Sample records for synthetic sapphire crystal

  1. Morphological stability of sapphire crystallization front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranov, V. V., E-mail: baranov.isc@gmail.com; Nizhankovskyi, S. V.

    2016-03-15

    The main factors and specificity of growth conditions for sapphire and Ti:sapphire crystals, which affect the morphological stability of the crystal–melt interface, have been investigated with allowance for the concentration and radiative melt supercooling. It is shown that the critical sapphire growth rate is determined to a great extent by the optical transparency of the melt and the mixing conditions near the crystallization front.

  2. Neutron Transmission of Single-crystal Sapphire Filters

    NASA Astrophysics Data System (ADS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  3. Complex Investigations of Sapphire Crystals Production

    NASA Astrophysics Data System (ADS)

    Malyukov, S. P.; Klunnikova, Yu V.

    The problem of optimum conditions choice for processing sapphire substrates was solved with optimization methods and with combination of analytical simulation methods, experiment and expert system technology. The experimental results and software give rather full information on features of real structure of the sapphire crystal substrates and can be effectively used for optimization of technology of the substrate preparation for electronic devices.

  4. Modal reduction in single crystal sapphire optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yujie; Hill, Cary; Liu, Bo

    2015-10-12

    A new type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high and low index regions in the azimuthal direction. The structure retains a “core” region of pure single crystal (SC) sapphire in the center of the fiber and a “cladding” region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying themore » effective core diameter and the dimensions of the “windmill” shaped cladding. The simulation results showed that the number of guided modes were significantly reduced in the “windmill” fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the “windmill” SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.« less

  5. Modern trends in crystal growth and new applications of sapphire

    NASA Astrophysics Data System (ADS)

    Akselrod, Mark S.; Bruni, Frank J.

    2012-12-01

    We provide an overview of the latest market trends and modern competing methods of sapphire crystal growth and the application of sapphire wafers as LED substrates. Almost all methods of high temperature growth from the melt are suitable for sapphire production, but each of these methods has its advantages and disadvantages depending on the application and required finished product form factor. Special attention is paid to the review of defects and imperfections that allow the engineering of new active devices based on sapphire.

  6. A peek into the history of sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near

  7. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  8. Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Murakami, Rikito; Kochurikhin, Vladimir V.; Luidmila, Gushchina; Jin Kim, Kyoung; Shoji, Yasuhiro; Yamaji, Akihiro; Kurosawa, Shunsuke; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2018-06-01

    This paper addresses several aspects of the μ-PD growth technology as applied to submillimeter diameter sapphire tubes for UFD application. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. A compound crucible made possible the growth of single crystal sapphire tube as small as around 0.70-0.72 mm in outer diameter and 0.28-0.29 in inner diameter over 160 mm in length at growth rate of 2-4 mm/min along 〈0 0 1〉 direction. An Ir crucible with a die composed of an equivalent hole and Ir wire was heated by RF coil in N2 atmosphere. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. Grown crystal tube showed good XRC value of 30.2 arcsec.

  9. Sapphire shaped crystals for laser-assisted cryodestruction of biological tissues

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Dubyanskaya, E. N.; Kuznetsov, A. A.; Katyba, G. M.; Dolganova, I. N.; Mukhina, E. E.; Chernomyrdin, N. V.; Zaytsev, K. I.; Tuchin, V. V.; Kurlov, V. N.

    2018-04-01

    We have developed cryo-applicators based on the sapphire shaped crystals fabricated using the edge-defined film-fed growth (EFG) and noncapillary shaping (NCS) techniques. Due to the unique physical properties of sapphire: i.e. high thermal, mechanical, and chemical strength, impressive thermal conductivity and optical transparency, these cryo-applicators yield combination of the tissue cryo-destruction with its exposure to laser radiation for controlling the thermal regimes of cryosurgery, and with the optical diagnosis of tissue freezing. We have applied the proposed sapphire cryo-applicators for the destruction of tissues in vitro. The observed results highlight the prospectives of the sapphire cryo-applicators in cryosurgery.

  10. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  11. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    NASA Astrophysics Data System (ADS)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  12. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, Gary; Scott, Brian; Wang, Anbo

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, frommore » April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal

  13. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 μm.

    PubMed

    Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-01-08

    A composite crystal consisting of a 1.5-mm-thick Er:Yb:YAl 3 (BO 3 ) 4 crystal between two 1.2-mm-thick sapphire crystals was fabricated by the thermal diffusion bonding technique. Compared with a lone Er:Yb:YAl 3 (BO 3 ) 4 crystal measured under the identical experimental conditions, higher laser performances were demonstrated in the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal due to the reduction of the thermal effects. End-pumped by a 976 nm laser diode in a hemispherical cavity, a 1.55 μm continuous-wave laser with a maximum output power of 1.75 W and a slope efficiency of 36% was obtained in the composite crystal when the incident pump power was 6.54 W. Passively Q-switched by a Co 2+ :MgAl 2 O 4 crystal, a 1.52 μm pulse laser with energy of 10 μJ and repetition frequency of 105 kHz was also realized in the composite crystal. Pulse width was 315 ns. The results show that the sapphire/Er:Yb:YAl 3 (BO 3 ) 4 /sapphire composite crystal is an excellent active element for 1.55 μm laser.

  14. Study on the temperature field of large-sized sapphire single crystal furnace

    NASA Astrophysics Data System (ADS)

    Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.

    2018-01-01

    In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.

  15. Neurosurgery contact handheld probe based on sapphire shaped crystal

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  16. Temperature and emissivity measurements at the sapphire single crystal fiber growth process

    NASA Astrophysics Data System (ADS)

    Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.

    2017-12-01

    We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.

  17. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  18. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  19. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  20. Numerical simulation of the distribution of individual gas bubbles in shaped sapphire crystals

    NASA Astrophysics Data System (ADS)

    Borodin, A. V.; Borodin, V. A.

    2017-11-01

    The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.

  1. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  2. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.

  3. The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

    NASA Astrophysics Data System (ADS)

    Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.

    2018-03-01

    Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.

  4. Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.

    PubMed

    Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto

    2016-11-21

    The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.

  5. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; ...

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 10 2-10 3 cm -2 and a small area with approximately 2*2 mm 2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growthmore » rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality.« less

  6. Control of melt-crystal interface shape during sapphire crystal growth by heat exchanger method

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Liu, Lijun; Ma, Wencheng

    2017-09-01

    We numerically investigate the melt-crystal interface shape during the early stage of the solidification process when the crystal diameter increases. The contact angle between the melt-crystal interface and the crucible bottom wall is found obtuse during this stage, which is unfavorable for the crystal quality. We found that the obtuse contact angle is caused by the thermal resistance difference between the sapphire crystal and melt as well as the insufficient cooling effect of the crucible bottom. Two approaches are proposed to suppress the obtuse contact angle. The first approach is to increase the emissivity of the outer surface of crucible bottom. The second approach is to install a heat shield near the crucible bottom. The reduction of the emissivity of the heat shield is also favorable for the suppression of the obtuse contact angle. Compared with the increase of the emissivity of the crucible bottom, the installation of a heat shield is a more effective approach to prevent the appearance of an obtuse contact angle for the sake of reliability since a molybdenum heat shield can be reused and will not induce other impurities.

  7. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  8. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  9. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2016-10-01

    We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  10. Evolution of the sapphire industry: Rubicon Technology and Gavish

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2009-05-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Stepanov in the Soviet Union published his sapphire growth method in 1959. Edge-Defined Film-Fed Growth (EFG), which is similar to the Stepanov method, was developed by H. Labelle in the U. S. in the 1960s and 1970s. The Heat Exchanger Method (HEM), invented by F. Schmid and D. Viechnicki in 1967 was commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) proposed by Kh. S. Bagdasorov in the Soviet Union in the 1960s was further developed at the Institute for Single Crystals in Ukraine. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s and 1980s. At the Institute for Single Crystals in Ukraine, E. Dobrovinskaya characterized Verneuil, Czochralsky, Bagdasarov, and GOI sapphire. In 1995, she emigrated to the United States and joined S&R Rubicon, founded near Chicago by R. Mogilevsky initially to import sapphire and ruby. Mogilevsky began producing sapphire by the Kyropoulos method in 1999. In 2000 the company name was changed to Rubicon Technology. Today, Dobrovinskaya is Chief Scientist and Rubicon produces high quality Kyropoulos sapphire substrates for solid-state lighting. In 1995, H. Branover of Ben Gurion University and a sole investor founded Gavish, which is Hebrew for "crystal." They invited another veteran of the Ukrainian Institute for Single Crystals, V. Pishchik, to become Chief Scientist. Under Pishchik's technical leadership and J. Sragowicz's business leadership, Gavish now

  11. Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser.

    PubMed

    Burton, Harry; Debardelaben, Christopher; Amir, Wafa; Planchon, Thomas A

    2017-03-20

    The fluorescence spectra of titanium doped sapphire (Ti:Sapphire) crystals were measured for temperature ranging from 300K to 77K. The resulting gain cross-section line shapes were calculated and used in a three-dimensional amplification model to illustrate the importance of the precise knowledge of these fluorescence spectra for the design of cryogenic cooled Ti:Sapphire based chirped-pulse laser amplifiers.

  12. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  13. High performance sapphire windows

    NASA Astrophysics Data System (ADS)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  14. Rocking curve imaging of high quality sapphire crystals in backscattering geometry

    DOE PAGES

    Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...

    2017-01-23

    Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10 -4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10 -8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areasmore » exhibit a relative difference in the lattice parameters on the order of deltad/d = 10-20.10 -8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less

  15. Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  16. Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power

    NASA Astrophysics Data System (ADS)

    Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker

    2005-10-01

    A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.

  17. Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.

    PubMed

    Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker

    2005-10-03

    A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.

  18. Petrogenesis of alkaline basalt-hosted sapphire megacrysts. Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R. O. C.; Wirth, R.; Geisler, T.; Nagel, T.

    2017-06-01

    Megacrystic sapphires are frequently associated with alkaline basalts, most notably in Asia and Australia, although basalt is not generally normative in corundum. Most of these sapphire occurrences are located in alluvial or eluvial deposits, making it difficult to study the enigmatic relationship between the sapphires and their host rocks. Here, we present detailed petrological and geochemical investigations of in situ megacrystic sapphires within alkaline basalts from the Cenozoic Siebengebirge Volcanic Field (SVF) in Germany. Markedly, the sapphires show several micrometer thick spinel coronas at the contact with the host basalt, indicating chemical disequilibrium between the sapphire and the basaltic melt, supporting a xenogenetic relationship. However, in situ U-Pb dating of a Columbite Group inclusion within one Siebengebirge sapphire using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) indicates a close genetic relationship between sapphire crystallization and alkaline mafic volcanism in the SVF. The syngenetic mineral inclusion suite including carbonates, members of the Pyrochlore, Betafite and Columbite Groupe minerals, as well as a high abundance of HFSE and of gaseous low-density CO2 inclusions support a parentage of a highly evolved, MgO and FeO deficient carbonatitic melt. We identified CO2 to be the link between alkaline basaltic volcanism and the xenocrystic sapphires. Only alkaline volcanic suites can build up enough CO2 in this magma chamber upon fractionation so that at high degrees of fractionation a carbonatitic melt exsolves which in turn can crystallize sapphires.

  19. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  20. Surface-mount sapphire interferometric temperature sensor.

    PubMed

    Zhu, Yizheng; Wang, Anbo

    2006-08-20

    A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.

  1. Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates.

    PubMed

    Xu, Zai-Quan; Zhang, Yupeng; Lin, Shenghuang; Zheng, Changxi; Zhong, Yu Lin; Xia, Xue; Li, Zhipeng; Sophia, Ponraj Joice; Fuhrer, Michael S; Cheng, Yi-Bing; Bao, Qiaoliang

    2015-06-23

    Two-dimensional layered transition metal dichalcogenides (TMDs) show intriguing potential for optoelectronic devices due to their exotic electronic and optical properties. Only a few efforts have been dedicated to large-area growth of TMDs. Practical applications will require improving the efficiency and reducing the cost of production, through (1) new growth methods to produce large size TMD monolayer with less-stringent conditions, and (2) nondestructive transfer techniques that enable multiple reuse of growth substrate. In this work, we report to employ atmospheric pressure chemical vapor deposition (APCVD) for the synthesis of large size (>100 μm) single crystals of atomically thin tungsten disulfide (WS2), a member of TMD family, on sapphire substrate. More importantly, we demonstrate a polystyrene (PS) mediated delamination process via capillary force in water which reduces the etching time in base solution and imposes only minor damage to the sapphire substrate. The transferred WS2 flakes are of excellent continuity and exhibit comparable electron mobility after several growth cycles on the reused sapphire substrate. Interestingly, the photoluminescence emission from WS2 grown on the recycled sapphire is much higher than that on fresh sapphire, possibly due to p-type doping of monolayer WS2 flakes by a thin layer of water intercalated at the atomic steps of the recycled sapphire substrate. The growth and transfer techniques described here are expected to be applicable to other atomically thin TMD materials.

  2. Advances in sapphire optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.

    1993-01-01

    We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

  3. Characterization of AFB sapphire single crystal composites for infrared window application

    NASA Astrophysics Data System (ADS)

    Lee, H.-C.; Meissner, H. E.

    2007-04-01

    Next generation weapons platforms may require 30" x 30" sapphire windows. Since these sizes exceed what can be manufactured directly, a concept is proposed and experimental data are furnished in this report on the viability of increasing the window dimensions by Adhesive-Free-Bonding (AFB®) of smaller starting components by their edges. The bonding scheme has been evaluated for single crystal sapphire but is expected to also work equally well for other IR window materials. The bonding mechanism is explained with Van der Waals theory of attractive forces and confirmed experimentally by applying the bending plate theory. The gap at the interface between two components is deduced from the measured roughness of the polished surfaces that are brought into optical contact and subsequently heat-treated, and is estimated to be about 2 Å rms. Stress relief at AFB® interfaces has been established. Experimental data of flexural strength determined by four-point bending at room temperature is reported. The data indicates that AFB® composite specimens and equivalently prepared blank samples fracture at statistically same loads under standardized testing conditions. Failure of composites has not been observed at the interface and only at random flaws that are a result of sample preparation.

  4. Raman scattering in single-crystal sapphire at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Juddha; Liu, Bo; Woodruff, Steven D.

    Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less

  5. Raman scattering in single-crystal sapphire at elevated temperatures

    DOE PAGES

    Thapa, Juddha; Liu, Bo; Woodruff, Steven D.; ...

    2017-10-25

    Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less

  6. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  7. Method of Fabricating Double Sided Si(Ge)/Sapphire/III-Nitride Hybrid Structure

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2017-01-01

    One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic <111> direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated III-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.

  8. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  9. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than

  10. Tridimensional morphology and kinetics of etch pit on the {l_brace}0 0 0 1{r_brace} plane of sapphire crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lunyong; Sun Jianfei, E-mail: jfsun_hit@263.net; Zuo Hongbo

    2012-08-15

    The tridimensional morphology and etching kinetics of the etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal ({alpha}-Al{sub 2}O{sub 3}) in molten KOH were studied experimentally. It was shown that the etch pit takes on tridimensional morphologies with triangular symmetry same as the symmetric property of the sapphire crystal. Pits like centric and eccentric triangular pyramid as well as hexagonal pyramid were observed, but the latter is less in density. In-depth analyses show the side walls of the etch pits belong to the {l_brace}1 1{sup Macron} 0 2{sup Macron }{r_brace} family, and the triangular pit contains edgesmore » full composed by Al{sup 3+} ions on the etching surface so it is more stable than the hexagonal pit since its edges on the etching surface contains Al{sup 2+} ions. The etch pits developed in a manner of kinematic wave by the step moving with constant speed, which is controlled by the chemical reaction with activation energy of 96.6 kJ/mol between Al{sub 2}O{sub 3} and KOH. - Graphical abstract: Schematic showing the atomic configuration of the predicted side walls of regular triangular pyramid shaped etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal. Highlights: Black-Right-Pointing-Pointer Observed the tridimensional morphology of etch pits. Black-Right-Pointing-Pointer Figured out the atomic configuration origin of the etch pits. Black-Right-Pointing-Pointer Quantitatively determined the etch rates of the etch pits.« less

  11. Ti:sapphire - A theoretical assessment for its spectroscopy

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.

    2017-03-01

    This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.

  12. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  13. Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.

    2015-04-01

    Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.

  14. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  15. A Century of Sapphire Crystal Growth

    DTIC Science & Technology

    2004-05-17

    should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a collection of...and ruby were oxides of the elements aluminum and silicon.1 In 1817, J. L. Gay- Lussac found that pure aluminum oxide (also called alumina) could...thought to consist of Al2O3 and SiO2 •1817: Gay- Lussac : •1840: Rose: Found SiO2 in sapphire is from agate mortar used for grinding •1837-72: Gaudin

  16. An approach to crystallizing proteins by metal-mediated synthetic symmetrization

    PubMed Central

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B; Sawaya, Michael R; Cascio, Duilio; Yeates, Todd O

    2011-01-01

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures—eight for T4L and eight for MBP—displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest. PMID:21898649

  17. Strain Evolution of Annealed Hydrogen-Implanted (0001) Sapphire

    NASA Astrophysics Data System (ADS)

    Wong, Christine Megan

    Exfoliation is a technique used to remove a thin, uniform layer of material from the bulk that involves the annealing of hydrogen ion-implanted materials in order to initiate defect nucleation and growth leading to guided crack propagation. This study presents an investigation into the annealing process required to initiate blistering (an essential precursor to exfoliation) in (0001) sapphire implanted at room temperature with hydrogen ions. Triple axis x-ray diffraction was used to characterize the evolution of the implanted layer for single crystal (0001) sapphire substrates implanted at room temperature at 360 keV with either a 5x1016 cm -2 or 8x1016 cm-2 dose of hydrogen ions. A simulation of the ion distribution in TRIM estimated that the projected range and thickness of the implanted layer for both doses was approximately 2.2 mum. Following implantation, the implanted sapphire was annealed using a two-step annealing procedure. The first step was performed at a lower temperature, ideally to nucleate and coarsen defects. Temperatures investigated ranged from 550 - 650 °C. The second step was performed at a higher temperature (800 °C) to induce further defect coarsening and surface blistering. After all annealing steps, triple axis o/2theta and o scans were taken to observe any changes in the diffraction profile - namely, any reduction in the amplitude and shift in the location of the fringes associated with strain in the crystal - which would correlate with defect growth and nucleation. It was found that significant strain fringe reduction first occurred after annealing at 650 °C for 8 hours for both doses; however, it was not clear whether or not this strain reduction was due primarily to hydrogen diffusion or to recovery of other defects induced during the ion implantation. The o/2theta curves were then fit using Bede RADS in order to quantify the strain within the crystal and confirm the reduction of the strained layer within the crystal. Finally

  18. Ultrastructural studies of synthetic apatite crystals.

    PubMed

    Arends, J; Jongebloed, W L

    1979-03-01

    In this paper a survey is given of some ultrastructural properties of synthetic hydroxyapatite. The preparation method by which single crystals with a length in the range of 0.1-3.0mm and a defined purity and stoïchiometry can be produced is given. Two groups of materials are considered in detail: carbonate-rich (greater than 0.1% CO3) and low-carbonate hydroxyapatites. The experiments on carbonate-rich material, being the most interesting from a biological point of view, show that acids attack at an active site in the hexagonal basal-plane of the crystals. Later on the crystals dissolve in the center of the crystal parallel to the c-axis forming tube-like structures. The active site can be protected from dissolution if the crystals are pretreated by EHDP or MFP. A comparison with lattice defect theory shows that most likely dislocations of the "hollow-core" type are responsible for the preferential dissolution.

  19. Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping

    NASA Astrophysics Data System (ADS)

    Canova, F.; Chambaret, J.-P.

    2006-06-01

    One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.

  20. Site location and optical properties of Eu implanted sapphire

    NASA Astrophysics Data System (ADS)

    Marques, C.; Wemans, A.; Maneira, M. J. P.; Kozanecki, A.; da Silva, R. C.; Alves, E.

    2005-10-01

    Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 × 1016 cm-2. Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 °C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 °C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements.

  1. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2017-04-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  2. High-temperature effects on the light transmission through sapphire optical fiber

    DOE PAGES

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    2018-03-13

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  3. High-temperature effects on the light transmission through sapphire optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  4. Titanium-doped sapphire laser research and design study

    NASA Technical Reports Server (NTRS)

    Moulton, Peter F.

    1987-01-01

    Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.

  5. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    NASA Astrophysics Data System (ADS)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  6. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-07-01

    Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.

  7. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  8. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Copyright © 2015, American Association for the Advancement of Science.

  9. Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires.

    PubMed

    Xu, Mingkun; Xue, Zhaoguo; Wang, Jimmy; Zhao, Yaolong; Duan, Yao; Zhu, Guangyao; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-12-14

    The heteroepitaxial growth of crystal silicon thin films on sapphire, usually referred to as SoS, has been a key technology for high-speed mixed-signal integrated circuits and processors. Here, we report a novel nanoscale SoS heteroepitaxial growth that resembles the in-plane writing of self-aligned silicon nanowires (SiNWs) on R-plane sapphire. During a low-temperature growth at <350 °C, compared to that required for conventional SoS fabrication at >900 °C, the bottom heterointerface cultivates crystalline Si pyramid seeds within the catalyst droplet, while the vertical SiNW/catalyst interface subsequently threads the seeds into continuous nanowires, producing self-oriented in-plane SiNWs that follow a set of crystallographic directions of the sapphire substrate. Despite the low-temperature fabrication process, the field effect transistors built on the SoS-SiNWs demonstrate a high on/off ratio of >5 × 10 4 and a peak hole mobility of >50 cm 2 /V·s. These results indicate the novel potential of deploying in-plane SoS nanowire channels in places that require high-performance nanoelectronics and optoelectronics with a drastically reduced thermal budget and a simplified manufacturing procedure.

  10. Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo

    2014-09-01

    Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.

  11. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  12. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  13. Development of a sapphire fiber thermometer using two wavelength bands

    NASA Astrophysics Data System (ADS)

    Ye, Linhua; Shen, Yonghang

    1996-09-01

    This paper reports the development of a sapphire ((alpha) - Al2O3) single crystal optical fiber thermometer using two wavelength bands. A thin film of precious metal or ceramic deposited onto one end of the sapphire fiber forms a mini-radiation cavity. The other end of the sapphire fiber is coupled to a low-loss silica fiber. Radiation from the small cavity is transmitted along the silica fiber into a photodetection system which consists of a lens, beam splitter, two interference filters (820 nm and 940 nm center wavelength, 30 nm bandwidth) and two silicon photocells. The temperature measurement is based on the detection of radiation from the small cavity. The sapphire fiber (0.25 - 1.0 mm diameter, 100 - 450 mm length) was grown by the laser heated pedestal growth (LHPG) methods. Transmission loss in the sapphire fiber was experimentally measured. Theoretical analysis shows the apparent emittance of the small cavity with a length to diameter (L/D) ratio greater than eight is a constant value near to one, so the small cavity can be considered as a small black-body cavity. Using the developed sapphire fiber temperature sensor, we have built a sapphire fiber thermometer based on a 8098 single-chip microcomputer system. It was calibrated at some known stable temperature point and uses the fundamental radiation law to extrapolate to other temperatures. By taking the ratio of the optical power at two wavelengths, errors due to changes in the system, such as emissivity and transmission losses, can be canceled out. The thermometer has an operating temperature range of 800 to 1900 degrees Celsius, and an accuracy of 0.2% at 1000 degrees Celsius. There are a number of applications of the thermometer both in science and industry.

  14. Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire

    NASA Astrophysics Data System (ADS)

    Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.

    2018-01-01

    An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.

  15. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  16. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  17. High-Temperature Mechanical Properties of Cr(3+) Doped Sapphire Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, A.; QuispeCancapa, J. J.; deArellanoLopez, A. R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    High-temperature slow-crack growth of single crystal 10 wt% Cr2O3 - Al2O3 (nominal composition) fibers has been studied by tensile rupture experiments at 1400 C, under different stressing rates (0.5 to 41.5 MPa/s). Slow-crack growth (SCG) is less pronounced with increasing Cr2O3. Rupture stresses increased with the stressing rate from 397 MPa to 515 MPa, resulting in a SCG exponent, N=19. The Cr2O3 composition was analyzed by Energy Dispersed X-Ray Spectra (EDS) and fracture surfaces were studied by scanning electron microscopy (SEM). Results are compared with previous studies on 100-300 ppm Cr3(+) doped sapphire fibers and on commercial sapphire fibers.

  18. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less

  19. Visualization and Analysis of Impact Damage in Sapphire

    DTIC Science & Technology

    2011-11-01

    transparent armor materials like Starphire soda - lime and borosilicate glass [8], fused silica [9] and the transparent polycrystalline ceramic AlON...conventional glass -based armor when a transparent ceramic is used as strike face on a glass -polymer laminate [1, 2, 3]. Sapphire, i.e. single crystal aluminum...materials. Since part of transparent armor consists of brittle materials, the fragmentation of the ceramic and glass layers plays a key role in the

  20. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate.

    PubMed

    Radha, A V; Forbes, Tori Z; Killian, Christopher E; Gilbert, P U P A; Navrotsky, Alexandra

    2010-09-21

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC ⇒ anhydrous ACC ∼ biogenic anhydrous ACC ⇒ vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO(2) sequestration.

  1. Temporal intracavity detection of parasitic infrared absorption in Ti:Sapphire lasers

    NASA Astrophysics Data System (ADS)

    Deleva, A. D.; Peshev, Z. Y.; Aneva, Z. I.

    1993-12-01

    An intracavity technique with temporal sensitivity to optical losses is used to detect parasitic infrared absorption (PIRA) in Ti:sapphire crystals with high active-center concentrations. By means of comparative analysis, re-emission is established of part of the parasitically absorbed energy back into the laser action channel. A method is proposed for approximate quantitative determination of the relative part of re-emitting PIRA-centers with respect to their total number; for the highly-doped crystal described, it is estimated at about 11%.

  2. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  3. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  4. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  5. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    PubMed

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  6. Detection of beryllium treatment of natural sapphires by NRA

    NASA Astrophysics Data System (ADS)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  7. Crystallization and textural porosity of synthetic clay minerals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrado, K. A.; Csencsits, R.; Thiyagarajan, P.

    2002-12-01

    The crystallization of synthetic layered magnesium silicate hectorite clays from both silica sol and organosilane sources is compared. For the silica sol-derived clays, a templating method is employed wherein organic or polymeric molecules are included during clay crystallization that are then removed from the composites via calcination. The mechanism of silane-derived hectorite formation is followed by XRD, TGA, 29Si MAS NMR, and small angle X-ray scattering (SAXS), and results are compared to those obtained for the sol-derived hectorite. The mechanism appears to be similar but the rate is approximately doubled when the silane is used rather than silica sol. Analyticalmore » transmission electron microscopy (TEM) is exploited to glean structural morphology information towards resolving the nature of the resulting pore network structures. Results are compared with nitrogen adsorption-desorption isotherm behavior; dominant hysteresis loops are present in the type IV isotherms. Pore size distributions based on both the adsorption and desorption isotherms are compared. Small angle neutron scattering (SANS) experiments reveal that the average particle size increases as synthetic laponite < sol-derived hectorite < silane-derived hectorite < natural hectorite. Contrast matching SANS studies in aqueous and organic solvents are carried out to extract information about pore accessibility.« less

  8. Rhombohedral Super Hetero Epitaxy of Cubic SiGe on Trigonal c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Duzik, Adam J.

    2017-01-01

    New rhombohedral super-hetero-epitaxy technology was developed at NASA. This epitaxy technology enables the growth of unprecedented cubic-trigonal hybrid single crystal structures with lattice match on sapphire (Al2O3) substrates, hence with little strain and very few defects at the interface.

  9. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    PubMed

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  10. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate

    PubMed Central

    Radha, A. V.; Forbes, Tori Z.; Killian, Christopher E.; Gilbert, P. U. P. A.; Navrotsky, Alexandra

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC⇒anhydrous ACC ∼ biogenic anhydrous ACC⇒vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO2 sequestration. PMID:20810918

  11. High-temperature sensor instrumentation with a thin-film-based sapphire fiber.

    PubMed

    Guo, Yuqing; Xia, Wei; Hu, Zhangzhong; Wang, Ming

    2017-03-10

    A novel sapphire fiber-optic high-temperature sensor has been designed and fabricated based on blackbody radiation theory. Metallic molybdenum has been used as the film material to develop the blackbody cavity, owing to its relatively high melting point compared to that of sapphire. More importantly, the fabrication process for the blackbody cavity is simple, efficient, and economical. Thermal radiation emitted from such a blackbody cavity is transmitted via optical fiber to a remote place for detection. The operating principle, the sensor structure, and the fabrication process are described here in detail. The developed high-temperature sensor was calibrated through a calibration blackbody furnace at temperatures from 900°C to 1200°C and tested by a sapphire crystal growth furnace up to 1880°C. The experimental results of our system agree well with those from a commercial Rayteck MR1SCCF infrared pyrometer, and the maximum residual is approximately 5°C, paving the way for high-accuracy temperature measurement especially for extremely harsh environments.

  12. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  13. Sapphire Whispering Gallery Thermometer

    NASA Astrophysics Data System (ADS)

    Strouse, G. F.

    2007-12-01

    An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty ( k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from -196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C.

  14. Transient lateral photovoltaic effect in synthetic single crystal diamond

    NASA Astrophysics Data System (ADS)

    Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.

    2017-10-01

    A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.

  15. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  16. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  17. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  18. Growth and characterization of β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Maslov, V.; Stepanov, S. I.; Pechnikov, A. I.; Krymov, V.; Nikitina, I. P.; Guzilova, L. I.; Bougrov, V. E.; Romanov, A. E.

    2017-01-01

    Here we report on the growth and characterization of β-Ga2O3 bulk crystals and polycrystalline layer on different substrates. Bulk β-Ga2O3 crystals were produced by free crystallisation of gallium oxide melt in sapphire crucible. Transparent single crystals measuring up to 8 mm across were obtained. Good structural quality was confirmed by x-ray diffraction rocking curve FWHM values of 46″. Young's modulus, shear modulus and hardness of the β-Ga2O3 crystals were measured by nanoindentation and Vickers microindentation techniques. Polycrystalline β-Ga2O3 films were deposited on silicon and sapphire substrates by sublimation method. It was found that structure and morphology of the films were greatly influenced by the material and orientation of the substrates. The best results were achieved on a-plane sapphire substrates where predominantly (111) oriented films were obtained.

  19. Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)

    NASA Astrophysics Data System (ADS)

    Wadsworth, William J.; Coutts, David W.; Webb, Colin E.

    1999-11-01

    High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.

  20. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure

    2017-05-01

    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  1. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2007-10-09

    Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief tomore » transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice

  2. Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.

    2018-05-01

    Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.

  3. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  4. Temperature Compensated Sapphire Resonator for Ultrastable Oscillator Operating at Temperatures Near 77 Deg Kelvin

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Santiago, David G. (Inventor)

    1999-01-01

    A sapphire resonator for an ultrastable oscillator capable of substantial performance improvements over the best available crystal quartz oscillators in a compact cryogenic package is based on a compensation mechanism enabled by the difference between copper and sapphire thermal expansion coefficients for so tuning the resonator as to cancel the temperature variation of the sapphire's dielectric constant. The sapphire resonator consists of a sapphire ring separated into two parts with webs on the outer end of each to form two re-entrant parts which are separated by a copper post. The re-entrant parts are bonded to the post by indium solder for good thermal conductivity between parts of that subassembly which is supported on the base plate of a closed copper cylinder (rf shielding casing) by a thin stainless steel cylinder. A unit for temperature control is placed in the stainless steel cylinder and is connected to the subassembly of re-entrant parts and copper post by a layer of indium for good thermal conduction. In normal use, the rf shielding casing is placed in a vacuum tank which is in turn placed in a thermos flask of liquid nitrogen. The temperature regulator is controlled from outside the thermos flask to a temperature in a range of about 40K to 150K, such as 87K for the WGH-811, mode of resonance in response to microwave energy inserted into the rf shielding casing through a port from an outside source.

  5. Melt inclusions in alluvial sapphires from Montana, USA: Formation of sapphires as a restitic component of lower crustal melting?

    NASA Astrophysics Data System (ADS)

    Palke, Aaron C.; Renfro, Nathan D.; Berg, Richard B.

    2017-05-01

    We report here compositions of glassy melt inclusions hosted in sapphires (gem quality corundum) from three alluvial deposits in Montana, USA including the Rock Creek, Dry Cottonwood Creek, and Missouri River deposits. While it is likely that sapphires in these deposits were transported to the surface by Eocene age volcanic events, their ultimate origin is still controversial with many models suggesting the sapphires are xenocrysts with a metamorphic or metasomatic genesis. Melt inclusions are trachytic, dacitic, and rhyolitic in composition. Microscopic observations allow separation between primary and secondary melt inclusions. The primary melt inclusions represent the silicate liquid that was present at the time of sapphire formation and are enriched in volatile components (8-14 wt.%). Secondary melt inclusions analyzed here for Dry Cottonwood Creek and Rock Creek sapphires are relatively volatile depleted and represent the magma that carried the sapphires to the surface. We propose that alluvial Montana sapphires from these deposits formed through a peritectic melting reaction during partial melting of a hydrated plagioclase-rich protolith (e.g. an anorthosite). The heat needed to drive this reaction was likely derived from the intrusion of mantle-derived mafic magmas near the base of the continental lithosphere during rollback of the Farallon slab around 50 Ma. These mafic magmas may have ended up as the ultimate carrier of the sapphires to the surface as evidenced by the French Bar trachybasalt near the Missouri River deposit. Alternatively, the trachytic, rhyolitic, and dacitic secondary melt inclusions at Rock Creek and Dry Cottonwood Creek suggests that the same magmas produced during the partial melting event that generated the sapphires may have also transported them to the surface. Determining the genesis of these deposits will further our understanding of sapphire deposits around the world and may help guide future sapphire prospecting techniques. This

  6. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  7. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches

    PubMed Central

    2017-01-01

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527

  8. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  9. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  10. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  11. Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang

    2009-07-01

    This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.

  12. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    NASA Astrophysics Data System (ADS)

    Stoker, D. S.; Baek, J.; Wang, W.; Kovar, D.; Becker, M. F.; Keto, J. W.

    2006-05-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG ( z -scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN -sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χxxxx(3)(3ω;ω,ω,ω)=1.52±0.25×10-13esu . The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects.

  13. Leveraging Python Interoperability Tools to Improve Sapphire's Usability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gezahegne, A; Love, N S

    2007-12-10

    The Sapphire project at the Center for Applied Scientific Computing (CASC) develops and applies an extensive set of data mining algorithms for the analysis of large data sets. Sapphire's algorithms are currently available as a set of C++ libraries. However many users prefer higher level scripting languages such as Python for their ease of use and flexibility. In this report, we evaluate four interoperability tools for the purpose of wrapping Sapphire's core functionality with Python. Exposing Sapphire's functionality through a Python interface would increase its usability and connect its algorithms to existing Python tools.

  14. Mode-converting coupler for silicon-on-sapphire devices

    NASA Astrophysics Data System (ADS)

    Zlatanovic, S.; Offord, B. W.; Owen, M.; Shimabukuro, R.; Jacobs, E. W.

    2015-02-01

    Silicon-on-sapphire devices are attractive for the mid-infrared optical applications up to 5 microns due to the low loss of both silicon and sapphire in this wavelength band. Designing efficient couplers for silicon-on-sapphire devices presents a challenge due to a highly confined mode in silicon and large values of refractive index of both silicon and sapphire. Here, we present design, fabrication, and measurements of a mode-converting coupler for silicon-on-sapphire waveguides. We utilize a mode converter layout that consists of a large waveguide that is overlays a silicon inverse tapered waveguide. While this geometry was previously utilized for silicon-on-oxide devices, the novelty is in using materials that are compatible with the silicon-on-sapphire platform. In the current coupler the overlaying waveguide is made of silicon nitride. Silicon nitride is the material of choice because of the large index of refraction and low absorption from near-infrared to mid-infrared. The couplers were fabricated using a 0.25 micron silicon-on-sapphire process. The measured coupling loss from tapered lensed silica fibers to the silicon was 4.8dB/coupler. We will describe some challenges in fabrication process and discuss ways to overcome them.

  15. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  16. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  17. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  18. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  19. A novel synthetic single crystal diamond device for in vivo dosimetry.

    PubMed

    Marinelli, Marco; Prestopino, G; Tonnetti, A; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Pimpinella, M; Guerra, A S; De Coste, V

    2015-08-01

    Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of "Tor Vergata" University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with (60)Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  20. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  1. Large-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography

    PubMed Central

    2013-01-01

    Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718

  2. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Kim, Young-Min

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitutionmore » of Si for Al.« less

  3. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  4. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dongxue, Wu; Ping, Ma; Boting, Liu; Shuo, Zhang; Junxi, Wang; Jinmin, Li

    2016-10-01

    The effect of patterned sapphire substrate (PSS) on the top-surface (P-GaN-surface) and the bottom-surface (sapphire-surface) of the light output power (LOP) of GaN-based LEDs was investigated, in order to study the changes in reflection and transmission of the GaN-sapphire interface. Experimental research and computer simulations were combined to reveal a great enhancement in LOP from either the top or bottom surface of GaN-based LEDs, which are prepared on patterned sapphire substrates (PSS-LEDs). Furthermore, the results were compared to those of the conventional LEDs prepared on the planar sapphire substrates (CSS-LEDs). A detailed theoretical analysis was also presented to further support the explanation for the increase in both the effective reflection and transmission of PSS-GaN interface layers and to explain the causes of increased LOP values. Moreover, the bottom-surface of the PSS-LED chip shows slightly increased light output performance when compared to that of the top-surface. Therefore, the light extraction efficiency (LEE) can be further enhanced by integrating the method of PSS and flip-chip structure design. Project supported by the National High Technology Program of China (No. Y48A040000) and the National High Technology Program of China (No. Y48A040000).

  5. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Skogman, R. A.; van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

    1992-03-01

    In this letter the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates is reported. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. As best as is known this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  6. Sapphire capillary interstitial irradiators for laser medicine

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  7. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  8. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis

    NASA Astrophysics Data System (ADS)

    Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw

    2015-01-01

    Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.

  9. Intracavity frequency doubling of a continuous wave Ti:sapphire ring laser and application in resonance Raman spectroscopy of heme protein dynamics

    NASA Astrophysics Data System (ADS)

    Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.

    1995-04-01

    Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.

  10. A novel synthetic single crystal diamond device for in vivo dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Tonnetti, A.

    Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application wasmore » performed under irradiation with {sup 60}Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.« less

  11. Crystal Growth Technology

    NASA Astrophysics Data System (ADS)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics:

      General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

    • Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Yerci, S.; Serincan, U.; Dogan, I.

      2006-10-01

      Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 deg. C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. Whilemore » the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.« less

    • Characterization of the Performance of Sapphire Optical Fiber in Intense Radiation Fields, when Subjected to Very High Temperatures

      NASA Astrophysics Data System (ADS)

      Petrie, Christian M.

      The U.S. Department of Energy is interested in extending optically-based instrumentation from non-extreme environments to extremely high temperature radiation environments for the purposes of developing in-pile instrumentation. The development of in-pile instrumentation would help support the ultimate goal of understanding the behavior and predicting the performance of nuclear fuel systems at a microstructural level. Single crystal sapphire optical fibers are a promising candidate for in-pile instrumentation due to the high melting temperature and radiation hardness of sapphire. In order to extend sapphire fiber-based optical instrumentation to high temperature radiation environments, the ability of sapphire fibers to adequately transmit light in such an environment must first be demonstrated. Broadband optical transmission measurements of sapphire optical fibers were made in-situ as the sapphire fibers were heated and/or irradiated. The damage processes in sapphire fibers were also modeled from the primary knock-on event from energetic neutrons to the resulting damage cascade in order to predict the formation of stable defects that ultimately determine the resulting change in optical properties. Sapphire optical fibers were shown to withstand temperatures as high as 1300 °C with minimal increases in optical attenuation. A broad absorption band was observed to grow over time without reaching a dynamic equilibrium when the sapphire fiber was heated at temperatures of 1400 °C and above. The growth of this absorption band limits the use of sapphire optical fibers, at least in air, to temperatures of 1300 °C and below. Irradiation of sapphire fibers with gamma rays caused saturation of a defect center located below 500 nm, and extending as far as ~1000 nm, with little effect on the transmission at 1300 and 1550 nm. Increasing temperature during gamma irradiation generally reduced the added attenuation. Reactor irradiation of sapphire fibers caused an initial rapid

    • Temperature dependence of sapphire fiber Raman scattering

      DOE PAGES

      Liu, Bo; Yu, Zhihao; Tian, Zhipeng; ...

      2015-04-27

      Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

    • Final EDP Ti: sapphire amplifiers for ELI project

      NASA Astrophysics Data System (ADS)

      Chvykov, Vladimir; Kalashnikov, Mikhail; Osvay, Károly

      2015-05-01

      Recently several ultrahigh intensity Chirped Pulse Amplification (CPA) laser systems have reached petawatt output powers [1, 2] setting the next milestone at tens or even hundreds petawatts for the next three to ten years [3, 4]. These remarkable results were reached when laser amplifiers (opposite to Optical Parametric Amplification (OPA) [5]) were used as final ones and from them Ti:Sapphire crystals supposed to be the working horses as well in the future design of these laser systems. Nevertheless, the main limitation that arises on the path toward ultrahigh output power and intensity is the restriction on the pumping and extraction energy imposed by Transverse Amplified Spontaneous Emission (TASE) [6] and/or transverse parasitic generation (TPG) [7] within the large aperture of the disc-shape amplifier volume.

    • Wafer scale BN on sapphire substrates for improved graphene transport.

      PubMed

      Vangala, Shivashankar; Siegel, Gene; Prusnick, Timothy; Snure, Michael

      2018-06-11

      Wafer scale (2") BN grown by metal organic chemical vapor deposition (MOCVD) on sapphire was examined as a weakly interacting dielectric substrate for graphene, demonstrating improved transport properties over conventional sapphire and SiO 2 /Si substrates. Chemical vapor deposition grown graphene was transferred to BN/sapphire substrates for evaluation of more than 30 samples using Raman and Hall effects measurements. A more than 2x increase in Hall mobility and 10x reduction in sheet carrier density was measured for graphene on BN/sapphire compared to sapphire substrates. Through control of the MOCVD process, BN films with roughness ranging from <0.1 nm to >1 nm were grown and used to study the effects of substrate roughness on graphene transport. Arrays of graphene field effect transistors were fabricated on 2" BN/sapphire substrates demonstrating scalability and device performance enhancement.

    • Single crystal absorption spectra of synthetic Ti, Fe-substituted pyropes

      NASA Astrophysics Data System (ADS)

      Khomenko, V. M.; Langer, K.; Andrut, M.; Koch-Müller, M.; Vishnevsky, A. A.

      1994-11-01

      Synthetic pyrope crystals up to 0.5 mm in diameter, substituted by titanium or by titanium plus iron, were grown under defined conditions of P, T, f_{O_2 } in the presence of water using a piston-cylinder device. The crystals were characterized by X-ray and microprobe techniques. Their single-crystal optical absorption spectra were measured by means of a microscope-spectrometer. Two absorption bands at 16100 and 22300 cm{cm-1} in the spectra of pale-blue Fe-free Ti-bearing pyropes, grown under reduced conditions, were identified as originating from spin-allowed transitions, derived from 2 T 2g → 2 E g of octahedral Ti3+ ions. The splitting value of the excited 2E g state, 6200 cm-1, and the crystal field parameter of Ti3+ in pyrope Δ 0 = 19 200 cm-1 are both in agreement with literature data. In spectra of brown Fe, Ti-bearing garnets, a broad band at 23000 cm-1 was interpreted as a Fe2+[8] → Ti4+[6] charge-transfer band. The spectral position and width of this band agree with those observed for a FeTi charge transfer band in natural garnets. Fe, Ti-containing garnets synthesized at relatively high oxygen fugacity (10-11,0 atm), which permits a fraction of Fe3+ to enter the garnet, show an additional Fe2+[8] → Fe3+[6] charge transfer band at 19800 cm-1.

    • Controllable laser thermal cleavage of sapphire wafers

      NASA Astrophysics Data System (ADS)

      Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

      2018-03-01

      Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

    • Electron Beam Welder Used to Braze Sapphire to Platinum

      NASA Technical Reports Server (NTRS)

      Forsgren, Roger C.; Vannuyen, Thomas

      1998-01-01

      A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

    • Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

      NASA Astrophysics Data System (ADS)

      Asif Khan, M.; Skogman, R. A.; Van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

      1992-03-01

      In this letter we report the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 °C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 °C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. To the best of our knowledge this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  1. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia

    2008-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage andmore » its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins.« less

  2. Oleophobic properties of the step-and-terrace sapphire surface

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.

    2017-03-01

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical-mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of the surface. The results are analyzed using the Ventsel-Deryagin homogeneous wetting model.

  3. Oleophobic properties of the step-and-terrace sapphire surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.

    Sapphire is widely used in production of optical windows for various devices due to its mechanical and optical properties. However, during operation the surface can be affected by fats, oils, and other organic contaminations. Therefore, it is important to improve the oleophobic properties of sapphire windows. In this study, we investigate the interaction of a supersmooth sapphire surface with oleic acid droplets, which imitate human finger printing. It is established that chemical–mechanical polishing with additional annealing in air, which leads to the formation of an atomically smooth sapphire surface, makes it possible to significantly improve the oleophobic properties of themore » surface. The results are analyzed using the Ventsel–Deryagin homogeneous wetting model.« less

  4. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    NASA Astrophysics Data System (ADS)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  5. Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic

    NASA Astrophysics Data System (ADS)

    Carroz, L.; Duffar, T.

    2018-05-01

    In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.

  6. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  7. Sapphire: Canada's Answer to Space-Based Surveillance of Orbital Objects

    NASA Astrophysics Data System (ADS)

    Maskell, P.; Oram, L.

    The Canadian Department of National Defence is in the process of developing the Canadian Space Surveillance System (CSSS) as the main focus of the Surveillance of Space (SofS) Project. The CSSS consists of two major elements: the Sapphire System and the Sensor System Operations Centre (SSOC). The space segment of the Sapphire System is comprised of the Sapphire Satellite - an autonomous spacecraft with an electro-optical payload which will act as a contributing sensor to the United States (US) Space Surveillance Network (SSN). It will operate in a circular, sunsynchronous orbit at an altitude of approximately 750 kilometers and image a minimum of 360 space objects daily in orbits ranging from 6,000 to 40,000 kilometers in altitude. The ground segment of the Sapphire System is composed of a Spacecraft Control Center (SCC), a Satellite Processing and Scheduling Facility (SPSF), and the Sapphire Simulator. The SPSF will be responsible for data transmission, reception, and processing while the SCC will serve to control and monitor the Sapphire Satellite. Surveillance data will be received from Sapphire through two ground stations. Following processing by the SPSF, the surveillance data will then be forwarded to the SSOC. The SSOC will function as the interface between the Sapphire System and the US Joint Space Operations Center (JSpOC). The JSpOC coordinates input from various sensors around the world, all of which are a part of the SSN. The SSOC will task the Sapphire System daily and provide surveillance data to the JSpOC for correlation with data from other SSN sensors. This will include orbital parameters required to predict future positions of objects to be tracked. The SSOC receives daily tasking instructions from the JSpOC to determine which objects the Sapphire spacecraft is required to observe. The advantage of this space-based sensor over ground-based telescopes is that weather and time of day are not factors affecting observation. Thus, space-based optical

  8. Carrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser.

    PubMed

    Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas

    2017-03-15

    We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.

  9. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  10. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  11. Nanostructured sapphire optical fiber for sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  12. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  13. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  14. Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Sidorov-Biryukov, D.A.; Zheltikov, A.M.

    Hollow-core photonic-crystal fibers (PCFs) capable of transporting sub-100-fs pulses of Ti:sapphire laser radiation in one of their transmission peaks centered around 800 nm have been designed and demonstrated. These fibers are shown to enhance self-phase modulation of submicrojoule 100-fs Ti:sapphire laser pulses, allowing a spectral bandwidth of 35 nm to be achieved with an 8-cm PCF sample.

  15. Shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The shear strength of polycrystalline Ag, Cu, Ni, and Fe contacts on clean (0001) sapphire has been studied in ultrahigh vacuum. Both clean metal surfaces and surfaces exposed to O2, Cl2, and C2H4 were used. The results indicate that there are two sources of strength of Al2O3-metal contacts: an intrinsic one that depends on the particular clean metal in contact with Al2O3 and an additional one due to intermediate films. The shear strength of the clean metal contacts correlated directly with the free energy of oxide formation for the lowest metal oxide, in accord with the hypothesis that a chemical bond is formed between metal cations and oxygen anions in the sapphire surface. Contacts formed by metals exposed to chlorine exhibited uniformly low shear strength indicative of van der Waals bonding between chlorinated metal surfaces and sapphire. Contacts formed by metals exposed to oxygen exhibited enhanced shear strength, in accord with the hypothesis that an intermediate oxide layer increases interfacial strength.

  16. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses.

    PubMed

    Grivas, Christos; Corbari, Costantino; Brambilla, Gilberto; Lagoudakis, Pavlos G

    2012-11-15

    Fabrication and cw lasing at 798.25 nm is reported for femtosecond (fs) and picosecond (ps) laser-inscribed channel waveguides in Ti:sapphire crystals. Lasing in channels written by fs (ps) pulses was obtained above a threshold of 84 mW (189 mW) with a maximum output power and a slope efficiency of 143 mW (45 mW) and 23.5% (7.1%), respectively. The emission wavelength was tuned over a 170 nm range by using a birefringent filter in an external cavity.

  17. Progress on 10 Kelvin cryo-cooled sapphire oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John; Diener, William A.

    2004-01-01

    We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).

  18. Analysis and modification of blue sapphires from Rwanda by ion beam techniques

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Chaiwai, C.; Tippawan, U.; Wanthanachaisaeng, B.; Intarasiri, S.

    2015-12-01

    Blue sapphire is categorised in a corundum (Al2O3) group. The gems of this group are always amazed by their beauties and thus having high value. In this study, blue sapphires from Rwanda, recently came to Thai gemstone industry, are chosen for investigations. On one hand, we have applied Particle Induced X-ray Emission (PIXE), which is a highly sensitive and precise analytical technique that can be used to identify and quantify trace elements, for chemical analysis of the sapphires. Here we have found that the major element of blue sapphires from Rwanda is Al with trace elements such as Fe, Ti, Cr, Ga and Mg as are commonly found in normal blue sapphire. On the other hand, we have applied low and medium ion implantations for color improvement of the sapphire. It seems that a high amount of energy transferring during cascade collisions have altered the gems properties. We have clearly seen that the blue color of the sapphires have been intensified after nitrogen ion bombardment. In addition, the gems were also having more transparent and luster. The UV-Vis-NIR measurement detected the modification of their absorption properties, implying of the blue color increasing. Here the mechanism of these modifications is postulated and reported. In any point of view, the bombardment by using nitrogen ion beam is a promising technique for quality improvement of the blue sapphire from Rwanda.

  19. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghui; Wei, Tongbo; Wang, Junxi; Lan, Ding; Chen, Yu; Hu, Qiang; Lu, Hongxi; Li, Jinmin

    2014-02-01

    Self-assembly SiO2 nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, the external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.

  20. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    NASA Astrophysics Data System (ADS)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  1. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    NASA Astrophysics Data System (ADS)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  2. Reliability improvement methods for sapphire fiber temperature sensors

    NASA Astrophysics Data System (ADS)

    Schietinger, C.; Adams, B.

    1991-08-01

    Mechanical, optical, electrical, and software design improvements can be brought to bear in the enhancement of fiber-optic sapphire-fiber temperature measurement tool reliability in harsh environments. The optical fiber thermometry (OFT) equipment discussed is used in numerous process industries and generally involves a sapphire sensor, an optical transmission cable, and a microprocessor-based signal analyzer. OFT technology incorporating sensors for corrosive environments, hybrid sensors, and two-wavelength measurements, are discussed.

  3. Picosecond temporal contrast of Ti:Sapphire lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Mikhail P.; Khodakovskiy, Nikita

    2017-05-01

    The temporal shape of recompressed Ti:sapphire CPA pulses typically contains relatively long pre- and post- pedestals appearing on a picosecond time scale. Despite playing a key role in laser-matter interactions, these artifacts - especially the shape of the leading front of the recompressed pulses - are poorly investigated and understood. The related publications consider picosecond pedestals appearing at both fronts of the main pulse to be related to scattering of the stretched pulse off diffraction gratings inside the stretcher or due to clipping of the pulse spectrum at dielectric coatings. In our experiments we analyzed different types of stretcher-compressor combinations used in Ti:Sapphire laser systems. These include a prism-based stretcher and a bulk compressor, transmission and reflection diffraction gratings - based combinations. We identified pedestals that are typical for the particular stretcher-compressor combination. Especially investigated are those which are coherent with the major recompressed pulse, since with self-phase modulation in power amplifiers they will grow nonlinearly and finally appear symmetric around the major pulse, generating the pre-pedestal from the post-pedestal. Thus, a previously unreported influence of the trailing pedestal has been identified. It is commonly known that recompressed pulses from Ti:sapphire chirped-pulse amplifier systems are accompanied by a slowly decaying ragged post-pedestal. The detailed investigation shows that it consists of numerous pulses with temporal separation in the picosecond range. These are coherent with the main pulse. Moreover, the temporal structure of the trailing pedestal is independent of the particular realization of the Ti:sapphire system and it is present in radiation of any Ti:Sapphire CPA system including Kerr- mode locked master oscillators. Our investigations show that the coherent ragged post-pedestal is the post-radiation of inverted Ti:sapphire medium resulting from phonon

  4. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  5. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an

    2017-01-01

    Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

  6. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Hang, E-mail: xli@gatech.edu, E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-fieldmore » split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.« less

  7. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologiesmore » that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.« less

  8. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Li, Yufeng; Wang, Shuai

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less

  9. Failure Analysis of Sapphire Refractive Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Quinn, George D.

    2009-01-01

    Failure analysis was performed on two sapphire, refractive secondary concentrators (RSC) that failed during elevated temperature testing. Both concentrators failed from machining/handling damage on the lens face. The first concentrator, which failed during testing to 1300 C, exhibited a large r-plane twin extending from the lens through much of the cone. The second concentrator, which was an attempt to reduce temperature gradients and failed during testing to 649 C, exhibited a few small twins on the lens face. The twins were not located at the origin, but represent another mode of failure that needs to be considered in the design of sapphire components. In order to estimate the fracture stress from fractographic evidence, branching constants were measured on sapphire strength specimens. The fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins. Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC. Better machining and handling might have prevented the fractures, however, temperature gradients and resultant thermal stresses need to be reduced to prevent twinning.

  10. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  11. Neurosurgical sapphire handheld probe for intraoperative optical diagnostics, laser coagulation and aspiration of malignant brain tissue

    NASA Astrophysics Data System (ADS)

    Shikunova, Irina A.; Zaytsev, Kirill I.; Stryukov, Dmitrii O.; Dubyanskaya, Evgenia N.; Kurlov, Vladimir N.

    2017-07-01

    In this paper, a handheld contact probe based on sapphire shaped crystal was developed for the intraoperative optical diagnosis and aspiration of malignant brain tissue combined with the laser hemostasis. Such a favorable combination of several functions in a single instrument significantly increases its clinical relevance. It makes possible highly-accurate real-time detection and removal of either large-scale malignancies or even separate invasive cancer cells. The proposed neuroprobe was integrated into the clinical neurosurgical workflow for the intraoperative fluorescence identification and removal of malignant tissues of the brain.

  12. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing.

    PubMed

    Deller, Robert C; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2014-01-01

    The cryopreservation of cells, tissue and organs is fundamental to modern biotechnology, transplantation medicine and chemical biology. The current state-of-the-art method of cryopreservation is the addition of large amounts of organic solvents such as glycerol or dimethyl sulfoxide, to promote vitrification and prevent ice formation. Here we employ a synthetic, biomimetic, polymer, which is capable of slowing the growth of ice crystals in a manner similar to antifreeze (glyco)proteins to enhance the cryopreservation of sheep and human red blood cells. We find that only 0.1 wt% of the polymer is required to attain significant cell recovery post freezing, compared with over 20 wt% required for solvent-based strategies. These results demonstrate that synthetic antifreeze (glyco)protein mimics could have a crucial role in modern regenerative medicine to improve the storage and distribution of biological material for transplantation.

  13. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  14. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Durfee, Charles; Lemons, Randy

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  15. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    NASA Astrophysics Data System (ADS)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  16. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating

    NASA Astrophysics Data System (ADS)

    Yin, Kai; Wang, Cong; Duan, Ji'an; Guo, Chunlei

    2016-09-01

    Sapphire has a potential as a new generation of electronics display. However, direct processing of sapphire surface by visible or near-IR laser light is challenging since sapphire is transparent to these wavelengths. In this study, we investigate the formation of femtosecond laser-induced periodic surface structures (LIPSSs) on sapphire coated with nanolayered gold film. We found a reduced threshold by about 25 % in generating uniform LIPSSs on sapphire due to the nanolayered gold film. Different thickness of nanolayered gold films are studied, and it is shown that the change in thickness does not significantly affect the threshold reduction. It is believed that the diffusion of hot electrons in the gold films increases interfacial carrier density and electron-phonon coupling that results in a reduced threshold and more uniform periodic surface structure generation.

  17. Laser welding of fused silica glass with sapphire using a non- stoichiometric, fresnoitic Ba2TiSi2O8·3 SiO2 thin film as an absorber

    NASA Astrophysics Data System (ADS)

    de Pablos-Martín, A.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2017-07-01

    Laser welding of dissimilar materials is challenging, due to their difference in coefficients of thermal expansion (CTE). In this work, fused silica-to-sapphire joints were achieved by employment of a ns laser focused in the intermediate Si-enriched fresnoitic glass thin film sealant. The microstructure of the bonded interphase was analyzed down to the nanometer scale and related to the laser parameters used. The crystallization of fresnoite in the glass sealant upon laser process leads to an intense blue emission intensity under UV excitation. This crystallization is favored in the interphase with the silica glass substrate, rather than in the border with the sapphire. The formation of SiO2 particles was confirmed, as well. The bond quality was evaluated by scanning acoustic microscopy (SAM). The substrates remain bonded even after heat treatment at 100 °C for 30 min, despite the large CTE difference between both substrates.

  18. Defect analysis of the LED structure deposited on the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng

    2018-04-01

    Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.

  19. High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.

    1997-01-01

    A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.

  20. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  1. The improvement of GaN-based light-emitting diodes using nanopatterned sapphire substrate with small pattern spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wang, Junxi

    2014-02-15

    Self-assembly SiO{sub 2} nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, themore » external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.« less

  2. Thermal conductivity of high purity synthetic single crystal diamonds

    NASA Astrophysics Data System (ADS)

    Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.

    2018-04-01

    Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.

  3. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  4. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  5. Materials Chemistry Issues in the Development of a Single-Crystal Solar/Thermal Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Biering, Robert C.

    2005-01-01

    A translucent crystal concentrates and transmits energy to a heat exchanger, which in turn heats a propellant gas, working gas of a dynamic power system, or a thermopile. Materials are the limiting issue in such a system. Central is the durability of the crystal, which must maintain the required chemical, physical/optical, and mechanical properties as it is heated and cooled. This report summarizes available data to date on the materials issues with this system. We focus on the current leading candidate materials, which are sapphire (Al2O3) for higher temperatures and silica (SiO2) for lower temperatures. We use data from thermochemical calculations; laboratory coupon tests with silica and sapphire; and system tests with sapphire. The required chemical properties include low-vapor pressure and interfacial stability with supporting structural materials. Optical properties such as transmittance and index of refraction must be maintained. Thermomechanical stability is a major challenge for a large, single-crystal ceramic and has been discussed in another report. In addition to the crystal, other materials in the proposed system include refractory metals (Nb, Ta, Mo, W, and Re), carbon (C), and high-temperature ceramic insulation. The major issue here is low levels of oxygen, which lead to volatile refractory metal oxides and rapid consumption of the refractory metal. Interfacial reactions between the ceramic crystal and refractory metal are also discussed. Finally, high-temperature ceramic insulating materials are also likely to be used in this system. Outgassing is a major issue for these materials. The products of outgassing are typically reactive with the refractory metals and must be minimized.

  6. Toward single-mode active crystal fibers for next-generation high-power fiber devices.

    PubMed

    Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming

    2014-08-27

    We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.

  7. Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600°C and 1000°C: II. Mechanical properties

    USGS Publications Warehouse

    Castaing, J.; Kronenberg, A.K.; Kirby, S.H.; Mitchell, T.E.

    2000-01-01

    Hydrogen impurities in alumina have been introduced by hydrothermal annealing (see part I). In this paper, we report on reductions in the flow strength of α-Al2O3 single crystals and polycrystals associated with hydrogen incorporation. Prior to deformation, α-Al2O3 single crystal and ceramic specimens were annealed in the presence of supercritical water at 850° or 900°C, under 1500 MPa pressure. Sapphire and alumina ceramics were plastically deformed between 600° and 1000°C under 1500 MPa pressure, by the addition of a uniaxial stress. Flow stresses are reduced by a factor of two, due to the presence of water, for sapphire and large grain (30–50 μm) polycrystals, as a result of enhanced dislocation mobility. Flow stresses of fine-grained (3–5 μm) polycrystals are reduced by water by a factor of six. This large reduction in strength is attributed to a change in mechanism from dislocation glide under dry conditions to grain boundary sliding under hydrothermal conditions.

  8. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure.

    PubMed

    Chen, Hsuan-An; Sun, Hsu; Wu, Chong-Rong; Wang, Yu-Xuan; Lee, Po-Hsiang; Pao, Chun-Wei; Lin, Shih-Yen

    2018-05-02

    Single-crystal antimonene flakes are observed on sapphire substrates after the postgrowth annealing procedure of amorphous antimony (Sb) droplets prepared by using molecular beam epitaxy at room temperature. The large wetting angles of the antimonene flakes to the sapphire substrate suggest that an alternate substrate should be adopted to obtain a continuous antimonene film. By using a bilayer MoS 2 /sapphire sample as the new substrate, a continuous and single-crystal antimonene film is obtained at a low growth temperature of 200 °C. The results are consistent with the theoretical prediction of the lower interface energy between antimonene and MoS 2 . The different interface energies of antimonene between sapphire and MoS 2 surfaces lead to the selective growth of antimonene only atop MoS 2 surfaces on a prepatterned MoS 2 /sapphire substrate. With similar sheet resistance to graphene, it is possible to use antimonene as the contact metal of 2D material devices. Compared with Au/Ti electrodes, a specific contact resistance reduction up to 3 orders of magnitude is observed by using the multilayer antimonene as the contact metal to MoS 2 . The lower contact resistance, the lower growth temperature, and the preferential growth to other 2D materials have made antimonene a promising candidate as the contact metal for 2D material devices.

  9. Optical characterization of synthetic faceted gem materials grown from hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Lu, Taijin; Shigley, James E.

    1998-10-01

    Various non-destructive optical characterization techniques have been used to characterize and identify synthetic gem materials grown from hydrothermal solutions, to include ruby, sapphire, emerald, amethyst and ametrine (amethyst-citrine), from their natural counterparts. The ability to observe internal features, such as inclusions, dislocations, twins, color bands, and growth zoning in gem materials is strongly dependent on the observation techniques and conditions, since faceted gemstones have many polished surfaces which can reflect and scatter light in various directions which can make observation difficult. However, diagnostic gemological properties of these faceted synthetic gem materials can be obtained by choosing effective optical characterization methods, and by modifying optical instruments. Examples of some of the distinctive features of synthetic amethyst, ametrine, pink quartz, ruby and emerald are presented to illustrate means of optical characterization of gemstones. The ability to observe defects by light scattering techniques is discussed.

  10. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803; Xu, Juping

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at roommore » temperature.« less

  11. [The design of all solid-state tunable pulsed Ti:sapphire laser system].

    PubMed

    Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing

    2013-05-01

    This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.

  12. DPSSL pumped 20-TW Ti:sapphire laser system for DD fusion experiment

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Hatano, Y.; Takeuchi, Y.; Kawashima, T.

    2016-03-01

    A diode-pumped solid-state laser (DPSSL) pumped 20-TW output Ti:sapphire laser system has been developed. A diode-pumped Nd:glass laser with output energy of 12.7 J in 527 nm was used as a pump source for a 20-TW Ti:sapphire amplifier. A CeLiB6O10 nonlinear optical crystal was used as a frequency doubler of the Nd:glass DPSSL[1]. Figure 1 shows typical output pulse energy of the 20-TW amplifier as a function of pumping energy and a near field pattern. A 1.65 J pulse energy was obtained by 4.5 J pump energy. The amplified seed pulse is compressed to typically 60 fs as shown in Fig. 1 by a vacuumed pulse compressor with 80% of transmissivity. Encircled energy ratio, into a circled with 8 μm diameter area, of far field pattern focused by off-axis parabolic mirror with F# of 3 is numerically evaluated to 40% at TW class output condition. Then focal intensity would reach to 1018W/cm2. This all- DPSSL system contributes for stable and continual investigation of laser induced plasma experiment. We have succeeded continual and high efficient generation of DD fusion neutron from CD nano-particles by cluster fusion scheme using the 20-TW laser. A yield of ∼105 neutrons per shot was stably observed during continuous 100 shots with repetition rate of 0.1Hz.

  13. Growth and laser properties of Nd:Ca 4YO(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Meng, X. L.; Zhu, L.; Wang, C. Q.; Cheng, R. P.; Yu, W. T.; Zhang, S. J.; Sun, L. K.; Chow, Y. T.; Zhang, W. L.; Wang, H.; Wong, K. S.

    1999-02-01

    Nd:Ca 4YO(BO 3) 3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at ( θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.

  14. Investigations of gain redshift in high peak power Ti:sapphire laser systems

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Yu, Linpeng; Zhang, Zongxin; Li, Wenkai; Yang, Xiaojun; Wu, Yuanfeng; Li, Shuai; Wang, Cheng; Liu, Yanqi; Lu, Xiaoming; Xu, Yi; Leng, Yuxin

    2018-07-01

    Gain redshift in high peak power Ti:sapphire laser systems can result in narrowband spectral output and hence lengthen the compressed pulse duration. In order to realize broadband spectral output in 10 PW-class Ti:sapphire lasers, the influence on gain redshift induced by spectral pre-shaping, gain distribution of cascaded amplifiers and Extraction During Pumping (EDP) technique have been investigated. The theoretical and experimental results show that the redshift of output spectrum is sensitive to the spectral pre-shaping and the gain distribution of cascaded amplifiers, while insensitive to the pumping scheme with or without EDP. Moreover, the output spectrum from our future 10 PW Ti:sapphire laser is theoretically analyzed based on the investigations above, which indicates that a Fourier-transform limited (FTL) pulse duration of 21 fs can be achieved just by optimizing the spectral pre-shaping and gain distribution in 10 PW-class Ti:sapphire lasers.

  15. Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2003-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.

  16. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  17. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the

  18. Template-directed control of crystal morphologies.

    PubMed

    Meldrum, Fiona C; Ludwigs, Sabine

    2007-02-12

    Biominerals are characterised by unique morphologies, and it is a long-term synthetic goal to reproduce these synthetically. We here apply a range of templating routes to investigate whether a fascinating category of biominerals, the single crystals with complex forms, can be produced using simple synthetic methods. Macroporous crystals with sponge-like morphologies identical to that of sea urchin skeletal plates were produced on templating with a sponge-like polymer membrane. Similarly, patterning of individual crystal faces was achieved from the micrometer to nanometer scale through crystallisation on colloidal particle monolayers and patterned polymer thin films. These experiments demonstrate the versatility of a templating approach to producing single crystals with unique morphologies.

  19. Hybrid Physical-Chemical Vapor Deposition of Bi2Se3 Thin films on Sapphire

    NASA Astrophysics Data System (ADS)

    Brom, Joseph; Ke, Yue; Du, Renzhong; Gagnon, Jarod; Li, Qi; Redwing, Joan

    2012-02-01

    High quality thin films of topological insulators continue to garner much interest. We report on the growth of highly-oriented thin films of Bi2Se3 on c-plane sapphire using hybrid physical-chemical vapor deposition (HPCVD). The HPCVD process utilizes the thermal decomposition of trimethyl bismuth (TMBi) and evaporation of elemental selenium in a hydrogen ambient to deposit Bi2Se3. Growth parameters including TMBi flow rate and decomposition temperature and selenium evaporation temperature were optimized, effectively changing the Bi:Se ratio, to produce high quality films. Glancing angle x- ray diffraction measurements revealed that the films were c-axis oriented on sapphire. Trigonal crystal planes were observed in atomic force microscopy images with an RMS surface roughness of 1.24 nm over an area of 2μmx2μm. Variable temperature Hall effect measurements were also carried out on films that were nominally 50-70 nm thick. Over the temperature range from 300K down to 4.2K, the carrier concentration remained constant at approximately 6x10^18 cm-3 while the mobility increased from 480 cm^2/Vs to 900 cm^2/Vs. These results demonstrate that the HPCVD technique can be used to deposit Bi2Se3 films with structural and electrical properties comparable to films produced by molecular beam epitaxy.

  20. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  1. Sapphire Viewports for a Venus Probe

    NASA Technical Reports Server (NTRS)

    Bates, Stephen

    2012-01-01

    A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.

  2. Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    O'Donnell, Callum; Chaitanya Kumar, S.; Zawilski, Kevin T.; Schunemann, Peter G.; Ebrahim-Zadeh, Majid

    2018-02-01

    We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654-8373 nm (1194-1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140-180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127-1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of 260-320 fs, with corresponding time-bandwidth product of ΔυΔτ 1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of 6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.

  3. [Evaluation of the Abbott Cell-Dyn Sapphire hematology analyzer].

    PubMed

    Park, Younhee; Song, Jaewoo; Song, Sungwook; Song, Kyung Soon; Ahn, Mee Suk; Yang, Mi-Sook; Kim, Il; Choi, Jong Rak

    2007-06-01

    The performance of Cell-Dyn Sapphire (Abbott Diagnostic, USA) was compared to the Bayer Advia 2120 (Bayer Diagnostics, USA), Sysmex XE-2100 (Sysmex Corporation, Japan), and reference microscopy. Three hundred samples for routine CBC and WBC differentials were randomly chosen for a comparison analysis. The Cell-Dyn Sapphire system was evaluated according to the linearity, imprecision, inter-instrument correlations, and white blood cell differential. The CBC parameters (WBC, RBC, hemoglobin and platelet) showed a significant linearity with correlation coefficients greater than 0.99 (P<0.0001). Coefficients of variation (CV) for within-run and differential count of WBC were less than 5% except for Total CV for monocytes, eosinophils, and basophils and within-run CV for low valued eosinophils. The correlation coefficients with manual count were lower in monocytes, eosinophils, and basophils than in neutrophils and lymphocytes. The correlation with other hematology anlayzers was significant exclusive of basophils. These results demonstrate that the Cell-Dyn Sapphire has a good linearity, an acceptable reproducibility, a minimal carryover, and a comparable performance with the sysmex XE-2100 and Advia 2120.

  4. In situ conductance measurements of copper phthalocyanine thin film growth on sapphire [0001].

    PubMed

    Murdey, Richard; Sato, Naoki

    2011-06-21

    The current flowing through a thin film of copper phthalocyanine vacuum deposited on a single crystal sapphire [0001] surface was measured during film growth from 0 to 93 nm. The results, expressed as conductance vs. nominal film thickness, indicate three distinct film growth regions. Conductive material forms below about 5 nm and again above 35 nm, but in the intermediate thicknesses the film conductance was observed to decrease with increasing film thickness. With the aid of ac-AFM topology images taken ex situ, the conductance results are explained based on the Stranski-Krastanov (2D + 3D) film growth mechanism, in which the formation of a thin wetting layer is followed by the growth of discrete islands that eventually coalesce into an interpenetrating, conductive network. © 2011 American Institute of Physics

  5. Progress Report for a New Cryogenic Sapphire Oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. J.; Tjoelker, R. L.

    2006-01-01

    We present design progress and subsystem test results for a new short-term frequency standard, the Voltage Controlled Sapphire Oscillator (VCSO). Included are sapphire resonator and coupling design, cryocooler environmental sensitivity tests, Q measurement results, and turnover temperature results. A previous report presented history of the design related to resonator frequency and frequency compensation [1]. Performance goals are a frequency stability of 1x10(exp -14) (1 second less than or equal to (tau) less than or equal to 100 seconds) and two years or more continuous operation. Long-term operation and small size are facilitated by use of a small Stirling cryo-cooler (160W wall power) with an expected 5 year life.

  6. Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy

    PubMed Central

    Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing

    2017-01-01

    In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1–2 × 109 cm−2, which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 109 cm−2). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices. PMID:28772961

  7. Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy.

    PubMed

    Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing

    2017-05-31

    In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1-2 × 10⁸ cm -2 , which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 10⁸ cm -2 ). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices.

  8. Helium diffusion experiments on synthetic apatite crystals and single-grain fragments: can we retrieve the He diffusion profiles?

    NASA Astrophysics Data System (ADS)

    Kasanzu, C.; Beucher, R.; Brown, R. W.; Persano, C.; Stuart, F.

    2011-12-01

    Apatite (U-Th)/he thermochronometry is one of the most widely used methods of quantifying thermal histories of rocks within the vicinity of the surface. Theoretical and practical development carried out during the last decade, among which was the release of affordable LASERs, have led to standard practice of analyzing single grain rather than multigrain aliquots. The standard theoretical basis for interpreting these ages assumes that the technique is used on full grains. However, the natural weak cleavage of apatite leads to fragmentation of these individual prismatic crystals during the rock crushing and mineral separation process. Apatites are most often broken along a weak cleavage perpendicular to the c-axis. It is therefore common practice to analyze fragments of whole grains, not complete crystals. It is also well known that dating often leads to single ages being more dispersed than expected whatever the efforts to avoid perturbations on the He system. Using a theoretical numerical model and considering both axial and radial diffusion, we demonstrate thata largepart (most?) of the dispersion is due to analyses of single apatite fragments. This effect is larger for older grains which have exprienced a slow cooling history and have well rounded diffusive profiles. Ages are a strongfunction of the fragment size (length specifically), we show that ages from apatite fragments with 1 prismatic termination (1T) can be used to retrieve the helium diffusion profile, provided a sufficient number of single fragment analyses are carried out. The shape of the helium diffusion profile provides a strong constraint on the style of the thermal history and so we propose to use single crystal fragment analyses to extract a mean diffusion profile, and deduce the thermal history of the sample. In order to test these ideas, we performed a set of experiments with natural samples and semi-synthetic grains of apatite. Synthetic grains are obtained by drilling cores of various length

  9. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  10. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that

  11. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  12. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine.

    PubMed

    Battal, Dilek; Akgönüllü, Semra; Yalcin, M Serkan; Yavuz, Handan; Denizli, Adil

    2018-07-15

    Herein, we prepared a novel quartz crystal microbalance (QCM) sensor for synthetic cannabinoids (JWH-073, JWH-073 butanoic acid, JWH-018 and JWH-018 pentanoic acid,) detection. Firstly, the synthetic cannabinoid (SCs) imprinted (MIP) and non-imprinted (NIP) nanoparticles were synthesized by mini-emulsion polymerization system. The SCs-imprinted nanoparticles were first characterized by SEM, TEM, zeta-size and FTIR-ATR analysis and then were dropped onto the gold QCM surface. The SCs-imprinted QCM sensor was characterized by an ellipsometer, contact angle, and AFM. The limit of detection was found as 0.3, 0.45, 0.4, 0.2 pg/mL JWH-018, JWH-073, JWH-018 pentanoic acid and JWH-073 butanoic acid, respectively. The selectivity of the SCs-imprinted QCM sensor was shown by using JWH-018, JWH-018 pentanoic acid, JWH-073 and JWH-073 butanoic acid. According to the results, the SCs-imprinted QCM sensors show highly selective and sensitive in a broad range of synthetic cannabinoid concentrations (0.0005-1.0 ng/mL) in both aqueous and synthetic urine solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto

    2007-09-01

    We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.

  14. A new high pressure sapphire nuclear magnetic resonance cell

    NASA Astrophysics Data System (ADS)

    Bai, Shi; Taylor, Craig M.; Mayne, Charles L.; Pugmire, Ronald J.; Grant, David M.

    1996-01-01

    A new version of a single-crystal sapphire high pressure nuclear magnetic resonance (NMR) cell is described that is capable of controlling the sample pressure independent of the temperature. A movable piston inside the cell adjusts and controls the sample pressure from ambient conditions to 200 atm within ±0.3 atm. The linewidth at half-height for a 13C spectrum of carbon dioxide at 15 °C and 57.8 atm is found to be 0.5 Hz. The carbon dioxide gas/liquid phase transition is clearly observed by measuring 13C chemical shifts as the sample pressure approaches equilibrium. The time required for this NMR cell to reach equilibrium with its surroundings is relatively short, usually 15-30 min. The cell body has the same outer dimensions of a standard spinning turbine and fits into a standard 10 mm commercial probehead capable of controlling the sample temperature using the spectrometer's variable temperature unit. The flexibility of the device and the increased speed in making the measurement is demonstrated. Such control of important thermodynamic variables facilitates the NMR study of important biochemical and chemical reactions in gas, liquid, and supercritical fluid environments.

  15. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less

  16. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong

    2014-01-01

    Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

  17. Au-assisted fabrication of nano-holes on c-plane sapphire via thermal treatment guided by Au nanoparticles as catalysts

    NASA Astrophysics Data System (ADS)

    Sui, Mao; Pandey, Puran; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2017-01-01

    Nanoscale patterning of sapphires is a challenging task due to the high mechanical strength, chemical stability as well as thermal durability. In this paper, we demonstrate a gold droplet assisted approach of nano-hole fabrication on c-plane sapphire via a thermal treatment. Uniformly distributed nano-holes are fabricated on the sapphire surface guided by dome shaped Au nanoparticles (NPs) as catalysts and the patterning process is discussed based on the disequilibrium of vapor, liquid, solid interface energies at the Au NP/sapphire interface induced by the Au evaporation at high temperature. Followed by the re-equilibration of interface energy, transport of alumina from the beneath of NPs to the sapphire surface can occur along the NP/sapphire interface resulting in the formation of nano-holes. The fabrication of nano-holes using Au NPs as catalysts is a flexible, economical and convenient approach and can find applications in various optoelectronics.

  18. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  19. Theoretical studies on lattice-oriented growth of single-walled carbon nanotubes on sapphire

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Meng, Xianhong; Xiao, Jianliang

    2017-09-01

    Due to their excellent mechanical and electrical properties, single-walled carbon nanotubes (SWNTs) can find broad applications in many areas, such as field-effect transistors, logic circuits, sensors and flexible electronics. High-density, horizontally aligned arrays of SWNTs are essential for high performance electronics. Many experimental studies have demonstrated that chemical vapor deposition growth of nanotubes on crystalline substrates such as sapphire offers a promising route to achieve such dense, perfectly aligned arrays. In this work, a theoretical study is performed to quantitatively understand the van der Waals interactions between SWNTs and sapphire substrates. The energetically preferred alignment directions of SWNTs on A-, R- and M-planes and the random alignment on the C-plane predicted by this study are all in good agreement with experiments. It is also shown that smaller SWNTs have better alignment than larger SWNTs due to their stronger interaction with sapphire substrate. The strong vdW interactions along preferred alignment directions can be intuitively explained by the nanoscale ‘grooves’ formed by atomic lattice structures on the surface of sapphire. This study provides important insights to the controlled growth of nanotubes and potentially other nanomaterials.

  20. Laser processing of sapphire with picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Ashkenasi, D.; Rosenfeld, A.; Varel, H.; Wähmer, M.; Campbell, E. E. B.

    1997-11-01

    Laser processing of sapphire using a Ti:sapphire laser at 790 and 395 nm and pulse widths varying between 0.2 and 5 ps is reported. A clear improvement in quality is demonstrated for multi-shot processing with sub-ps laser pulses. For fluences between 3 and 12 J/cm 2 two ablation phases were observed, in agreement with previous work from Tam et al. using 30 ps, 266 nm laser pulses [A.C. Tam, J.L. Brand, D.C. Cheng, W. Zapka, Appl. Phys. Lett. 55 (20) (1994) 2045]. During the `gentle ablation' phase periodic wavelike structures, i.e. ripples, were observed on the Al 2O 3 surface, perpendicular to the laser polarisation and with a spacing almost equalling the laser wavelength, indicating metallic-like behaviour. The ripple modulation depth was in the order of a few tens of nm. For fluences between 1 and 2.5 J/cm 2, below the single-shot surface damage threshold and at a pulse width above 200 fs, microstructures could be produced at the rear side of a 1 mm thick sapphire substrate without affecting the front surface.

  1. Mixed garnet laser crystals for water vapour DIAL transmitter

    NASA Astrophysics Data System (ADS)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  2. Lattice distortions in GaN on sapphire using the CBED-HOLZ technique.

    PubMed

    Sridhara Rao, D V; McLaughlin, K; Kappers, M J; Humphreys, C J

    2009-09-01

    The convergent beam electron diffraction (CBED) methodology was developed to investigate the lattice distortions in wurtzite gallium nitride (GaN) from a single zone-axis pattern. The methodology enabled quantitative measurements of lattice distortions (alpha, beta, gamma and c) in transmission electron microscope (TEM) specimens of a GaN film grown on (0,0,0,1) sapphire by metal-organic vapour-phase epitaxy. The CBED patterns were obtained at different distances from the GaN/sapphire interface. The results show that GaN is triclinic above the interface with an increased lattice parameter c. At 0.85 microm from the interface, alpha=90 degrees , beta=8905 degrees and gamma=11966 degrees . The GaN lattice relaxes steadily back to hexagonal further away from the sapphire substrate. The GaN distortions are mainly confined to the initial stages of growth involving the growth and the coalescence of 3D GaN islands.

  3. Zeta potential orientation dependence of sapphire substrates.

    PubMed

    Kershner, Ryan J; Bullard, Joseph W; Cima, Michael J

    2004-05-11

    The zeta potential of planar sapphire substrates for three different crystallographic orientations was measured by a streaming potential technique in the presence of KCl and (CH3)4NCl electrolytes. The streaming potential was measured for large single crystalline C-plane (0001), A-plane (1120), and R-plane (1102) wafers over a full pH range at three or more ionic strengths ranging from 1 to 100 mM. The roughness of the epi-polished wafers was verified using atomic force microscopy to be on the order of atomic scale, and X-ray photoelectron spectroscopy (XPS) was used to ensure that the samples were free of silica and other contaminants. The results reveal a shift in the isoelectric point (iep) of the three samples by as much as two pH units, with the R-plane surface exhibiting the most acidic behavior and the C-plane samples having the highest iep. The iep at all ionic strengths was tightly centered around a single pH for each wafer. These values of iep are substantially different from the range of pH 8-10 consistently reported in the literature for alpha-Al2O3 particles. Particle zeta potential measurements were performed on a model powder using phase analysis light scattering, and the iep was confirmed to occur at pH 8. Modified Auger parameters (MAP) were calculated from XPS spectra of a monolayer of iridium metal deposited on the sapphire by electron beam deposition. A shift in MAP consistent with the observed differences in iep of the surfaces confirms the effect of surface structure on the transfer of charge between the Ir and sapphire, hence accounting for the changes in acidity as a function of crystallographic orientation.

  4. Optical properties of bulk gallium nitride single crystals grown by chloride-hydride vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.

    2017-12-01

    A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.

  5. Bonding Lexan and sapphire to form high-pressure, flame-resistant window

    NASA Technical Reports Server (NTRS)

    Richardson, William R.; Walker, Ernie D.

    1987-01-01

    Flammable materials have been studied in normal gravity and microgravity for many years. Photography plays a major role in the study of the combustion process giving a permanent visual record that can be analyzed. When these studies are extended to manned spacecraft, safety becomes a primary concern. The need for a high-pressure, flame-resistant, shatter-resistant window permitting photographic recording of combustion experiments in manned spacecraft prompted the development of a method for bonding Lexan and sapphire. Materials that resist shattering (e.g., Lexan) are not compatible with combustion experiments; the material loses strength at combustion temperatures. Sapphire is compatible with combustion temperatures in oxygen-enriched atmospheres but is subject to shattering. Combining the two materials results in a shatter-resistant, flame-resistant window. Combustion in microgravity produces a low-visibility flame; however, flame propagation and flame characteristics are readily visible as long as there is no deterioration of the image. Since an air gap between the Lexan and the sapphire would reduce transmission, a method was developed for bonding these unlike materials to minimize light loss.

  6. Characteristics of AFB interfaces of dissimilar crystal composites as components for solid state lasers

    NASA Astrophysics Data System (ADS)

    Lee, H. C.; Meissner, O. R.; Meissner, H. E.

    2005-06-01

    Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.

  7. Fabrication of wafer-scale nanopatterned sapphire substrate through phase separation lithography

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Ni, Mengyang; Zhuang, Zhe; Dai, Jiangping; Wu, Feixiang; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-01

    A phase separation lithography (PSL) based on polymer blend provides an extremely simple, low-cost, and high-throughput way to fabricate wafer-scale disordered nanopatterns. This method was introduced to fabricate nanopatterned sapphire substrates (NPSSs) for GaN-based light-emitting diodes (LEDs). The PSL process only involved in spin-coating of polystyrene (PS)/polyethylene glycol (PEG) polymer blend on sapphire substrate and followed by a development with deionized water to remove PEG moiety. The PS nanoporous network was facilely obtained, and the structural parameters could be effectively tuned by controlling the PS/PEG weight ratio of the spin-coating solution. 2-in. wafer-scale NPSSs were conveniently achieved through the PS nanoporous network in combination with traditional nanofabrication methods, such as O2 reactive ion etching (RIE), e-beam evaporation deposition, liftoff, and chlorine-based RIE. In order to investigate the performance of such NPSSs, typical blue LEDs with emission wavelengths of ~450 nm were grown on the NPSS and a flat sapphire substrate (FSS) by metal-organic chemical vapor deposition, respectively. The integral photoluminescence (PL) intensity of the NPSS LED was enhanced by 32.3 % compared to that of the FSS-LED. The low relative standard deviation of 4.7 % for PL mappings of NPSS LED indicated the high uniformity of PL data across the whole 2-in. wafer. Extremely simple, low cost, and high throughput of the process and the ability to fabricate at the wafer scale make PSL a potential method for production of nanopatterned sapphire substrates.

  8. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  9. An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries.

    PubMed

    Drozhzhin, Oleg A; Tereshchenko, Ivan V; Emerich, Hermann; Antipov, Evgeny V; Abakumov, Artem M; Chernyshov, Dmitry

    2018-03-01

    A new multi-purpose operando electrochemical cell was designed, constructed and tested on the Swiss-Norwegian Beamlines BM01 and BM31 at the European Synchrotron Radiation Facility. Single-crystal sapphire X-ray windows provide a good signal-to-noise ratio, excellent electrochemical contact because of the constant pressure between the electrodes, and perfect electrochemical stability at high potentials due to the inert and non-conductive nature of sapphire. Examination of the phase transformations in the Li 1-x Fe 0.5 Mn 0.5 PO 4 positive electrode (cathode) material at C/2 and 10C charge and discharge rates, and a study of the valence state of the Ni cations in the Li 1-x Ni 0.5 Mn 1.5 O 4 cathode material for Li-ion batteries, revealed the applicability of this novel cell design to diffraction and spectroscopic investigations of high-power/high-voltage electrodes for metal-ion batteries.

  10. Control of relative carrier-envelope phase slip in femtosecond Ti:sapphire and Cr:forsterite lasers.

    PubMed

    Kobayashi, Yohei; Torizuka, Kenji; Wei, Zhiyi

    2003-05-01

    We were able to control relative carrier-envelope phase slip among mode-locked Ti:sapphire and Cr:forsterite lasers by employing electronic feedback. The pulse timings of these lasers were passively synchronized with our crossing-beam technique. Since the optical-frequency ratio of Ti:sapphire and Cr:forsterite is approximately 3:2, we can observe the phase relation by superimposing the third harmonic of Cr:forsterite and the second harmonic of Ti:sapphire lasers in time and in space. The spectrum width of the locked beat note was less than 3 kHz, which corresponds to the controlled fluctuation of a cavity-length difference of less than 10 pm.

  11. Microdynamic Devices Fabricated on Silicon-On-Sapphire Substrates.

    DTIC Science & Technology

    Silicon-on-sapphire substrates are provided for the fabrication of micromechanical devices, such as micromotors . The high voltage stand-off...a consequence, the electrostatically driven devices, micromotors , can be incorporated in the integrated circuits and yet be powered at elevated voltages to increase their work potential.

  12. Testing of Sapphire Optical Fiber and Sensors in Intense Radiation Fields When Subjected to Very High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas; Windl, Wolfgang

    The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.

  13. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  14. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.

  15. Analysis of Shock Compression of Strong Single Crystals With Logarithmic Thermoelastic-Plastic Theory

    DTIC Science & Technology

    2014-05-01

    Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity

  16. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch ( 3.2%) and thermal expansion coefficient difference ( 7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  17. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    PubMed

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  18. High-quality AlN grown on a thermally decomposed sapphire surface

    NASA Astrophysics Data System (ADS)

    Hagedorn, S.; Knauer, A.; Brunner, F.; Mogilatenko, A.; Zeimer, U.; Weyers, M.

    2017-12-01

    In this study we show how to realize a self-assembled nano-patterned sapphire surface on 2 inch diameter epi-ready wafer and the subsequent AlN overgrowth both in the same metal-organic vapor phase epitaxial process. For this purpose in-situ annealing in H2 environment was applied prior to AlN growth to thermally decompose the c-plane oriented sapphire surface. By proper AlN overgrowth management misoriented grains that start to grow on non c-plane oriented facets of the roughened sapphire surface could be overcome. We achieved crack-free, atomically flat AlN layers of 3.5 μm thickness. The layers show excellent material quality homogeneously over the whole wafer as proved by the full width at half maximum of X-ray measured ω-rocking curves of 120 arcsec to 160 arcsec for the 002 reflection and 440 arcsec to 550 arcsec for the 302 reflection. The threading dislocation density is 2 ∗ 109 cm-2 which shows that the annealing and overgrowth process investigated in this work leads to cost-efficient AlN templates for UV LED devices.

  19. Controlling material birefringence in sapphire via self-assembled, sub-wavelength defects

    NASA Astrophysics Data System (ADS)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2018-02-01

    Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. Generally, this is an intrinsic optical property of a material and cannot be altered. Here, we report a novel technique—direct laser writing—that enables us to control the natural, material birefringence of sapphire over a broad range of wavelengths. The broadband form birefringence originating from self-assembled, periodic array of sub-wavelength (˜ 50-200 nm) defects created by laser writing, can enhance, suppress or maintain the material birefringence of sapphire without affecting its transparency range in visible or its surface quality.

  20. Thermal boundary resistance between sapphire and aluminum monocrystals at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahling, S.; Engert, J.; Gladun, A.

    1981-12-01

    The thermal boundary resistance at boundaries between monocrystalline sapphire and monocrystalline aluminum and between monocrystalline sapphire and polycrystalline aluminum has been measured in the temperature range from 0.1 to 6 K with aluminum in the superconducting and normal states. The ratio of the thermal boundary resistance of the aluminum monocrystals in the superconducting state to that in the normal state increases as the temperature is lowered, reaches a maximum at about 0.13 K, and decreases at still lower temperatures. At the maximum, the thermal boundary resistance in the superconducting state is two orders of magnitude larger than the resistance inmore » the normal state.« less

  1. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  2. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  3. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    PubMed Central

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-01-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374

  4. Transmission electron microscopy study of crystal growth, solid solution, and defect formation: Hollandite and synthetic tremolite

    NASA Astrophysics Data System (ADS)

    Bozhilov, Krassimir Nikolov

    Transmission electron microscopy was applied to study the crystal growth, origin of microstructures, and composition of hollandite and synthetic tremolite. The nonequilibrium shape of hollandite crystals, with reentrant angles between prismatic faces, is interpreted to be due to a multistage growth process and the development of lamellar defects that affect the growth rates of the F-faces. The process of crystal growth can be divided into three phases: (1) development of a core of intergrown romanechite and hollandite structures, (2) topotactic transformation of romanechite to hollandite and development of a lamellar microstructure, and (3) extensive overgrowth of hollandite with a high density of chain multiplicity faults, which alters the shapes of the crystals. The products from time-series of hydrothermal tremolite synthesis experiments from an oxide mixture and by recrystallization from diopside, enstatite, quartz, and water have been characterized. The crystallization starts with rapid, metastable formation of pyroxene and Mg-enriched amphibole. Chain multiplicity faults are low in density. The observed Mg enrichment is due primarily to solid solution involving the magnesio-cummingtonite component, which reaches up to 24 mol% in the initial, metastable growth stage. In products from the final stages of the experiments, the magnesio-cummingtonite component in tremolite varies between 7 and 13 mol%. Formation of monoclinic primitive tremolite is also observed. Experimental recrystallization of pyroxenes to amphibole takes place by a complex, multistage mechanism. The product amphibole crystals have low chain-multiplicity fault densities, which in general are not strongly correlated with variations in the Ca/Mg ratio. The yield of tremolitic amphibole is limited by the sluggishness of diopside hydration and dissolution and the formation of persistent, metastable solid solutions rich in the magnesio-cummingtonite component. Distance Least Squares refinements and

  5. Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.

  6. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  7. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  8. Investigation of layered structure SAW devices fabricated using low temperature grown AlN thin film on GaN/sapphire.

    PubMed

    Lin, Hui-Feng; Wu, Chun-Te; Chien, Wei-Cheng; Chen, Sheng-Wen; Kao, Hui-Ling; Chyi, Jen-Inn; Chen, Jyh-Shin

    2005-05-01

    Epitaxial AlN films have been grown on GaN/sapphire using helicon sputtering at 300 degrees C. The surface acoustic wave (SAW) filters fabricated on AlN/GaN/sapphire exhibit more superior characteristics than those made on GaN/sapphire. This composite structure of AlN on GaN may bring about the development of high-frequency components, which integrate and use their semiconducting, optoelectronic, and piezoelectric properties.

  9. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  10. Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration.

    PubMed

    Murtagh, Michelle; Lin, Jipeng; Mildren, Richard P; Spence, David J

    2014-05-15

    We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.

  11. JFET/SOS (Junction Field-Effect Transistor/Silicon-on-Sapphire) Devices: Gamma-Radiation-Induced Effects.

    DTIC Science & Technology

    1988-03-01

    Results, ATR-86A(8501)-1, The Aerospace Corporation: El Segundo, Calif. (20 May 1987). 3. D. Neaman , W. Shedd, and B. Buchanan, "Permanently Ionizing...Radiation Effects in Dielectrically Bounded Field-Effect Transistors," IEEE Trans.. Nucl. Sci. NS-20 [6], 158-165 (Decembe. 1973). 4. D. Neaman , W. Shedd...1974). 5. D. Neaman , W. Shedd, and B. Buchanan, "Silicon-Sapphire Interface Charge Trapping -- Effects of Sapphire Type and Epi Growth Conditions

  12. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less

  13. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  14. Mathematical modeling of a Ti:sapphire solid-state laser

    NASA Technical Reports Server (NTRS)

    Swetits, John J.

    1987-01-01

    The project initiated a study of a mathematical model of a tunable Ti:sapphire solid-state laser. A general mathematical model was developed for the purpose of identifying design parameters which will optimize the system, and serve as a useful predictor of the system's behavior.

  15. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    NASA Technical Reports Server (NTRS)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  16. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  17. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  18. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  19. Fabrication of 2-inch nano patterned sapphire substrate with high uniformity by two-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2014-11-01

    Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.

  20. Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts

    NASA Astrophysics Data System (ADS)

    Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun

    2017-11-01

    We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.

  1. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  2. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.

    PubMed

    Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J

    2015-01-01

    Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion.

  3. Gate-controlled-diodes in silicon-on-sapphire: A computer simulation

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1974-01-01

    The computer simulation of the electrical behavior of a Gate-Controlled Diode (GCD) fabricated in Silicon-On-Sapphire (SOS) was described. A procedure for determining lifetime profiles from capacitance and reverse current measurements on the GCD was established. Chapter 1 discusses the SOS structure and points out the need of lifetime profiles to assist in device design for GCD's and bipolar transistors. Chapter 2 presents the one-dimensional analytical formula for electrostatic analysis of the SOS-GCD which are useful for data interpretation and setting boundary conditions on a simplified two-dimensional analysis. Chapter 3 gives the results of a two-dimensional analysis which treats the field as one-dimensional until the silicon film is depleted and the field penetrates the sapphire substrate. Chapter 4 describes a more complete two-dimensional model and gives results of programs implementing the model.

  4. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    NASA Astrophysics Data System (ADS)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  5. Effect of Charging Electron Exposure on 1064nm Transmission Through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Connelly, Joseph; Brown, Stephen; Roeder, James; Kauder, Lonny; Cavanaugh, John

    2010-01-01

    Experiments measuring the effect of electron exposure on 1064nm transmission for optical sapphire were conducted. Detailed before and after inspections did not identify any resulting Litchenburg patterns. Pre- and post-exposure 1064nm transmission measurements are compared.

  6. Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-coated Sapphire Optics

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Connelly, Joseph; Brown, Stephen; Roeder, james; Kauder, Lonny; Cavanaugh, John

    2008-01-01

    Experiments measuring the effect of electron exposure on 1064nm transmission for optical sapphire were conducted. Detailed before and after inspections did not identify any resulting Litchenburg patterns. Pre- and post-exposure 1064nm transmission measurements are compared.

  7. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.

    PubMed

    Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  8. Colour centres and nanostructures on the surface of laser crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, N A

    2012-11-30

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assessmore » changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)« less

  9. Development of a sapphire optical pressure sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Mills, David A.; Alexander, Dylan; Subhash, Ghatu; Sheplak, Mark

    2014-06-01

    This paper presents the fabrication, packaging, and characterization of a sapphire optical pressure sensor for hightemperature applications. Currently available instrumentation poses significant limitations on the ability to achieve realtime, continuous measurements in high-temperature environments such as those encountered in industrial gas turbines and high-speed aircraft. The fiber-optic lever design utilizes the deflection of a circular platinum-coated sapphire diaphragm to modulate the light reflected back to a single send/receive sapphire optical fiber. The 7 mm diameter, 50 μm thick diaphragm is attached using a novel thermocompression bonding process based on spark plasma sintering technology. Bonds using platinum as an intermediate layer are achieved at a temperature of 1200°C with a hold time of 5 min. Initial characterization of the bond interface using a simple tensile test indicates a bond strength in excess of 12 MPa. Analysis of the buckled diaphragm after bonding is also presented. The packaged sensor enables continuous operation up to 900°C. Room-temperature characterization reveals a first resonance of 18.2 kHz, a flat-band sensitivity of -130 dB re 1 V/Pa (0.32 μV/Pa) from 4-20 kHz, a minimum detectable pressure of 3.8 Pa, and a linear response up to 169 dB at 1.9 kHz.

  10. Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography.

    PubMed

    Lee, Soo Hyun; Leem, Jung Woo; Yu, Jae Su

    2013-12-02

    We report the total and diffuse transmission enhancement of sapphires with the ultraviolet curable SU8 polymer surface structures consisting of conical subwavelength gratings (SWGs) at one- and both-side surfaces for different periods. The SWGs patterns on the silicon templates were transferred into the SU8 polymer film surface on sapphires by a simple and cost-effective soft lithography technique. For the fabricated samples, the surface morphologies, wetting behaviors, and optical characteristics were investigated. For theoretical optical analysis, a rigorous coupled-wave analysis method was used. At a period of 350 nm, the sample with SWGs on SU8 film/sapphire exhibited a hydrophobic surface and higher total transmittance compared to the bare sapphire over a wide wavelength of 450-1000 nm. As the period of SWGs was increased, the low total transmittance region of < 85% was shifted towards the longer wavelengths and became broader while the diffuse transmittance was increased (i.e., larger haze ratio). For the samples with SWGs at both-side surfaces, the total and diffuse transmittance spectra were further enhanced compared to the samples with SWGs at one-side surface. The theoretical optical calculation results showed a similar trend to the experimentally measured data.

  11. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  12. Broad emission band of Yb3+ in the nonlinear Nb:RbTiOPO4 crystal: origin and applications.

    PubMed

    Carvajal, J J; Ciatto, G; Mateos, X; Schmidt, A; Griebner, U; Petrov, V; Boulon, G; Brenier, A; Peña, A; Pujol, M C; Aguiló, M; Díaz, F

    2010-03-29

    By means of micro-structural and optical characterization of the Yb:Nb:RbTiOPO(4) crystal, we demonstrated that the broad emission band of Yb(3+) in these crystals is due to the large splitting of the ytterbium ground state only, and not to a complex multisite occupation by the ytterbium ions in the crystals. We used this broad emission band to demonstrate wide laser tuning range and generation of femtosecond laser pulses. Passive mode-locked laser operation has been realized by using a semiconductor saturable absorber mirror, generating ultra short laser pulses of 155 fs, which were very stable in time, under Ti:sapphire laser pumping at 1053 nm.

  13. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE PAGES

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; ...

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  14. Spatial inhomogeneities in Al x Ga1-x N quantum wells induced by the surface morphology of AlN/sapphire templates

    NASA Astrophysics Data System (ADS)

    Zeimer, Ute; Jeschke, Joerg; Mogilatenko, Anna; Knauer, Arne; Kueller, Viola; Hoffmann, Veit; Kuhn, Christian; Simoneit, Tino; Martens, Martin; Wernicke, Tim; Kneissl, Michael; Weyers, Markus

    2015-11-01

    The effects of the template on the optical and structural properties of Al0.75Ga0.25N/Al0.8Ga0.2N multiple quantum well (MQWs) laser active regions have been investigated. The laser structures for optical pumping were grown on planar c-plane AlN/sapphire as well as on thick epitaxially laterally overgrown (ELO) AlN layers on patterned AlN/sapphire. Two ELO AlN/sapphire templates were investigated, one with a miscut of the sapphire surface to the m-direction with an angle of 0.25°, the other with a miscut angle of 0.25° to the sapphire a-direction. The MQWs are studied by atomic force microscopy, plan-view cathodoluminescence (CL) at room temperature and 83 K as well as transmission electron microscopy using high-angle annular dark-field imaging and energy-dispersive x-ray spectroscopy. The results are compared to optical pumping measurements. It was found that the surface morphology of the templates determines the lateral wavelength distribution in the MQWs observed by spectral CL mappings. The lateral wavelength spread is largest for the laser structures grown on ELO AlN with miscut to sapphire a-direction caused by the local variation of the MQW thicknesses and the Ga incorporation at macrosteps on the ELO-AlN. A CL peak wavelength spread of up to 7 nm has been found. The MQWs grown on planar AlN/sapphire templates show a homogeneous wavelength distribution. However, due to the high threading dislocation density and the resulting strong nonradiative recombination, laser operation could not be achieved. The laser structures grown on ELO AlN/sapphire show optically pumped lasing with a record short wavelength of 237 nm.

  15. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  16. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Jiahui; Sokolov, Alexei V.; Benabid, F.

    2010-03-15

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist.

  17. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    NASA Astrophysics Data System (ADS)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  18. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams.

    PubMed

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-07

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV ) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min -1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  19. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2017-10-01

    We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.

  20. Thermodynamic investigations on the growth of CuAlO2 delafossite crystals

    NASA Astrophysics Data System (ADS)

    Wolff, Nora; Klimm, Detlef; Siche, Dietmar

    2018-02-01

    Simultaneous differential thermal analysis (DTA) and thermogravimetric (TG) measurements with copper oxide/aluminum oxide mixtures were performed in atmospheres with varying oxygen partial pressures and with crucibles made of different materials. Only sapphire and platinum crucibles proved to be stable under conditions that are useful for the growth of CuAlO2 delafossite single crystals. Then the ternary phase diagram Al2O3-CuO-Cu and its isopleth section Cu2O-Al2O3 were redetermined. Millimeter sized crystals could be obtained from copper oxide melts with 1-2 mol% addition of aluminum oxide that are stable in platinum crucibles held in oxidizing atmosphere containing 15-21% oxygen.

  1. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  2. Injection mode-locking Ti-sapphire laser system

    DOEpatents

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  3. Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals.

    PubMed

    Rosenthal, Ann K; Fahey, Mark; Gohr, Claudia; Burner, Todd; Konon, Irina; Daft, Laureen; Mattson, Eric; Hirschmugl, Carol; Ryan, Lawrence M; Simkin, Peter

    2008-10-01

    Basic calcium phosphate (BCP) crystals are common components of osteoarthritis (OA) synovial fluid. Progress in understanding the role of these bioactive particles in clinical OA has been hampered by difficulties in their identification. Tetracyclines stain calcium phosphate mineral in bone. The aim of this study was to investigate whether tetracycline staining might be an additional or alternative method for identifying BCP crystals in synovial fluid. A drop of oxytetracycline was mixed with a drop of fluid containing synthetic or native BCP, calcium pyrophosphate dihydrate (CPPD), or monosodium urate (MSU) crystals and placed on a microscope slide. Stained and unstained crystals were examined by light microscopy, with and without a portable broad-spectrum ultraviolet (UV) pen light. A small set of characterized synovial fluid samples were compared by staining with alizarin red S and oxytetracycline. Synthetic BCP crystals in synovial fluid were quantified fluorimetrically using oxytetracycline. After oxytetracycline staining, synthetic and native BCP crystals appeared as fluorescent amorphous aggregates under UV light. Oxytetracycline did not stain CPPD or MSU crystals or other particulates. Oxytetracycline staining had fewer false-positive test results than did alizarin red S staining and could provide estimates of the quantities of synthetic BCP crystals in synovial fluid. With further validation, oxytetracycline staining may prove to be a useful adjunct or alternative to currently available methods for identifying BCP crystals in synovial fluid.

  4. Assembly of synthetic cellulose I.

    PubMed

    Lee, J H; Brown, R M; Kuga, S; Shoda, S; Kobayashi, S

    1994-08-02

    Cellulose microfibrils with an electron diffraction pattern characteristic of crystalline native cellulose I have been assembled abiotically by means of a cellulase-catalyzed polymerization of beta-cellobiosyl fluoride substrate monomer in acetonitrile/acetate buffer. Substantial purification of the Trichoderma viride cellulase enzyme was found to be essential for the formation of the synthetic cellulose I allomorph. Assembly of synthetic cellulose I appears to be a result of a micellar aggregation of the partially purified enzyme and the substrate in an organic/aqueous solvent system favoring the alignment of glucan chains with the same polarity and extended chain conformation, resulting in crystallization to form the metastable cellulose I allomorph.

  5. On the laser lift-off of lightly doped micrometer-thick n-GaN films from substrates via the absorption of IR radiation in sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronenkov, V. V.; Virko, M. V.; Kogotkov, V. S.

    The intense absorption of CO{sub 2} laser radiation in sapphire is used to separate GaN films from GaN templates on sapphire. Scanning of the sapphire substrate by the laser leads to the thermal dissociation of GaN at the GaN/sapphire interface and to the detachment of GaN films from the sapphire. The threshold density of the laser energy at which n-GaN started to dissociate is 1.6 ± 0.5 J/cm{sup 2}. The mechanical-stress distribution and the surface morphology of GaN films and sapphire substrates before and after laser lift-off are studied by Raman spectroscopy, atomic-force microscopy, and scanning electron microscopy. A verticalmore » Schottky diode with a forward current density of 100 A/cm{sup 2} at a voltage of 2 V and a maximum reverse voltage of 150 V is fabricated on the basis of a 9-μm-thick detached n-GaN film.« less

  6. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  7. Optical emission of directly contacted copper/sapphire interface under shock compression of megabar

    NASA Astrophysics Data System (ADS)

    Hao, G. Y.; Liu, F. S.; Zhang, D. Y.; Zhang, M. J.

    2007-06-01

    The shock-induced optical emission histories from copper/sapphire interface were measured under two different contact conditions, which simulated the typical situations of pyrometry experiments. Results showed that the "peak" feature of the radiation, previously interpreted as the appearance of so-called high-temperature layer, was nearly diminished by finely polishing and uniformly prepressing technique, and that it is possible to directly measure the equilibrium temperature of bulk metal/window interface. Study also demonstrated that the saturated value of the apparent temperature in nonideal contact situation is related to the color temperature of the shock-induced "bright spot" in sapphire window under megabar pressures.

  8. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors.

    PubMed

    Chen, Tzu Chieh; Lin, Yueh Ting; Lin, Chung Yi; Chen, W C; Chen, Meei Ru; Kao, Hui-Ling; Chyi, J I; Hsu, C H

    2008-02-01

    Epitaxial AlN films were prepared on GaN/sapphire using a helicon sputtering system at the low temperature of 300 degrees C. Surface acoustic wave (SAW) devices fabricated on AlN/GaN/sapphire exhibited superior characteristics compared with those made on GaN/sapphire. An oscillator using an AlN/GaN/sapphirebased SAW device is presented. The oscillation frequency decreased when the device was illuminated by ultraviolet (UV) radiation, and the downshift of the oscillation frequency increased with the illuminating UV power density. The results showed that the AlN/GaN/sapphire-layered structure SAW oscillators are suitable for visible blind UV detection and opened up the feasibility of developing remote UV sensors for different ranges of wavelengths on the III-nitrides.

  9. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.

    PubMed

    Chen, Hao; Zhang, Qi; Chou, Stephen Y

    2015-02-27

    Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.

  10. Comparing Yb-fiber and Ti:Sapphire lasers for depth resolved imaging of human skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2016-02-01

    We report on a direct comparison between Ti:Sapphire and Yb fiber lasers for depth-resolved label-free multimodal imaging of human skin. We found that the penetration depth achieved with the Yb laser was 80% greater than for the Ti:Sapphire. Third harmonic generation (THG) imaging with Yb laser excitation provides additional information about skin structure. Our results indicate the potential of fiber-based laser systems for moving into clinical use.

  11. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  12. Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Y.; Dai, J.; Wang, Q.

    1996-12-31

    Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.

  13. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Lefever, R. A.; Wilcox, W. R.

    1975-01-01

    The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.

  14. Microscopic origin of the optical processes in blue sapphire.

    PubMed

    Bristow, Jessica K; Parker, Stephen C; Catlow, C Richard A; Woodley, Scott M; Walsh, Aron

    2013-06-11

    Al2O3 changes from transparent to a range of intense colours depending on the chemical impurities present. In blue sapphire, Fe and Ti are incorporated; however, the chemical process that gives rise to the colour has long been debated. Atomistic modelling identifies charge transfer from Ti(III) to Fe(III) as being responsible for the characteristic blue appearance.

  15. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  16. Effect of Zn and Te beam intensity upon the film quality of ZnTe layers on severely lattice mismatched sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.

    2017-06-01

    Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.

  17. Ga2O3-In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Nabatov, B. V.; Kanevsky, V. M.

    2017-11-01

    The structure and electrical and optical properties of β-Ga2O3-In2O3 thin films on sapphire substrates with different orientations have been investigated. The samples have been prepared by annealing of gallium-indium metallic films on sapphire substrates in air at different gallium-to-indium ratios in the initial mixture. The photoconductivity of these structures in the solar-blind ultraviolet spectral region has been examined.

  18. Simulation and optimization of silicon-on-sapphire pressure sensor

    NASA Astrophysics Data System (ADS)

    Kulesh, N. A.; Kudyukov, E. V.; Balymov, K. G.; Beloyshov, A. A.

    2017-09-01

    In this paper, finite element analysis software COMSOL Multiphysics was used to simulate the performance of silicon-on-sapphire piezoresistive pressure sensor, aiming to elaborate a flexible model suitable for further optimization and customization of the currently produced pressure sensors. The base model was built around the cylindrical pressure cell made of titanium alloy having a circular diaphragm with monocrystalline sapphire layer attached. The monocrystalline piezoresistive elements were placed on top of the double-layer diaphragm and electrically connected to form the Wheatstone bridge. Verification of the model and parametric study included three main areas: geometrical parameters of the cell, position of the elements on the diaphragm, and operation at elevated temperature. Optimization of the cell geometry included variation of bossed titanium diaphragm parameters as well as rounding-off radiuses near the edges of the diaphragm. Influence of the temperature was considered separately for thermal expansion of the mechanical components and for the changes of electrical and piezoresistive properties of the piezoresistive elements. In conclusion, the simulation results were compared to the experimental data obtained for three different constructions of the commercial pressure sensors produced by SPA of Automatics named after Academician N.A. Semikhatov.

  19. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Denggui; Zhang, Xingwang; Liu, Heng; Meng, Junhua; Xia, Jing; Yin, Zhigang; Wang, Ye; You, Jingbi; Meng, Xiang-Min

    2017-09-01

    Group IVB transition metal (Zr and Hf) dichalcogenides (TMDs) have been attracting intensive attention as promising candidates in the modern electronic and/or optoelectronic fields. However, the controllable growth of HfS2 monolayers or few layers still remains a great challenge, thus hindering their further applications so far. Here, for the first time we demonstrate the epitaxial growth of high-quality HfS2 with a controlled number of layers on c-plane sapphire substrates by chemical vapor deposition (CVD). The HfS2 layers exhibit an atomically sharp interface with the sapphire substrate, followed by flat, 2D layers with octahedral coordination. The epitaxial relationship between HfS2 and substrate was determined by x-ray diffraction and transmission electron microscopy measurements to be: HfS2 (0 0 0 1) [10-10]||sapphire (0 0 0 1)[1-100]. Moreover, a high-performance photodetector with a high on/off ratio of more than 103 and an ultrafast response rate of 130 µs for the rise and 155 µs for the decay times were fabricated based on the CVD-grown HfS2 layers on sapphire substrates. This simple and controllable approach opens up a new way to produce highly crystalline HfS2 atomic layers, which are promising materials for nanoelectronics.

  20. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    PubMed

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  1. Epitaxial growth and characterization of approximately 300-nm-thick AlInN films nearly lattice-matched to c-plane GaN grown on sapphire

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Yamanaka, Mizuki; Egawa, Takashi; Takeuchi, Tetsuya

    2018-05-01

    AlInN epitaxial films with film thicknesses up to approximately 300 nm were grown nearly lattice-matched to a c-plane GaN-on-sapphire template by metalorganic chemical vapor deposition. The AlInN films showed relative good crystal qualities and flat surfaces, despite the existence of surface pits connected to dislocations in the underlying GaN film. The refractive index derived in this study agreed well with a previously reported result obtained over the whole visible wavelength region. The extinction coefficient spectrum exhibited a clear absorption edge, and the bandgap energy for AlInN nearly lattice-matched to GaN was determined to be approximately 4.0 eV.

  2. Specific Adsorption of Osteopontin and Synthetic Polypeptides to Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Taller, Adam; Grohe, Bernd; Rogers, Kem A.; Goldberg, Harvey A.; Hunter, Graeme K.

    2007-01-01

    Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine. PMID:17496021

  3. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  4. Characterization of sapphire: For its material properties at high temperatures

    NASA Astrophysics Data System (ADS)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  5. Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd : Ca 4YO(BO 3) 3 and Nd : Ca 4GdO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Changqing; Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Chow, Y. T.; Liu, Xuesong; Cheng, Ruiping; Yang, Zhaohe; Zhang, Shaojun; Sun, Lianke

    2000-11-01

    Nd : Ca 4YO(BO 3) 3 (Nd : YCOB) and Nd : Ca 4GdO(BO 3) 3 (Nd : GdCOB) crystals were grown by Czochralski method. Thermal expansion and specific heat of these two crystals were experimentally determined. Their fluorescence spectra were measured within the range from 1000 to 1500 nm. Laser output experiments at 1.06 and 1.33 μm of Nd : YCOB and Nd : GdCOB crystals were performed with a cw Ti : sapphire laser as the pump source.

  6. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  7. Production Engineering for Growth of Synthetic Calcite Polarizer Material

    DTIC Science & Technology

    1974-08-01

    AD-A008 043 PRODUCTION ENGINEERING FOR GROWTH OF SYNTHETIC CALCITE POLARIZER MATERIAL Roger F. Belt, et al Litton Systems...Production Bngin««ring for Growth of Synthetic Calcit « Polarizer Material I. RCCIPItNT’tCATALOO NUMMN i. T.vpc or ncpoMT • rtmoo covtnto Final Report...VOKOt (CanlliMit en »xift •id« II ntffrt Kid Idtnlllr br block iwmbmr) Crystal Growth Hydrothermal Growth Calcite Polarizers 30. AtSTHACT

  8. Analysis of type IIb synthetic diamond using FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Klepikov, I. V.; Koliadin, A. V.; Vasilev, E. A.

    2017-12-01

    Analysis of internal structure in large IIb-type high pressure-high temperature (HPHT) synthetic single-crystal diamond are presented. The concentration of boron impurity in different growth sectors varies from 0.02 to 10.3 ppm. It is shown that in the manufacturing of synthetic diamond plates, internal inhomogeneities of the diamond should be taken into account; plates with different characteristics can be cut from one diamond, each of which can be used for its own purpose.

  9. Electroform replication of smooth mirrors from sapphire masters

    NASA Technical Reports Server (NTRS)

    Altkorn, R.; Chang, J.; Haidle, R.; Takacs, P. Z.; Ulmer, M. P.

    1992-01-01

    A sapphire master was used to produce mirrors that exhibit mid-to-high-frequency roughness as low as 3 A. The fabrication procedure and potential applications in X-ray astronomy are discussed. It is shown that foils replicated from flat smooth mandrels should offer at least equivalent HF roughness and significantly lower mid-frequency ripple than those coated with lacquer. A ceramic-surface mandrel could also be expected to last far longer without the need for repolishing than electroless nickel-coated mandrels.

  10. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  11. Energy output reduction and surface alteration of quartz and sapphire tips following Er:YAG laser contact irradiation for tooth enamel ablation.

    PubMed

    Eguro, Toru; Aoki, Akira; Maeda, Toru; Takasaki, Aristeo Atsushi; Hasegawa, Mitsuru; Ogawa, Masaaki; Suzuki, Takanori; Yonemoto, Kazuaki; Ishikawa, Isao; Izumi, Yuichi; Katsuumi, Ichiroh

    2009-10-01

    Despite the recent increase in application of Er:YAG laser for various dental treatments, limited information is available regarding the contact tips. This study examined the changes in energy output and surface condition of quartz and sapphire contact tips after Er:YAG laser contact irradiation for tooth enamel ablation. Ten sets of unused quartz or sapphire contact tips were employed for contact irradiation to sound enamel of extracted teeth. The teeth were irradiated with Er:YAG laser at approximately 75 J/cm(2)/pulse and 20 Hz under water spray for 60 minutes. The energy output was measured before and every 5 minutes after irradiation, and the changes in morphology and chemical composition of the contact surface were analyzed. The energy output significantly decreased with time in both tips. The energy output from the sapphire tips was generally higher on average than that of the quartz. The contact surfaces of all the used quartz tips were concave and irregular. Most of the sapphire tips also appeared rough with crater formation and fractures, except for a few tips in which a high energy output and the original smooth surface were maintained. Spots of melted tooth substances were seen attached to the surface of both tips. In contact enamel ablation, the sapphire tip appeared to be more resistant than the quartz tip. The quartz tips showed similar patterns of energy reduction and surface alteration, whereas the sapphire tips revealed a wider and more characteristic variation among tips. Lasers Surg. Med. 41:595-604, 2009. (c) 2009 Wiley-Liss, Inc.

  12. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  13. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Golding, B.

    2016-02-02

    Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less

  14. Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.

    PubMed

    Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J

    2018-05-09

    Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.

  15. Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals

    NASA Astrophysics Data System (ADS)

    Baum, Yuval; Refael, Gil

    2018-03-01

    When a d -dimensional quantum system is subjected to a periodic drive, it may be treated as a (d +1 )-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as edges in the synthetic dimension, could be introduced using a memory component in the system's dynamics. We demonstrate this principle by exploring topological edge states propagating normal to synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to nanofabricated Weyl semimetal surface states.

  16. Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals.

    PubMed

    Baum, Yuval; Refael, Gil

    2018-03-09

    When a d-dimensional quantum system is subjected to a periodic drive, it may be treated as a (d+1)-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as edges in the synthetic dimension, could be introduced using a memory component in the system's dynamics. We demonstrate this principle by exploring topological edge states propagating normal to synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to nanofabricated Weyl semimetal surface states.

  17. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingstone, Jayde, E-mail: Jayde.Livingstone@sync

    Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence ofmore » the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic

  18. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

    PubMed

    Livingstone, Jayde; Stevenson, Andrew W; Butler, Duncan J; Häusermann, Daniel; Adam, Jean-François

    2016-07-01

    Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. The synthetic diamond detector is now well

  19. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  20. Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source

    NASA Astrophysics Data System (ADS)

    Maruyama, Takahiro; Yamashita, Yutaka; Saida, Takahiro; Tanaka, Shin-ichiro; Naritsuka, Shigeya

    2017-06-01

    We demonstrated direct synthesis of graphene films consisting of a few layers (few-layered graphene) on sapphire substrates by liquid-phase growth (LPG), using liquid Ga as the melt and SiC micropowder as the source material. When the dissolution temperature was above 700 °C, almost all Si atoms of SiC diffused into the Ga melt and only carbon atoms remained at the interface beneath the liquid Ga. Above 800 °C, X-ray photoelectron spectra showed that most of the remaining carbon was graphitized. When the dissolution temperature was 1000 °C, Raman spectra showed that few-layered graphene films grew on the sapphire substrates.

  1. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study

    PubMed Central

    Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-01-01

    Introduction Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. Aim The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Materials and Methods Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. Results The light absorption values obtained from spectrofluorometeric study were 3300000–3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000–6500000 cps for Group 2

  2. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study.

    PubMed

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-08-01

    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for

  3. Ruby and sapphire from Jegdalek, Afghanistan

    USGS Publications Warehouse

    Bowersox, G.W.; Foord, E.E.; Laurs, B.M.; Shigley, J.E.; Smith, C.P.

    2000-01-01

    This study provides detailed mining and gemological information on the Jegdalek deposit, in east-central Afghanistan, which is hosted by elongate beds of corundum-bearing marble. Some facet-grade ruby has been recovered, but most of the material consists of semitransparent pink sapphire of cabochon or carving quality. The most common internal features are dense concentrations of healed and nonhealed fracture planes and lamellar twin planes. Color zoning is common, and calcite, apatite, zircon, mica, iron sulfide minerals, graphite, rutile, aluminum hydroxide, and other minerals are also present in some samples. Although the reserves appear to be large, future potential will depend on the establishment of a stable government and the introduction of modern mining and exploration techniques. ?? 2000 Gemological Institute of America.

  4. Synthetic octacalcium phosphate: a possible carrier for mesenchymal stem cells in bone regeneration.

    PubMed

    Suzuki, Osamu; Anada, Takahisa

    2013-01-01

    The present paper reviews biomaterial studies of synthetic octacalcium phosphate (OCP) as a scaffold of osteoblastic cells. OCP crystals have been suggested to be one of precursor phases in hydroxyapatite (HA) crystal formation in bone and tooth. The recent intensive biomaterials and tissue engineering studies using synthetic OCP disclosed the potential function of OCP as a bioactive material as well as synthetic HA materials due to its highly osteoconductive and biodegradable properties. In vitro studies showed that OCP crystals exhibit a positive effect on osteoblastic cell differentiation. In vivo studies confirmed that the materials of OCP in a granule forms and OCP-based composite materials with natural polymers, such as gelatin and collagen, enhance bone regeneration if implanted in various model bone defects with critical-sized diameters, defined as a defect which does not heal spontaneously throughout the lifetime of the animals. One of particular characteristics of OCP, found as a mechanism to enhance bone regeneration in vivo, is a process of progressive conversion from OCP to HA at physiological conditions. The OCP-HA conversion is accompanied by progressive physicochemical changes of the material properties, which affects the tissue reaction around the crystals where osteoblastic cells are encountered. Mesenchymal stem cells (MSCs) seeded in an OCP-based material enhanced bone regeneration in the rat critical-sized calvaria defect more than that by the material alone. The overall results reveal that OCP crystals have an effect on osteoblastic cell differentiation including the differentiation of MSCs in vivo. The evidence collected experimentally in the laboratory was presented.

  5. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong

    2008-01-01

    Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.

  6. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared.

    PubMed

    Li, Fangxin; Jackson, Stuart D; Grillet, Christian; Magi, Eric; Hudson, Darren; Madden, Steven J; Moghe, Yashodhan; O'Brien, Christopher; Read, Andrew; Duvall, Steven G; Atanackovic, Peter; Eggleton, Benjamin J; Moss, David J

    2011-08-01

    We report record low loss silicon-on-sapphire nanowires for applications to mid infrared optics. We achieve propagation losses as low as 0.8 dB/cm at λ = 1550 nm, ~1.1 to 1.4 dB/cm at λ = 2080 nm and < 2dB/cm at λ = 5.18 μm.

  7. MPS Li-Ion Batteries Qualified to Fly on Canadian Sapphire Spacecraft

    NASA Astrophysics Data System (ADS)

    Remy, S.; Carre, A.; Kimber, R.; Alcindor, P.; Krabel, E.

    2014-08-01

    Saft Li-ion 8S3P MPS (Medium Prismatic cell for Space Battery) autonomous battery has been designed and qualified primarily to meet LEO power requirements. It has been available for more than 8 years, the original battery concept qualification program being successfully carried-out with CNES support in year 2005. This module has been selected for the first time by the UK satellite manufacturer SSTL for the Sapphire spacecraft platform, on behalf of the spacecraft prime MDA Systems Ltd (MDA) and customer the Canadian DND. Due to the high mechanical load demand in the specifications, a delta qualification campaign was launched to make sure that the MPS battery was able to cope with this requirement. A partner approach between Saft and SSTL led Saft to build some dedicated representative 5S packs, which have been step by step tested by SSTL shaker. Based on the results, the battery was made and finally installed inside the Sapphire spacecraft which was successfully launched on February 25th 2013 after battery storage of about 3.5 years.

  8. Stress generated modifications of epitaxial ferroelectric SrTiO3 films on sapphire

    NASA Astrophysics Data System (ADS)

    Hollmann, E.; Schubert, J.; Kutzner, R.; Wördenweber, R.

    2009-06-01

    The effect of lattice-mismatch induced stress upon the crystallographic structure, strain, strain relaxation, and the generation of different types of defects in heteroepitaxially grown SrTiO3 films on CeO2 buffered sapphire is examined. Depending on the thickness of the SrTiO3 layer, characteristic changes in the structural perfection of the layers, their crystallographic orientation with respect to the substrate system, and their strain is observed. For thin films misfit dislocations partially compensate the stress in the SrTiO3 layer, whereas cracks develop in thicker SrTiO3 films. The cracks are orientated along two predominant crystallographic orientations of the sapphire. The structural modifications and the formation of misfit defects and cracks are explained in a model based on lattice misfit induced stress, on the one hand, and energy considerations taking into account the stress release due to crack formation and the energy necessary for the formation of new surfaces at the crack, on the other hand. The impact of lattice misfit is discussed in two steps, i.e., intrinsic and thermal induced misfits during heteroepitaxial film growth at a given temperature and the subsequent cooling of the sample, respectively. The comparison of the theoretical predictions and the experimental observations demonstrate that intrinsic mismatch and thermal mismatch have to be considered in order to explain strain dependent effects in complex heteroepitaxial layer systems such as induced ferroelectricity of SrTiO3 on sapphire.

  9. Photonics of 2D gold nanolayers on sapphire surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V.

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  10. A Completely Solid-State Tunable Ti:Sapphire Laser System

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.

    1994-01-01

    Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.

  11. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  12. High-temperature sapphire optical sensor fiber coatings

    NASA Astrophysics Data System (ADS)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  13. Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines

    NASA Astrophysics Data System (ADS)

    Rozhdestvenskaya, I. V.; Setkova, T. V.; Vereshchagin, O. S.; Shtukenberg, A. G.; Shapovalov, Yu. B.

    2012-01-01

    The crystal structures of synthetic tourmalines with a unique composition containing 3 d elements (Ni, Fe, and Co) have been refined: (Ca0.12▭0.88)(Al1.69Ni{0.81/2+}Fe{0.50/2+})(Al5.40Fe{0.60/3+})(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni{1.20/2+}Cr{0.96/3+}Al0.63Fe{0.18/2+}Mg0.03)(Al4.26Ni{1.20/2+}Cr{0.48/3+}Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co{1.20/2+})(Al5.28Co{0.66/2+}Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038-0.057 and wR 2 = 0.041-0.060. It is found that 3 d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.

  14. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  15. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  16. Numerical Study of Damage Propagation and Dynamic Fracture in Sapphire

    DTIC Science & Technology

    2016-08-30

    NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...package by using three- dimensional, 180 degrees (reflective) modeling and simulation. This study reports on the ability and the modification of...existing strength and failure material models of Al2O3 to be used as sapphire models for duplication of the experimental fracture and wave propagation in

  17. Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor

    NASA Astrophysics Data System (ADS)

    Xu, Shicai; Jiang, Shouzhen; Zhang, Chao; Yue, Weiwei; Zou, Yan; Wang, Guiying; Liu, Huilan; Zhang, Xiumei; Li, Mingzhen; Zhu, Zhanshou; Wang, Jihua

    2018-01-01

    Graphene has attracted much attention in biosensing applications for its unique properties. Because of one-atom layer structure, every atom of graphene is exposed to the environment, making the electronic properties of graphene are very sensitive to charged analytes. Therefore, graphene is an ideal material for transistors in high-performance sensors. Chemical vapor deposition (CVD) method has been demonstrated the most successful method for fabricating large area graphene. However, the conventional CVD methods can only grow graphene on metallic substrate and the graphene has to be transferred to the insulating substrate for further device fabrication. The transfer process creates wrinkles, cracks, or tears on the graphene, which severely degrade electrical properties of graphene. These factors severely degrade the sensing performance of graphene. Here, we directly fabricated graphene on sapphire substrate by high temperature CVD without the use of metal catalysts. The sapphire-based graphene was patterned and make into a DNA biosensor in the configuration of field-effect transistor. The sensors show high performance and achieve the DNA detection sensitivity as low as 100 fM (10-13 M), which is at least 10 times lower than prior transferred CVD G-FET DNA sensors. The use of the sapphire-based G-FETs suggests a promising future for biosensing applications.

  18. The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP.

    PubMed

    Lützenkirchen, J; Franks, G V; Plaschke, M; Zimmermann, R; Heberling, F; Abdelmonem, A; Darbha, G K; Schild, D; Filby, A; Eng, P; Catalano, J G; Rosenqvist, J; Preocanin, T; Aytug, T; Zhang, D; Gan, Y; Braunschweig, B

    2018-01-01

    A wide range of isoelectric points (IEPs) has been reported in the literature for sapphire-c (α-alumina), also referred to as basal plane, (001) or (0001), single crystals. Interestingly, the available data suggest that the variation of IEPs is comparable to the range of IEPs encountered for particles, although single crystals should be much better defined in terms of surface structure. One explanation for the range of IEPs might be the obvious danger of contaminating the small surface areas of single crystal samples while exposing them to comparatively large solution reservoirs. Literature suggests that factors like origin of the sample, sample treatment or the method of investigation all have an influence on the surfaces and it is difficult to clearly separate the respective, individual effects. In the present study, we investigate cause-effect relationships to better understand the individual effects. The reference IEP of our samples is between 4 and 4.5. High temperature treatment tends to decrease the IEP of sapphire-c as does UV treatment. Increasing the initial miscut (i.e. the divergence from the expected orientation of the crystal) tends to increase the IEP as does plasma cleaning, which can be understood assuming that the surfaces have become less hydrophobic due to the presence of more and/or larger steps with increasing miscut or due to amorphisation of the surface caused by plasma cleaning. Pre-treatment at very high pH caused an increase in the IEP. Surface treatments that led to IEPs different from the stable value of reference samples typically resulted in surfaces that were strongly affected by subsequent exposure to water. The streaming potential data appear to relax to the reference sample behavior after a period of time of water exposure. Combination of the zeta-potential measurements with AFM investigations support the idea that atomically smooth surfaces exhibit lower IEPs, while rougher surfaces (roughness on the order of nanometers) result

  19. Study on effect of the surface variation of colloidal silica abrasive during chemical mechanical polishing of sapphire

    NASA Astrophysics Data System (ADS)

    Bun-Athuek, Natthaphon; Yoshimoto, Yutaka; Sakai, Koya; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    The surface and diameter size variations of colloidal silica particles during the chemical mechanical polishing (CMP) of sapphire substrates were investigated using different particle diameters of 20 and 55 nm. Dynamic light scattering (DLS) results show that the silica particles became larger after CMP under both conditions. The increase in particle size in the slurry was proportional to the material removal amount (MRA) as a function of the removed volume of sapphire substrates by CMP and affected the material removal rate (MRR). Transmission electron microscopy (TEM) images revealed an increase in the size of the fine particles and a change in their surface shape in the slurry. The colloidal silica was coated with the material removed from the substrate during CMP. In this case, the increase in the size of 55 nm diameter particles is larger than that of 20 nm diameter particles. X-ray fluorescence spectrometry (XRF) results indicate that the aluminum element from polished sapphire substrates adhered to the surfaces of silica particles. Therefore, MRR decreases with increasing of polishing time owing to the degradation of particles in the slurry.

  20. Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire.

    PubMed

    Hwang, Jae-Yeol; Kim, Young-Min; Lee, Kyu Hyoung; Ohta, Hiromichi; Kim, Sung Wng

    2017-10-11

    Demands on high-quality layer structured two-dimensional (2D) thin films such as pnictogen chalcogenides and transition metal dichalcogenides are growing due to the findings of exotic physical properties and potentials for device applications. However, the difficulties in controlling epitaxial growth and the unclear understanding of van der Waals epitaxy (vdWE) for a 2D chalcogenide film on a three-dimensional (3D) substrate have been major obstacles for the further advances of 2D materials. Here, we exploit the spontaneous vdWE of a high-quality 2D chalcogenide (Bi 0.5 Sb 1.5 Te 3 ) film by the chalcogen-driven surface reconstruction of a conventional 3D sapphire substrate. It is verified that the in situ formation of a pseudomorphic Te atomic monolayer on the surface of sapphire, which results in a dangling bond-free surface, allows the spontaneous vdWE of 2D chalcogenide film. Since this route uses the natural surface reconstruction of sapphire with chalcogen under vacuum condition, it can be scalable and easily utilized for the developments of various 2D chalcogenide vdWE films through conventional thin-film fabrication technologies.

  1. Single-crystal growth of C u4(OH) 6BrF and universal behavior in quantum spin liquid candidates synthetic barlowite and herbertsmithite

    NASA Astrophysics Data System (ADS)

    Pasco, C. M.; Trump, B. A.; Tran, Thao T.; Kelly, Z. A.; Hoffmann, C.; Heinmaa, I.; Stern, R.; McQueen, T. M.

    2018-04-01

    Synthetic barlowite, C u4(OH) 6BrF , has emerged as a new quantum spin liquid (QSL) host, containing kagomé layers of S =1 /2 C u2 + ions separated by interlayer C u2 + ions. Similar to synthetic herbertsmithite, ZnC u3(OH) 6C l2 , it has been reported that Z n2 + substitution for the interlayer C u2 + induces a QSL ground state. Here we report a scalable synthesis of single crystals of C u4(OH) 6BrF . Through x-ray, neutron, and electron diffraction measurements coupled with magic angle spinning 19F and 1H NMR spectroscopy, we resolve the previously reported positional disorder of the interlayer C u2 + ions and find that the structure is best described in the orthorhombic space group, Cmcm, with lattice parameters a =6.665 (13 )Å ,b =11.521 (2 )Å ,c =9.256 (18 )Å , and an ordered arrangement of interlayer C u2 + ions. Infrared spectroscopy measurements of the O—H and F—H stretching frequencies demonstrate that the orthorhombic symmetry persists upon substitution of Z n2 + for C u2 + . Specific heat and magnetic susceptibility measurements of Zn-substituted barlowite, Z nxC u4 -x(OH) 6BrF , reveal striking similarities with the behavior of Z nxC u4 -x(OH) 6C l2 . These parallels imply universal behavior of copper kagomé lattices even in the presence of small symmetry-breaking distortions. Thus, synthetic barlowite demonstrates universality of the physics of synthetic C u2 + kagomé minerals and furthers the development of real QSL states.

  2. Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakthivel, Dhayalan; Rathkanthiwar, Shashwat; Raghavan, Srinivasan, E-mail: sraghavan@cense.iisc.ernet.in

    2015-04-28

    Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120–480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important partmore » of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet.« less

  3. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor

  4. High-T(sub c) Edge-geometry SNS Weak Links on Silicon-on-sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, B.; Foote, M.; Pike, W.; Barner, J.; Vasquez, R.

    1994-01-01

    High-quality superconductor/normal-metal/superconductor(SNS) edge-geometry weak links have been produced on silicon-on-sapphire (SOS) substrates using a new SrTiO(sub 3)/'seed layer'/cubic-zirconia (YS2) buffer system.

  5. "You Hafta Push": Using Sapphire's Novel to Teach Introduction to American Government

    ERIC Educational Resources Information Center

    Pappas, Christine

    2007-01-01

    Using fiction in the classroom can dramatize public policy issues and political science concepts, therefore, making them more real and relevant to students. Sapphire's 1996 novel "Push" puts a face on welfare, rape, incest, child abuse, educational inequalities, homophobia, and AIDS. I also use this novel to discuss the public policy process,…

  6. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim

    2017-10-01

    Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.

  7. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  8. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  9. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  10. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  11. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.

    2017-11-01

    The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.

  12. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  13. Effect of thermal interaction between bulk GaN substrates and corral sapphire on blue light emission InGaN/GaN multi-quantum wells by MOCVD

    NASA Astrophysics Data System (ADS)

    Sivanathan, P. C.; Shuhaimi, Ahmad; Hamza, Hebal; Kowsz, Stacy J.; Abdul Khudus, Muhammad I. M.; Li, Hongjian; Allif, Kamarul

    2018-07-01

    The InGaN/GaN multi-quantum wells, growth on bulk GaN substrate were studied for blue light emission. Growth temperature plays a key role determining the peak wavelength of a quantum well. The study was carried out by growing quantum wells, MQWs on the whole sapphire at 716 °C and observed peak wavelength at 463 nm. While the bulk GaN substrate with sapphire corral grown at 703 °C and observed a blueshift at 433 nm peak wavelength. These results contradict that of typical observation of wavelength emission inversely proportional to the growth temperature. On the other hand, the growth of GaN-sapphire and GaN-silicon at similar conditions emits 435 nm and 450 nm respectively. The heat interaction of bulk GaN substrates surrounded by the sapphire corral exhibits different growth conditions in multi-quantum wells when compared to that of a whole sapphire substrate (absence of bulk GaN). The predicated surface temperature of bulk GaN substrate is 10 °C-15 °C of more than the corral sapphire. This observation may link to the difference in the thermal distribution of the growth surface corresponding to the different thermal conductivity ratio. The photoluminescence and computational techniques were used to understand in-depth of the heat interaction.

  14. A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes.

    PubMed

    Uddin, Ismail; Frank, Stefanie; Warren, Martin J; Pickersgill, Richard W

    2018-05-01

    Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  16. Structural and optical properties of low temperature grown AlN films on sapphire using helicon sputtering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Meei-Ru; Chen, Hou-Guang; Kao, Hui-Ling, E-mail: hlkao@cycu.edu.tw

    2015-05-15

    AlN thin films have been deposited directly on c-plane sapphire substrates at low temperatures by a helicon sputtering system. The structural quality of AlN epitaxial films was characterized by x-ray diffractometry and transmission electron microscopy. The films exhibit smooth surface with root-mean-square roughness as small as 0.7 nm evaluated by atomic force microscope. The optical transmittance spectra show a steep absorption edge at the wavelength of 200 nm and a high transmittance of over 80% in the visible range. The band-edge transition (6.30 eV) of AlN film was observed in the cathodoluminescence spectrum recorded at 11 K. The spectral response of metal–semiconductor–metal photodetectors constructedmore » with AlN/sapphire reveals the peak responsivity at 200 nm and a UV/visible rejection ratio of about two orders of magnitude. The results of this low temperature deposition suggest the feasibility of the epitaxial growth of AlN on sapphire substrates and the incorporation of the AlN films in the surface acoustic wave devices and the optical devices at deep ultraviolet region.« less

  17. Measurement of ultrashort laser pulses using single-crystal films of 4-aminobenzophenone

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Tan, Shida; Ahyi, Ayayi C.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; Mathur, D.

    2007-12-01

    Single-crystal thin-film of an organic second-order nonlinear optical material, 4-aminobenzophenone (ABP), is used to measure the pulsewidth of a Ti-Sapphire laser producing ˜45 fs pulses at 1 kHz repetition rate, by the non-collinear second-harmonic generation (SHG) intensity autocorrelation technique. These films are suitable for measurements over a broad wavelength range, down to 780 nm, due to their wide optical transparency. The single-crystal film with thickness (˜3 μm) less than the coherence length requires no phase-matching for efficient broadband SHG. Pulse walk-off due to group-velocity mismatch (GVM) and temporal broadening of the pulses due to group-velocity dispersion (GVD) are found to be negligible. These effects have been estimated for pulse width down to few-cycle pulses (˜10 fs), and the analyses show that these films can be used to characterize such ultrashort optical pulses.

  18. Laboratory studies of crystal growth in magma

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and

  19. Optical properties of (AlxGa1-x)2O3 on sapphire

    NASA Astrophysics Data System (ADS)

    Hu, Zhuangzhuang; Feng, Qian; Zhang, Jincheng; Li, Fuguo; Li, Xiang; Feng, Zhaoqing; Zhang, Chunfu; Hao, Yue

    2018-02-01

    The (AlxGa1-x)2O3 and Ga2O3 films are epitaxially grown on sapphire by pulsed laser deposition (PLD). From X-ray photoelectron spectroscopy (XPS) and X-ray diffraction measurements, the (AlxGa1-x)2O3 films with Al compositions of 0.39, 0.49 and up to 0.53 are all single crystal and there is an out-of-plane tensile strain in (AlxGa1-x)2O3 films within the range from 0.164% to 0.345%. The optical properties are investigated by Spectral Ellipsometry (SE) together with the optical transmission method. The spectral dependence of the refractive index (n) by SE is in accordance with the reported experiment results. The thicknesses of the Ga2O3 and (AlxGa1-x)2O3 films obtained by SE fitting are 201, 116.8, 40 and 84.61 nm, respectively, which is consistent with the field emission scanning electron microscopy (FESEM) measurement results. In addition, with the Al composition increasing, the bandgaps of the (AlxGa1-x)2O3 films determined from the SE are both increase from 4.95 to 5.49, 5.7 and 5.75 eV, almost identical to the values determined by the transmittance spectra, which is larger than some extent compared to reference [13] for the compressive strain in the (AlxGa1-x)2O3 films.

  20. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  1. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.

    Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less

  2. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing

    DOE PAGES

    Sun, Chang-Yu; Marcus, Matthew A.; Frazier, Matthew J.; ...

    2017-05-31

    Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO 3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coralmore » aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less

  3. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    NASA Astrophysics Data System (ADS)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  4. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.

  5. The Valence- and Conduction-Band Structure of the Sapphire (1102) Surface.

    DTIC Science & Technology

    1984-12-01

    surface. The pbotomission spectrum of the valece-baud region has boon adjusted to rmove croas-section effect s and comparod to the recent theoretical ...transitions in Al203. Several theoretical deteminations of the electron structure of various A1203 analoaues have bes performed. These calculations were...picture of the valence sad core density of states in sapphire. The rew, 31 velesee-bend data of Fit. I& and the theoretical 003 shows is Fig. 1.. which

  6. Measurement and thermal modeling of sapphire substrate temperature at III-Nitride MOVPE conditions

    DOE PAGES

    Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.

    2017-04-01

    Here, growth rates and alloy composition of AlGaN grown by MOVPE is often very temperature dependent due to the presence of gas-phase parasitic chemical processes. These processes make wafer temperature measurement highly important, but in fact such measurements are very difficult because of substrate transparency in the near- IR (~900 nm) where conventional pyrometers detect radiation. The transparency problem can be solved by using a mid-IR pyrometer operating at a wavelength (~7500 nm) where sapphire is opaque. We employ a mid- IR pyrometer to measure the sapphire wafer temperature and simultaneously a near-IR pyrometer to measure wafer pocket temperature, whilemore » varying reactor pressure in both a N 2 and H 2 ambient. Near 1300 °C, as the reactor pressure is lowered from 300 Torr to 10 Torr the wafer temperature drops dramatically, and the ΔT between the pocket and wafer increases from ~20 °C to ~250 °C. Without the mid-IR pyrometer the large wafer temperature change with pressure would not have been noted. In order to explain this behavior we have developed a quasi-2D thermal model that includes a proper accounting of the pressure-dependent thermal contact resistance, and also accounts for sapphire optical transmission. The model and experimental results demonstrate that at most growth conditions the majority of the heat is transported from the wafer pocket to the wafer via gas conduction, in the free molecular flow limit. In this limit gas conductivity is independent of gap size but first order in pressure, and can quantitatively explain results from 20 to 300 Torr. Further analysis yields a measure of the thermal accommodation coefficients; α(H 2) =0.23, α(N 2) =0.50, which are in the range typically measured.« less

  7. Slow Crack Growth and Fracture Toughness of Sapphire for the International Space Station Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2006-01-01

    The fracture toughness, inert flexural strength, and slow crack growth parameters of the r- and a-planes of sapphire grown by the Heat Exchange Method were measured to qualify sapphire for structural use in the International Space Station. The fracture toughness in dry nitrogen, K(sub Ipb), was 2.31 +/- 0.12 MPa(square root of)m and 2.47 +/- 0.15 MPa(squre root of)m for the a- and r-planes, respectively. Fracture toughness measured in water via the operational procedure in ASTM C1421 was significantly lower, K(sub Ivb) = 1.95+/- 0.03 MPa(square root of)m, 1.94 +/- 0.07 and 1.77 +/- 0.13 MPa(square root of)m for the a- , m- and r-planes, respectively. The mean inert flexural strength in dry nitrogen was 1085 +/- 127 MPa for the r-plane and 1255 +/- 547 MPa for the a-plane. The power law slow crack growth exponent for testing in water was n = 21 +/- 4 for the r-plane and n (greater than or equal to) 31 for the a-plane. The power law slow crack growth coefficient was A = 2.81 x 10(exp -14) m/s x (MPa(squre root of)m)/n for the r-plane and A (approx. equals)2.06 x 10(exp -15) m/s x (MPa(square root of)m)/n for the a-plane. The r- and a-planes of sapphire are relatively susceptible to stress corrosion induced slow crack growth in water. However, failure occurs by competing modes of slow crack growth at long failure times and twinning for short failure time and inert environments. Slow crack growth testing needs to be performed at low failure stress levels and long failure times so that twinning does not affect the results. Some difficulty was encountered in measuring the slow crack growth parameters for the a-plane due to a short finish (i.e., insufficient material removal for elimination of the damage generated in the early grinding stages). A consistent preparation method that increases the Weibull modulus of sapphire test specimens and components is needed. This would impart higher component reliability, even if higher Weibull modulus is gained at the sacrifice of

  8. Electron Induced Conductivity of Al2O3 as Pertaining to Thermionic Integrated Circuits.

    DTIC Science & Technology

    1985-12-01

    No.6, pp. 4450-4456, December 1983. 18. Pomerantz, M. A., Shatas, R. A. and Marshall, 3. F., "Electrical Conductivity Induced in MgO Crystals by 1.3...Experiments were conducted to measure the electron induced conductivity CEIC) of single crystal sapphire (A120 ) and poly-crystalline alumina (A1203 ). The...induced conductivity (EIC) of single crystal sapphire (A li2O-) and poly-crystalline alumina (Alzz2O. The EIC is generated when the samples are bombarded

  9. Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Zheng, Li-He; Wang, Qing-Guo; Liu, Jun-Fang; Su, Liang-Bi; Tang, Hui-Li; Liu, Jie; Fan, Xiu-Wei; Wu, Feng; Luo, Ping; Zhao, Heng-Yu; Shi, Jiao-Jiao; He, Nuo-Tian; Li, Na; Li, Qiu; Guo, Chao; Xu, Xiao-Dong; Wang, Zhan-Shan; Xu, Jun

    2017-08-01

    Not Available Project supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Shanghai Municipal Natural Science Foundation, China (Grant No. 13ZR1446100), and the MDE Key Laboratory of Advanced Micro-Structured Materials.

  10. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  11. Dosimetric characterization of a synthetic single crystal diamond detector in a clinical 62 MeV ocular therapy proton beam

    NASA Astrophysics Data System (ADS)

    Marinelli, Marco; Pompili, F.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cirrone, G. A. P.; Cuttone, G.; La Rosa, R. M.; Raffaele, L.; Romano, F.; Tuvè, C.

    2014-12-01

    A synthetic single crystal diamond based Schottky photodiode was tested at INFN-LNS on the proton beam line (62 MeV) dedicated to the radiation treatment of ocular disease. The diamond detector response was studied in terms of pre-irradiation dose, linearity with dose and dose rate, and angular dependence. Depth dose curves were measured for the 62 MeV pristine proton beam and for three unmodulated range-shifted proton beams; furthermore, the spread-out Bragg peak was measured for a modulated therapeutic proton beam. Beam parameters, recommended by the ICRU report 78, were evaluated to analyze depth-dose curves from diamond detector. Measured dose distributions were compared with the corresponding dose distributions acquired with reference plane-parallel ionization chambers. Field size dependence of the output factor (dose per monitor unit) in a therapeutic modulated proton beam was measured with the diamond detector over the range of ocular proton therapy collimator diameters (5-30 mm). Output factors measured with the diamond detector were compared to the ones by a Markus ionization chamber, a Scanditronix Hi-p Si stereotactic diode and a radiochromic EBT2 film. Signal stability within 0.5% was demonstrated for the diamond detector with no need of any pre-irradiation dose. Dose and dose rate dependence of the diamond response was measured: deviations from linearity resulted to be within ±0.5% over the investigated ranges of 0.5-40.0 Gy and 0.3-30.0 Gy/min respectively. Output factors from diamond detector measured with the smallest collimator (5 mm in diameter) showed a maximum deviation of about 3% with respect to the high resolution radiochromic EBT2 film. Depth-dose curves measured by diamond for unmodulated and modulated beams were in good agreement with those from the reference plane-parallel Markus chamber, with relative differences lower than ±1% in peak-to-plateau ratios, well within experimental uncertainties. A 2.5% variation in diamond detector

  12. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xiuxia; Li, Jiabo; Li, Jun

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformationmore » (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.« less

  13. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    NASA Astrophysics Data System (ADS)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  14. Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres

    NASA Astrophysics Data System (ADS)

    Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.

    2006-05-01

    Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.

  15. Biogenic twinned crystals exhibiting unique morphological symmetry

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Palmer, Ben; Addadi, Lia; Leiserowitz, Leslie; Kronik, Leeor

    Guanine crystals are widely used in nature as components of multilayer reflectors. Organisms control the size, morphology, and arrangement of these crystals, to obtain a variety of optical ''devices''. The reflection systems found in the lens of the scallop eye and in the copepod cuticle are unique in that the multilayered reflectors are tiled together to form a contiguous packed array. In the former, square crystals are tiled to form a reflecting mirror. In the latter, hexagonal crystals are closely packed to produce brilliant colors. Based on electron diffraction, morphology considerations, and density functional theory, these crystals were shown to possess similar monoclinic crystal symmetry, which we have previously identified as different from that of synthetic anhydrous guanine. However, the crystals are different in that multiple twinning about the {012} and the {011} crystallographic planes results in square and hexagonal morphology, respectively. This is a unique example where controlled twinning is used as a strategy to form a morphology with higher symmetry than that of the underlying crystal, allowing for tilling that facilitates optical functionality.

  16. Photo- and electroluminescence of sulfide and silicate phosphors embedded in synthetic opal

    NASA Astrophysics Data System (ADS)

    Kaplan, S. F.; Kartenko, N. F.; Kurdyukov, D. A.; Medvedev, A. V.; Badalyan, A. G.; Golubev, V. G.

    2007-02-01

    The sulfide (ZnS:Mn, Zn xCd 1 -xS:Mn, Zn xCd 1- xS:Ag) and silicate (Zn 2SiO 4:Mn) phosphors were synthesized directly inside the pores of synthetic opal by chemical bath deposition. These composites are perfect three-dimensional photonic crystals, which produce effective photo- and electroluminescence at room temperature. The emission spectra are considerably modified by the photonic crystal structure to become anisotropic in accordance with the photonic band gap angular dispersion.

  17. GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Yeh, J. Andrew

    2011-09-01

    High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.

  18. Trials and tribulations of carotid artery stenting: The Interventionalists' perspective on SAPPHIRE, EVA-3S, and SPACE Trials.

    PubMed

    Harjai, Kishore J; Mehta, Rajendra H

    2007-10-01

    Three recently completed randomized studies of carotid artery stenting (CAS) versus endarterectomy-Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE), Endarterectomy versus Stenting in Patients with Symptomatic Severe Carotid Stenosis (EVA-3S), and Stent-Supported Percutaneous Angioplasty of the Carotid Artery versus Endarterectomy (SPACE)-reached vividly different conclusions about the safety of stenting versus endarterectomy. The methodologies of these studies differed from each other in many respects. In an attempt to explain the disparate results of SAPPHIRE, EVA-3S, and SPACE, this focused review compares and contrasts these studies, with specific reference to inclusion and exclusion criteria, technical considerations, and the experience level of the interventional operators.

  19. High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.; Hess, A.; Croell, A.; Breuer, D.; Sauermann, H.

    2012-01-01

    For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples).

  20. Mineral resource of the month: cultured quartz crystal

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents information on cultured quartz crystals, a mineral used in mobile phones, computers, clocks and other devices controlled by digital circuits. Cultured quartz, which is synthetically produced in large pressurized vessels known as autoclaves, is useful in electronic circuits for precise filtration, frequency control and timing for consumer and military use. Several ingredients are used in producing cultured quartz, including seed crystals, lascas, a solution of sodium hydroxide or sodium carbonate, lithium salts and deionized water.

  1. Tunable femtosecond laser based on the Nd3+:BaLaGa 3O 7 disordered crystal

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Pirzio, F.; Tartara, L.; Ugolotti, E.; Zhang, H.; Wang, J.; Yu, H.; Petrov, V.

    2014-03-01

    We demonstrate clear inhomogeneous linewidth broadening for the disordered laser crystal Nd:BaLaGa3O7 (Nd:BLG), which is very promising for the replacement of Nd:glass for ultrafast sources in multiwatt power applications. A Nd:BLG laser oscillator passively mode-locked and pumped by a Ti:sapphire laser generated pulses of 316-fs duration at 1060 nm, whose spectrum completely fills the fluorescence peak at such wavelength. More interestingly, sub-picosecond pulses were smoothly tunable in a 20-nm range, from 1070 to 1090 nm. The shortest pulses achieved were 290 fs long, centered at 1075 nm.

  2. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  3. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  4. X-ray studies of synthetic radiation-counting diamonds.

    PubMed

    Yacoot, A; Moore, M; Makepeace, A

    1990-10-01

    Synthetic diamonds with a nitrogen content less than 100 ppm may be used as radiation dosemeters in a conduction counting mode, and are especially useful in medical applications. Crystal imperfections, revealed by x-ray diffraction topography, were found to affect counting performance. The best quality diamond gave the highest photocurrent (500 nA at 50 V mm-1 and 2.75 Gy min-1). Diamonds containing dislocations had lower photocurrents but had the advantage of shorter settling times (seconds rather than minutes). Placing contacts on two opposite cube (100) faces gave a higher photocurrent than on a pair of octahedral (111) faces. Higher photocurrents were also achieved when the majority of dislocations were perpendicular rather than parallel, to the electric field. Some recommendations for selecting synthetic diamonds for dosemeters are given.

  5. Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD

    NASA Astrophysics Data System (ADS)

    Omar, Al-Zuhairi; Shuhaimi Bin Abu Bakar, Ahmad; Makinudin, Abdullah Haaziq Ahmad; Khudus, Muhammad Imran Mustafa Abdul; Azman, Adreen; Kamarundzaman, Anas; Supangat, Azzuliani

    2018-05-01

    The effect of ammonia flux towards the quality of the semi-polar (11-22) gallium nitride thin film on m-plane (10-10) sapphire is presented. Semi-polar (11-22) gallium nitride epi-layers were obtained using a two-step growth method, consisting of high temperature aluminum nitride followed by gallium nitride via metal organic chemical vapor deposition. The surface morphology analysis via field emission scanning electron microscopy and atomic force microscopy of the semi-polar (11-22) gallium nitride has shown that low ammonia flux promotes two-dimensional growth with low surface roughness of 4.08 nm. A dominant diffraction peak of (11-22) gallium nitride was also observed via X-ray diffraction upon utilizing low ammonia flux. The on- and off-axis X-ray rocking curve measurements illustrate the enhancement of the crystal quality, which might result from the reduction of the basal stacking faults and perfect dislocation. The full width half maximum values were reduced by at least 15% for both on- and off-axis measurements.

  6. Inscription of first order fiber Bragg gratings in sapphire fibers by 400 nm femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Elsmann, Tino; Habisreuther, Tobias; Graf, Albrecht; Rothhardt, Manfred; Bartelt, Hartmut

    2013-05-01

    We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.

  7. Potential lead exposures from lead crystal decanters.

    PubMed

    Appel, B R; Kahlon, J K; Ferguson, J; Quattrone, A J; Book, S A

    1992-12-01

    We measured the concentrations of lead leached into 4% acetic acid, white port, and a synthetic alcoholic beverage that were stored in lead crystal decanters for 1-, 2-, and 10-day periods at room temperature. In decanters from 14 different manufacturers, measured lead concentrations ranged from 100 to 1800 micrograms/L. The pH of the leaching medium is probably the dominant factor determining the extent of lead leached, with greater leaching occurring at lower pH values. The consumption of alcoholic beverages stored in lead crystal decanters is judged to pose a hazard.

  8. Quenching of light flickering in synthetic guanine crystals in aqueous solutions under strong static magnetic fields

    NASA Astrophysics Data System (ADS)

    Mootha, A.; Takanezawa, Y.; Iwasaka, M.

    2018-05-01

    The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.

  9. Effects of carbon dioxide, Nd:YAG and carbon dioxide-Nd:YAG combination lasers at high energy densities on synthetic hydroxyaptite.

    PubMed

    Meurman, J H; Voegel, J C; Rauhamaa-Mäkinen, R; Gasser, P; Thomann, J M; Hemmerle, J; Luomanen, M; Paunio, I; Frank, R M

    1992-01-01

    The aim of this study was to determine the crystalline structure and chemical alterations of synthetic hydroxyapatite after irradiation with either CO2, Nd:YAG or CO2-Nd:YAG combination lasers at high energy densities of 500-3,230 J.cm2. Further, dissolution kinetics of the lased material were analysed and compared with those of unlased apatite. Electron microscopy showed that the lased material consisted of two kinds of crystals. From the micrographs their diameters varied from 600 to 1,200 A and from 3,000 to 6,000 A, respectively. The larger crystals showed 6.9-Angström periodic lattice fringes in the transmission electron microscope. alpha-Tricalcium phosphate (TCP) was identified by X-ray diffraction. Selective-area electron diffraction identified the large crystals to consist of tricalcium phosphate while the smaller crystals were probably hydroxyapatite. Assays of dissolution kinetics showed that at these high energy densities lased material dissolved more rapidly than unlased synthetic hydroxyapatite due to the higher solubility of TCP.

  10. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin

    2013-06-01

    We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.

  11. A conduction model for contacts to Si-doped AlGaN grown on sapphire and single-crystalline AlN

    NASA Astrophysics Data System (ADS)

    Haidet, Brian B.; Bryan, Isaac; Reddy, Pramod; Bryan, Zachary; Collazo, Ramón; Sitar, Zlatko

    2015-06-01

    Ohmic contacts to AlGaN grown on sapphire substrates have been previously demonstrated for various compositions of AlGaN, but contacts to AlGaN grown on native AlN substrates are more difficult to obtain. In this paper, a model is developed that describes current flow through contacts to Si-doped AlGaN. This model treats the current through reverse-biased Schottky barriers as a consequence of two different tunneling-dependent conduction mechanisms in parallel, i.e., Fowler-Nordheim emission and defect-assisted Frenkel-Poole emission. At low bias, the defect-assisted tunneling dominates, but as the potential across the depletion region increases, tunneling begins to occur without the assistance of defects, and the Fowler-Nordheim emission becomes the dominant conduction mechanism. Transfer length method measurements and temperature-dependent current-voltage (I-V) measurements of Ti/Al-based contacts to Si-doped AlGaN grown on sapphire and AlN substrates support this model. Defect-assisted tunneling plays a much larger role in the contacts to AlGaN on sapphire, resulting in nearly linear I-V characteristics. In contrast, contacts to AlGaN on AlN show limited defect-assisted tunneling appear to be only semi-Ohmic.

  12. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.

    1997-01-01

    Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.

  14. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators.

    PubMed

    Smith, Clinton J; Shankar, Raji; Laderer, Matthew; Frish, Michael B; Loncar, Marko; Allen, Mark G

    2015-03-09

    We report the initial evaluation of a mid-infrared QCL-coupled silicon-on-sapphire ring resonator gas sensor. The device probes the N(2)O 2241.79 cm(-1) optical transition (R23 line) in the ν(3) vibrational band. N(2)O concentration is deduced using a non-linear least squares fit, based on coupled-mode theory, of the change in ring resonator Q due to gas absorption losses in the evanescent portion of the waveguide optical mode. These early experiments demonstrated response to 5000 ppmv N(2)O.

  15. 78 FR 56691 - Sapphire Power Marketing LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Power Marketing LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Sapphire Power Marketing LLC's application for market-based rate authority, with an accompanying rate... submission of protests and interventions in lieu of paper, using the FERC Online links at http://www.ferc.gov...

  16. 5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode

    NASA Astrophysics Data System (ADS)

    Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan

    2018-05-01

    We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.

  17. Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching.

    PubMed

    Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong

    2013-08-23

    Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.

  18. Autonomous cryogenic sapphire oscillators employing low vibration pulse-tube cryocoolers at NMIJ

    NASA Astrophysics Data System (ADS)

    Ikegami, Takeshi; Watabe, Ken-ichi; Yanagimachi, Shinya; Takamizawa, Akifumi; Hartnett, John G.

    2016-06-01

    Two liquid-helium-cooled cryogenic sapphire-resonator oscillators (CSOs), have been modified to operate using cryo-refrigerators and low-vibration cryostats. The Allan deviation of the first CSO was evaluated to be better than 2 x 10-15 for averaging times of 1 s to 30 000 s, which is better than that of the original liquid helium cooled CSO. The Allan deviation of the second CSO is better than 4 x 10-15 from 1 s to 6 000 s averaging time.

  19. Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zhou, X. M.

    2018-04-01

    To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.

  20. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  1. Surface-structural Control on Minor Element Zoning and Growth Mechanism in Synthetic Magmatic Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Deakin, M.; Baker, D. R.

    2006-12-01

    Because in situ observations of actively growing surfaces are technically impractical, our understanding of crystal growth mechanisms at hydrothermal and magmatic conditions lags behind that of minerals that can be grown from aqueous solutions at or near room temperature. Growing silicate minerals from hydrous synthetic carbonate melts offers the opportunity to relate directly minor element incorporation to their surface microtopography. Natural hydrothermal diopside was used to seed experiments in which synthetic clinopyroxene crystals were grown at 800 degrees C and 10 kbars for 24 hours, from alkaline melts modelled after the lavas of the Tanzanian volcano Oldoinyo Lengai. The melts were prepared from Na2CO3, K2CO3, CaCO3, MgCO3 and Fe3O4 reagents. One run was anhydrous and the others contained either 2.5 or 5 wt. % H2O. Euhedral tabular crystals ranging in size from 100 to 300 ìm across were found in all three runs, hand-picked and freed from their carbonate matrix by overnight immersion in dilute acetic acid. The crystals consist of \\{110\\} prism, \\{100\\} and \\{001\\} pinacoids and a \\{111\\} dipyramid. AFM images resolved a distinct surface microtopography on each form: arrays of broad macrosteps on \\{100\\}, lens- shaped islands on \\{001\\} facets and striated fiber-like crystallites on \\{110\\}. EMP analyses of polished grain mounts show that compositional zoning of Na and Fe occurs not only among non-equivalent growth sectors but also within single \\{100\\} sectors. Electron microprobe maps of sequentially polished sections indicate that zoning within \\{100\\} sectors reflects differential uptake of Na and Fe on symmetrically non-equivalent steps. Near the crystal surface, the non- equivalent coeval vicinal faces of growth hillocks on \\{100\\} are either diopside-like, Na.007Ca1.00(Mg0.754Fe2+0.22Mn2+0.013Al_{0.003)Si2.00O6 , or acmitic, Ca0.63Na0.35(Mg0.64Fe3+ 0.36)Al0.01Si1.99O6 in composition. Step-specific incorporation of minor elements

  2. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  3. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties

    DOE PAGES

    Liu, Yujing; Zang, Huidong; Wang, Ling; ...

    2016-09-25

    Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less

  4. Femtosecond optical parametric amplification in BBO and KTA driven by a Ti:sapphire laser for LIDT testing and diagnostic development

    NASA Astrophysics Data System (ADS)

    Meadows, Alexander R.; Cupal, Josef; Hříbek, Petr; Durák, Michal; Kramer, Daniel; Rus, Bedřich

    2017-05-01

    We present the design of a collinear femtosecond optical parametric amplification (OPA) system producing a tunable output at wavelengths between 1030 nm and 1080 nm from a Ti:Sapphire pump laser at a wavelength of 795 nm. Generation of a supercontinuum seed pulse is followed by one stage of amplification in Beta Barium Borate (BBO) and two stages of amplification in Potassium Titanyle Arsenate (KTA), resulting in a 225 μJ output pulse with a duration of 90 fs. The output of the system has been measured by self-referenced spectral interferometry to yield the complete spectrum and spectral phase of the pulse. When compared to KTP, the greater transparency of KTA in the spectral range from 3 - 4 μm allows for reduced idler absorption and enhanced gain from the OPA process when it is pumped by the fundamental frequency of a Ti:sapphire laser. In turn, the use of the Ti:sapphire fundamental at 795 nm as a pump improves the efficiency with which light can be converted to wavelengths between 1030 nm and 1080 nm and subsequently used to test components for Nd-based laser systems. This OPA system is operated at 1 kHz for diagnostic development and laser-induced damage threshold testing of optical components for the ELI-Beamlines project.

  5. Optical Interface States Protected by Synthetic Weyl Points

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xiao, Meng; Liu, Hui; Zhu, Shining; Chan, C. T.

    2017-07-01

    Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here, we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments, which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points, and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arc surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.

  6. Airborne particulate concentration during laser hair removal: A comparison between cold sapphire with aqueous gel and cryogen skin cooling.

    PubMed

    Ross, Edward V; Chuang, Gary S; Ortiz, Arisa E; Davenport, Scott A

    2018-04-01

    High concentrations of sub-micron nanoparticles have been shown to be released during laser hair removal (LHR) procedures. These emissions pose a potential biohazard to healthcare workers that have prolonged exposure to LHR plume. We sought to demonstrate that cold sapphire skin cooling done in contact mode might suppress plume dispersion during LHR. A total of 11 patients were recruited for laser hair removal. They were treated on the legs and axilla with a 755 or 1064 nm millisecond-domain laser equipped with either (i) cryogen spray (CSC); (ii) refrigerated air (RA); or (iii) contact cooling with sapphire (CC). Concentration of ultrafine nanoparticles <1 μm were measured just before and during LHR with the three respective cooling methods. For contact cooling (CC), counts remained at baseline levels, below 3,500 parts per cubic centimeter (ppc) for all treatments. In contrast, the CSC system produced large levels of plume, peaking at times to over 400,000 ppc. The CA cooled system produced intermediate levels of plume, about 35,000 ppc (or about 10× baseline). Cold Sapphire Skin cooling with gel suppresses plume during laser hair removal, potentially eliminating the need for smoke evacuators, custom ventilation systems, and respirators during LHR. Lasers Surg. Med. 50:280-283, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  8. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE PAGES

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; ...

    2014-12-29

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  9. Plasmonic photonic crystals realized through DNA-programmable assembly

    PubMed Central

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; Zhou, Yu; Schatz, George C.; Mirkin, Chad A.

    2015-01-01

    Three-dimensional dielectric photonic crystals have well-established enhanced light–matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry–Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼102) over the visible and near-infrared spectrum. PMID:25548175

  10. Plasmonic photonic crystals realized through DNA-programmable assembly.

    PubMed

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  11. Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1983-01-01

    Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.

  12. Hidden instabilities in the Ti:sapphire Kerr lens mode-locked laser.

    PubMed

    Kovalsky, M G; Hnilo, A A; González Inchauspe, C M

    1999-11-15

    It is experimentally shown that pulse-to-pulse instabilities in the output of Kerr lens mode-locked Ti:sapphire lasers are usual and that they can affect some of the pulse variables (e.g., the spot size) and not others (e.g., pulse duration and energy). These instabilities are not detectable in the averaged signals (such as the autocorrelation of the pulse) that are customarily used for controlling the laser. But, if they are present but are disregarded, these instabilities have undesirable consequences in almost any application. A simple way to detect and eliminate the instabilities is described.

  13. The determination of the direction of the optic axis of uniaxial crystalline materials

    NASA Technical Reports Server (NTRS)

    Lock, J. A.; Schock, H. J.; Regan, C. A.

    1986-01-01

    The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder.

  14. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    NASA Astrophysics Data System (ADS)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls

  15. Crystal structures, in-silico study and anti-microbial potential of synthetic monocarbonyl curcuminoids

    NASA Astrophysics Data System (ADS)

    Ud Din, Zia; Serrano, N. F. G.; Ademi, Kastriot; Sousa, C. P.; Deflon, Victor Marcelo; Maia, Pedro Ivo da Silva; Rodrigues-Filho, Edson

    2017-09-01

    In this work the screening of 20 unsymmetrical chalcone and curcuminoids analogues in regard of their antimicrobial properties was conducted. Electron donating groups in the aromatic rings in the chalcone and curcuminoid derivatives produced higher antimicrobial effect. Compounds 1, 9 and 15 exhibited good activity against Escherichia coli and Staphylococcus aureus. These compounds were further evaluated against nine micro-organisms of pathological interest. Pharmmaper was used for target fishing of compounds against important bacterial targets. Molecular Docking helped to verify the results of these compounds against the selected bacterial target D-alanyl-D-alanine carboxypeptidase (PDB ID: 1PW1). The crystal structure of ligand and docked conformers in the active site of 1PW1 were analyzed. As a result structure-activity relationships are proposed. Structures of compounds 14 and 16 were obtained through single crystals X-ray diffraction studies. Compound 14 crystallizes in monoclinic space group P21/c with unit cell dimensions a = 13.1293(3) Å, b = 17.5364(4) Å, c = 15.1433(3) Å, β = 95.6440(10), V = 3469.70(13) Å3 and Z = 8. Compound 16 crystallizes in triclinic space group Pī with unit cell dimensions a = 6.8226(4) Å, b = 7.2256(4) Å, c = 18.1235(12) Å, β = 87.322(4), V = 850.57(9) Å3 and Z = 2.

  16. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-12-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites.

  17. Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Setkova, Tatiana; Shapovalov, Yury; Balitsky, Vladimir

    2011-03-01

    Interest in the growth of tourmaline single crystals is based on the promising piezoelectric and pyroelectric properties of this material compared to quartz crystals currently in use. Moreover, synthetic tourmaline can be used as a substitute for the natural stone in the jewelry industry similar to other synthetic analogues of gemstones. Single crystals of colored Co-, Ni-, Fe-, (Ni,Cr)-, (Ni,Fe)-, and (Co,Ni,Cr)-containing tourmalines with concentration of transition metal elements up to 16 wt% on a seed have been grown from complex boron-containing hydrothermal solutions at a range of temperatures 400-750 °C and pressures 100 MPa. Experiments were conducted under conditions of a thermal gradient in titanium and chromium-nickel autoclaves. Tourmaline growth on a seed crystal occurs only if separate tourmaline-forming components (monocrystalline corundum and quartz bars) are used as charge. All tourmalines specified above grow in analogous (+) direction of the optical axis with a speed of 0.05 mm/day by faces of the trigonal pyramid, except tourmalines containing chromium. They grow in analogous (+0001) direction with a speed 0.05 mm/day, and in antilogous (-0001) direction with a speed of 0.01 mm/day by faces of the trigonal pyramid and in prism direction with a speed of 0.001 mm/day. Along with the large single crystals, a great amount of finest (30-150 μm in size) tourmaline crystals was formed during the runs by spontaneous nucleation both on the surface of the seed crystals and in the charge.

  18. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    PubMed

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  19. Dynamic Self-Stiffening in Liquid Crystal Elastomers

    PubMed Central

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.

    2013-01-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials which respond to external stresses through a permanent increase in stiffness are uncommon. Here, we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a nematic director which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement. PMID:23612280

  20. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  1. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  2. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.

    PubMed

    Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G

    2014-09-01

    The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.

  3. Measurement of immature platelets with Abbott CD-Sapphire and Sysmex XE-5000 in haematology and oncology patients.

    PubMed

    Meintker, Lisa; Haimerl, Maria; Ringwald, Jürgen; Krause, Stefan W

    2013-11-01

    Measurement of immature platelets was introduced into routine diagnostics by Sysmex as immature platelet fraction (IPF) some years ago and recently by Abbott as reticulated platelet fraction (rPT). Here, we compare both methods. We evaluated the precision and agreement of these parameters between Sysmex XE-5000 and Abbott CD-Sapphire in three distinct thrombocytopaenic cohorts: 30 patients with beginning thrombocytopaenia and 64 patients with recovering platelets (PLT) after chemotherapy, 16 patients with immune thrombocytopaenia (ITP) or heparin-induced thrombocytopaenia type 2 (HIT) and 110 additional normal controls. Furthermore, we analysed, how IPF/rPT differed between these thrombocytopaenic cohorts and controls. Both analysers demonstrated acceptable overall precision (repeatability) of IPF/rPT with lower precision at low PLT counts. IPF/rPT artificially increased during storage of blood samples overnight. Inter-instrument comparison showed a moderate correlation (Pearson r²=0.38) and a systematic bias of 1.04 towards higher IPF-values with the XE-5000. IPF/rPT was highest in recovering thrombopoesis after chemotherapy and moderately increased in ITP/HIT. The normal range deduced from control samples was much narrower with CD-Sapphire (1.0%-3.8%, established here for the first time) in comparison to XE-5000 (0.8%-7.9%) leading to a smaller overlap of samples with increased PLT turnover and normal controls. IPF and rPT both give useful information on PLT turnover, although the two analysers only show a moderate inter-instrument correlation and have different reference ranges. A better separation of patient groups with high PLT turnover like ITP/HIT from normal controls is obtained by CD-Sapphire.

  4. Optical spectroscopy and high pressure on emeralds: synthetic and natural

    NASA Astrophysics Data System (ADS)

    Sánchez-Alejo, M. A.; Hernández-Alcántara, J. M.; Flores Jiménez, C.; Calderón, T.; Murrieta S., H.; Camarillo García, E.

    2011-09-01

    Emerald, natural and synthetic, are the subject of study by means of optical spectroscopy techniques. Particularly, natural emeralds have been considered as a gemstone in jewelry not being so the synthetic ones. But, in general, the properties of these are very good for applications, for instance as a laser system, due to the impurities control. In this work a comparison between natural and synthetic emeralds is done. Chromium ions are the main responsible of the characteristic fascinating green color of these gemstones, entering in the crystals in octahedral sites. Absorption at room temperature show up two broad bands in the visible region and two narrow bands called the R-lines. That spectrum corresponds to trivalent chromium ions in an octahedral site, as it happens in ruby and alexandrite. On other hand, photoemission arises in the range 640-850 nm. at room temperature . It is shown that the luminescence spectra changes as the temperature is lowered. The effect on the main peak of luminescence when high pressure is applied on small samples of emerald shows as a linear function.

  5. The active control devices of the size of products based on sapphire measuring tips with three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Leun, E. V.; Leun, V. I.; Sysoev, V. K.; Zanin, K. A.; Shulepov, A. V.; Vyatlev, P. A.

    2018-01-01

    The article presents the results of the calculation of the load capacity of the active control devices (ACD) sapphire tip, which showed nearly 30-fold margin of safety to shock loads and experimental researches in mechanical contact with 5 cogs cutter 15 mm in diameter rotating with a frequency of 1000 rpm, which confirmed the calculations, determined the surface roughness Rz of the contact area of no more than 0.15 μm. Conditions have been created for recording without distortion of the image through a sapphire tip in contact with the processed article. A ACD design with new functionality is proposed: with one, two and three degrees of freedom of the sapphire tip and allows measuring the taper of the article and measurements on the chord. It is shown that with the implementation of their fixed head like the frame of the gyroscope with the rotations around the axes OY and OZ. It is shown that the rotation of the tip around the axis OX can be replaced more convenient for the implementation of the angular offset of the transferred image due to rotation of the output end of the flexible optical waveguide relative to the input. This makes it possible to reduce the "blurring of the image" during registration of the fast moving product profile when the slope of the recorder lines coincides with the slope of the edges of the image elements of the selected moving elements of the article.

  6. Cholesteric microlenses and micromirrors in the beetle cuticle and in synthetic oligomer films: a comparative study

    NASA Astrophysics Data System (ADS)

    Agez, Gonzague; Bayon, Chloé; Mitov, Michel

    2017-02-01

    The polygonal texture in cholesteric liquid crystals consist in an array of contiguous polygonal cells. The optical response and the structure of polygonal texture are investigated in the cuticle of beetle Chrysina gloriosa and in synthetic oligomer films. In the insect carapace, the polygons are concave and behave as spherical micro-mirrors whereas they are convex and behave as diverging microlenses in synthetic films. The characteristics of light focusing (spot, donut or continuum background) are highly tunable with the wavelength and the polarization of the incident light.

  7. Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph

    2013-01-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.

  8. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  9. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  10. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  11. A New Titanium-Bearing Calcium Aluminosilicate Phase. 1; Meteoritic Occurrences and Formation in Synthetic Systems

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.

    1994-01-01

    A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed "UNK," is Ca3Ti(AlTi)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystals oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic LINK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti (7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAls, although glass, which is typically associated with synthetic UN& is not observed in meteoritic occurrences. A low Ti end-member of UNK ("Si-UNK") with a composition new that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.

  12. A new titanium-bearing calcium aluminosilicate phase. 1: Meteoritic occurrences and formation in synthetic systems

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.

    1994-01-01

    A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed 'UNK,' is Ca3Ti(Al,Ti)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystal oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic UNK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti(7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAIs, although glass, which is typically associated with synthetic UNK, is not observed in the meteoritic occurrences. A low Ti end-member of UNK ('Si-UNK') with a composition near that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.

  13. The crystal structure of synthetic simmonsite, Na 2LiAlF 6

    NASA Astrophysics Data System (ADS)

    Ross, Kirk C.; Mitchell, Roger H.; Chakhmouradian, Anton R.

    2003-04-01

    The structure of the synthetic fluoroperovskite, Na 2LiAlF 6 (simmonsite), has been determined by powder X-ray diffraction using the Rietveld method of structure refinement. The compound adopts space group P2 1/ n [#14; a=5.2842(1); b=5.3698(1); c=7.5063(2) Å; β=89.98(1)°; Z=4), and is a member of the cryolite (Na 2NaAlF 6) structural group characterized by ordering of the B-site cations (Li, Al) and tilting of the BF 6 octahedra according to the tilt scheme a-b-c+. Rotations of the B-site polyhedra are less ( ΦLi=14.9°; ΦAl=17.0°) than those found in cryolite ( ΦNa=18.6; ΦAl=23.5°) because of the larger difference in the ionic radii of the B-site cations in cryolite as compared to those in simmonsite. Na at the A-site is displaced from the special position resulting in 10- and 8-fold coordination in simmonsite and cryolite, respectively. By analogy with the synthetic compound, naturally occurring simmonsite is considered to adopt space group P2 1/ n (#14) and not the P2 1(#4) or P2 1/ m(#11) space groups.

  14. Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bashir, Umar; Hassan, Zainuriah; Ahmed, Naser M.; Afzal, Naveed

    2018-05-01

    Indium nitride (InN) films were grown on Si (111), bulk GaN, quartz and sapphire substrates by radio frequency magnetron sputtering. Prior to the film deposition, a zinc oxide (ZnO) buffer layer was deposited on all the substrates. The x-ray diffraction patterns of InN films on ZnO-buffered substrates indicated c-plane-oriented films whereas the Raman spectroscopy results indicated A1 (LO) and E2 (high) modes of InN on all the substrates. The crystalline quality of InN was found to be better on sapphire and quartz than on the other substrates. The surface roughness of InN was studied using an atomic force microscope. The results indicated higher surface roughness of the film on sapphire as compared to the others; however, roughness of the film was lower than 8 nm on all the substrates. The electrical properties indicated higher electron mobility of InN (20.20 cm2/Vs) on bulk GaN than on the other substrates. The optical band gap of InN film was more than 2 eV in all the cases and was attributed to high carrier concentration in the film.

  15. The Crystal and Molecular Structure of Acetatochlorobis(4-methylpyridine)oxovanadium (IV)

    NASA Technical Reports Server (NTRS)

    Schupp, John D.; Hepp, Aloysius F.; Duraj, Stan A.; Richman, Robert M.; Fanwick, Phillip E.; Hakimzadeh, Roshanak (Technical Monitor)

    2001-01-01

    The crystal and molecular structure of the title compound, VOCl(O2CCH3)(4-CH3C5H4N)2, has been determined by single-crystal x-ray diffraction. The material crystallizes in the space group P 1(bar) (#2) with a = 7.822(2), b = 8.023(l), c = 14.841(2) Angstroms, alpha = 99.73(l), beta = 91.41(l), and gamma = 117.13(l). The coordination geometry around the vanadium is a highly distorted octahedron. The molecule is remarkable for being a monomeric oxovanadium (IV) carboxylate. A generalized synthetic strategy is proposed for the preparation of oxovanadium (IV) monomers.

  16. Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.

  17. Beating the Heat: Fast Scanning Melts Beta Sheet Crystals

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Hu, Xiao; Kaplan, David; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniella; Schick, Christoph

    2014-03-01

    Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk. Previous thinking was that beta-pleated-sheet crystals in the dry solid state would not melt upon input of heat energy alone. Indeed, at conventional heating rates (~1-50 °C/min), silk exhibits its glass transition (~175 °C), followed by cold crystallization, and then by immediate thermal degradation beginning at about 225 °C. Here we demonstrate that beta-pleated-sheet crystals can melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s to avoid thermal degradation, and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. The authors acknowledge support from the National Science Foundation and German Academic Exchange Service DAAD; EZ acknowledges a European Union funded Marie Curie EST fellowship (ADVATEC); XH and DK acknowledge NIH P41 Tissue Engineering Resource Center.

  18. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    NASA Technical Reports Server (NTRS)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  19. Broadband dielectric characterization of sapphire/TiOx/Ba₀.₃Sr₀.₇TiO₃ (111)-oriented thin films for the realization of a tunable interdigitated capacitor.

    PubMed

    Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami

    2013-05-01

    A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.

  20. Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.

    We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.

  1. Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers.

    PubMed

    Matos, Lia; Mücke, Oliver D; Chen, Jian; Kärtner, Franz X

    2006-03-20

    We investigate the carrier-envelope phase dynamics of octave-spanning Ti:sapphire lasers and perform a complete noise analysis of the carrier-envelope phase stabilization. We model the effect of the laser dynamics on the residual carrier-envelope phase noise by deriving a transfer function representation of the octave-spanning frequency comb. The modelled phase noise and the experimental results show excellent agreement. This greatly enhances our capability of predicting the dependence of the residual carrier-envelope phase noise on the feedback loop filter, the carrier-envelope frequency control mechanism and the pump laser used.

  2. Nanocrystallography measurements of early stage synthetic malaria pigment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less

  3. Nanocrystallography measurements of early stage synthetic malaria pigment

    DOE PAGES

    Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.; ...

    2017-09-28

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less

  4. From globules to crystals: a spectral study of poly(2-isopropyl-2-oxazoline) crystallization in hot water.

    PubMed

    Sun, Shengtong; Wu, Peiyi

    2015-12-28

    One easy strategy to comprehend the complex folding/crystallization behaviors of proteins is to study the self-assembly process of their synthetic polymeric analogues with similar properties owing to their simple structures and easy access to molecular design. Poly(2-isopropyl-2-oxazoline) (PIPOZ) is often regarded as an ideal pseudopeptide with similar two-step crystallization behavior to proteins, whose aqueous solution experiences successive lower critical solution temperature (LCST)-type liquid-liquid phase separation upon heating and irreversible crystallization when annealed above LCST for several hours. In this paper, by microscopic observations, IR and Raman spectroscopy in combination with 2D correlation analysis, we show that the second step of PIPOZ crystallization in hot water can be further divided into two apparent stages, i.e., nucleation and crystal growth, and perfect crystalline PIPOZ chains are found to only develop in the second stage. While all the groups exhibit changes in initial nucleation, only methylene groups on the backbone participate in the crystal growth stage. During nucleation, a group motion transfer is found from the side chain to the backbone, and nucleation is assumed to be mainly driven by the cleavage of bridging C=O···D-O-D···O=C hydrogen bonds followed by chain arrangement due to amide dipolar orientation. Nevertheless, during crystal growth, a further chain ordering process occurs resulting in the final formation of crystalline PIPOZ chains with partial trans conformation of backbones and alternative side chains on the two sides. The underlying crystallization mechanism of PIPOZ in hot water we present here may provide very useful information for understanding the crystallization of biomacromolecules in biological systems.

  5. Effect of co-crystallization on singlet fission efficiency in pentacene derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Sanders, Samuel; Campos, Luis; Sfeir, Matthew; Marom, Noa

    Singlet fission (SF), the conversion of one singlet exciton into two triplet excitons, may lead to a twofold increase in the efficiency of organic photovoltaics. Since SF has been observed in crystalline pentacene, this material has drawn interest both experimentally and theoretically. Recently, it has been shown that SF efficiency in rubrene may be improved by modifying the crystal packing. Here, we study the effect of co-crystallization with small molecule H-bond donors on SF efficiency in pentacene derivatives. Five co-crystals are synthetized and their photoluminescence (PL) and absorption spectra are measured. First-principles calculations based on many-body perturbation theory (MBPT) are then employed to study their excitonic properties. By combining experiment and theory, we demonsrate that excitonic properties, including singlet-triplet gaps, exciton binding energies, and exciton localization, are significantly modulated in pentacene co-crystals. Consequently, co-crystallization becomes an effective strategy for improving SF efficiency in molecular crystals of organic semiconductors.

  6. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    PubMed

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  7. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  8. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.

    PubMed

    Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon

    2016-12-21

    A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.

  10. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    NASA Astrophysics Data System (ADS)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  11. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone...,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone to describe any product that... “ruby,” “sapphire,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone, or the...

  12. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone...,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone to describe any product that... “ruby,” “sapphire,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone, or the...

  13. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone...,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone to describe any product that... “ruby,” “sapphire,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone, or the...

  14. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone...,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone to describe any product that... “ruby,” “sapphire,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone, or the...

  15. 16 CFR 23.23 - Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PEWTER INDUSTRIES § 23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone...,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone to describe any product that... “ruby,” “sapphire,” “emerald,” “topaz,” or the name of any other precious or semi-precious stone, or the...

  16. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclinedmore » angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.« less

  17. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  18. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  19. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  20. Diamond Lattice Colloidal Crystals from Binary DNA-grafted Microspheres

    NASA Astrophysics Data System (ADS)

    Crocker, John; Wang, Yifan; Jenkins, Ian; McGinley, James; Sinno, Talid

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals from a binary suspension of sub-micron polymer microspheres with synthetic DNA grafted to their surfaces. While diamond symmetry crystals have previously been grown from much smaller nanoparticles, none of those methods appear workable for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, matched simulations fail to nucleate or grow B32 crystals from suspension; nor have they been predicted on the basis of theoretical arguments. We conjecture that the B32 crystals may form via transformation from a precursor with a different lattice structure in the bulk or on its surface. The feasibility of converting our self-assembled crystals into diamond-symmetry photonic templates will be discussed. This finding suggests that still other unexpected microstructures may be accessible using this approach. US National Science Foundation, CBET- 1403237.

  1. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  2. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less

  3. Observed circuit limits to time resolution in correlation measurements with Si-on-sapphire, GaAs, and InP picosecond photoconductors

    NASA Astrophysics Data System (ADS)

    Hammond, R. B.; Paulter, N. G.; Wagner, R. S.

    1984-08-01

    Cross-correlation measurements of the response of photoconductor pulsers and sampling gates excited by a femtosecond laser are reported. The photoconductors were fabricated in microstrip transmission line structures on Si-on-sapphire, semiinsulating GaAs, and semiinsulating InP wafers. The photoconductor sampling gates were ion beam-damaged to produce short carrier lifetimes (less than 3 ps in one case). Damage was introduced with 6 MeV Ne-20 on the Si-on-sapphire, 2 MeV H-2 on the GaAs, and 2 MeV He-4 on the InP. Doses in the range 10 to the 12th - 10 to the 15th were used. Results show circuit limits to the time resolution in correlation measurements from two sources: (1) RC time constants due to photoconductor gap capacitance and transmission line characteristic impedance and (2) dispersion in microstrip transmission lines.

  4. Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.

    USGS Publications Warehouse

    Konnert, J.A.; Evans, H.T.

    1987-01-01

    The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.

  5. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  6. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  7. Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1985-01-01

    Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process of this invention involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.

  8. High Electron Mobility in SiGe/Si n-MODFET Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Croke, Edward T.; Alterovitz, Samuel A.

    2003-01-01

    For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 square centimeters N-sec at an electron carrier density (n(sub e) = 1.33x10(exp 12) per square centimeter)) of 1.6 x 10(exp 12) per square centimeter was obtained. At 250 mK, the mobility increases to 13,313 square centimeters/V-sec (n(sub e)=1.33x10(exp 12) per square centimeter)) and Shubnikov-de Haas oscillations appear, showing excellent confinement of the two-dimensional electron gas.

  9. Compact fixed wavelength femtosecond oscillators as an add-on for tunable Ti:sapphire lasers extend the range of applications towards multimodal imaging and optogenetics

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2016-03-01

    Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.

  10. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  11. Crystallization of calcium oxalate in minimally diluted urine

    NASA Astrophysics Data System (ADS)

    Bretherton, T.; Rodgers, A.

    1998-09-01

    Crystallization of calcium oxalate was studied in minimally diluted (92%) urine using a mixed suspension mixed product crystallizer in series with a Malvern particle sizer. The crystallization was initiated by constant flow of aqueous sodium oxalate and urine into the reaction vessel via two independent feed lines. Because the Malvern cell was in series with the reaction vessel, noninvasive measurement of particle sizes could be effected. In addition, aliquots of the mixed suspension were withdrawn and transferred to a Coulter counter for crystal counting and sizing. Steady-state particle size distributions were used to determine nucleation and growth kinetics while scanning electron microscopy was used to examine deposited crystals. Two sets of experiments were performed. In the first, the effect of the concentration of the exogenous sodium oxalate was investigated while in the second, the effect of temperature was studied. Calcium oxalate nucleation and growth rates were found to be dependent on supersaturation levels inside the crystallizer. However, while growth rate increased with increasing temperature, nucleation rates decreased. The favored phases were the trihydrate at 18°C, the dihydrate at 38° and the monohydrate at 58°C. The results of both experiments are in agreement with those obtained in other studies that have been conducted in synthetic and in maximally diluted urine and which have employed invasive crystal counting and sizing techniques. As such, the present study lends confidence to the models of urinary calcium oxalate crystallization processes which currently prevail in the literature.

  12. Factors influencing gypsum crystal morphology within a flue gas desulfurization vessel

    NASA Astrophysics Data System (ADS)

    Lewis, Kinsey M.

    Flue gas desulfurization (FGD) is utilized by the coal--powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 · 2H2O), which can be sold for an economic return. Flat disk--like crystals, opposed to rod--like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO 3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.

  13. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on r-plane sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.

    2015-06-28

    The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structuralmore » characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.« less

  15. Thermally induced crystallization kinetics of uncrosslinked and unfilled synthetic cis-1,4-polyisoprene rubber monitored by shear rheological tests

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hong, Daesun; Kim, Hyungsu; Kim, Byungsoo; Chang, Wenji V.

    2016-11-01

    This study demonstrates the unique capability of a shear rotational rheometer for studying the thermally induced crystallization (TIC) of uncrosslinked and unfilled cis-1,4-polyisoprene rubber (IR). At temperatures below -15°C, a crystallization phenomenon (TIC) occurred in a quasi-unstrained IR specimen. Such a distinguished phenomenon was determined from the steady and sharp changes of both tanδ and the modulus. The changing ratio of those parameters with time characterizes the crystallization rate, on which the effects of the compressive force magnitude, testing repeat, and temperature are studied. The crystallization rate was shown to depend less on the magnitude of normal force, but depended largely on the specimen's previous testing history. A specimen not fully recovered from the previous crystallized memory showed a faster rate than before. More cooling to -25°C increased the crystallization rate, but the slow crystallization helped increase the final crystallinity. The crystallization rate was further interpreted by the Avrami equation to propose the crystal structure, whose morphological feature was shown in agreement with the reported TEM and X-ray results. However, our study found a thermo-mechanically aged specimen showed a very different rheological behavior at the late stage of crystallization suggesting the crystalline metamorphosis. But this unexpected behavior turned out to be unrecoverable indicating a property failure due to material aging more plausibly. All these findings were successfully monitored by the rheometer. It is expected the well-organized rheometric measurements can sufficiently supplement some instrumental limitations of the traditional crystallization monitoring analyzers on soft materials.

  16. International Conference on Crystal Growth (10th) (ICCG-10) Held in San Diego, California on August 16 - 21, 1992

    DTIC Science & Technology

    1992-08-21

    Synthetic Crystals. China82 The Growth of LaMgA],,O,,:Nd Large Crystals with High Quality B16 G, Wu. X Ma.* J. Xu. X Zhang and Y. Shen Crystal Growth and...Stolchlometry Problems of ZnSe for High Power Laser Y. ShIralshl Optical Components Kimura Metamelt Project. Japan E~ Kjause.* A. Moseal and H. Harmnn...Maki- Shanghai Institute of Ceramics. China Yokohama City University. Japa 023 CS Growth of High -CluaI~ty TI:A1202 Crystals for Solid-State Lase In

  17. The study of optical property of sapphire irradiated with 73 MeV Ca ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Liu, Juan; Xian, Yongqiang

    2015-12-01

    Single crystals of sapphire were irradiated with 73 MeV Ca ions at room temperature to the fluences of 0.1, 0.5 and 1.0 × 1014 ions/cm2. Optical properties of these samples were characterized by ultraviolet-visible spectrometry (UV-VIS) and fluorescence spectrometer (PL). In UV-VIS spectra, it is observed the absorbance bands from oxygen single vacancy (F and F+ color centers) and vacancy pair (F2+ and F22+ color centers). The oxygen single vacancy initially increases rapidly and then does not increase in the fluence range from 0.1 to 0.5 × 1014 ions/cm2. When the fluence is higher than 0.5 × 1014 ions/cm2, oxygen single vacancy starts to increase again. Oxygen vacancy pair increases monotonically with fluence for all irradiated samples. The variation of oxygen single vacancy with fluence is probably associated with the recombination of oxygen vacancies with Al interstitials and complex defect formation (such as vacancy clusters). From PL spectra, two emission bands around 3.1 and 2.34 eV are observed. The PL intensity of the emission band around 3.1 eV decreases for all the irradiated samples. For the emission band around 2.34 eV, the PL intensity initially decreases, and then increases with fluence. Meanwhile, the peak position of the emission band around 2.34 eV gradually shifts to high energy direction with increase of fluence. The decrease of the intensity of the emission bands around 3.1 and 2.34 eV could be induced by stress from the damage layer in the irradiated samples. The shift of peak position for the emission band around 2.34 eV is induced by the appearance of emission band from Al interstitials.

  18. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  19. Improvement of crystalline quality of N-polar AlN layers on c-plane sapphire by low-pressure flow-modulated MOCVD

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Shimizu, H.; Kajitani, R.; Kawasaki, K.; Kumagai, Y.; Koukitu, A.; Aoyagi, Y.

    2007-01-01

    The growth of N-polar AlN layers on c-plane sapphire is reported. Low-temperature AlN (LT-AlN) layers were used as seeding buffer layers with pre-nitridation for sapphire. To avoid strong vapor-phase reaction between trimethylaluminum (TMA) and ammonia (NH 3) and to improve the crystalline quality, low-pressure flow-modulated (FM) metal-organic chemical vapor deposition (MOCVD) technique was introduced with careful optimization of the FM sequence. The surface morphologies and the crystalline quality defined by the X-ray diffraction (XRD) (0 0 2) and (1 0 0) rocking curve measurements strongly depended on the LT-AlN thickness and on the TMA coverage per cycle of the FM growth. The sample showing the best XRD data with a good morphology was almost completely etched in aqueous KOH solution owing to N-polarity. From the plan-view transmission electron microscopy (TEM) observation, the dislocation density was counted to be about 3×10 10 cm -2.

  20. Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Loiko, P.; Yoon, S. J.; Serres, J. M.; Mateos, X.; Beecher, S. J.; Birch, R. B.; Savitski, V. G.; Kemp, A. J.; Yumashev, K.; Griebner, U.; Petrov, V.; Aguiló, M.; Díaz, F.; Mackenzie, J. I.

    2016-08-01

    High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77-450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.

  1. Automated quantification of apoptosis in B-cell chronic lymphoproliferative disorders: a prognostic variable obtained with the Cell-Dyn Sapphire (Abbott) automated hematology analyzer.

    PubMed

    Fumi, M; Martins, D; Pancione, Y; Sale, S; Rocco, V

    2014-12-01

    B-chronic lymphocytic leukemia CLL, a neoplastic clonal disorder with monomorphous small B lymphocytes with scanty cytoplasm and clumped chromatin, can be morphologically differentiated in typical and atypical forms with different prognosis: Smudge cells (Gumprecht's shadows) are one of the well-known features of the typical CLL and are much less inconsistent in other different types CLPD. Abbott Cell-Dyn Sapphire uses the fluorescence after staining with the DNA fluorochrome propidium iodide for the measurement of nucleated red blood cells (NRBCs) and nonviable cells (FL3+ cell fraction): We have studied the possible correlation between presence and number of morphologically identifiable smudge cells on smears and the percentage of nonviable cells produced by Cell-Dyn Sapphire. 305 blood samples from 224 patients with B-cell lymphoproliferative disorders and 40 healthy blood donors were analyzed by CBC performed by Cell-Dyn Sapphire, peripheral blood smear, and immunophenotype characterization. FL3+ fraction in CLPD directly correlated with the percentage of smudge cells and is significantly increased in patients with typical B-CLL. This phenomenon is much less evident in patients with atypical/mixed B-CLL and B-NHL. In small laboratories without FCM and cytogenetic, smudge cells%, can be utilized as a preliminary diagnostic and prognostic tool in differential diagnosis of CLPD. © 2014 John Wiley & Sons Ltd.

  2. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.

    PubMed

    Neira-Carrillo, Andrónico; Yazdani-Pedram, Mehrdad; Retuert, Jaime; Diaz-Dosque, Mario; Gallois, Sebastien; Arias, José L

    2005-06-01

    The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.

  3. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  4. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  5. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H 2/Ar) atmosphere

    NASA Astrophysics Data System (ADS)

    Achiwawanich, S.; James, B. D.; Liesegang, J.

    2008-12-01

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H 2/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  6. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  7. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  8. Silicon-Germanium Films Grown on Sapphire for Ka-Band Communications Applications

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    NASA's vision in the space communications area is to develop a broadband data network in which there is a high degree of interconnectivity among the various satellite systems, ground stations, and wired systems. To accomplish this goal, we will need complex electronic circuits integrating analog and digital data handling at the Ka-band (26 to 40 GHz). The purpose of this project is to show the feasibility of a new technology for Ka-band communications applications, namely silicon germanium (SiGe) on sapphire. This new technology will have several advantages in comparison to the existing silicon-substrate- based circuits. The main advantages are extremely low parasitic reactances that enable much higher quality active and passive components, better device isolation, higher radiation tolerance, and the integration of digital and analog circuitry on a single chip.

  9. Effect of interfacial species on shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1979-01-01

    The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.

  10. Octacalcium phosphate: osteoconductivity and crystal chemistry.

    PubMed

    Suzuki, O

    2010-09-01

    Octacalcium phosphate (OCP), which is structurally similar to hydroxyapatite (HA), is a possible precursor of bone apatite crystals. Although disagreement remains as to whether OCP comprises the initial mineral crystals in the early stage of bone mineralization, the results of recent biomaterial studies using synthetic OCP indicate the potential role of OCP as a bone substitute material, owing to its highly osteoconductive and biodegradable characteristics. OCP tends to convert to HA not only in an in vitro environment, but also as an implant in bone defects. Several lines of evidence from both in vivo and in vitro studies suggest that the conversion process could be involved in the stimulatory capacity of OCP for osteoblastic differentiation and osteoclast formation. However, the osteoconductivity of OCP cannot always be secured if an OCP with distinct crystal characteristics is used, because the stoichiometry and microstructure of OCP crystals greatly affect bone-regenerative properties. Osteoconductivity and stimulatory capabilities may be caused by the chemical characteristics of OCP, which allows the release or exchange of calcium and phosphate ions with the surrounding of this salt, and its tendency to grow towards specific crystal faces, which could be a variable of the synthesis condition. This paper reviews the effect of calcium phosphates on osteoblastic activity and bone regeneration, with a special emphasis on OCP, since OCP seems to be performing better than other calcium phosphates in vivo. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  12. Characteristics of Coplanar Waveguide on Sapphire for High Temperature Applications (25 to 400 degrees C)

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian; Stalker, Amy R.

    2007-01-01

    This paper presents the characteristics of coplanar waveguide transmission lines fabricated on R-plane sapphire substrates as a function of temperature across the temperature range of 25 to 400 C. Effective permittivity and attenuation are measured on a high temperature probe station. Two techniques are used to obtain the transmission line characteristics, a Thru-Reflect-Line calibration technique that yields the propagation coefficient and resonant stubs. To a first order fit of the data, the effective permittivity and the attenuation increase linearly with temperature.

  13. Segregation of liquid crystal mixtures in topological defects

    DOE PAGES

    Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...

    2017-04-28

    The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less

  14. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    DOE PAGES

    Alexeev, P.; Asadchikov, V.; Bessas, D.; ...

    2016-02-23

    Here, we report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on M ossbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. Moreover, the device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  15. Microwave properties of peeled HEMT devices sapphire substrates

    NASA Technical Reports Server (NTRS)

    Young, Paul G.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.

    1992-01-01

    The focus of this research is to demonstrate the first full radio frequency characterization of high electron mobility transistor (HEMT) device parameters. The results of this research are used in the design of circuits with peeled HEMT devices, e.g. 10 GHz amplifiers. Devices were fabricated using two HEMT structures grown by molecular beam epitaxy methods. A 500 A AlAs release layer for 'peel off' was included under the active layers of the structure. The structures are a homogeneously doped Al(0.3)GA(0.7)As/GaAs and a delta doped square well Al(.23)Ga(.77)As/GaAs HEMT structure. Devices were fabricated using a mesa isolation process. Contacts were done by sequentially evaporating Au/Ge/Au/Ni/Au followed by rapid thermal anneal at 400 C for 15 seconds. Gates were wet etch recessed and 1 to 1.4 micron Ti/Au gate metal was deposited. Devices were peeled off the GaAs substrate using Apiezon wax to support the active layer and a HF:DI (1:10) solution to remove the AlAs separation layer. Devices were then attached to sapphire substrates using van der Waals bonding.

  16. Fabrication of sapphire-based high performance step-edge HTS Josephson junctions and SQUIDs and their application to scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Ming, Bin

    Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID

  17. DNA-programmable nanoparticle crystallization.

    PubMed

    Park, Sung Yong; Lytton-Jean, Abigail K R; Lee, Byeongdu; Weigand, Steven; Schatz, George C; Mirkin, Chad A

    2008-01-31

    It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.

  18. Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.

    2018-04-01

    High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.

  19. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael

    2014-02-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.

  20. Modeling synthetic lethality

    PubMed Central

    Le Meur, Nolwenn; Gentleman, Robert

    2008-01-01

    Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146