPP5B hydrolyzes the 5-phosphate group from water- and lipid-soluble signaling messengers. Two synthetic benzene and biphenyl polyphosphates (BzP/BiPhPs), simplified surrogates of inositol phosphates and phospholipid headgroups, were identified by thermodynamic studies as potent INPP5B ligands. The X-ray structure of the complex between INPP5B and biphenyl 3,3',4,4',5,5'-hexakisphosphate [BiPh(3,3',4,4',5,5')P6, IC50 5.5 μM] was determined at 2.89 Å resolution. One inhibitor pole locates in the phospholipid headgroup binding site and the second solvent-exposed ring binds to the His-Tag of another INPP5B molecule, while a molecule of inorganic phosphate is also present in the active site. Benzene 1,2,3-trisphosphate [Bz(1,2,3)P3] [one ring of BiPh(3,3',4,4',5,5')P6] inhibits INPP5B ca. 6-fold less potently. Co-crystallization with benzene 1,2,4,5-tetrakisphosphate [Bz(1,2,4,5)P4, IC50 = 6.3 μM] yielded a structure refined at 2.9 Å resolution. Conserved residues among the 5-phosphatase family mediate interactions with Bz(1,2,4,5)P4 and BiPh(3,3',4,4',5,5')P6 similar to those with the polar groups present in positions 1, 4, 5, and 6 on the inositol ring of the substrate. 5-Phosphatase specificity most likely resides in the variable zone located close to the 2- and 3-positions of the inositol ring, offering insights to inhibitor design. We propose that the inorganic phosphate present in the INPP5B-BiPh(3,3',4,4',5,5')P6 complex mimics the postcleavage substrate 5-phosphate released by INPP5B in the catalytic site, allowing elucidation of two new key features in the catalytic mechanism proposed for the family of phosphoinositide 5-phosphatases: first, the involvement of the conserved Arg-451 in the interaction with the 5-phosphate and second, identification of the water molecule that initiates 5-phosphate hydrolysis. Our model also has implications for the proposed "moving metal" mechanism.

  3. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  4. Scaling STI's sapphire cryocooler for applications requiring higher heat loads

    NASA Astrophysics Data System (ADS)

    Karandikar, Abhijit; Fiedler, Andreas

    2012-06-01

    Superconductor Technologies Inc. (STI) developed the Sapphire cryocooler specifically for the SuperLink® product; a high performance superconducting Radio Frequency (RF) front-end receiver used by wireless carriers such as Verizon Wireless and AT&T to improve network cell coverage and data speeds. STI has built and deployed over 6,000 systems operating 24 hours a day (24/7), 7 days a week in the field since 1999. Sapphire is an integrated free piston Stirling cycle cryocooler with a cooling capacity of 5 Watts at 77 Kelvin (K) with less than 100 Watts (W) input power. It has a field-proven Mean Time Between Failure (MTBF) of well over 1 million hours, requires zero maintenance and has logged over 250 million cumulative runtime hours. The Sapphire cooler is built on a scalable technology platform, enabling the design of machines with cooling capacities greater than 1 kilowatt (kW). This scalable platform also extends the same outstanding attributes as the Sapphire cooler, namely high reliability, zero maintenance, and compact size - all at a competitive cost. This paper will discuss emerging applications requiring higher heat loads and these attributes, describe Sapphire, and show a preliminary concept of a scaled machine with a 100 W cooling capacity.

  5. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dongxue, Wu; Ping, Ma; Boting, Liu; Shuo, Zhang; Junxi, Wang; Jinmin, Li

    2016-10-01

    The effect of patterned sapphire substrate (PSS) on the top-surface (P-GaN-surface) and the bottom-surface (sapphire-surface) of the light output power (LOP) of GaN-based LEDs was investigated, in order to study the changes in reflection and transmission of the GaN-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of GaN-based LEDs, which are prepared on patterned sapphire substrates (PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates (CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-GaN interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency (LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design. Project supported by the National High Technology Program of China (No. Y48A040000) and the National High Technology Program of China (No. Y48A040000).

  6. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  7. Design and construction of a tunable pulsed Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Panahi, Omid; Nazeri, Majid; Tavassoli, Seyed Hassan

    2015-02-01

    In this paper, design and constr uction of a tunable pulsed Ti:sapphire laser and numerical solution of the corresponding rate equations are reported. Rate equations for a four-level system are written and their numerical solution is examined. Furthermore, an optical setup is introduced. In this setup, a Ti:sapphire crystal is longitudinally pumped by the second harmonics of a Q-Switched Nd:YAG laser, and a prism is used as a wavelength-selective element as well. This setup is established for two 10 and 50 % transmission output couplers. In case of using the 10 % coupler, the output energy of the laser, for the pump energy of 36 mJ, is pulses with 3.5 mJ energy and for the 50 % coupler, with 50 mJ of pump energy, pulses with 10 mJ energy are generated. A wavelength tuning range of more than 160 nm is possible. The repetition rate of this laser is 10 Hz and the temporal duration of the pulses is about 30 ns.

  8. Silicon-on-Sapphire Waveguides for Widely Tunable Coherent Mid-IR Sources

    DTIC Science & Technology

    2013-09-01

    dioxide (a) and sapphire (b). ............................ 2 Figure 3. Mode profile of the silicon waveguide with air cladding above and sapphire... cladding below. ................................................................................................................ 3 Figure 4. Effective...contact mask. ......................................................... 8 Figure 10. Process sequence for nitride cladding of waveguides

  9. Inversion domains in AlN grown on (0001) sapphire

    SciTech Connect

    Jasinski, J.; Liliental-Weber, Z.; Paduano, Q.S.; Weyburne, D.W.

    2003-08-25

    Al-polarity inversion domains formed during AlN layer growth on (0001) sapphire were identified using transmission electron microscopy (TEM). They resemble columnar inversion domains reported for GaN films grown on (0001) sapphire. However, for AlN, these columns have a V-like shape with boundaries that deviate by 2 {+-} 0.5{sup o} from the c-axis. TEM identification of these defects agrees with the post-growth surface morphology as well as with the microstructure revealed by etching in hot aqueous KOH.

  10. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    SciTech Connect

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  11. Sapphire fiber interferometer for microdisplacement measurements at high temperature

    NASA Technical Reports Server (NTRS)

    Murphy, Kent A.; Feth, Shari; Vengsarkar, Ashish M.; Claus, Richard O.

    1992-01-01

    Attention is given to the use of a short-length multimode sapphire rod as an extension to a conventional Michelson interferometric configuration, but with operation of Fabry-Perot cavity-based sensor element type. The performance of such a device as an interferometric sensor is demonstrated for a case where the interference between the reflections from the sapphire-air interface and an air-metallic surface is inspected for microdisplacements of the metallic surface. A detailed account is given of the sensor's fabrication procedure; results are presented for the detection of surface-acoustic waves.

  12. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  13. Semipolar (202{sup ¯}1) GaN and InGaN quantum wells on sapphire substrates

    SciTech Connect

    Leung, Benjamin; Wang, Dili; Kuo, Yu-Sheng; Xiong, Kanglin; Song, Jie; Chen, Danti; Park, Sung Hyun; Han, Jung; Hong, Su Yeon; Choi, Joo Won

    2014-06-30

    Here, we demonstrate a process to produce planar semipolar (202{sup ¯}1) GaN templates on sapphire substrates. We obtain (202{sup ¯}1) oriented GaN by inclined c-plane sidewall growth from etched sapphire, resulting in single crystal material with on-axis x-ray diffraction linewidth below 200 arc sec. The surface, composed of (101{sup ¯}1) and (101{sup ¯}0) facets, is planarized by the chemical-mechanical polishing of full 2 in. wafers, with a final surface root mean square roughness of <0.5 nm. We then analyze facet formation and roughening mechanisms on the (202{sup ¯}1) surface and establish a growth condition in N{sub 2} carrier gas to maintain a planar surface for further device layer growth. Finally, the capability of these semipolar (202{sup ¯}1) GaN templates to produce high quality device structures is verified by the growth and characterization of InGaN/GaN multiple quantum well structures. It is expected that the methods shown here can enable the benefits of using semipolar orientations in a scalable and practical process and can be readily extended to achieve devices on surfaces using any orientation of semipolar GaN on sapphire.

  14. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  15. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  16. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    SciTech Connect

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  17. Chemistry and origin of the Mayo Kila sapphires, NW region Cameroon (Central Africa): Their possible relationship with the Cameroon volcanic line

    NASA Astrophysics Data System (ADS)

    Paul Mbih, Kemeng; Meffre, Sebastien; Yongue, Rose Fouateu; Kanouo, Nguo Sylvestre; Jay, Thomson

    2016-06-01

    Mineralogical, chemical and geochronological studies constrained the origin of sapphires from Mayo Kila, Northwest Cameroon. The sapphires are mostly blue, with sizes ranging from 2 to 5 mm. The pale blue grains are transparent, whereas, other corundums are transparent to translucent and/or opaque. The sapphires are dominantly euhedral to sub-hedral with few polished lustrous grains, acquired features during moderate to short distance transport from a proximal source rock. Solid inclusions are limited to rutile and zircon. Trace element analysis of sapphires shows significant concentration (in ppm) in some elements: Fe (2208-14,473), Ti (82-1783), Ga (77-512), Mg (0.9-264.9), Cr (b.d.l -168) and V (1.3-82). The other elements (e.g. Sn, Nb, Ta, Th, Zr, Ni, Ce) are generally below 10 ppm. The calculated ratios for some of the selected elements show an extreme variation: Fe/Mg (43-3043), Fe/Ti (2-76), Ti/Mg (1-328), and Ga/Mg (0.4-363). They are dominantly corundum crystallized in alkaline magma (s) with few from metamorphic source (s). Trace elemental features with Hf (13,354-26,238 ppm), Th (4018-45,584 ppm) and U (7825-17,175 ppm), and Th/U (0.39-2.65) found in zircon inclusions are compatible with quantified values in magmatic crystallized zircons. The Cenozoic age (mean of 30.78 ± 0.28 Ma) obtained for zircon inclusions is close to the age of some igneous rocks found within the Cameroon Volcanic Line (e.g. rocks of the Mount Oku: 31-22 Ma), showing the same period of formation. The most probable source of the zircon host sapphires is the Oku Mountain located SW of Mayo Kila.

  18. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  19. Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation

    NASA Astrophysics Data System (ADS)

    Nowak, Roman; Manninen, Timo; Li, Chunliang; Heiskanen, Kari; Hannula, Simo-Pekka; Lindroos, Veikko; Soga, Tetsuo; Yoshida, Fusahito

    This work clarifies the origin of anomalous surface deformation reflected by peculiar surface patterns around indentation impressions on various crystallographic planes of sapphire. The three-dimensional finite element simulation (3D-FEM) of nanoindentation in Al2O3 crystal allowed the authors to localize the regions in which various kinds of twinning and slip are most prone to be activated. The work provides a novel approach to the “hardness anisotropy”, which was modeled so far using a modified uniaxial-stress approximation of this essentially 3D, non-isotropic contact problem. The calculated results enabled the authors to unravel the asymmetric surface deformation detected on prismatic planes by the high-resolution microscopy, which cannot be explained using simple crystallographic considerations.

  20. Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell

    NASA Astrophysics Data System (ADS)

    Okuchi, Takuo; Yoshida, Masashi; Ohno, Yoshiki; Tomioka, Naotaka; Purevjav, Narangoo; Osakabe, Toyotaka; Harjo, Stefanus; Abe, Jun; Aizawa, Kazuya; Sasaki, Shigeo

    2013-12-01

    A new design of opposed anvil cell for time-of-flight neutron powder diffraction was prepared for use at advanced pulsed sources. A couple of single-crystal sapphire sphere anvils and a gasket of fully hardened Ti-Zr null alloy were combined to compress 35 mm3 of sample volume to 1 GPa and 11 mm3 to 2 GPa of pressures, respectively. A very high-quality powder diffraction pattern was obtained at Japan Proton Accelerator Research Complex for a controversial high pressure phase of methane hydrate. The counting statistics, resolution, absolute accuracy and d-value range of the pattern were all improved to be best suitable for precise structure refinement. The sample is optically accessible to be measured by Raman and fluorescence spectroscopy during and after compression. The current cell will be an alternative choice to study hydrogenous materials of complex structures that are stable at the described pressure regime.

  1. In situ conductance measurements of copper phthalocyanine thin film growth on sapphire [0001].

    PubMed

    Murdey, Richard; Sato, Naoki

    2011-06-21

    The current flowing through a thin film of copper phthalocyanine vacuum deposited on a single crystal sapphire [0001] surface was measured during film growth from 0 to 93 nm. The results, expressed as conductance vs. nominal film thickness, indicate three distinct film growth regions. Conductive material forms below about 5 nm and again above 35 nm, but in the intermediate thicknesses the film conductance was observed to decrease with increasing film thickness. With the aid of ac-AFM topology images taken ex situ, the conductance results are explained based on the Stranski-Krastanov (2D + 3D) film growth mechanism, in which the formation of a thin wetting layer is followed by the growth of discrete islands that eventually coalesce into an interpenetrating, conductive network.

  2. Antireflection coatings for intraocular lenses of sapphire and fianite

    SciTech Connect

    Babin, A.A.; Konoplev, Yu.N.; Mamaev, Yu.A.

    1995-10-01

    Broadband antireflection coatings for intraocular lenses of sapphire and fianite are calculated and implemented practically. Their residual reflectance in the liquid with a refracting index of 1.336 is below 0.2% from each face virtually over the entire visible region. 7 refs., 2 figs., 2 tabs.

  3. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  4. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  5. Critical parameters for grinding large sapphire window panels

    NASA Astrophysics Data System (ADS)

    Bashe, Joseph R.; Dempsey, Gene; Akwani, Ikerionwu A.; Jacoby, Keith T.; Hibbard, Douglas L.

    2007-04-01

    Advances in optical manufacturing and testing technologies for sapphire material are required to support the increasing use of large-aperture sapphire panels as windscreens for various electro-optical system applications. Single surface grinding is a crucial process step in both the figuring and finishing of optical components. Improper grinding can make subsequent polishing operations more difficult and time consuming. Poor grinding can also lead to the introduction of surface stress and sub-surface damage which can affect critical opto-mechanical performance characteristics such as strength and durability. Initial efforts have been completed at Exotic Electro-Optics under the funding of the Office of Naval Research and the Air Force Research Laboratory to investigate a number of process enhancements in the grinding of a-plane sapphire panels. The information gained from this study will ultimately provide a better understanding of the overall manufacturing process leading to optimized process time and cost. EEO has completed two sets of twelve-run Plackett-Burman designs of experiment (DOE) to study the effects of fundamental grinding parameters on sapphire panel surfaces. The relative importance of specific process parameters on window characteristics including surface roughness, stress, sub-surface damage are reported.

  6. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses.

    PubMed

    Grivas, Christos; Corbari, Costantino; Brambilla, Gilberto; Lagoudakis, Pavlos G

    2012-11-15

    Fabrication and cw lasing at 798.25 nm is reported for femtosecond (fs) and picosecond (ps) laser-inscribed channel waveguides in Ti:sapphire crystals. Lasing in channels written by fs (ps) pulses was obtained above a threshold of 84 mW (189 mW) with a maximum output power and a slope efficiency of 143 mW (45 mW) and 23.5% (7.1%), respectively. The emission wavelength was tuned over a 170 nm range by using a birefringent filter in an external cavity.

  7. A self-tunable Titanium Sapphire laser by rotating a set of parallel plates of active material.

    PubMed

    Iparraguirre, Ignacio; Azkargorta, Jon; Fernandez, Joaquín; Balda, Rolindes; Del Río Gaztelurrutia, Teresa; Illarramendi, M Asunción; Aramburu, Ibon

    2009-03-02

    In a recent work, the authors reported the experimental demonstration of wavelength tuning in a single birefringent plate of Ti:sapphire crystal based on its own birefringence properties. In that device, the thickness of the active plate, limited by the width of the single order tuning spectral region, imposed a strong constraint in the power performance of the laser. The aim of this work is to overcome this limitation by using a set of several identical birefringent plates so that the wavelength tuning of the laser is obtained by synchronously rotating the plates in their own plane. A discussion about the laser performance is presented.

  8. Irradiation Effect of keV Region Electron Beam on Bleaching and Cracking of Various Types of Sapphires

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Teraji, Tokuyuki; Ito, Toshimichi

    Various types of single-crystalline α-Al2O3 have been investigated on bleaching and cracking effects of keV electron beams using scanning electron microscope (SEM) and cathodoluminescence (CL) measurements. These electron-irradiation-induced effects observed at room temperature were different among four types of sapphires examined, namely, Be-diffusion-treated natural, untreated natural, synthetic orange, and synthetic red sapphires. The bleaching phenomenon occurred at electron dosages and the surface cracking phenomenon was subsequently observed at substantially higher dosages. The former was reversible so that an appropriate annealing in an oxygen atmosphere completely removed the bleached areas whereas the latter was a permanent change in structure that was not able to be recovered at all by such a treatment. It is found from these evidences that the crystalline quality of each specimen was well correlated with its beam-dose dependences of the electron-beam-induced phenomena observed. It should be noted that such electron-induced effects were almost completely reduced by the presence of a thin conductive layer on the insulating specimen surfaces.

  9. Synthetic shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}]: the crystal structure and comparative crystal chemistry

    SciTech Connect

    Kiriukhina, G. V. Yakubovich, O. V.; Dimitrova, O. V.

    2015-01-15

    The structure of a single crystal of a synthetic analog of mineral shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}] (milarite structure type) obtained by hydrothermal synthesis in the AlPO{sub 4}-K{sub 3}PO{sub 4}-CaCO{sub 3}-Na{sub 2}CO{sub 3}-ZnCO{sub 3}-SiO{sub 2}-H{sub 2}O system has been solved (R = 0.0406) by X-ray diffraction analysis: a = 10.5327(2) Å, c = 14.2019(3) Å, sp. gr. P6/mcc, Z = 2, and ρ{sub calcd} = 2.90 g/cm{sup 3}. The crystal-chemical features of the new phase are studied in comparison with the other terms of the milarite group. It is shown that the crystallization conditions for minerals and synthetic analogs of this group determine the presence or absence of crystallization water in the structures of compounds.

  10. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  11. Immobilization of a human epidermal growth factor receptor 2 mimotope-derived synthetic peptide on Au and its potential application for detection of herceptin in human serum by quartz crystal microbalance.

    PubMed

    Shang, Yuqin; Singh, Pankaj R; Chisti, Mohammad M; Mernaugh, Ray; Zeng, Xiangqun

    2011-12-01

    Therapeutic antibodies are antigenically similar to human antibodies and are difficult to detect in assays of human serum samples without the use of the therapeutic antibody's complementary antigen. Herein for the first time, we established a platform to detect Herceptin in solutions by using a small (<2.2 kDa), inexpensive, highly stable human epidermal growth factor receptor (HER2) mimotope-derived synthetic peptide immobilized on the surface of a Au quartz electrode. We used the HER2 mimotope as a substitute for the HER2 receptor protein in piezoimmunosensor or quartz crystal microbalance (QCM) assays to detect Herceptin in human serum. We demonstrated that assay sensitivity was dependent upon the amino acids used to tether and link the peptide to the sensor surface and the buffers used to carry out the assays. The detection limit of the piezoimmunosensor assay was 0.038 nM with a linear operating range of 0.038-0.859 nM. Little nonspecific binding to other therapeutic antibodies (Avastin and Rituxan) was observed. Levels of Herceptin in serum samples obtained from treated patients, as ascertained using the synthetic peptide-based QCM assay, were typical for those treated with Herceptin. The findings of this study are significant in that low-cost synthetic peptides could be used in a QCM assay, in lieu of native or recombinant antigens or capture antibodies, to rapidly detect a therapeutic antibody in human serum. The results suggested that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of affinity-based immunosensors to detect a broad range of clinical biomarkers.

  12. Synthetic biology

    PubMed Central

    Bower, Adam G; McClintock, Maria K

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Building upon the existing framework established largely by the Registry of Standard Biological Parts, careful consideration of future goals may lead to integrated multi- scale approaches to biology. Here we describe some of the current challenges that need to be addressed or considered in detail to continue the development of synthetic biology. Specifically, discussion on the areas of elucidating biological principles, computational methods and experimental construction methodologies are presented. PMID:21326830

  13. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  14. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono

  15. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  16. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  17. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  18. Evaluation of Piezoelectric Ta2O5 Thin Films Deposited on Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Iwamoto, Shunsuke; Saigusa, Ryosuke; Kakio, Shoji

    2013-07-01

    X-axis-oriented tantalum pentoxide (Ta2O5) piezoelectric thin films were deposited on sapphire (Al2O3) substrates, from which single crystallization due to epitaxial growth can be expected, using an RF magnetron sputtering system. The crystallinity and Rayleigh-type surface acoustic wave (R-SAW) propagation properties of the thin films were evaluated. From the measured diffraction (X-ray diffraction) patterns and the spotted pattern in the measured pole figures, in which poles were arranged to form the vertices of a hexagon, the possibility of the crystallization of hexagonal Ta2O5 with a (203)-plane oriented in the c-Al2O3 substrate plane due to epitaxial growth was shown. For the first mode of the R-SAW on the Ta2O5/R-plane Al2O3 sample, a coupling factor of 1.65% and a phase velocity of 5,120 m/s were obtained for a normalized thickness of 0.175. Unfortunately, no increase in coupling factor and no major improvement in propagation loss were observed upon the crystallization of hexagonal Ta2O5.

  19. Progress Report for a New Cryogenic Sapphire Oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. J.; Tjoelker, R. L.

    2006-01-01

    We present design progress and subsystem test results for a new short-term frequency standard, the Voltage Controlled Sapphire Oscillator (VCSO). Included are sapphire resonator and coupling design, cryocooler environmental sensitivity tests, Q measurement results, and turnover temperature results. A previous report presented history of the design related to resonator frequency and frequency compensation [1]. Performance goals are a frequency stability of 1x10(exp -14) (1 second less than or equal to (tau) less than or equal to 100 seconds) and two years or more continuous operation. Long-term operation and small size are facilitated by use of a small Stirling cryo-cooler (160W wall power) with an expected 5 year life.

  20. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  1. Inversion domains in GaN grown on sapphire

    SciTech Connect

    Romano, L.T.; Northrup, J.E.; OKeefe, M.A.

    1996-10-01

    Planar defects observed in GaN films grown on (0001) sapphire have been identified as inversion domain boundaries (IDBs) by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam electron diffraction techniques. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all were found to contain IDBs. The IDBs in the MBE and HVPE films extended from the interface to the film surface and formed columnar domains that ranged in width from 3 to 20 nm in the MBE films and up to 100 nm in the HVPE films. For the films investigated, the MBE films had the highest density, and the MOCVD films had the lowest density of IDBs. The nucleation of inversion domains (IDs) may result from step-related inhomogeneities of the GaN/sapphire interface. {copyright} {ital 1996 American Institute of Physics.}

  2. A neutron method for NDA analysis in the SAPPHIRE Project

    SciTech Connect

    Lewis, K.D.

    1995-01-09

    The implementation of Project SAPPHIRE, the top secret mission to the Republic of Kazakhstan to recover weapons grade nuclear materials, consisted of four major elements: (1) the re-packing of fissile material from Kazakh containers into suitable US containers; (2) nondestructive analyses (NDA) to quantify the U-235 content of each container for Nuclear Criticality Safety and compliance purposes; (3) the packaging of the fissile material containers into 6M/2R drums, which are internationally approved for shipping fissile material; and (4) the shipping or transport of the recovered fissile material to the United States. This paper discusses the development and application of a passive neutron counting technique used in the NDA phase of SAPPHIRE operations to analyze uranium/beryllium (U/Be) alloys and compounds for U-235 content.

  3. Wavelength Tunability of Ion-Bombardment-Induced Ripples on Sapphire

    SciTech Connect

    Zhou,H.; Wang, Y.; Zhou, L.; Headrick, R.; Ozcan, A.; Wang, Y.; Ozaydin, G.; Ludwig, Jr., K.; Siddons, D.

    2007-01-01

    A study of ripple formation on sapphire surfaces by 300-2000 eV Ar{sup +} ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range -- nearly two orders of magnitude -- by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30{sup o}. In this model, relaxation is confined to a few nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation.

  4. SAPPHIRE WILDERNESS STUDY AREA AND CONTIGUOUS ROADLESS AREAS, MONTANA.

    USGS Publications Warehouse

    Wallace, C.A.; Bannister, D'Arcy P.

    1984-01-01

    Geologic and mineral studies located sulfide-bearing quartz veins with demonstrated metallic mineral resources in granitic and metasedimentary rocks in several parts of the Sapphire Wilderness Study Area and contiguous roadless areas, Montana. Mines and prospects contain demonstrated resources of gold, silver, lead, copper, and zinc. Gold-bearing placers occur downstream from each of these vein occurrences; most of the gold placers have a probable mineral-resource potential. A replacement body of sulfide minerals is present at the Senate mine adjacent to the Sapphire Wilderness Study Area. Around the Senate mine is an area of probable mineral-resource potential that extends into the study area. There is little promise for the occurrence of energy resources in the study area.

  5. Fabrication and surface profile simulation of sapphire microlens array

    NASA Astrophysics Data System (ADS)

    Liu, Xiangyang; Liu, Shijia; Qiao, Hui; Zhu, Longyuan; Li, Xiangyang

    2015-04-01

    In this paper, photoresist reflow method was used to fabricate microlens array on the sapphire substrate which possesses high mechanical strength and transmittance in broad spectrum. High etch selectivity of sapphire over photoresist was obtained through adjusting ICP etching parameters. To test the fabrication process, a geometric model of square aperture microlens was built by finite element method. The validation of this model was done by comparing the surface profiles of three samples reflowed under different condition with the geometric model. In all three cases the simulation results were close to the experiment results. So the model was justified. On the other hand, the fabrication process was found to be repeatable because the surface profile of fabricated microlens was close to the theoretical surface profile of reflowed photoresist. The geometric model can be used to check the repeatability of photoresist reflow process and to predict the surface profile of microlens with irregular aperture.

  6. AlN growth on sapphire substrate by ammonia MBE

    NASA Astrophysics Data System (ADS)

    Mansurov, V. G.; Nikitin, A. Yu.; Galitsyn, Yu. G.; Svitasheva, S. N.; Zhuravlev, K. S.; Osvath, Z.; Dobos, L.; Horvath, Z. E.; Pecz, B.

    2007-03-01

    Kinetics of (0 0 0 1) Al 2O 3 surface nitridation and subsequent growth of AlN films on the sapphire substrate by ammonia molecular beam epitaxy (MBE) are investigated. Surface morphology evolution during AlN growth is studied in situ by reflection high energy electron diffraction and ex situ by atomic force microscopy. It is found that the surfaces of AlN layers thicker than 100 nm have two major features: a quite smooth background and noticeable amount of hillocks. The influence of growth conditions on the AlN surface morphology is studied in order to find a way for reducing of the hillocks density. A modification of nitridated sapphire surface by small amount of Al (1-2 monolayers) with subsequent treatment of the surface under ammonia flux is proposed. An improvement of AlN surface morphology of the layers grown on the modified surfaces is demonstrated.

  7. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  8. Expression, crystallization and preliminary crystallographic data analysis of PigF, an O-­methyltransferase from the prodigiosin-synthetic pathway in Serratia

    PubMed Central

    Liu, Shaowei; Ran, Tingting; Shen, Xiang; Xu, Langlai; Wang, Weiwu; Xu, Dongqing

    2012-01-01

    Prodigiosin, which is a member of the prodiginines, is a red linear tripyrrole compound. A gene cluster for the biosynthesis of prodigiosin has been identified in Serratia and most genes in the cluster have been functionally assigned. A bifurcated biosynthetic pathway for prodigiosin has previously been determined. The last step in the biosynthetic pathway of 4-methoxy-2,2′-bipyrrole-5-­carbaldehyde (MBC) is catalyzed by PigF, which transfers a methyl group to 4-­hydroxy-2,2′-bipyrrole-5-carbaldehyde (HBC) to form the terminal product MBC, but its catalytic mechanism is not known. To elucidate its mechanism, recombinant PigF was purified and crystallized. The crystals belonged to space group P21, with unit-cell parameters a = 69.4, b = 52.4, c = 279.2 Å, β = 96.8°. The native crystals may contain six molecules in the asymmetric unit, with a V M of 2.17 Å3 Da−1 and a solvent content of 43.43%. A full data set was collected at 2.6 Å resolution using synchrotron radiation on beamline BL17U of Shanghai Synchrotron Radiation Facility (SSRF), People’s Republic of China. Molecular replacement was unsuccessful. To solve the structure of PigF by experimental phasing, selenomethionine-derivativized protein crystals were prepared from a condition with 0.01 M spermidine as an additive. One crystal diffracted to 1.9 Å resolution and a full data set was collected on beamline BL17U at SSRF. The crystal belonged to space group P21, with unit-cell parameters a = 69.0, b = 52.9, c = 93.4 Å, β = 97.3°. Heavy-atom substructure determination and phasing by SAD clearly showed that the crystal contains two molecules in the asymmetric unit, with a V M of 2.19 Å3 Da−1 and a solvent content of 43.82%. PMID:22869117

  9. Compact cryogenically cooled Ti:Sapphire dual multi-kilohertz amplifiers for synchrotron radiation ultra-fast x-ray applications.

    PubMed

    Feng, J; Nasiatka, J; Hertlein, M; Rude, B; Padmore, H

    2013-05-01

    A titanium-doped sapphire regenerative dual-amplifier array operating at multi-kHz repetition rates has been developed for synchrotron radiation ultra-fast x-ray applications. The thermal lensing of the crystal in the amplifiers is virtually eliminated by cryogenic cooling of the laser crystal. The output energy of the amplifiers is measured to be greater than 2.6 mJ and the pulse length was compressed to less than 70 fs. The output laser mode is a near perfect Gaussian TEM00 with an M(2) factor of 1.02. The performance of the amplifier system is in excellent agreement with theoretical calculation.

  10. Compact cryogenically cooled Ti:Sapphire dual multi-kilohertz amplifiers for synchrotron radiation ultra-fast x-ray applications

    NASA Astrophysics Data System (ADS)

    Feng, J.; Nasiatka, J.; Hertlein, M.; Rude, B.; Padmore, H.

    2013-05-01

    A titanium-doped sapphire regenerative dual-amplifier array operating at multi-kHz repetition rates has been developed for synchrotron radiation ultra-fast x-ray applications. The thermal lensing of the crystal in the amplifiers is virtually eliminated by cryogenic cooling of the laser crystal. The output energy of the amplifiers is measured to be greater than 2.6 mJ and the pulse length was compressed to less than 70 fs. The output laser mode is a near perfect Gaussian TEM00 with an M2 factor of 1.02. The performance of the amplifier system is in excellent agreement with theoretical calculation.

  11. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the

  12. Dark matter search with a low temperature sapphire bolometer

    NASA Astrophysics Data System (ADS)

    de Bellefon, A.; Berkes, I.; Bobin, C.; Broszkiewicz, D.; Chambon, B.; Chapellier, M.; Chardin, G.; Charvin, P.; Chazal, V.; Coron, N.; De Jésus, M.; Drain, D.; Dumoulin, L.; Giraud-Héraud, Y.; Goldbach, C.; Guerier, G.; Hadjout, J. P.; Leblanc, J.; Marchand, D.; Massaq, M.; Messous, Y.; Navick, X.; Nollez, G.; Pari, P.; Pastor, C.; Perillo-Isaac, M. C.; Prostakov, I.; Yvon, D.

    1996-12-01

    A dark matter detection experiment using a low temperature 24 g sapphire bolometer is presented. The low radioactive background cryogenic facility, installed in a deep underground site, is described, as well as the low-noise read-out electronics and the data analysis. From the energy spectrum, measured down to 4 keV, exclusion plots are derived for WIMPs having coherent vector coupling or axial coupling to ordinary matter.

  13. Visualization and Analysis of Impact Damage in Sapphire

    DTIC Science & Technology

    2011-11-01

    Analysis of Impact Damage in Sapphire Elmar Strassburger Fraunhofer-Institut für Kurzzeitdynamik, Ernst - Mach -Institut (EMI) Parimal Patel and...Miami, FL, 12–16 September 2011. *Fraunhofer-Institut für Kurzzeitdynamik, Ernst - Mach -Institut (EMI), Am Christianswuhr 2, 79400 Kandern, Germany 14...ABSTRACT This report reviews work carried out with the fully instrumented Edge-on Impact (EOI) facility at the Ernst - Mach -Institute (EMI), using a

  14. Electronic Devices Grown on Off-Axis Sapphire Substrate

    DTIC Science & Technology

    1999-07-15

    growth of high quality semiconducting films of III/V elements of the Periodic Table on a sapphire substrate has been a topic of major interest in recent...PATENT APPLICATION Inventors’ Name: Fatemi et al. elements of Group III of the Periodic Table and one or more elements of Group V of the Periodic ... Table . A preferred film is a nitride of Group III elements of barium, aluminum, gallium, indium and titanium. Although gallium nitride is a specific and

  15. Sapphire Surface Polymorphs and The Growth of Pb Overlayers

    NASA Astrophysics Data System (ADS)

    Hong, Hawoong; Gray, Aaron; Chiang, T.-C.

    2008-03-01

    The surface structure of sapphire (α-alumina) is an issue of long-standing interest, both scientifically and technologically. Molecular dynamics simulations showed the γ-alumina structure to have a lower energy than that of α-alumina [1], thus suggesting a possibly modified surface structure when sapphire is treated at high temperatures. We have performed x-ray reflectivity measurements at the Advanced Photon Source to address this issue. Standard sapphire substrates were prepared by furnace annealing at 1600^o C in air. The resulting surfaces showed large terraces with straight step edges. The substrates were then annealed in a UHV chamber at increasingly higher temperatures. Many new features emerged in the reflectivity curves, which could be attributed to various transition alumina structures, including the θ'-, δ-, and θ- polymorphs [2]. Pb films were grown on these surfaces. The resulting structure and morphology was characterized. This talk will summarize our findings. [1] S. Blonski and S. H. Garofalini, Surf. Sci. 295, 263 (1993). [2] I. Levin and D. Brandon, J. Am. Ceram. Soc. 81, 1995 (1998).

  16. Crystal structures of hereditary vitamin D-resistant rickets-associated vitamin D receptor mutants R270L and W282R bound to 1,25-dihydroxyvitamin D3 and synthetic ligands.

    PubMed

    Nakabayashi, Makoto; Tsukahara, Yoshito; Iwasaki-Miyamoto, Yukiko; Mihori-Shimazaki, Mika; Yamada, Sachiko; Inaba, Satomi; Oda, Masayuki; Shimizu, Masato; Makishima, Makoto; Tokiwa, Hiroaki; Ikura, Teikichi; Ito, Nobutoshi

    2013-09-12

    The vitamin D receptor (VDR), a member of the nuclear receptor superfamily, functions as a ligand-dependent transcription factor for various genes. Hereditary vitamin D-resistant rickets (HVDRR), an autosomal recessive disease, is caused by mutations in the VDR. In particular, the missense mutations R274L and W286R in the ligand-binding domain of the VDR can severely reduce or even eliminate natural hormone responsiveness. Here, we report a crystal structure analysis of the R270L and W282R mutants of rat VDR (human R274L and W286R, respectively) in complex with the natural hormone and synthetic ligands. We also studied the folding properties of the mutant proteins by using circular dichroism spectra. Our study indicates that these mutations result in only local structural modifications. We discuss why these mutations disrupt the VDR function and provide clues to develop effective ligands for the treatment of HVDRR.

  17. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    SciTech Connect

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-15

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880 eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the s-polarization configuration was 2.6% at an incidence angle of around 45 deg. As the result of the analysis based on the rotating-analyzer method, the polarizance of the polarizer and the degree of linear polarization of the incident light at 880 eV were found to be 0.997{+-}0.002 and 0.993{+-}0.004, respectively.

  18. Synthetic foldamers.

    PubMed

    Guichard, Gilles; Huc, Ivan

    2011-06-07

    Foldamers are artificial folded molecular architectures inspired by the structures and functions of biopolymers. This highlight focuses on important developments concerning foldamers produced by chemical synthesis and on the perspectives that these new self-organized molecular scaffolds offer. Progress in the field has led to synthetic objects that resemble small proteins in terms of size and complexity yet that may not contain any α-amino acids. Foldamers have introduced new tools and concepts to develop biologically active substances, synthetic receptors and novel materials.

  19. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  20. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  1. Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire

    PubMed Central

    Beardsley, Ryan; Akimov, Andrey V.; Greener, Jake D. G.; Mudd, Garry W.; Sandeep, Sathyan; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Kent, Anthony J.

    2016-01-01

    Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable devices is phonon transport through the structure interfaces. Here we report on the interface properties of exfoliated InSe on a sapphire substrate. We use a picosecond acoustic technique to probe the phonon resonances in the InSe vdW layered crystal. Analysis of the nanomechanics indicates that the InSe is mechanically decoupled from the substrate and thus presents an elastically imperfect interface. A high degree of phonon isolation at the interface points toward applications in thermoelectric devices, or the inclusion of an acoustic transition layer in device design. These findings demonstrate basic properties of layered structures and so illustrate the usefulness of nanomechanical probing in nanolayer/nanolayer or nanolayer/substrate interface tuning in vdW heterostructures. PMID:27256805

  2. [Gemology characterization and identification of beryllium diffused, heated and untreated bicolor sapphires from Changle City, China].

    PubMed

    Chen, Tao; Yang, Ming-xing

    2012-03-01

    Be-diffused, heated and untreated bicolor sapphires (blue and yellow) from Changle City, Shandong Province, China were studied by using standard gemological methods, ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR) spectroscopy, electron microprobe, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain the spectra characterization, and to suggest identification methods for them. Only Fe(3+)-Fe3+ absorption bands formed in ultraviolet region appear in Be-diffused bicolor sapphire, which is especially strong at 377 nm. In IR absorption spectra, absorption peak at 3 310 cm(-1) appears in heated and untreated bicolor sapphires, while it disappears in Be-diffused bicolor sapphire. Therefore, UV-Vis and IR absorption spectra can be used to identify Be-diffused, heated and untreated bicolor sapphires. On the other hand, methylene iodide immersion observation also can be used to identify Be-diffused bicolor sapphire.

  3. Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire

    NASA Astrophysics Data System (ADS)

    Ahmed, Kawser; Dahal, Rajendra; Weltz, Adam; J-Q Lu, James; Danon, Yaron; Bhat, Ishwara B.

    2017-01-01

    This paper reports on the epitaxial growth of hexagonal boron nitride (hBN) films on sapphire substrates in a cold wall chemical vapor deposition (CVD) system where different sapphire nitridation and hBN growth temperatures were employed. A thin and amorphous nitridated layer was formed at a low temperature (850 °C), which enabled subsequent epitaxial hBN growth at 1350 °C. The influences of the sapphire nitridation temperature and the growth temperature on the film quality were analyzed by x-ray diffraction (XRD) measurements. Higher than optimum nitridation and growth temperatures improve the crystalline quality of the nitridated layer, but does not favor the epitaxial growth of hBN. hBN films grown at the optimum conditions exhibit the c-lattice constant of 6.66 Å from the XRD θ–2θ scan and the characteristic in plane stretching vibration at 1370.5 cm‑1 from Raman spectroscopy. X-ray photoelectron spectroscopy analysis confirmed the formation of stoichiometric hBN films with excellent uniformity.

  4. Synthetic Glycolysis

    SciTech Connect

    Lobo, Raul F

    2010-09-20

    Recently, two groups separately reported what amounts to a synthetic version of glycolysis. The sum of these two reactions is equivalent to what is accomplished in living organisms by glycolysis in terms of the redistribution of oxidation states of the carbon, and is an important step in reproducing using chemical routes that living organisms accomplish daily.

  5. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  6. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  7. Recrystallization of silicon-on-sapphire structures at various amorphization-ion-beam energies

    SciTech Connect

    Alexandrov, P. A. Demakov, K. D.; Shemardov, S. G.; Kuznetsov, Yu. Yu.

    2013-02-15

    Silicon films on sapphire substrates are grown via recrystallization from the silicon-sapphire interface. An amorphous layer is formed using ion implantation with silicon ion energies of 90-150 keV. An X-ray rocking curve is used to estimate the crystalline perfection of the silicon films. After recrystallization, the silicon layer consists of two parts with different crystalline quality. The recrystallized silicon-on-sapphire structures have a highly perfect upper layer (for fabricating microelectronic devices) and a lower layer adjacent to the sapphire substrate containing a large number of defects.

  8. Integrated Optical Pumping of Cr & Ti-Doped Sapphire Substrates With III-V Nitride Materials

    DTIC Science & Technology

    2005-08-24

    Cr:sapphire substrate. Solid line is the spectrum of blue and red light emitted by InGaN LED epitaxially grown on Cr:sapphire substrate. The light was collected...goals of the program from the original proposal: Part 1 1. Deposition of GaN/ InGaN heterostructures and quantum Wells on Ti and Cr- doped sapphire...substrates by MOCVD. 2. Characterization of doped sapphire/ InGaN structures byPL to simulate electrical injection by laser or LED device structures Part 2 1

  9. Sapphire surface preparation and gallium nitride nucleation by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dwikusuma, Fransiska

    The nucleation and initial growth of gallium nitride (GaN) films on sapphire substrates using hydride vapor phase epitaxy (HVPE) technique depends on many factors including the chemical treatment of sapphire surface, nitridation, and the specific growth conditions. Liquid and gas phase treatments of the sapphire surface were systematically studied as a function of temperature and time. Phosphoric acid (H3PO4) etches sapphire preferentially at defect sites and resulted in pits formation on the surface, while etching in sulfuric acid (H2SO4) can produce a smooth, pit-free surface. Air-annealing the sapphire at 1400°C produces an atomically smooth surface consisting of a terrace-and-step structure. The mechanism of sapphire nitridation within the HVPE environment was elucidated. During nitridation, nitrogen is incorporated into the sapphire surface. The sapphire nitridation mechanism can be modeled as a diffusion couple of aluminum nitride (AlN) and aluminum oxide (Al2O 3), where N3- and O2- inter-diffuse in the 'rigid' Al3+ framework. Nitrogen diffuses into sapphire and substitutes for oxygen to bond with aluminum. The replaced oxygen diffuses out to the surface. The overall nitridation rate is controlled by the diffusion of oxygen. Sapphire surface treatments of air-annealing and liquid-based etchings have different effects on nitridation and HVPE GaN nucleation. Upon nitridation, the air-annealed sapphire has ˜1.5 times higher nitrogen content compared to liquid-based etchings. Nevertheless, the air-annealed sapphire yields the lowest density of GaN islands. Sapphire nitridation, which yields a thin AlN layer, results in the growth of higher GaN island densities with a smaller mosaic spread. Sapphire surface, which is etched in H2SO4 and then nitridated, produces a high density GaN islands resulting in improved-quality of thick GaN films. The nucleation and initial growth kinetics of GaN on sapphire grown by HVPE were investigated. As the growth temperature

  10. Synthetic spinels in the (Mg, Fe2+)(Cr, Fe3+)2O4 join: Mossbauer, optical absorption, single crystal XRD and electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Lenaz, D.; Skogby, H.; Princivalle, F.; Halenius, U.

    2003-04-01

    Single crystals along the Mg-chromite -- Mg-ferrite and Mg-chromite -- chromite joins were synthesized using a flux-growth method (24 hours at 1200^oC and 4^oC/h cooling rate to 900^oC in air and gas-controlled atmosphere) in order to evaluate the influence of composition on structure and cation distribution using optical absorption (OAS), Mössbauer (MS), single-crystal X-ray diffraction (XRD) and microprobe analyses (EPMA). At present, most of the analyses were carried out on the (Mg,Fe2+)Cr_2O_4 series. MgCr_2O_4 end-member: OAS shows prominent absorption bands at 23,700 and 17,300 cm-1. XRD analyses on three single crystals show a_0 equal to 8.3329 (1) Å and u (oxygen positional parameter) equal to 0.2612 (1), close to the values reported by O'Neill and Dollase (1994) as determined by powder diffraction on samples annealed at 900 to 1400^oC. The T-O and M-O calculated bond distances are equal to 1.965 and 1.995, respectively. These results are consistent with the set of optimised bond distances for Mg and Cr proposed by Lavina et al. (2002). (Mg,Fe2+)Cr_2O_4 series: Mössbauer spectra were measured at room temperature on different samples with nominal chromite components in the 10 to 70 mol % range. All the spectra show a single absorption line. For compositions close to the Mg-chromite end-member the line is narrow, however, for intermediate compositions the line broadens progressively and is best fitted with a quadrupole doublet (dq=0.22 for 50 mol % chromite). Towards the chromite end-member the peak becomes narrower again. XRD data shows that there is a linear positive correlation between a_0 and u with increasing Fe2+.

  11. Reversible hydration in synthetic mixite, BiCu6(OH)6(AsO4)3.nH2O (n<=3): hydration kinetics and crystal chemistry

    NASA Astrophysics Data System (ADS)

    Miletich, R.; Zemann, J.; Nowak, M.

    The presence of zeolitic water, with a reversible hydration behaviour, was determined by structural and kinetic studies on synthetic mixite BiCu6(OH)6(AsO4)3.nH2O (n<=3). X-ray diffraction and infrared-spectroscopic investigations were performed on single crystals. Isothermal thermogravimetric experiments were carried out to determine the reaction kinetics of the de- and rehydration processes. The single-crystal structure refinement of a fully hydrated crystal yielded five partially occupied Ow positions (Ow=oxygen atom of a H2O molecule) within the tube-like channels of the hexagonal [BiCu6(OH)6(AsO4)3] framework. For the partially dehydrated form, with n 1, at least two of these sites were found to be occupied significantly. In addition, the structural investigations allowed two different intra-framework hydrogen bonds to be distinguished that are independent of the extra-framework water distribution and are responsible for the stability of the self-supporting framework. The kinetic analysis of the rate data in the 298-343K temperature range shows that the dehydration behaviour obeys a diffusion-controlled reaction mechanism with an empirical activation energy of Eadehyd=54+/-4 kJ mol-1. A two-stage process controls rehydration of which the individual steps were attributed to an initial surface-controlled (Eahyd-I=6+/-1 kJ mol-1) and subsequent diffusion-controlled reaction mechanism (Eahyd-II=12+/-1 kJ mol-1). The estimated hydration enthalpy of 42+/-5 kJ mol-1 supports the distribution model of molecular water within the channels based on a purely hydrogen-bonded network.

  12. Expression, crystallization and preliminary crystallographic data analysis of PigI, a putative L-prolyl-AMP ligase from the prodigiosin synthetic pathway in Serratia.

    PubMed

    Han, Ning; Ran, Tingting; Lou, Xiangdi; Gao, Yanyan; He, Jianhua; Tang, Lin; Xu, Dongqing; Wang, Weiwu

    2014-05-01

    Prodigiosin, a member of the prodiginines, is a tripyrrole red pigment synthesized by Serratia and some other microbes. A bifurcated biosynthesis pathway of prodigiosin has been proposed in Serratia in which MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-N-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. The first step for the synthesis of MBC is the activation of L-proline by PigI, but its catalytic mechanism has remained elusive. To elucidate its mechanism, recombinant PigI was purified and crystallized. Crystals obtained by the sitting-drop method belonged to space group P1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 51.2, b = 62.8, c = 91.3 Å, α = 105.1, β = 90.1, γ = 92.2°. Matthews coefficient analysis suggested two molecules in the asymmetric unit, with a VM of 2.6 Å(3) Da(-1) and a solvent content of 52.69%.

  13. High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): A high temperature X-ray diffraction (HT-XRD) study

    NASA Astrophysics Data System (ADS)

    Achary, S. N.; Patwe, S. J.; Mathews, M. D.; Tyagi, A. K.

    2006-04-01

    In this communication, the high temperature crystal chemistry of scheelite type (space group: I41/a) CaMoO4 (powellite) is reported. The details of the high temperature crystal structures were obtained by high temperature X-ray diffractometer (HT-XRD) data in the temperature range of 25 1000 °C. The lattice thermal expansions of this compound show the an-isotropic behavior, with the coefficient of thermal expansion along c-axis (αc) is almost double of that along the a-axis (αa). The average values of thermal expansion coefficient for CaMoO4 are: αa=13.5×10-6 and αc=22.8×10-6 °C. The typical thermal expansion behavior is basically controlled by the temperature-induced expansion of the Ca O bonds, i.e. by the thermal expansion of the CaO8 polyhedra. The MoO4 polyhedra acts as typical rigid unit, with virtually no expansion. The preliminary data analysis for CaWO4 indicates almost similar values of thermal expansion coefficients, viz. αa=12.7×10-6 and αc=21.4×10-6/°C (for CaWO4) in the same temperature range. The further details are explained in this manuscript.

  14. Synthetic multicellularity.

    PubMed

    Maharbiz, Michel M

    2012-12-01

    The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Thermal resistance of indium coated sapphire-copper contacts below 0.1 K

    NASA Astrophysics Data System (ADS)

    Eisel, T.; Bremer, J.; Koettig, T.

    2014-11-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (Ø 20 mm × 1.5 mm) to investigate the phonon scattering at the boundaries. All sandwiches apply indium foils as intermediate layers on both sides of the sapphire. Additionally to the indium foils, thin indium films are vapour deposited onto both sides of one rough and one polished sapphire in order to improve the contact to the sapphire. Significantly different thermal resistances have been found amongst the investigated sandwiches. The lowest total thermal resistivity (roughly 26 cm2 K4/W at 30 mK helium temperature) is achieved across a sandwich consisting of a polished sapphire with indium vapour deposition. The thermal boundary resistance between indium and sapphire is estimated from the total thermal resistivity by assuming the scattering at only one boundary, which is the warm sapphire boundary where phonons impinge, and taking the scattering in the sapphire bulk into account. The so derived thermal boundary resistance agrees at low temperatures very well with the acoustic mismatch theory.

  16. Injection mode-locking Ti-sapphire laser system

    DOEpatents

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  17. Electroform replication of smooth mirrors from sapphire masters

    NASA Technical Reports Server (NTRS)

    Altkorn, R.; Chang, J.; Haidle, R.; Takacs, P. Z.; Ulmer, M. P.

    1992-01-01

    A sapphire master was used to produce mirrors that exhibit mid-to-high-frequency roughness as low as 3 A. The fabrication procedure and potential applications in X-ray astronomy are discussed. It is shown that foils replicated from flat smooth mandrels should offer at least equivalent HF roughness and significantly lower mid-frequency ripple than those coated with lacquer. A ceramic-surface mandrel could also be expected to last far longer without the need for repolishing than electroless nickel-coated mandrels.

  18. Electroform replication of smooth mirrors from sapphire masters

    NASA Astrophysics Data System (ADS)

    Altkorn, R.; Chang, J.; Haidle, R.; Takacs, P. Z.; Ulmer, M. P.

    1992-09-01

    A sapphire master was used to produce mirrors that exhibit mid-to-high-frequency roughness as low as 3 A. The fabrication procedure and potential applications in X-ray astronomy are discussed. It is shown that foils replicated from flat smooth mandrels should offer at least equivalent HF roughness and significantly lower mid-frequency ripple than those coated with lacquer. A ceramic-surface mandrel could also be expected to last far longer without the need for repolishing than electroless nickel-coated mandrels.

  19. Sapphire fiber evanescent wave absorption in turbid media.

    PubMed

    Zhang, Jian; Xiong, Feibing; Djeu, Nicholas

    2009-08-01

    The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water. However, the absorption on the water band determined from the evanescent wave interaction was unaffected by the presence of the graphite flakes. These results indicate that fiber-optic evanescent wave chemical sensors may be suitable for process control applications involving turbid reactor streams.

  20. Electroform replication of smooth mirrors from sapphire masters

    NASA Technical Reports Server (NTRS)

    Altkorn, R.; Chang, J.; Haidle, R.; Takacs, P. Z.; Ulmer, M. P.

    1992-01-01

    A sapphire master was used to produce mirrors that exhibit mid-to-high-frequency roughness as low as 3 A. The fabrication procedure and potential applications in X-ray astronomy are discussed. It is shown that foils replicated from flat smooth mandrels should offer at least equivalent HF roughness and significantly lower mid-frequency ripple than those coated with lacquer. A ceramic-surface mandrel could also be expected to last far longer without the need for repolishing than electroless nickel-coated mandrels.

  1. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.

    2016-11-01

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  2. A versatile synthetic approach for the synthesis of CoO, CoxC, and Co based nanocomposites: tuning kinetics and crystal phase with different polyhydric alcohols

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-07-04

    The solution synthesis of magnetic nanoparticles allows for precise control of a particle's shape, size, and crystal phase on the nanoscale, key parameters in tuning the intrinsic magnetic properties of nanoparticles. In this study, we investigate the role of polyhydric alcohols for the solution synthesis of cobalt carbide nanoparticles, a newly discovered hard ferromagnetic material. The oxidative stability of the polyhydric alcohol at reaction temperatures plays a significant role in the kinetics of carbide formation, as well as the phase produced (Co2C vs. Co3C). By tuning the oxidation rate of the polyhydric alcohol, composites of CoO, CoxC, and Co phases can be produced, allowing for magnetic composites comprised of anti ferromagnetic, hard ferromagnetic and soft ferromagnetic phases.

  3. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas

    SciTech Connect

    Rebai, M. Nocente, M.; Rigamonti, D.; Gorini, G.; Giacomelli, L.; Tardocchi, M.; Milocco, A.; Camera, F.; Giaz, A.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Hu, Z. M.; Peng, X. Y.; Marchi, T.; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB

    2016-11-15

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  4. Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas.

    PubMed

    Rebai, M; Giacomelli, L; Milocco, A; Nocente, M; Rigamonti, D; Tardocchi, M; Camera, F; Cazzaniga, C; Chen, Z J; Du, T F; Fan, T S; Giaz, A; Hu, Z M; Marchi, T; Peng, X Y; Gorini, G

    2016-11-01

    A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.

  5. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  6. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    SciTech Connect

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Yun, Feng; Su, Xilin

    2016-07-15

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  7. Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Chiu; Su, Yan-Kuin; Huang, Shyh-Jer; Wang, Yu-Jen; Wu, Chun-Ying; Chou, Ming-Chieh

    2010-04-01

    In this study, we had demonstrated the direct growth of nonpolar a-plane GaN on an r-plane sapphire by metal organic chemical vapor deposition (MOCVD) without any buffer layer. First, in this experiment, we had determined the optimum temperature for two-step growth, including obtaining three-dimensional (3D) GaN islands in the nucleation layer and coalescing with a further two-dimensional (2D) growth mode. The result shows that the nucleation layer grown under high temperature (1150 °C) leads to large islands with few grain boundaries. Under the same temperature, the effect of the V/III ratio on the growth of the overlaying GaN layer to obtain a flat and void free a-plane GaN layer is also studied. The result indicates one can directly grow a smooth epitaxial layer on an r-plane sapphire by changing the V/III ratio. The rms roughness decreases from 13.61 to 2.02 nm. The GaN crystal quality is verified using a mixed acid to etch the film surface. The etch pit density (EPD) is 3.16 ×107 cm-2.

  8. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing

    SciTech Connect

    Zhang, Yonghui; Wei, Tongbo Wang, Junxi; Chen, Yu; Hu, Qiang; Lu, Hongxi; Li, Jinmin; Lan, Ding

    2014-02-15

    Self-assembly SiO{sub 2} nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, the external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.

  9. Ruby-sapphire-spinel mineralization in marble of the middle and southern Urals: Geology, mineralogy, and genesis

    NASA Astrophysics Data System (ADS)

    Kisin, A. Yu.; Murzin, V. V.; Tomilina, A. V.; Pritchin, M. E.

    2016-07-01

    Ruby and spinel occurrences hosted in marble on the eastern slope of the Urals are considered. Ruby- and spinel-bearing marble is a specific rock in granite-gneiss complexes of the East Ural Megazone, which formed at the Late Paleozoic collision stage of the evolution of the Urals. Organogenic marine limestone is the protolith of the marble. No relict sedimentary bedding has been retained in the marble. The observed banding is a secondary phenomenon related to crystallization and is controlled by flow cleavage. Magnesian metasomatism of limestone with the formation of fine-grained dolomite enriched in Cr, V, Ti, Mn, Cu, Zn, Ga, and REE took place at the prograde stage of metamorphism. Dedolomitization of rocks with the formation of background calcite marble also developed at the prograde stage. Mg-calcite marble with spinel and ruby of the first type formed in the metamorphic fluid circulation zone. Magnesian metasomatism with the formation of bicarbonate marble with ruby, pink sapphire, and spinel of the second type developed at the early retrograde stage. The formation of mica-bearing mineralized zones with corundum and spinel of the third type controlled by cleavage fractures is related to the pneumatolytic-hydrothermal stage. The data on ruby-bearing marble in the Urals may be used for forecasting and prospecting of ruby and sapphire deposits hosted in marble worldwide.

  10. Frequency Stability of 1X10(sup -13) in a Compensated Sapphire Oscillator Operating Above 77 K

    NASA Technical Reports Server (NTRS)

    Santiago, D. G.; Dick, G. J.; Wang, R. T.

    1996-01-01

    We report on a frequency-stable temperature compensated sapphire oscillator (CSO) at temperatures above 77 K. Previously, high stability in sapphire oscillators had only been obtained with liquid helium cooling.

  11. Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-coated Sapphire Optics

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Connelly, Joseph; Brown, Stephen; Roeder, james; Kauder, Lonny; Cavanaugh, John

    2008-01-01

    Experiments measuring the effect of electron exposure on 1064nm transmission for optical sapphire were conducted. Detailed before and after inspections did not identify any resulting Litchenburg patterns. Pre- and post-exposure 1064nm transmission measurements are compared.

  12. Effect of Charging Electron Exposure on 1064nm Transmission Through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Connelly, Joseph; Brown, Stephen; Roeder, James; Kauder, Lonny; Cavanaugh, John

    2010-01-01

    Experiments measuring the effect of electron exposure on 1064nm transmission for optical sapphire were conducted. Detailed before and after inspections did not identify any resulting Litchenburg patterns. Pre- and post-exposure 1064nm transmission measurements are compared.

  13. Analysis and modification of blue sapphires from Rwanda by ion beam techniques

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Chaiwai, C.; Tippawan, U.; Wanthanachaisaeng, B.; Intarasiri, S.

    2015-12-01

    Blue sapphire is categorised in a corundum (Al2O3) group. The gems of this group are always amazed by their beauties and thus having high value. In this study, blue sapphires from Rwanda, recently came to Thai gemstone industry, are chosen for investigations. On one hand, we have applied Particle Induced X-ray Emission (PIXE), which is a highly sensitive and precise analytical technique that can be used to identify and quantify trace elements, for chemical analysis of the sapphires. Here we have found that the major element of blue sapphires from Rwanda is Al with trace elements such as Fe, Ti, Cr, Ga and Mg as are commonly found in normal blue sapphire. On the other hand, we have applied low and medium ion implantations for color improvement of the sapphire. It seems that a high amount of energy transferring during cascade collisions have altered the gems properties. We have clearly seen that the blue color of the sapphires have been intensified after nitrogen ion bombardment. In addition, the gems were also having more transparent and luster. The UV-Vis-NIR measurement detected the modification of their absorption properties, implying of the blue color increasing. Here the mechanism of these modifications is postulated and reported. In any point of view, the bombardment by using nitrogen ion beam is a promising technique for quality improvement of the blue sapphire from Rwanda.

  14. Thermal Modeling of GaN HEMTs on Sapphire and Diamond

    DTIC Science & Technology

    2005-12-01

    substrate material of an existing GaN HEMT from sapphire to diamond through the use of commercially available Silvaco software for modeling and simulation...from sapphire to diamond through the use of commercially available Silvaco software for modeling and simulation. The unparalleled thermal...11 A. SILVACO

  15. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  16. Synthetic wisdom.

    PubMed

    Kitcher, Philip

    2016-11-01

    Wisdom is a special kind of virtue. It is not to be identified with any outstanding cognitive ability-like having a prodigious memory or knowing a lot. Rather it consists in seeing what is most important and most valuable, either within a particular domain or in life as a whole. In the life of a wise person, that insight should be accompanied by traits of character, enabling the person to pursue what is seen as valuable. Viewing wisdom as a capacity for synthetic understanding, I argue for the need for philosophy, even at a time when all of us have much to learn from the sciences.

  17. "Invisible" gold and PGE elements in synthetic crystals of sphalerite and covellite: A EPMA, LA-ICP-MS and XAFS study

    NASA Astrophysics Data System (ADS)

    Tonkacheev, Dmitry; Chareev, Dmitry; Abramova, Vera; Tagirov, Boris

    2016-04-01

    Sphalerite and covellite are widespread minerals in the different genetic types of deposits and forms under the various conditions. The purpose of this work is to determine the possible range of concentration and chemical state of Au and PGE (Pt, Pd, Rh) in sphalerite (Zn,Fe) S and covellite (CuS). These minerals were synthesized using gas transport and salt flux techniques. The crystals of ZnS were grown using the gas transport method at 850°C and the salt flux one using NaCl/KCl, CsCl/NaCl/KCl, and LiCl/RbCl eutectic mixtures at 850, 645 and 470°C, respectively. CuS crystals were synthesized using the salt flux method in RbCl/LiCl melt at 470 and 340°C. The trace metal activity was always controlled by the presence of pure metal or its sulfide, and, therefore, the concentration of these elements in synthesized phases represent the maximum possible value for given T/f(S2) synthesis parameters. The LA-ICP-MS and/or EPMA techniques were used to determine the Au concentration in synthesized phases. The concentration of Au in sphalerite, synthesized at 850°C with admixture of Cd, Se, In, Fe, and Mn, reached 0.3wt%, whereas the sphalerite cell parameter extremely increased up to 5.4161Å relatively to 5.4060 Å for pure ZnS. It was found that the observed high Au concentration is caused by the presence of In (2091±46 ppm Au in sample with Fe and In in comparison with 14±7 for Se-bearing ZnS, 94±12 ppm for Fe-Mn-bearing sphalerite, and 96±46 for Fe-bearing sphalerite. The concentration of Au in Fe-bearing sphalerite synthesized at 645°C does not exceed 5 ppm. Therefore, increase of temperature results in the increase of Au concentration in sphalerite. The concentration of Au in another Fe-bearing-sphalerite series synthesized using gas transport method at 850°C various from 200 to 500 ppm and depends on the iron content. This fact could be related to the oxidation state or Fe in ZnS-FeS solid solution series. The concentration of Pt and Pd, Rh in sphalerite is

  18. Growth and characterization of β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  19. Arsenic speciation in synthetic gypsum (CaSO4·2H2O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study

    NASA Astrophysics Data System (ADS)

    Lin, Jinru; Chen, Ning; Nilges, Mark J.; Pan, Yuanming

    2013-04-01

    Gypsum (CaSO4·2H2O) is a major by-product of mining and milling processes of borate, phosphate and uranium deposits worldwide and, therefore, potentially plays an important role in the stability and bioavailability of heavy metalloids, including As, in tailings and surrounding areas. Gypsum containing 1900 and 185 ppm As, synthesized with Na2HAsO4·7H2O and NaAsO2 in the starting materials, respectively, have been investigated by synchrotron X-ray absorption spectroscopy (XAS), single-crystal electron paramagnetic resonance spectroscopy (EPR), and pulsed electron nuclear double resonance spectroscopy (ENDOR). Quantitative analyses of As K edge XANES and EXAFS spectra show that arsenic occurs in both +3 and +5 oxidation states and the As3+/As5+ value varies from 0.35 to 0.79. Single-crystal EPR spectra of gamma-ray-irradiated gypsum reveal two types of arsenic-associated oxyradicals: [AsO3]2- and an [AsO2]2-. The [AsO3]2- center is characterized by principal 75As hyperfine coupling constants of A1 = 1952.0(2) MHz, A2 = 1492.6(2) MHz and A3 = 1488.7(2) MHz, with the unique A axis along the S-O1 bond direction, and contains complex 1H superhyperfine structures that have been determined by pulsed ENDOR. These results suggest that the [AsO3]2- center formed from electron trapping on the central As5+ ion of a substitutional (AsO4)3- group after removal of an O1 atom. The [AsO2]2- center is characterized by its unique A(75As) axis approximately perpendicular to the O1-S-O2 plane and the A2 axis along the S-O2 bond direction, consistent with electron trapping on the central As3+ ion of a substitutional (AsO3)3- group after removal of an O2 atom. These results confirm lattice-bound As5+ and As3+ in gypsum and point to potential application of this mineral for immobilization and removal of arsenic pollution.

  20. Electron induced surface chemistry at the Cs/sapphire interface

    SciTech Connect

    Zavadil, K.R.; Ing, J.L.

    1996-03-01

    Electron induced etching of sapphire in the presence of Cs has been studied using a variety of surface analytical techniques. We find that this process occurs on both the (0001) and (1{bar 1}02) orientations of sapphire. Monolayer amounts of Al and sub-oxides of Al are thermally desorbed from the surface at temperatures as low as 1000 K when the surface is irradiated with electrons in the presence of Cs. Etching is highly dependent on Cs coverage with the (0001) and (1{bar 1}02) surfaces requiring 2.0{times}10{sup 14} and 3.4{times}10{sup 14} atoms/cm{sup 2} to support etching, respectively. Adsorption profiles demonstrate that these coverages correspond to initial saturation of the surface with Cs. Electron damage of the surface in the absence of Cs also produces desorption of Al and sub-oxides of Al, indicating a possible mechanism for etching. The impact of etching on the surface is to increase the adsorption capacity on the (0001) surface while decreasing both initial adsorption probability and capacity on the (1{bar 1}02) surface. {copyright} {ital 1996 American Institute of Physics.}

  1. Valence state of Ti in conductive nanowires in sapphire

    SciTech Connect

    Mizoguchi, Teruyasu; Nakamura, Atsutomo; Matsunaga, Katsuyuki; Ikuhara, Yuichi; Sakurai, Masaki; Tanaka, Isao; Yamamoto, Takahisa

    2004-10-15

    In order to reveal the valence state of Ti in conductive nanowires in sapphire, near-edge x-ray-absorption fine structures (NEXAFS) were observed. From experimental and theoretical studies on NEXAFS of reference compounds including rutile, anatase, and Ti{sub 2}O{sub 3}, it was found that the valence state of Ti can be identified by regarding the positions of the spectral onset and the shoulder in the main peak of Ti-K NEXAFS. The valence states of Ti doped Al{sub 2}O{sub 3} polycrystalline specimens which were annealed at oxidized and reduced atmospheres were determined to be +4 and +3, respectively. The solubility limit of Ti in Al{sub 2}O{sub 3} polycrystal was found to be between 1000 ppm to 1.0% at the both atmospheres. The spectrum from Ti nanowires in sapphire has a lot of similarities to the reduced specimen, the valence state was therefore concluded to be +3.

  2. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  3. Surface Functionalized Graphene Biosensor on Sapphire for Cancer Cell Detection.

    PubMed

    Joe, Daniel J; Hwang, Jeonghyun; Johnson, Christelle; Cha, Ho-Young; Lee, Jo-Won; Shen, Xiling; Spencer, Michael G; Tiwari, Sandip; Kim, Moonkyung

    2016-01-01

    Graphene has several unique physical, optical and electrical properties such as a two-dimensional (2D) planar structure, high optical transparency and high carrier mobility at room temperature. These make graphene interesting for electrical biosensing. Using a catalyst-free chemical vapor deposition (CVD) method, graphene film is grown on a sapphire substrate. There is a single or a few sheets as confirmed by Raman spectroscopy and atomic force microscopy (AFM). Electrical graphene biosensors are fabricated to detect large-sized biological analytes such as cancer cells. Human colorectal carcinoma cells are sensed by the resistance change of an active bio-functionalized graphene device as the cells are captured by the immobilized antibody surface. The functionalized sensors show an increase in resistance as large as ~20% of the baseline with a small number of adhered cells. This study suggests that the bio-functionalized electrical graphene sensors on sapphire, which is a highly transparent material, can potentially detect circulating tumor cells (CTCs) and monitor cellular electrical behavior while being compatible with fluorescence-based optical-detection bioassays.

  4. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates

    NASA Astrophysics Data System (ADS)

    Ryu, H. Y.; Jeon, K. S.; Kang, M. G.; Yuh, H. K.; Choi, Y. H.; Lee, J. S.

    2017-04-01

    We investigated the efficiency droop and polarization-induced internal electric field of InGaN blue light-emitting diodes (LEDs) grown on silicon(111) and c-plane sapphire substrates. The efficiency droop of the LED sample grown on silicon substrates was considerably lower than that of the identically fabricated LED sample grown on sapphire substrates. Consequently, the LED on silicon showed higher efficiency at a sufficiently high injection current despite the lower peak efficiency caused by the poorer crystal quality. The reduced efficiency droop for the LED on silicon was attributed to its lower internal electric field, which was confirmed by reverse-bias electro-reflectance measurements and numerical simulations. The internal electric field of the multiple quantum wells (MQWs) on silicon was found to be reduced by more than 40% compared to that of the MQWs on sapphire, which resulted in a more homogenous carrier distribution in InGaN MQWs, lower Auger recombination rates, and consequently reduced efficiency droop for the LEDs grown on the silicon substrates. Owing to its greatly reduced efficiency droop, the InGaN blue LED on silicon substrates is expected to be a good cost effective solution for future lighting technology.

  5. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    SciTech Connect

    Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.

  6. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates

    PubMed Central

    Ryu, H. Y.; Jeon, K. S.; Kang, M. G.; Yuh, H. K.; Choi, Y. H.; Lee, J. S.

    2017-01-01

    We investigated the efficiency droop and polarization-induced internal electric field of InGaN blue light-emitting diodes (LEDs) grown on silicon(111) and c-plane sapphire substrates. The efficiency droop of the LED sample grown on silicon substrates was considerably lower than that of the identically fabricated LED sample grown on sapphire substrates. Consequently, the LED on silicon showed higher efficiency at a sufficiently high injection current despite the lower peak efficiency caused by the poorer crystal quality. The reduced efficiency droop for the LED on silicon was attributed to its lower internal electric field, which was confirmed by reverse-bias electro-reflectance measurements and numerical simulations. The internal electric field of the multiple quantum wells (MQWs) on silicon was found to be reduced by more than 40% compared to that of the MQWs on sapphire, which resulted in a more homogenous carrier distribution in InGaN MQWs, lower Auger recombination rates, and consequently reduced efficiency droop for the LEDs grown on the silicon substrates. Owing to its greatly reduced efficiency droop, the InGaN blue LED on silicon substrates is expected to be a good cost effective solution for future lighting technology. PMID:28401941

  7. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates.

    PubMed

    Ryu, H Y; Jeon, K S; Kang, M G; Yuh, H K; Choi, Y H; Lee, J S

    2017-04-12

    We investigated the efficiency droop and polarization-induced internal electric field of InGaN blue light-emitting diodes (LEDs) grown on silicon(111) and c-plane sapphire substrates. The efficiency droop of the LED sample grown on silicon substrates was considerably lower than that of the identically fabricated LED sample grown on sapphire substrates. Consequently, the LED on silicon showed higher efficiency at a sufficiently high injection current despite the lower peak efficiency caused by the poorer crystal quality. The reduced efficiency droop for the LED on silicon was attributed to its lower internal electric field, which was confirmed by reverse-bias electro-reflectance measurements and numerical simulations. The internal electric field of the multiple quantum wells (MQWs) on silicon was found to be reduced by more than 40% compared to that of the MQWs on sapphire, which resulted in a more homogenous carrier distribution in InGaN MQWs, lower Auger recombination rates, and consequently reduced efficiency droop for the LEDs grown on the silicon substrates. Owing to its greatly reduced efficiency droop, the InGaN blue LED on silicon substrates is expected to be a good cost effective solution for future lighting technology.

  8. High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.

    1997-01-01

    A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.

  9. Interface Characteristics of Sapphire Direct Bonding for High-Temperature Applications.

    PubMed

    Li, Wangwang; Liang, Ting; Chen, Yulei; Jia, Pinggang; Xiong, Jijun; Hong, Yingping; Lei, Cheng; Yao, Zong; Qi, Lei; Liu, Wenyi

    2017-09-11

    In this letter, we present a sapphire direct bonding method using plasma surface activation, hydrophilic pre-bonding, and high temperature annealing. Through the combination of sapphire inductively coupled plasma etching and the direct bonding process, a vacuum-sealed cavity employable for high temperature applications is achieved. Cross-sectional scanning electron microscopy (SEM) research of the bonding interface indicates that the two sapphire pieces are well bonded and the cavity structure stays intact. Moreover, the tensile testing shows that the bonding strength of the bonding interface is in excess of 7.2 MPa. The advantage of sapphire direct bonding is that it is free from the various problems caused by the mismatch in the coefficients of thermal expansion between different materials. Therefore, the bonded vacuum-sealed cavity can be potentially further developed into an all-sapphire pressure sensor for high temperature applications.

  10. Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study.

    PubMed

    Lin, Jinru; Chen, Ning; Pan, Yuanming

    2013-11-19

    Struvite, a common biomineral and increasingly important fertilizer recovered from wastewater treatment plants, is capable of sequestering a wide range of heavy metals and metalloids, including arsenic. Inductively coupled plasma mass spectrometric (ICPMS) analyses and microbeam synchrotron X-ray fluororescence (μ-SXRF) mapping show that struvite formed under ambient conditions contains up to 547 ± 15 ppm As and that the uptake of As is controlled by pH. Synchrotron As K-edge XANES spectra measured at 20 K show that As(5+) is the predominant oxidation state in struvite, irrespective of Na2HAsO4·7H2O or NaAsO2 as the source for As. Modeling of As K-edge EXAFS data suggest that local structural distortion associated with the substitution of As(5+) for P(5+) in struvite reaches up to 3.75 Å. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated struvite disclose five [AsO3](2-) radicals and one [AsO4](2-) radical. These arsenic-centered oxyradicals are all readily attributed to form from diamagnetic [AsO4](3-) precursors during irradiation, providing further support for exclusive incorporation and local structural expansion beyond the first shell of As(5+) at the P site in struvite.

  11. Synthetic chloroplasts

    SciTech Connect

    Calvin, M.

    1980-06-01

    The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

  12. Laser welding of fused silica glass with sapphire using a non- stoichiometric, fresnoitic Ba2TiSi2O8·3 SiO2 thin film as an absorber

    NASA Astrophysics Data System (ADS)

    de Pablos-Martín, A.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2017-07-01

    Laser welding of dissimilar materials is challenging, due to their difference in coefficients of thermal expansion (CTE). In this work, fused silica-to-sapphire joints were achieved by employment of a ns laser focused in the intermediate Si-enriched fresnoitic glass thin film sealant. The microstructure of the bonded interphase was analyzed down to the nanometer scale and related to the laser parameters used. The crystallization of fresnoite in the glass sealant upon laser process leads to an intense blue emission intensity under UV excitation. This crystallization is favored in the interphase with the silica glass substrate, rather than in the border with the sapphire. The formation of SiO2 particles was confirmed, as well. The bond quality was evaluated by scanning acoustic microscopy (SAM). The substrates remain bonded even after heat treatment at 100 °C for 30 min, despite the large CTE difference between both substrates.

  13. High-contrast 2.0 Petawatt Ti:sapphire laser system.

    PubMed

    Chu, Yuxi; Liang, Xiaoyan; Yu, Lianghong; Xu, Yi; Xu, Lu; Ma, Lin; Lu, Xiaoming; Liu, Yanqi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-12-02

    We report on a 2.0 PW femtosecond laser system at 800 nm based on the scheme of chirped pulse amplification using Ti:sapphire crystals, which is the highest peak power ever achieved from a femtosecond laser system. Combining the index-matching cladding technique and the precise control of the time delay between the input seed pulse and pump pulses, the parasitic lasing in the final booster amplifier is effectively suppressed at the pump energy of 140 J at 527 nm. The maximum output energy from the final amplifier is 72.6 J, corresponding to a conversion efficiency of 47.2% from the pump energy to the output laser energy. The measured spectral width of the amplified output pulse from the final amplifier is 60.8 nm for the full width at half-maximum (FWHM) by controlling the spectral evolution in the amplifier chain, and the recompressed pulse duration is 26.0 fs. The technology of cross-polarized wave (XPW) is applied in a broadband front-end, and the pulse contrast is improved to ~1.5 × 10¹¹ (-100 ps before the main pulse) which is measured at 83 TW power level with a repetition rate of 5 HZ.

  14. Influence of defects and displacements in sapphire doped with Ag+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Zheng, Li-rong

    2015-12-01

    The Ag:Al2O3 composites are prepared by Ag+ ions implantation with the acceleration voltage of 35 kV. The formation of silver nanoparticle and the surface plasma resonance (SPR) effect are studied. The appearance of absorption bands demonstrates the formation of silver nanoparticles in Al2O3. Long-time sputtering due to the high fluency removes the surface layer, and the embedded Ag NPs appear on the surface though the majorities are in the deeper area. The fluorescence spectrum of Ag:Al2O3 evaluated by Gaussian fitting consists of three peaks: 365 nm, 403 nm and 471 nm. These bands should be attributed to defects produced by the matrix and embedded Ag+ ions. In addition, a strong peak at 693 nm is supposed to be R line for Al2O3 in the emission spectrum (VUV spectrum). The crystal structure and optical properties of ion implanted sapphire have been changed after ion implantation and it is analyzed by defects and displacements. Eventually, the SRIM program is used to simulate the growth of nanoparticles with four stages.

  15. Defects creation in sapphire by swift heavy ions: A fluence depending process

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Meftah, A.; Stoquert, J. P.; Toulemonde, M.; Monnet, I.

    2009-03-01

    Single crystals of sapphire (α-Al 2O 3) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 × 10 11 and 2 × 10 14 ions/cm 2. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F + centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 10 13 ions/cm 2 and then, a slow increase for higher fluences. For fluences less than 10 13 ions/cm 2, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thévenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 10 13-10 14 ions/cm 2, the F centers defects creation process is found to be different from the one evidenced for fluences less than 10 13 ions/cm 2.

  16. Synthetic Botany.

    PubMed

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Purification of Al(OH)3 synthesized by Bayer process for preparation of high purity alumina as sapphire raw material

    NASA Astrophysics Data System (ADS)

    Park, No-Kuk; Choi, Hee-Young; Kim, Do-Hyeong; Lee, Tae Jin; Kang, Misook; Lee, Won Gun; Kim, Heun Duk; Park, Joon Woo

    2013-06-01

    To produce high purity alumina as the raw material for sapphire growth, gibbsite, which is the precursor for the synthesis of alumina, was synthesized by the Bayer process, and treated with an acid solution to remove the sodium component. In this study, the digestion process was carried out under the following conditions: an Al/Na ratio of 0.9 with a 5 N NaOH solution and a temperature of 140 °C. Bauxite containing 75 wt% alumina was converted to a sodium aluminate solution, and 60 wt% of the dissolved aluminate was crystallized to gibbsite. The sodium content in the gibbsite, which was measured by inductively coupled plasma/optical emission spectroscopy, was reduced by approximately 5700 ppm and below 2900 ppm after the water washing and acid treatments, respectively. The sodium content decreased with increasing acid concentration in the solution, temperature and acid treatment time.

  18. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    NASA Astrophysics Data System (ADS)

    Hsiao, Ching-Lien; Liu, Ting-Wei; Wu, Chien-Ting; Hsu, Hsu-Cheng; Hsu, Geng-Ming; Chen, Li-Chyong; Shiao, Wen-Yu; Yang, C. C.; Gällström, Andreas; Holtz, Per-Olof; Chen, Chia-Chun; Chen, Kuei-Hsien

    2008-03-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20K shows a peak at a very low energy, 0.636eV, and an absorption edge at ˜0.62eV is observed at 2K, which is the lowest bandgap reported to date among the III-nitride semiconductors.

  19. Wetting of the (0001) α-Al2O3 Sapphire Surface by Molten Aluminum: Effect of Surface Roughness

    NASA Astrophysics Data System (ADS)

    Aguilar-Santillan, Joaquin

    2010-03-01

    The wetting of molten aluminum on the “ c”-plane (0001) of single-crystal α-Al2O3 (sapphire) was studied by the sessile drop technique from 800 °C (1073 K) to 1200 °C (1473 K). Systematically increasing the (0001) surface roughness by SiC abrasion increased the wetting contact angle, resulting in reduced wetting. The surface roughness factor R originally defined by Wenzel, was determined as a function of the abrasion, temperature, and time. The wetting decreases as the surface roughness increases. Rough surfaces also create time and temperature effects on wetting, changing those for a smoothly polished surface. The existence of a high-temperature surface structural transition for (0001) of α-Al2O3, which has been previously suggested, was confirmed. Increased roughness R accents the effect of the surface structural transition, increasing the wetting contact angle changes during the transition.

  20. Epitaxial Nd-doped α-(Al(1-x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers.

    PubMed

    Kumaran, Raveen; Tiedje, Thomas; Webster, Scott E; Penson, Shawn; Li, Wei

    2010-11-15

    Single-crystal aluminum-gallium oxide films have been grown by molecular beam epitaxy in the corundum phase. Films of the (Al(1-x)Ga(x))(2)O(3) alloys doped with neodymium have favorable properties for solid-state waveguide lasers, including a high-thermal-conductivity sapphire substrate and a dominant emission peak in the 1090-1096 nm wavelength range. The peak position is linearly correlated to the unit cell volume, which is dependent on film composition and stress. Varying the Ga-Al alloy composition during growth will enable the fabrication of graded-index layers for tunable lasing wavelengths and low scattering losses at the interfaces.

  1. High-temperature sapphire optical sensor fiber coatings

    NASA Astrophysics Data System (ADS)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  2. Response to “Comment on ‘Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate’ ” [J. Appl. Phys. 112, 016101 (2012)

    DOE PAGES

    Zhao, X.; Philips, L.; Reece, C. E.; ...

    2012-07-01

    Welander is correct about the misidentified crystal-directions in the top-view sapphire lattice (Fig. 4 [Zhao et al., J. Appl. Phys. 110, 033523 (2011)]). He is also correct about the misorientation of the pole figures in Fig. 4. In Fig. 1 of this response, we have corrected these errors. Perhaps because of these errors, Welander misconstrued our discussion of the Nbcrystal growth as claiming a new 3D registry. That was not our intention. Rather, we wished to highlight the role of energetic condensation that drives low-defect crystal growth by a combination of non-equilibrium sub-plantation that disturbs the substrate lattice and thermalmore » annealing that annihilates defects and promotes large-grain crystal growth.« less

  3. Heteroepitaxy mechanisms of AlN on nitridated c- and a-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Funato, Mitsuru; Shibaoka, Mami; Kawakami, Yoichi

    2017-02-01

    We investigate the metalorganic vapor phase epitaxy of c-oriented AlN on c- and a-plane sapphire substrates, focusing on the effect of sapphire nitridation on the AlN structure. Prior to AlN growth, the sapphire surface is subjected to nitridation via an in-situ NH3 treatment. We demonstrate that nitridation without H2 thermal etching treatment realizes high quality AlN on both c- and a-plane sapphires, indicating that a reaction between NH3 and oxygen on the sapphire surface is a critical factor in the material growth. It is proposed that nitridation initially creates nanometer-scale inversion domains in the AlN epilayer, but as growth proceeds, the N-polar domains are annihilated, leaving voids. Such growth behaviors can be regarded as spontaneous selective area growth with strain-adsorbing void formation, and lead to crack-free, ˜5 μm thick AlN layers, which produce x-ray line widths as narrow as 180 and 483 arc sec for the (0002) and ( 10 1 ¯ 2 ) reflections, respectively, on c-plane sapphire, and 237 and 433 arc sec for these reflections on a-plane sapphire.

  4. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an

    2017-01-01

    Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

  5. A lead-on-sapphire superconducting cavity of superior quality

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Strayer, D. M.; Dick, G. J.; Mercereau, J. E.

    1986-01-01

    A cavity consisting of a superconducting lead film on a sapphire substrate has been fabricated to obtain the enhanced frequency stability possible with this configuration. The cavity exhibits a quality value Q exceeding 2 x 10 to the 9th in its TE011 mode with a resonant frequency of 2.689 GHz. Methods of fabrication and testing of the cavity are presented. Since the interface between the film and substrate is exposed ot the full value of the resonant magnetic field, the present experiment is the most sensitive test to date for enhanced losses at the interface itself. No evidence of such losses is used. In fact, the measured values of the surface resistance match very well predictions for RF losses based on the BCS theory.

  6. Different routes to chaos in the Ti:sapphire laser

    SciTech Connect

    Kovalsky, Marcelo G.; Hnilo, Alejandro A.

    2004-10-01

    Kerr-lens mode-locked, femtosecond Ti:sapphire lasers can operate in two coexistent pulsed modes of operation, named P1 (transform limited output pulses) and P2 (chirped output pulses). We study, both theoretically and experimentally, the transition to chaotic behavior for each of these two modes of operation as the net intracavity group velocity dispersion parameter approaches to zero. We find that P1 reaches chaos through a quasiperiodic route, while P2 does it through intermittency. The modulation frequencies involved, the size of the transition regions in the parameter's space, and the embedding and correlation dimensions of the attractors (and also the kurtosis for the intermittent regime) are theoretically predicted and also measured, showing a satisfactory agreement. We consider that this finding of a low-dimensional system of widespread practical use with (at least) two coexistent chaotic scenarios will have a broad impact on the studies on nonlinear dynamics.

  7. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  8. How edge finish effects the strength of sapphire

    NASA Astrophysics Data System (ADS)

    Jacoby, Keith T.; Goodrich, Steven M.

    2005-05-01

    Exotic Electro-Optics (EEO) has completed a study of how the edge finish of an A-plane sapphire sample affects its flexural strength when tested using the 4-point bend test method. Flexural bar samples were fabricated out of a sapphire panel that was polished to production quality using EEO's standard production methods. All samples were configured to meet the requirements for a C-size sample as defined by ASTM C-1161. The only difference between the three sample groups was the edge finish applied to the sample - conventionally ground, fine ground or a commercial polish edge finish. The edge finish on each sample was quantitatively characterized prior to strength testing. All samples were visually inspected prior to testing to identify any potential fracture initiation points. The samples were then tested using an Instron Universal tester per ASTM C-1161 in the UDRI Ceramics and Glasses Laboratory. After testing, a visual inspection was performed to identify the fracture initiation surface and location. Observations confirmed that all sample data was valid (all fractures initiated inside the two inner load dowels), no fractures were initiated on the edges, and no fractures initiated at any of the suspect sites noted in the pre-test visual inspection. The data was post processed using standard statistical and Weibull analysis methodologies. The results showed no significant difference when comparing the flexural strength of the three edge finish groups. The data suggest that the surface quality of the planar surfaces and the bevels is more critical than the finish of the full edge.

  9. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  10. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  11. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  12. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  13. [The design of all solid-state tunable pulsed Ti:sapphire laser system].

    PubMed

    Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing

    2013-05-01

    This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.

  14. Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging

    NASA Astrophysics Data System (ADS)

    Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.

    2004-03-01

    Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.

  15. Deep UV AlGaN light emitting diodes grown by gas source molecular beam epitaxy on sapphire and AlGaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Nikishin, S.; Borisov, B.; Kuryatkov, V.; Usikov, A.; Dmitriev, V.; Holtz, M.

    2006-02-01

    We report the electrical and optical properties of deep ultraviolet light emitting diodes (LEDs) based on digital alloy structures (DAS) of AlN/Al 0.08Ga 0.92N grown by gas source molecular beam epitaxy with ammonia on sapphire substrates and AlGaN/sapphire templates. AlGaN/sapphire templates were grown by recently developed stress controlled hydride vapor phase epitaxy (HVPE). For DAS with effective bandgap of 5.1 eV we obtain room temperature electron concentrations up to 1x10 19 cm -3 and hole concentrations of 1x10 18 cm -3. Based on these results we prepared double heterostructure (DHS) LEDs operating in the range of 250 to 290 nm. The emission wavelengths were controlled through the effective bandgap of the active region. The possible ways for increase of LED's efficiency are discussed. We observed significant improvement in the room temperature luminescence efficiency (by factor of 100) of AlGaN quantum wells when a transition growth mode is induced by reduced flux of ammonia. We found that active layer grown on HVPE AlGaN/sapphire substrates have higher luminescence efficiency (by factor of 3) than DAS grown on sapphire.

  16. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  17. Influence of the X-site composition on tourmaline's crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Berryman, E. J.; Wunder, B.; Ertl, A.; Koch-Müller, M.; Rhede, D.; Scheidl, K.; Giester, G.; Heinrich, W.

    2016-02-01

    The crystal structures of synthetic K-dravite [XKYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)], dravite [XNaYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)], oxy-uvite [XCaYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W O], and magnesio-foitite [X☐Y(Mg2Al)ZAl 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)] are investigated by polarized Raman spectroscopy, single-crystal structure refinement (SREF), and powder X-ray diffraction. The use of compositionally simple tourmalines characterized by electron microprobe analysis facilitates the determination of site occupancy in the SREF and band assignment in the Raman spectra. The synthesized K-dravite, oxy-uvite, and magnesio-foitite have significant Mg-Al disorder between their octahedral sites indicated by their respective average < Y-O> and < Z-O> bond lengths. The Y- and Z-site compositions of oxy-uvite (YMg1.52Al1.48(10) and ZAl4.90Mg1.10(15)) and magnesio-foitite (YAl1.62Mg1.38(18) and ZAl4.92Mg1.08(24)) are refined from the electron densities at each site. The Mg-Al ratio of the Y and Z sites is also determined from the relative integrated peak intensities of the Raman bands in the O-H stretching vibrational range (3250-3850 cm-1), producing values in good agreement with the SREF data. The unit cell volume of tourmaline increases from magnesio-foitite (1558.4(3) Å3) to dravite (1569.5(4)-1571.7(3) Å3) to oxy-uvite (1572.4(2) Å3) to K-dravite (1588.1(2) Å3), mainly due to lengthening of the crystallographic c-axis. The increase in the size of the X-site coordination polyhedron from dravite (Na) to K-dravite (K) is accommodated locally in the crystal structure, resulting in the shortening of the neighboring O1- H1 bond. In oxy-uvite, Ca2+ is locally associated with a deprotonated W (O1) site, whereas vacant X sites are neighbored by protonated W ( O1) sites. Increasing the size of the X-site-occupying ion does not detectably affect bonding between the other sites; however, the higher charge of Ca and the deprotonated W ( O1) site in

  18. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing.

    PubMed

    Li, Qian-Kun; Cao, Jia-Ji; Yu, Yan-Hao; Wang, Lei; Sun, Yun-Lu; Chen, Qi-Dai; Sun, Hong-Bo

    2017-02-01

    Herein, we report a facile approach for the maskless production of subwavelength-structured antireflective surfaces on sapphire with high and broadband transmittance in the mid-IR: femtosecond laser direct writing assist with wet etching. With this method, inverted pyramid and cone arrays with a pitch of about 2 μm and a total height of near 900 nm on the sapphire were produced. The resulting subwavelength structures greatly suppress specular reflection at normal incidence. The transmission measurements between 3 and 5 μm are in agreement with the simulations performed using VirtualLab, and the transmittance reached a maximum value of 92.5% at 4 μm. The sapphire with subwavelength structures also exhibits angle-independent transmittance characteristics up to a high θ=60°. Therefore, these subwavelength structures on sapphire are of great technological importance in mid-IR optics, especially for the harsh-condition-applicable windows of military mid-IR devices.

  19. Sapphire decomposition and inversion domains in N-polar aluminum nitride

    SciTech Connect

    Hussey, Lindsay White, Ryan M.; Kirste, Ronny; Bryan, Isaac; Guo, Wei; Osterman, Katherine; Haidet, Brian; Bryan, Zachary; Bobea, Milena; Collazo, Ramón; Sitar, Zlatko; Mita, Seiji

    2014-01-20

    Transmission electron microscopy (TEM) techniques and potassium hydroxide (KOH) etching confirmed that inversion domains in the N-polar AlN grown on c-plane sapphire were due to the decomposition of sapphire in the presence of hydrogen. The inversion domains were found to correspond to voids at the AlN and sapphire interface, and transmission electron microscopy results showed a V-shaped, columnar inversion domain with staggered domain boundary sidewalls. Voids were also observed in the simultaneously grown Al-polar AlN, however no inversion domains were present. The polarity of AlN grown above the decomposed regions of the sapphire substrate was confirmed to be Al-polar by KOH etching and TEM.

  20. The MSFC silicon gate silicon-on-sapphire standard cell library

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A pictorial representation of the MSFC silicon-on-sapphire standard cell library is presented. The cells are intended to be used with the PR2D (Place, Route in 2 Dimensions) automatic layout computer program.