Science.gov

Sample records for synthetic sodium aluminosilicate

  1. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  2. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2727 Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance. This substance is generally recognized...

  3. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  4. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  5. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  6. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  7. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  8. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  9. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  10. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  11. The influence of sodium carbonate on sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions

    NASA Astrophysics Data System (ADS)

    Zheng, Kali; Gerson, Andrea R.; Addai-Mensah, Jonas; Smart, Roger St. C.

    1997-01-01

    Isothermal batch precipitation experiments have been carried out in synthetic Bayer liquors to investigate the effects of sodium carbonate concentration on both silica solubility and the crystallisation of sodium aluminosilicates. At both 90 and 160°C cancrinite (generically defined as a sodium aluminosilicate of space group P6 3) is the stable solid phase. Sodalite (generically defined as a sodium aluminosilicate with space group P4¯3n seed transforms to cancrinite at both these temperatures. A high concentration of sodium carbonate in the synthetic liquor causes a decrease in the rate of conversion of sodalite to cancrinite. The solubility of both cancrinite and sodalite decreases as the concentration of sodium carbonate in the synthetic liquor is increased. For instance at 90°C and with 40.0 g dm -3 sodium carbonate in the synthetic liquor after 13 days the sodium aluminosilicate concentration is 0.52 g dm -3 compared to 0.85 g dm -3 with 4.6 g dm -3 of sodium carbonate in solution. At 160°C the sodium aluminosilicate concentration is 0.47 g dm -3 with 40.0 g dm -3 sodium carbonate in solution after 13 days and 0.79 g dm -3 with 4.6 g dm -3 sodium carbonate in solution. Throughout all these experiments a progressive loss of carbonate from the sodium aluminosilicate crystallisation products was observed as a function of time.

  12. 21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium calcium aluminosilicate, hydrated. 182.2729... § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as...

  13. 21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium calcium aluminosilicate, hydrated. 182.2729... (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

  14. 21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as...

  15. 21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium calcium aluminosilicate, hydrated. 182.2729... § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as...

  16. Evaluation of the Incorporation of Uranium into Sodium Aluminosilicate Phases

    SciTech Connect

    Oji, L.N.

    2003-03-26

    This report describes batch laboratory experiments performed to determine the relative amounts of uranium incorporated in aluminosilicate structures during synthesis. The findings summarized here are based on laboratory experiments, which involved the synthesis of sodium aluminosilicates (NAS) structures, amorphous, zeolites A and sodalite phases in the presence of depleted uranium and the analytical search for incorporated uranium in NAS internal structures after synthesis. These studies will support the basis for continued operation of evaporators at the Savannah River Site (SRS).

  17. Sodium Aluminosilicate Formation in Tank 43H Simulants

    SciTech Connect

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na{sub 8}Al{sub 6}Si{sub 6}O{sub 24}(NO{sub 3}){sub 2?4}H{sub 2}O, at 40{degree} 110{degree} C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time ({lt}; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate.

  18. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    SciTech Connect

    Poirier, M.; Burket, P.

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  19. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  20. SODIUM ALUMINOSILICATE SOLIDS AFFINITY FOR CESIUM AND ACTINIDES

    SciTech Connect

    Peters, T; Bill Wilmarth, B; Samuel Fink, S

    2007-07-31

    Washed sodium-aluminosilicate (NAS) solids at initial concentrations of 3.55 and 5.4 g/L sorb or uptake virtually no cesium over 288 hours, nor do any NAS solids generated during that time. These concentrations of solids are believed to conservatively bound current and near-term operations. Hence, the NAS solids should not have affected measurements of the cesium during the mass transfer tests and there is minimal risk of accumulating cesium during routine operations (and hence posing a gamma radiation exposure risk in maintenance). With respect to actinide uptake, it appears that NAS solids sorb minimal quantities of uranium - up to 58 mg U per kg NAS solid. The behavior with plutonium is less well understood. Additional study may be needed for radioactive operations relative to plutonium or other fissile component sorption or trapping by the solids. We recommend this testing be incorporated in the planned tests using samples from Tank 25F and Tank 49H to extend the duration to bound expected inventory time for solution.

  1. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    NASA Astrophysics Data System (ADS)

    Aly, Z.; Vance, E. R.; Perera, D. S.

    2012-05-01

    In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of ˜4 on heating from 18 to 90 °C, with greater increases in the extractions of Al and Si. At 18 °C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO3, and pH ˜6 and 10 potassium phthalate buffer solutions gave rise to a high degree of Na+ ↔ K+ exchange and rendered the framework ions less leachable in water.

  2. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    SciTech Connect

    Rosencrance, S.

    2003-03-12

    The synthesis of sodium aluminosilicate solids phases precipitated from NO{sub 2}/NO{sub 3}-free and NO{sub 2}/NO{sub 3}-rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO{sub 2}/NO{sub 3}-rich crystalline sodalite; and (4) NO{sub 2}/NO{sub 3}-rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing.

  3. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-07

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  4. Studies of Potential Inhibitors of Sodium Aluminosilicate Scales in High-Level Waste Evaporation

    SciTech Connect

    Oji, L.N.; Fellinger, T.L.; Hobbs, D.T.; Badheka, N.P.; Wilmarth, W.R.

    2008-07-01

    The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing dissolved aluminate and silicate has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS. (authors)

  5. STUDIES OF POTENTIAL INHIBITORS OF SODIUM ALUMINOSILICATE SCALES IN HIGH-LEVEL WASTE EVAPORATION

    SciTech Connect

    Wilmarth, B; Lawrence Oji, L; Terri Fellinger, T; David Hobbs, D; Nilesh Badheka, N

    2008-02-27

    The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing aluminum and silicates has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS.

  6. Fate of Uranium during Sodium Aluminosilicate Formation under Waste Tank Conditions

    SciTech Connect

    Wilmarth, B

    2005-06-22

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted. Lastly, analysis of the uranium speciation in a Tank 49H set of samples showed the uranium to be soluble. Analysis of the solution composition and subsequent use of the Hobb's uranium solubility model indicated a uranium solubility limit of 32 mg/L. The measured value of uranium in the Tank 49H matched the model prediction.

  7. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xiang, Ye; Du, Jincheng; Smedskjaer, Morten M.; Mauro, John C.

    2013-07-01

    Addition of alumina to sodium silicate glasses considerably improves the mechanical properties and chemical durability and changes other properties such as ionic conductivity and melt viscosity. As a result, aluminosilicate glasses find wide industrial and technological applications including the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role of aluminum as a function of chemical composition in these glasses. The short- and medium-range structures such as aluminum coordination, bond angle distribution around cations, Qn distribution (n bridging oxygen per network forming tetrahedron), and ring size distribution have been systematically studied. In addition, the mechanical properties including bulk, shear, and Young's moduli have been calculated and compared with experimental data. It is found that aluminum ions are mainly four-fold coordinated in peralkaline compositions (Al/Na < 1) and form an integral part of the rigid silicon-oxygen glass network. In peraluminous compositions (Al/Na > 1), small amounts of five-fold coordinated aluminum ions are present while the concentration of six-fold coordinated aluminum is negligible. Oxygen triclusters are also found to be present in peraluminous compositions, and their concentration increases with increasing Al/Na ratio. The calculated bulk, shear, and Young's moduli were found to increase with increasing Al/Na ratio, in good agreement with experimental data.

  8. Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Claireaux, Corinne; Chopinet, Marie-Hélène; Burov, Ekaterina; Gouillart, Emmanuelle; Roskosz, Mathieu; Toplis, Michael J.

    2016-11-01

    Multicomponent chemical diffusion in liquids of the quaternary system CaO-Na2O-Al2O3-SiO2 has been studied. Diffusion-couple experiments were performed at 1200 °C and for different durations around a central composition of 64.5 wt%SiO2, 13.3 wt%Na2O, 10.8 wt%CaO, 11.4 wt%Al2O3, leading to an overconstrained system of equations that was used to determine the diffusion matrix of the system. The dominant eigenvector of the diffusion matrix was found to correspond to the exchange between sodium and calcium, consistent with the results of the ternary soda-lime silica system. On the other hand, neither of the other two eigenvectors of the diffusion matrix of the quaternary system involve sodium. Given a factor of 50 between the dominant and second eigenvalue, diffusion couples involving the exchange of sodium oxide and a network-forming oxide result in strong uphill diffusion of calcium. The second eigenvector, corresponding to the exchange of calcium with silicon and aluminum, is close to the dominant eigenvector found in previous studies of ternary alkaline-earth aluminosilicate systems. Our results therefore suggest that simple systems may be used to understand diffusive mechanisms in more complex systems.

  9. A New Titanium-Bearing Calcium Aluminosilicate Phase. 1; Meteoritic Occurrences and Formation in Synthetic Systems

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.

    1994-01-01

    A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed "UNK," is Ca3Ti(AlTi)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystals oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic LINK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti (7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAls, although glass, which is typically associated with synthetic UN& is not observed in meteoritic occurrences. A low Ti end-member of UNK ("Si-UNK") with a composition new that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.

  10. A new titanium-bearing calcium aluminosilicate phase. 1: Meteoritic occurrences and formation in synthetic systems

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.

    1994-01-01

    A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed 'UNK,' is Ca3Ti(Al,Ti)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystal oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic UNK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti(7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAIs, although glass, which is typically associated with synthetic UNK, is not observed in the meteoritic occurrences. A low Ti end-member of UNK ('Si-UNK') with a composition near that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.

  11. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    NASA Astrophysics Data System (ADS)

    Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten

    2016-03-01

    Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  12. Analysis of Tank 38H (HTF-38-14-150, 151) and Tank 43H (HTF- 43-14-152, 53) Surface and Subsurface Supernatant Samples in Support of Enrichment Control, Corrosion Control and Sodium Aluminosilicate Formation Potential Programs

    SciTech Connect

    Oji, L. N.

    2015-01-14

    This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator.

  13. Influence of sodium aluminosilicate, hydroxy-sodalite, carnegieite, aluminum sulfate, and aluminum phosphate on performance of commercial Leghorns.

    PubMed

    Roland, D A; Barnes, D G; Laurent, S M

    1991-04-01

    Experiments were conducted to determine if the high ion-exchange capacity of sodium aluminosilicate (ZA) marketed as ETHACAL Feed Component or its aluminum content or both are related to the beneficial effect of ZA on egg specific gravity (ESG). In Experiments 1 and 2, ZA was compared with hydroxy-sodalite (HS) and carnegieite, which have the same chemical formula as ZA but little or no ion-exchange capacity. Two levels of ZA (0 and 1.5% of the diet) and three levels of HS (0, .75, and 1.5%) were fed in Experiment 1. In Experiment 2, 0, .75, and 1.5% of ZA and carnegieite were fed. In Experiment 3, ZA, carnegieite, aluminum sulfate, and aluminum phosphate were fed at levels calculated to contain .148 and .101% aluminum. Criteria evaluated were ESG, egg production, feed consumption, and egg weight. Egg specific gravity was significantly improved by ZA in all experiments and was not affected by HS, carnegieite (Experiments 1 and 2), aluminum sulfate (.148% Al), or aluminum phosphate (Experiment 3). Carnegieite and aluminum (.101%) from aluminum sulfate increased ESG in Experiment 3. In Experiments 1 and 3, egg production and feed consumption were not influenced by various treatments. Carnegieite and ZA reduced egg production and feed consumption in Experiment 2. It was concluded that the ion-exchange capacity and aluminum content of ZA may contribute to its beneficial effect on ESG.

  14. FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline

    NASA Astrophysics Data System (ADS)

    Markovic, Smilja; Dondur, Vera; Dimitrijevic, Radovan

    2003-06-01

    In this work the spectroscopic studies of polymorph transformation of framework silicates containing six-membered rings and different Si/Al ratio were carried out. Two model systems with different stoichiometries (Na-LTA, Si/Al=1 and Na-FAU, Si/Al=1.23) were investigated. Thermally induced phase transformations of initial zeolites resulted in forming of stuffed derivatives of cristobalite (carnegieite) and tridymite (nepheline). Powder XRD method was used for the recognition of new phases. All obtained phases have framework structures built by single six-membered rings. The changes of middle range order (rings symmetry), which take place during transformations of Na-LTA and Na-FAU into low-temperature carnegieite, low-temperature carnegieite into pure sodium (ps) nepheline as well as ps-nepheline into high-temperature carnegieite, were investigated by IR spectroscopy. The rings symmetry is found to be dependent on a phase stoichiometry as well as on polymorph type.

  15. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Florian, Pierre; Henderson, Grant S.; Massiot, Dominique

    2014-02-01

    Because of their importance in both the geosciences and the glass-making industry, alkali aluminosilicate melts have been the focal point of many past studies, but despite progress many problems remain unresolved, such as the complex behaviour of the thermodynamic properties of aluminium-rich alkali silicate melts. This paper presents a study of Na2O-Al2O3-SiO2 glasses and melts, containing 75 mol% SiO2 and different Al/(Al + Na) ratios. Their structure has been investigated by using Raman spectroscopy, as well as, 23Na, 27Al and 29Si 1D MAS NMR spectroscopy. Results confirm the role change of Na+ cations from network modifier to charge compensator in the presence of Al3+ ions. In addition, polymerization increases with increase of the Al/(Al + Na) ratio. These structural changes explain the observed variations in the viscosity of these melts. The viscosity data in turn allow us to calculate the configurational entropy of melts at the glass transition temperature [the Sconf(Tg)]. The variations of the Sconf(Tg) are strongly nonlinear, with sharp increases and decreases depending on the Al/(Al + Na) ratio. More importantly, a strong increase of the Sconf(Tg) is observed when a few Al2O3 is added to sodium silicate melt. A strong decrease is observed after crossing the tectosilicate join, when Al/(Al + Na) > 0.5 and when Al3+ ions are present in fivefold coordination, Al[5], in the glass. Furthermore, in situ27Al NMR spectra of the peraluminous melt show a clear increase of the Al[5] concentration with increasing temperature. When considered in combination with melt fragility and heat capacity, our data demonstrate that Al[5] is clearly a transient unit at high temperature in highly polymerized tectosilicate and peraluminous melts. However, when present in glasses, Al[5] increases the stability of the aluminosilicate network, hence the Tg of glasses. This could be explained by the ability of Al[5] to carry threefold coordinated oxygen atoms in its first coordination

  16. Efficiency of hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of graded levels of aflatoxin B1 in broiler chicks.

    PubMed

    Chen, X; Horn, N; Applegate, T J

    2014-08-01

    The objective of this study was to evaluate the efficiency of a hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to ameliorate the adverse effects of 0.5 to 2 mg of aflatoxin B1 (AFB1)/kg in broiler chicks. The study consisted of 8 dietary treatments, including 4 concentrations of AFB1 (0, 0.5, 1, and 2 mg/kg) with or without HSCAS (0.5%) fed to 8 replicate cages per diet (6 males chicks per cage) from 0 to 21 d of age. Cumulative feed intake, BW gain (P < 0.0001), and G:F (P = 0.004) of birds fed the 2 mg of AFB1/kg of diet were significantly lower in comparison with birds fed 0 to 1 mg of AFB1/kg. Relative liver weight was increased in the 2 mg of AFB1/kg group (P < 0.0001). Dietary HSCAS improved cumulative BW gain (main effect P = 0.06), particularly from 14 to 21 d of age (P = 0.037). Dietary HSCAS also reversed the increase in relative liver weight for birds fed AFB1 (P = 0.019). Dietary AFB1 negatively affected major serum parameters (albumin, total protein, globulin, phosphorus, glucose, alkaline phosphatase, and creatine phosphokinase), whereas supplementation with HSCAS partially alleviated the affected serum biochemistry. In addition, serum complement activity and liver gene expression were negatively affected by 2 mg of AFB1/kg. The HSCAS supplement increased the liver expression of catalase and superoxide dismutase (P < 0.05). Results from this study indicate that dietary supplementation with HSCAS can effectively improve BW gain and partially ameliorate aflatoxicosis for broiler chicks fed AFB1-contaminated feeds.

  17. Effects on aflatoxin M1 residues in milk by addition of hydrated sodium calcium aluminosilicate to aflatoxin-contaminated diets of dairy cows.

    PubMed

    Harvey, R B; Phillips, T D; Ellis, J A; Kubena, L F; Huff, W E; Petersen, H D

    1991-09-01

    Hydrated sodium calcium aluminosilicate (HSCAS), an anticaking agent for agricultural feeds, was added to aflatoxin (AF)-contaminated diets of 3 lactating dairy cows and evaluated for its potential to reduce aflatoxin M1 (AFM1) residues in milk. During phase I, cows were fed alternating diets that consisted of 200 micrograms of AF/kg of feed for 7 days, 0.5% HSCAS plus 200 micrograms of AF/kg of feed for 7 days, and feed with the HSCAS removed for a final 7 days. The AFM1 milk concentrations from the intervals with HSCAS added to diets were compared with those times when HSCAS was absent. The presence of 0.5% HSCAS in feed containing 200 micrograms of AF/kg reduced AFM1 secretion into the milk by an average of 0.44 micrograms/L (from pretreatment of 1.85 micrograms/L to 1.41 micrograms/L with HSCAS, a 24% reduction). Following a 10-day period of noncontaminated feed consumption and no AFM1 residues in the milk, phase II of the study was begun. The same experimental design as phase I was used, but the dosages of HSCAS and AF were changed to 1.0% and 100 micrograms/kg of feed, respectively. The addition of 1.0% HSCAS in feed containing 100 micrograms of AF/kg decreased AFM1 content in the milk by an average of 0.40 micrograms/L (from a pretreatment of 0.91 micrograms/L to 0.51 micrograms/L when HSCAS was present, a 44% reduction). These findings suggest that HSCAS, a high-affinity sorbent compound for AF in vitro, is capable of reducing the secretion of AFM1 into milk.

  18. Microprobes aluminosilicate ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  19. Aluminosilicate Precipitation Impact on Uranium

    SciTech Connect

    WILMARTH, WILLIAM

    2006-03-10

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

  20. Functionalized Amorphous Aluminosilicates

    NASA Astrophysics Data System (ADS)

    Mesgar, Milad

    Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH 3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied to see the covalent grafting of the geopolymer for making geopolymer composite. The composite material would be the basis material to be used as support catalyst, thin coating reagent and flame retardant material and so on, Variety of techniques, Thermogravimetric (TGA), Particle-induced X-ray emission (PIXE), FTIR, Solid state NMR, Powder X-ray diffraction (PXRD), BET surface area, Elemental analysis (CHN), TEM, SEM and Optical microscopy were used to characterize the functionalized geopolymer.

  1. Analysis of Tank 13H (HTF-13-14-156, 157) Surface and Subsurface Supernatant Samples in Support of Enrichment Control, Corrosion Control and Sodium Aluminosilicate Formation Potential Programs

    SciTech Connect

    Oji, L. N.

    2015-02-18

    The 2H Evaporator system includes mainly Tank 43H (feed tank) and Tank 38H (drop tank) with Tank 22H acting as the DWPF recycle receipt tank. The Tank 13H is being characterized to ensure that it can be transferred to the 2H evaporator. This report provides the results of analyses on Tanks 13H surface and subsurface supernatant liquid samples to ensure compliance with the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator. The U-235 mass divided by the total uranium averaged 0.00799 (0.799 % uranium enrichment) for both the surface and subsurface Tank 13H samples. This enrichment is slightly above the enrichment for Tanks 38H and 43H, where the enrichment normally ranges from 0.59 to 0.7 wt%. The U-235 concentration in Tank 13H samples ranged from 2.01E-02 to 2.63E-02 mg/L, while the U-238 concentration in Tank 13H ranged from 2.47E+00 to 3.21E+00 mg/L. Thus, the U-235/total uranium ratio is in line with the prior 2H-evaporator ECP samples. Measured sodium and silicon concentrations averaged, respectively, 2.46 M and 1.42E-04 M (3.98 mg/L) in the Tank 13H subsurface sample. The measured aluminum concentration in Tanks 13H subsurface samples averaged 2.01E-01 M.

  2. Removal of ammonia from poultry manure by aluminosilicates.

    PubMed

    Wlazło, Łukasz; Nowakowicz-Dębek, Bożena; Kapica, Jacek; Kwiecień, Małgorzata; Pawlak, Halina

    2016-12-01

    The aim of the study was to test the possibility of using aluminosilicates as natural sorbents of ammonia from poultry manure. The ammonia-absorbing properties of sodium bentonite and zeolite were confirmed in ex situ conditions. The most significant reduction in the level of ammonia with respect to the control was noted for 2% bentonite and 1% zeolite. The mean reduction for the entire period of the experiment ranged from 26.41% to 29.04%. The aluminosilicates tested can be used to neutralize ammonia released on poultry farms.

  3. Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide

    NASA Astrophysics Data System (ADS)

    Maulida, Iffana Dani; Sriatun, Taslimah

    2015-09-01

    Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.

  4. Results of Aluminosilicate Formation Testing

    SciTech Connect

    Wilmarth, W.R.

    2001-09-11

    The purpose of this work was to examine several experimental parameters of the formation of aluminosilicates under several tank chemistries, examine the conversion of crystalline phases, and determine inherent solubilities of certain crystal phases.

  5. Uranium and Aluminosilicate Surface Precipitation Tests

    SciTech Connect

    Hu, M.Z.

    2002-11-27

    The 2H evaporator at the Savannah River Site has been used to treat an aluminum-rich waste stream from canyon operations and a silicon-rich waste stream from the Defense Waste Processing Facility. The formation of aluminosilicate scale in the evaporator has caused significant operational problems. Because uranium has been found to accumulate in the aluminosilicate solids, the scale deposition has introduced criticality concerns as well. The objective of the tests described in this report is to determine possible causes of the uranium incorporation in the evaporator scale materials. The scope of this task is to perform laboratory experiments with simulant solutions to determine if (1) uranium can be deposited on the surfaces of various sodium aluminosilicate (NAS) forms and (2) aluminosilicates can form on the surfaces of uranium-containing solids. Batch experiments with simulant solutions of three types were conducted: (1) contact of uranium solutions/sols with NAS coatings on stainless steel surfaces, (2) contact of uranium solutions with NAS particles, and (3) contact of precipitated uranium-containing particles with solutions containing aluminum and silicon. The results show that uranium can be incorporated in NAS solids through encapsulation in bulk agglomerated NAS particles of different phases (amorphous, zeolite A, sodalite, and cancrinite) as well as through heterogeneous deposition on the surfaces of NAS coatings (amorphous and cancrinite) grown on stainless steel. The results also indicate that NAS particles can grow on the surfaces of precipitated uranium solids. Particularly notable for evaporator operations is the finding that uranium solids can form on existing NAS scale, including cancrinite solids. If NAS scale is present, and uranium is in sufficient concentration in solution to precipitate, a portion of the uranium can be expected to become associated with the scale. The data obtained to date on uranium-NAS affinity are qualitative. A necessary

  6. The dissolution of synthetic Na-boltwoodite in sodium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-10-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in certain contaminated sediments at the US Department of Energy Hanford site [Liu, C., Zachara, J.M., Qafoku, O., McKinley, J.P., Heald, S.M., Wang, Z. 2004. Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta68, 4519-4537.]. Consequently, the solubility of synthetic Na-boltwoodite, Na(UO 2)(SiO 3OH) · 1.5H 2O, was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site and calcareous environments generally. Experiments were open to air. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility and dissolution kinetics increased with increasing bicarbonate concentration and pH. A consistent set of solubility constants were determined from circumneutral pH (0 added bicarbonate) to alkaline pH (50 mM added bicarbonate). Average logKspo=5.86±0.24 or 5.85 ± 0.0.26; using the Pitzer ion-interaction model or Davies equation, respectively. These values are close to the one determined by [Nguyen, S.N., Silva, R.J., Weed, H.C., Andrews, Jr., J.E., 1992. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite. J. Chem. Thermodynamics24, 359-376.] under very different conditions (pH 4.5, Ar atmosphere).

  7. Restoration of Epithelial Sodium Channel Function by Synthetic Peptides in Pseudohypoaldosteronism Type 1B Mutants

    PubMed Central

    Willam, Anita; Aufy, Mohammed; Tzotzos, Susan; Evanzin, Heinrich; Chytracek, Sabine; Geppert, Sabrina; Fischer, Bernhard; Fischer, Hendrik; Pietschmann, Helmut; Czikora, Istvan; Lucas, Rudolf; Lemmens-Gruber, Rosa; Shabbir, Waheed

    2017-01-01

    The synthetically produced cyclic peptides solnatide (a.k.a. TIP or AP301) and its congener AP318, whose molecular structures mimic the lectin-like domain of human tumor necrosis factor (TNF), have been shown to activate the epithelial sodium channel (ENaC) in various cell- and animal-based studies. Loss-of-ENaC-function leads to a rare, life-threatening, salt-wasting syndrome, pseudohypoaldosteronism type 1B (PHA1B), which presents with failure to thrive, dehydration, low blood pressure, anorexia and vomiting; hyperkalemia, hyponatremia and metabolic acidosis suggest hypoaldosteronism, but plasma aldosterone and renin activity are high. The aim of the present study was to investigate whether the ENaC-activating effect of solnatide and AP318 could rescue loss-of-function phenotype of ENaC carrying mutations at conserved amino acid positions observed to cause PHA1B. The macroscopic Na+ current of all investigated mutants was decreased compared to wild type ENaC when measured in whole-cell patch clamp experiments, and a great variation in the membrane abundance of different mutant ENaCs was observed with Western blotting experiments. However, whatever mechanism leads to loss-of-function of the studied ENaC mutations, the synthetic peptides solnatide and AP318 could restore ENaC function up to or even higher than current levels of wild type ENaC. As therapy of PHA1B is only symptomatic so far, the peptides solnatide and AP318, which directly target ENaC, are promising candidates for the treatment of the channelopathy-caused disease PHA1B. PMID:28286482

  8. Characterization of Uranium Solids Precipitated with Aluminosilicates

    SciTech Connect

    DUFF, MC

    2004-04-29

    At the Savannah River Site (SRS), the High-Level Waste (HLW) Tank Farms store and process high-level liquid radioactive wastes from the Canyons and recycle water from the Defense Waste Processing Facility. The waste is concentrated using evaporators to minimize the volume of space required for HLW storage. Recently, the 2H Evaporator was shutdown due to the crystallization of sodium aluminosilicate (NAS) solids (such as cancrinite and sodalite) that contained close to 10 weight percent of elementally-enriched uranium (U). Prior to extensive cleaning,the evaporator deposits resided on the evaporator walls and other exposed internal surfaces within the evaporator pot. Our goal is to support the basis for the continued safe operation of SRS evaporators and to gain more information that could be used to help mitigate U accumulation during evaporator operation.

  9. Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates.

    PubMed

    Lin, Jiang-Jen; Chen, Yu-Min

    2004-05-11

    Layered aluminosilicates, including synthetic fluorine mica and natural montmorillonite (MMT), were intercalated with poly(oxypropylene)-polyamine quaternary salts with a 230-5000 molecular weight range. The X-ray basal spacing of these silicates had been expanded from 13.5 to 83.7 A for the synthetic mica and to 92.0 A for MMT. The relative silicate dimensions (300-1000 nm for synthetic mica and 80-100 nm for MMT) were ascertained by direct TEM observations in the case of the co-intercalated synthetic mica and MMT mixtures with Mw = 2000 quaternary ammonium salts. The tailored organic incorporation of synthetic mica and MMT clays could alter these hydrophilic clays, making them amphiphilic, and enable the lowering of toluene/water interfacial tension to 2.0 mN/m at the critical concentration of 0.1 wt %.

  10. Characterization of Uranium Solids Precipitated with Aluminosilicates

    SciTech Connect

    DUFF, MC

    2004-01-09

    At the Savannah River Site (SRS), the High-Level Waste (HLW) Tank Farms store and process high-level liquid radioactive wastes from the Canyons and recycle water from the Defense Waste Processing Facility. The waste is concentrated using evaporators to minimize the volume of space required for HLW storage. Recently, the 2H Evaporator was shutdown due to the crystallization of sodium aluminosilicate (NAS) solids (such as cancrinite and sodalite) that contained close to 10 weight percent of elementally-enriched uranium (U). Prior to extensive cleaning,the evaporator deposits resided on the evaporator walls and other exposed internal surfaces within the evaporator pot. Our goal is to support the basis for the continued safe operation of SRS evaporators and to gain more information that could be used to help mitigate U accumulation during evaporator operation. To learn more about the interaction between U(VI) and NAS in HLW salt solutions, we performed several fundamental studies to examine the mechanisms of U accumulation with NAS in highly caustic solutions. This larger group of studies focused on the following processes: co-precipitation/structural incorporation, sorption, and precipitation (with or without NAS), which will be reviewed in this presentation. We will present and discuss local atomic structural characterization data about U that has been co-precipitated with NAS solids (such as amorphous zeolite precursor material and sodalite) using X-ray absorption fine-structure (XAFS) spectroscopic techniques.

  11. Novel synthetic sulfoglycolipid IG20 facilitates exocytosis in chromaffin cells through the regulation of sodium channels.

    PubMed

    Crespo-Castrillo, Andrea; Punzón, Eva; de Pascual, Ricardo; Maroto, Marcos; Padín, Juan Fernando; García-Álvarez, Isabel; Nanclares, Carmen; Ruiz-Pascual, Lucía; Gandía, Luis; Fernández-Mayoralas, Alfonso; García, Antonio G

    2015-12-01

    In search of druggable synthetic lipids that function as potential modulators of synaptic transmission and plasticity, we synthesized sulfoglycolipid IG20, which stimulates neuritic outgrowth. Here, we have explored its effects on ion channels and exocytosis in bovine chromaffin cells. IG20 augmented the rate of basal catecholamine release. Such effect did not depend on Ca(2+) mobilization from intracellular stores; rather, IG20-elicited secretion entirely dependent on Ca(2+) entry through L-subtype voltage-activated Ca(2+) channels. Those channels were recruited by cell depolarization mediated by IG20 likely through its ability to enhance the recruitment of Na(+) channels at more hyperpolarizing potentials. Confocal imaging with fluorescent derivative IG20-NBD revealed its rapid incorporation and confinement into the plasmalemma, supporting the idea that IG20 effects are exerted through a plasmalemmal-delimited mechanism. Thus, synthetic IG20 seems to mimic several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. Therefore, sulfoglycolipid IG20 may become a pharmacological tool for investigating the role of the lipid environment on neuronal excitability, ion channels, neurotransmitter release, synaptic efficacy, and neuronal plasticity. It may also inspire the synthesis of druggable sulfoglycolipids aimed at increasing synaptic plasticity and efficacy in neurodegenerative diseases and traumatic brain-spinal cord injury. The novel synthetic sulfoglycolipid IG20 mimics several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. This profile may eventually drive enhanced synaptic plasticity and efficacy.

  12. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

    SciTech Connect

    Tailby, Jonathan; MacKenzie, Kenneth J.D.

    2010-05-15

    The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.

  13. Modeling the Formation of Alkali Aluminosilicate Gels at the Mesoscale Using Coarse-Grained Monte Carlo.

    PubMed

    Yang, Kengran; White, Claire E

    2016-11-08

    Alkali-activated materials (AAMs) are currently being pursued as viable alternatives to conventional ordinary Portland cement because of their lower carbon footprint and established mechanical performance. However, our understanding of the mesoscale morphology (∼1 to 100 nm) of AAMs and related amorphous aluminosilicate gels, including the development of the three-dimensional aluminosilicate network and nanoscale porosity, is severely limited. This study investigates the structural changes that occur during the formation of AAM gels at the mesoscale by utilizing a coarse-grained Monte Carlo (CGMC) modeling technique that exploits density functional theory calculations. The model is capable of simulating the reaction of an aluminosilicate particle in a highly alkaline solution (sodium hydroxide or sodium silicate). Two precursor morphologies have been investigated (layered alumina and silica sheets mimicking metakaolin and spherical aluminosilicate particles reminiscent of coal-derived fly ash) to determine if the precursor morphology has an impact on the structural evolution of the resulting alkali-activated aluminosilicate gel. The CGMC model can capture the three major stages of the alkali-activation process-dissolution, polycondensation, and reorganization-revealing that the dissolved silicate and aluminate species, ranging from monomers to nanoprecipitates (100s of monomers in size), exist in the pore solution of the hardened gel. The model also reveals that the silica concentration of the activating solution controls the extent of dissolution of the precursor particle. From the analysis of the aluminosilicate cluster size distributions, the mechanisms of AAM gel growth have been elucidated, revealing that Ostwald ripening occurs in systems containing free silica at the start of the reaction. On the other hand, growth of the hydroxide-activated systems (metakaolin and fly ash) occurs via the formation of intermediate-sized clusters in addition to continual

  14. Chlorine, in the Presence of Iron, Does Indeed Decrease the Viscosity of Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Webb, S. L.

    2012-12-01

    The effect of volatiles on melt rheology is investigated here, as the degassing of magma before an eruption usually leads to an increase in magma viscosity; and therefore increases the probability of an explosive eruption. There is not a large amount of data on the effect of chlorine on viscosity. It would appear, however, that chlorine increases the viscosity of peralkaline sodium-aluminosilicate melts, and decreases the viscosity of peraluminous sodium-aluminosilicate melts. These different effects of chlorine on viscosity indicate that the chlorine sits in different structural sites in peraluminous and peralkaline melts. In previous studies of rheology in this laboratory, we have shown that chlorine does indeed increase the viscosity of a phonolite analog Na2O-CaO-Al2O3-SiO2 melt. In this study, we have extended our investigation of the rheology of chlorine-bearing melts to basaltic compositions. The melt composition used here is that of a basaltic glass taken from the mid-Atlantic Ridge at 3000 m depth during the Venture Cruise (Ireland) of 2011. The viscosities were determined using the micropenetration technique in the 109-1012 Pa s range at temperatures 600-800 C. It was found that the addition of 0.6 wt% Cl resulted in a 0.5 log unit decrease in viscosity. A synthetic haplo-basaltic melt with the iron replaced by Mg and the Al was also synthesized. The addition of 0.3 wt% chlorine to this melt resulted in a 0.3 log unit increase in viscosity; as observed previously for Fe-free peralkaline melts. Based on these viscosity data it would appear that the effect of chlorine on rheology is a function of the composition of the melt, and that the structural site taken by chlorine varies as a function of the presence or absence of iron. The addition of chlorine to the iron-bearing melt, increased the Fe2+/Fetot from 0.30 to 0.45. This indicates that the presence of chlorine results in an energetic preference for Fe2+ in the melt structure. Thus, it is not so much the

  15. The Dissolution of Synthetic Na-Boltwoodite in Sodium Carbonate Solutions

    SciTech Connect

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-09-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in the contaminated sediments at the US Department of Energy Hanford site (Liu et al., 2004). Consequently, the solubility of synthetic Na-boltwoodite was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility increased with increasing bicarbonate concentration. Calculated solubility constants varied by nearly 2 log units from low bicarbonate (no added NaCO3) to 50 mmol/L bicarbonate. However, the solubility constants only vary by 0.5 log units from 0 added bicarbonate to 1.2 mmol/L bicarbonate, where logKsp = 5.39-5.92 and the average logKsp = 5.63. No systematic trend in logKsp was apparent over this range in bicarbonate concentrations. LogKsp values trended down with increasing bicarbonate concentration, where logKsp = 4.06 at 50 mmol/L bicarbonate. We conclude that the calculated solubility constants at high bicarbonate are compromised by an incomplete or inaccurate uranyl-carbonate speciation model.

  16. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  17. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  18. Sorption of cesium ions by nanostructured calcium aluminosilicates

    NASA Astrophysics Data System (ADS)

    Gordienko, P. S.; Shabalin, I. A.; Yarusova, S. B.; Suponina, A. P.; Zhevtun, I. G.

    2016-10-01

    Data on the sorption properties of synthetic calcium aluminosilicates (CASes) with Al: Si ratios of 2: 2, 2: 6, and 2: 10, fabricated within the multicomponent system CaCl2-AlCl3-KOM-SiO2-H2O, are presented. Isotherms of the sorption of Cs+ ions from aqueous solutions with Cs+ concentrations of 0.2 to 6.0 mmol L-1 are analyzed. The CAS maximum sorption capacity and the Langmuir constants are determined. Kinetic data are obtained, and the energy of cation-exchange activation upon the sorption of Cs+ ions is determined. The effect of a salt background (1% KCl + 6% NaCl) has on the values of distribution coefficient ( K d) and the degree of Cs+ ion removal is established.

  19. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  20. Surface and interface investigation of aluminosilicate biomaterial by the “in vivo” experiments

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Derrien, A. C.; Martin, S.; Chaair, H.; Cathelineau, G.

    2008-11-01

    Porous mixtures of aluminosilicate/calcium phosphate have been studied for biomaterials applications. Aluminosilicates formed with an inorganic polymeric constitution present amorphous zeolites because of their 3D network structure and present the ability to link to bone matrix. Amorphous geopolymers of the potassium-poly(sialate)-nanopolymer type were synthesised at low temperature and studied for their use as potential biomaterials. They were mixed with 13% weight of calcium phosphate like biphasic hydroxyapatite and β-tricalcium phosphate. In this study, " in vivo" experiments were monitored to evaluate the biocompatibility, the surface and the interface behaviour of these composites when used as bone implants. Moreover, it has been demonstrated using histological and physicochemical studies that the developed materials exhibited a remarkable bone bonding when implanted in a rabbit's thighbone for a period of 1 month. The easy synthesis conditions (low temperature) of this composite and the fast intimate links with bone constitute an improvement of synthetic bone graft biomaterial.

  1. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Lago, Diana C.; Prado, Miguel O.

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the crystallization kinetics can help to prevent or avoid it, by designing a proper thermal pathway. In this work we studied the crystallization kinetics of YAS and SmAS glasses. It was found that both, YAS and SmAS glasses crystallize from the surface. SmAS glass presented lower densities of nucleation sites. The results also showed that the crystal growth apparent enthalpy is larger for SmAS glasses.

  2. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  3. Granulation of zeolite-containing aluminosilicate hydrogel

    SciTech Connect

    Galimov, Z.F.; Vinkel'man, A.P.

    1987-09-01

    The granulation of aluminosilicate hydrogel as an intermediate for the synthesis of cracking catalysts was investigated from the standpoint of eliminating the splitting cone from the granulator and eliminating coagulation directly on the cone surface. A method for forming the gel without a cone was developed by dispersion of jets of sol issuing directly from the mixer. Gel quality was considerably higher in dispersions of time-constant jets of the sol. The experimental mixer can be used as a design basis for a multijet granulator with a capacity equivalent to one or several splitting cones in commercial units.

  4. Synthesis and characterization of inorganic polymers from the alkali activation of an aluminosilicate

    NASA Astrophysics Data System (ADS)

    González, C. P.; Montaño, A. M.; González, A. K.; Ríos, C. A.

    2014-06-01

    This paper presents the results of the synthesis and characterization of inorganic polymers (IP) from aluminosilicates: bentonite (BT) and pumice (PP). The synthesis of IP, was carried out by two methods involving alkaline activation, at room temperature and 80 ± 5 °C, using as activating agent sodium silicate both commercial and analytical (Na2SiO3). Sodium hydroxide (NaOH) at 3 M, 7 M and 12 M was added. A lower degree of polymerization was obtained by using analytical precursors subjected to room temperature and 80 ± 5°C. Replacement of heating by the use of the commercial activating agent with greater alkalinity allows the formation of a 3D network. The materials were structurally characterized by FTIR spectroscopy with Attenuated Reflectance (ATR), Scanning Electron Microscope (SEM) and X -ray diffraction (DRX).

  5. Investigation of aluminosilicate refractory for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gentile, Paul Steven

    Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (<1000°C) silicon instability due to the release of Si(OH)4 and SiO(OH) 2. Thermal gravimetric analysis and transpiration studies identified a discrete drop in the rate of silicon volatility before reaching steady state conditions after 100-200 hours. Electron microscopy observed the preferential deposition of vapors released from aluminosilicate on yttria stabilized zirconia (YSZ) over nickel. The adsorbent consisted of alumina rich clusters enclosed in an amorphous siliceous

  6. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet

    PubMed Central

    Mattace Raso, Giuseppina; Simeoli, Raffaele; Russo, Roberto; Iacono, Anna; Santoro, Anna; Paciello, Orlando; Ferrante, Maria Carmela; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria

    2013-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). Methods After weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined. Results Evaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation. Conclusions Our results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance. PMID:23861927

  7. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  8. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  9. Effect of aluminosilicates and bentonite on aflatoxin-induced developmental toxicity in rat.

    PubMed

    Abdel-Wahhab, M A; Nada, S A; Amra, H A

    1999-01-01

    Numerous studies have established that aflatoxin is a potent developmental toxin in animals. Previous research has demonstrated that a phyllosilicate clay, hydrated sodium calcium aluminosilicate (HSCAS or Novasil), tightly binds and immobilizes aflatoxins in the gastrointestinal tract of animals and markedly reduces the bioavailability and toxicity of aflatoxin. Our objective in this study was to utilize the pregnant rat as an in vivo model to compare the potential of HSCAS and bentonite to prevent the developmental toxicity of aflatoxin. Aluminosilicates (HSCAS) and bentonite were added to the diet at a level of 0.5% (w/w) and fed to the pregnant rat throughout pregnancy (i.e. days 0-20). Test animals were fed an aflatoxin-contaminated diet (2.5 mg kg(-1) diet) with or without sorbents during gestation days 6-15. Evaluations of toxicity were performed on day 20. These included maternal (mortality, body weights, feed intake and litter weights), developmental (embryonic resorptions and fetal body weights) and biochemical (ALT, AST and AP) evaluations. Sorbents alone were not toxic and aflatoxin alone resulted in significant maternal and developmental toxicity. Animals treated with phyllosilicate (plus aflatoxin) were comparable to controls following evaluations for resorptions, live fetuses and fetal body weights, as well as biochemical parameters. While bentonite plus aflatoxin resulted in significant reduction in fetal body weight, none of the fetuses from HSCAS or bentonite plus aflatoxin-treated groups had any gross, internal soft tissue or major skeletal malformations.

  10. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    NASA Astrophysics Data System (ADS)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  11. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    PubMed

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  12. Spectroscopic studies of aluminosilicate formation in tank waste simulants

    SciTech Connect

    Su, Y.; Wang, L.; Bunker, B.C.; Windisch, C.F.

    1997-12-31

    Aluminosilicates are one of the major class of species controlling the volume of radioactive high-level waste that will be produced from future remediation at Hanford site. Here the authors present studies of the phases and structures of aluminosilicates as a function of sludge composition using X-ray powder diffraction, solid state {sup 27}Al and {sup 29}Si NMR, and Raman spectroscopy. The results show that the content of NaNO{sub 3} in solution has significant effects on the nature of the insoluble aluminosilicate phases produced. It was found that regardless of the initial Si:Al ratio, nitrate cancrinite was the main phase formed in the solution with pH of 13.5 and 5 M NaNO{sub 3}. However, at lower NaNO{sub 3} concentration with initial Si:Al ratios of 1.1, 2.2, and 11.0 in the solutions, a range of aluminosilicate zeolites was produced with Si:Al ratios of 1.1, 1.3, and 1.5, respectively. Lowering the solution pH appears to promote the formation of amorphous aluminosilicates. The results presented here are important for the prediction of the solubility and dissolution rate of Al in tank wastes.

  13. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Carlier, Thibault; Saitzek, Sébastien; Méar, François O.; Blach, Jean-François; Ferri, Anthony; Huvé, Marielle; Montagne, Lionel

    2017-03-01

    In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  14. Aluminosilicate melts and glasses at 1 to 3 GPa: temperature and pressure effects on recovered structural and density changes

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.; Hankins, B.; Sisson, T. W.

    2013-12-01

    The effects of pressure on aluminosilicate melt and glass structure have been studied by both in-situ methods and by quenching and recovering glasses from high pressure and temperature. Significant increases in the coordination number of Al are now well known from the pressure range of 6-10 GPa. New results show that even at shallower mantle pressures of 1-3 GPa, typical aluminosilicate melts have significant concentrations of aluminum cations with coordination numbers greater than 4, with up to 10's of percents of AlO5 and AlO6. Here, we compare the densities and Al coordinations of glass samples recovered from piston-cylinder experiments carried out at 1 to 3 GPa and different temperatures. Samples of two different compositions (Ca3Al2Si6O18 and Na2Si3O7 with 0.5% Al2O3) were compressed and held at temperatures ranging from near to their ambient glass transitions (Tg) up to temperatures above the liquidus. Our 2 GPa sodium aluminosilicate and calcium aluminosilicate glasses quenched from near to Tg show about 5 and 6 percent recovered densification, respectively. In both compositions, samples that were quenched from above the melting point showed substantially lower recovered density and lower Al coordination number compared to the samples that were held near to Tg. For example, sodium aluminosilicate glass quenched from 510°C (near to Tg) had 70% more AlO5 than samples from 1200°C. Based on the measurement of actual cooling rates, fictive temperature differences for the glasses from these two extreme temperatures are not large enough to account for this apparent loss in density and Al-coordination during quench. The most likely cause for these differences is therefore probably the pressure drop during cooling from temperatures above liquidus, as the pressure medium does not respond quickly enough to the thermal contraction of the liquid and furnace parts to remain isobaric. Results from previous high T and P quenching studies thus give only minimum estimates

  15. Structure and Properties of Rare Earth Aluminosilicate Glasses.

    NASA Astrophysics Data System (ADS)

    Kohli, Jeffrey Todd

    1991-02-01

    Rare earth aluminosilicate (REAS) glasses have been formed using conventional melting techniques. The glass-forming regions of six different ternary systems have been defined with praseodymium, neodymium, samarium, terbium, erbium, or ytterbium oxides, with alumina and silica. The glass-forming regions systematically decreased in size as the atomic number of the particular rare earth in the ternary systems increased. Glasses, of the molar composition 2R_2O_3 -2Al_2O_3 -6SiO_2, were formed with twelve of the fourteen true rare earth oxides in order to investigate further effects related to the identity of the rare earth ion in the glasses. Several properties of the rare earth aluminosilicate glasses were measured. These properties include: thermal expansion, glass transformation temperature, dilatometric softening point, density, molar volume, index of refraction, Vicker's hardness, magnetic susceptibility and the Faraday rotatory response. The structures of rare earth aluminosilicate glasses were investigated using infrared and Raman spectroscopies as well as magic angle spinning nuclear magnetic resonance (MAS-NMR). MAS-NMR provided information regarding the local environments of silicon and aluminum ions in yttrium aluminosilicate (YAS) glasses. Since the size and valence of the yttrium ion are similar to the true rare earth ions, and the properties of the REAS and YAS glasses are similar, it is believed that the structures of yttrium aluminosilicate glasses are similar to those of the true rare earth aluminosilicate glasses. Several rare earth aluminogermanate glasses, having the molar formula 2R_2O _3-2Al_2O _3-6GeO_2, were also formed using conventional melting techniques. The properties of these glasses were compared and contrasted with those of the REAS glasses. Finally, a chapter on the study of magnetic susceptibility in common insulator glasses was added to the thesis. Several techniques used to measure magnetic susceptibility are reviewed in this chapter

  16. Recycling of aluminosilicate waste: Impact onto geopolymer formation

    NASA Astrophysics Data System (ADS)

    Essaidi, N.; Gharzouni, A.; Vidal, L.; Gouny, F.; Joussein, E.; Rossignol, S.

    2015-07-01

    Geopolymers are innovative ecomaterials resulting from the activation of an aluminosilicate source by an alkaline solution. Their properties depend on the used raw materials. This paper focuses on the possibility to obtain geopolymer materials with aluminosilicate laboratory waste. The effect of these additions on the geopolymer properties was studied by FTIR spectroscopy and mechanical test. It was evidenced a slowdown of the polycondensation reaction as well as the compressive strength due to the addition of laboratory waste which decreases the Si/K ratio of mixture.

  17. Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst.

    PubMed

    Zhu, Shi-Ni; Wang, Chao; Yip, Alex C K; Tsang, Daniel C W

    2015-01-01

    There is an increasing interest to recycle greywater for meeting non-portable water demand. However, linear alkylbenzene sulphonates (a form of anionic surfactants) that are commonly found in greywater are less biodegradable at moderate to high concentrations. A fenton-like system is a relatively economic advanced oxidation process that can potentially be used for surfactant degradation in greywater treatment. This study investigated the feasibility of zerovalent iron (ZVI)-mediated Fenton's oxidation of sodium dodecylbenzene sulphonate (SDBS) using Fe0/H2O2 and Fe2+/Fe0/H2O2 systems under a range of operating conditions. For the Fe0/H2O2 binary system, the initial pH value and Fe0 dosage played important roles in final degradation efficiency. For the Fe2+/Fe0/H2O2 ternary systems, a small amount of Fe2+ (0.5-1.7 mM) contributed a synergistic effect to promote iron recycling and SDBS degradation. Approximately, 90% of SDBS mineralization efficiency was accomplished within 15 min at a pH range from 3.0 to 6.5, using 18 mM Fe0 and 15 mM H2O2. However, the removal kinetics was rate-limited by Fe2+ dissolution from the ZVI surfaces. The Fenton-like process of the Fe2+/Fe0/H2O2 ternary system also presents a promising treatment method for synthetic greywater, in which 90% TOC removal was achieved within the first 10 min; 78% COD and 91% BOD5 were achieved after 120 min of reaction.

  18. Heterostructured layered aluminosilicate-itraconazole nanohybrid for drug delivery system.

    PubMed

    Yang, Jae-Hun; Jung, Hyun; Kim, Su Yeon; Yo, Chul Hyun; Choy, Jin-Ho

    2013-11-01

    A nanohybrid, consisting of layered aluminosilicate as a host material and itraconazole as a guest molecule, was successfully synthesized through the interfacial intercalation reaction across the boundary between water and water-immiscible liquid at the various pH. According to the powder X-ray diffraction pattern, the basal spacing of the intraconazole-layered aluminosilicate nanohybrid increased from 14.7 to 22.7 A depending on the pH of the aqueous suspension. The total amounts of itraconazole in the hybrids were determined to be 2.3-25.4 wt% by HPLC analysis. The in vivo pharmacokinetics study was performed in rats in order to compare the absorptions of itraconazole for the itraconazole-layered aluminosilicate nanohybrid and a commercial product, Sporanox. The pharmacokinetic data for the nanohybrid and Sporanox showed that the mean area under the plasma concentration-time curve (AUC, 2477 +/- 898 ng x hr/mL and 2630 +/- 953 ng x hr/mL, respectively) and maximum concentration (Cmax, 225.4 +/- 77.4 ng x hr/mL and 223.6 +/- 51.9 ng x hr/mL, respectively), were within the bioequivalence (BE) range. Therefore, we concluded that this drug-layered aluminosilicate nanohybrid system has a great potential for its application in formulation of poorly soluble drugs.

  19. A particulate isotopic standard of plutonium in an aluminosilicate matrix

    SciTech Connect

    Stoffels, J.J.; Cannon, W.C.; Robertson, D.M. )

    1991-01-01

    Plutonium isotopic microstandard particles have been produced for mass spectrometer calibration. The particles may also be useful as an elemental standard for calibration of electron and ion microprobe instruments. The standard consists of spherical, micrometer-size aluminosilicate particles loaded with plutonium of known isotopic distribution. The morphology, elemental composition, and plutonium isotopic composition of the particles have been characterized.

  20. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    NASA Astrophysics Data System (ADS)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  1. XPS study of protein adsorption onto nanocrystalline aluminosilicate microparticles

    NASA Astrophysics Data System (ADS)

    Vanea, E.; Simon, V.

    2011-01-01

    X-ray photoelectron spectroscopy (XPS) was used to study the interaction of two different sized proteins, bovine serum albumin (BSA) and fibrinogen, with an aluminosilicate system containing yttrium and iron that is a potential biomaterial. Serum albumin and fibrinogen are two major plasma proteins and the most relevant proteins adsorbed on the surface of biomaterials in blood contact. The aluminosilicate samples were incubated for several exposure times, up to 24 h, in simulated body fluid enriched with BSA, and in buffered fibrinogen solution. Time dependence of proteins adsorption onto surface of the investigated samples is reflected by the evolution of the new N 1s photoelectron peak and by the modification of C 1s core-level spectra recorded from the samples immersed in protein solution.

  2. The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2006-05-01

    Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, δFe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both δFe 3+ and δFe 2+ are negatively correlated with total iron oxide content and Fe 3+/ΣFe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/ΣFe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe 2+ and ΔFe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent

  3. Hard x-ray nanotomography of amorphous aluminosilicate cements.

    SciTech Connect

    Provis, J. L.; Rose, V.; Winarski, R. P.; van Deventer, J. S. J.

    2011-08-01

    Nanotomographic reconstruction of a sample of low-CO{sub 2} 'geopolymer' cement provides the first three-dimensional view of the pore structure of the aluminosilicate geopolymer gel, as well as evidence for direct binding of geopolymer gel onto unreacted fly ash precursor particles. This is central to understanding and optimizing the durability of concretes made using this new class of binder, and demonstrates the value of nanotomography in providing a three-dimensional view of nanoporous inorganic materials.

  4. Development of Li+ alumino-silicate ion source

    SciTech Connect

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-04-21

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  5. Channel waveguides in glass via silver-sodium field-assisted ion exchange

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Pagano, S. J.; Viehmann, W.

    1986-01-01

    Multimode channel waveguides have been formed in sodium aluminosilicate glass by field-assisted diffusion of Ag(+) ions from vacuum-evaporated Ag films. The two-dimensional refractive index profiles of the waveguides were controlled by varying the diffusion time, the diffusion temperature, and the electric field strength. Estimates of the diffusion rate through a strip aperture were obtained, assuming the electric field was strong 120-240 V/mm. The maximum change in refractive index in the sodium aluminosilicate glasses was estimated near 65 percent of the change in soda-lime silicate glass. The physical properties of the glasses are given in a table.

  6. A Novel Fluoride Route for the Synthesis of Aluminosilicate Nanotubes

    PubMed Central

    Chemmi, Atika; Brendlé, Jocelyne; Marichal, Claire; Lebeau, Bénédicte

    2013-01-01

    In this work we present a novel method for synthesis of aluminosilicate nanotubes: the fluoride route. F-containing imogolite (F-IMO) exhibits an improved crystallization rate and improved yield. The structure of F-IMO was investigated and compared with F-free imogolite (IMO) by means of X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR) confirming imogolite structure. Solid state nuclear magnetic resonance (NMR) analyses show an increased crystallization rate for F-IMO and confirm the incorporation of fluorine ion in the structure. PMID:28348325

  7. Characterisation of frequency doubling in Eu(2+) doped aluminosilicate fibres

    NASA Technical Reports Server (NTRS)

    Driscoll, T. J.; Lawandy, N. M.; Killian, A.; Rienhart, L.; Morse, T. F.

    1991-01-01

    The results of a series of experiments on efficient second-harmonic generation in a fiber with a Eu(2+)-doped aluminosilicate core are reported. The fiber was prepared by the seeding method with CW mode-locked radiation at 1.06 micron and produced ultrastable peak conversion efficiencies of 0.001 during mode-locked readout. Experiments were performed to determine the IR preparation intensity dependence, the stability of the output, and the type of erasure mechanisms which occur. The results are compared with those of germanosilicate fibers and some similarities and differences are discussed.

  8. Sol-gel derived aluminosilicate coatings on alumina as substrate for osteoblasts.

    PubMed

    Leivo, Jarkko; Meretoja, Ville; Vippola, Minnamari; Levänen, Erkki; Vallittu, Pekka; Mäntylä, Tapio A

    2006-11-01

    Rat bone marrow stromal cell differentiation on aluminosilicate 3Al(2)O(3)-2SiO(2) coatings was investigated. Thin ceramic coatings were prepared on alpha-alumina substrates by the sol-gel process and calcined in order to establish an amorphous aluminosilicate ceramic phase with and without nanosized transitional mullite crystals. In addition, coatings of thermally sprayed aluminosilicate and diphasic gamma-alumina-silica nanosized colloids were prepared. Cell culture testing by rat osteoblasts showed good biocompatibility for aluminosilicates with sustained normal osteoblast functions. Despite mutual disparities in physical and chemical nanostructures, the culture findings suggested fairly similar osteoblast response to all tested coatings. The results suggest that topographical frequency parameters and chemical uniformity are important parameters in determining the best conditions for osteoblasts on sol-gel derived aluminosilicate materials.

  9. Adsorption of chromium ions from aqueous solution by using activated carbo-aluminosilicate material from oil shale.

    PubMed

    Shawabkeh, Reyad Awwad

    2006-07-15

    A novel activated carbo-aluminosilicate material was prepared from oil shale by chemical activation. The chemicals used in the activation process were 95 wt% sulfuric and 5 wt% nitric acids. The produced material combines the sorption properties and the mechanical strength of both activated carbon and zeolite. An X-ray diffraction analysis shows the formation of zeolite Y, Na-X, and A-types, sodalite, sodium silicate, mullite, and cancrinite. FT-IR spectrum shows the presence of carboxylic, phenolic, and lactonic groups on the surface of this material. The zero point of charge estimated at different mass to solution ratio ranged from 7.9 to 8.3. Chromium removal by this material showed sorption capacity of 92 mg/g.

  10. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers

    NASA Astrophysics Data System (ADS)

    Sarkar, Madhuchhanda; Dana, Kausik; Das, Sukhen

    2015-10-01

    This work aims to investigate the microstructural and phase evolution of alkali activated metakaolin products with different activators and added aluminosilicate filler phases. The added filler phases have different reactivity to the alkali activated metakaolin system. Microstructural evolution in the alkali activated products has been investigated by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Variation in strength development in alkali activated metakaolin products was followed by compressive strength measurement test. Microstructural study shows that in case of metakaolin with NaOH activator crystalline sodalite formed in all the product samples irrespective of the added filler phases. The microstructure of these NaOH activated products investigated by FESEM showed crystalline and inhomogeneous morphology. Mixed activator containing both NaOH and sodium silicate in a fixed mass ratio formed predominantly amorphous phase. Microstructure of these samples showed more homogeneity than that of NaOH activated metakaolin products. The study further shows that addition of α-Al2O3 powder, non reactive phase to the alkali activated metakaolin system when used in larger amount increased crystalline phase in the matrix. α-Al2O3 powder addition increased the compressive strength of the product samples for both the activator compositions. Added phase of colloidal silica, reactive to the alkali activated metakaolin system when used in larger amount was found to increase amorphous nature of the matrix. Addition of colloidal silica influenced the compressive strength property differently with different activator compositions.

  11. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  12. Effective Sequestration of Clostridium difficile Protein Toxins by Calcium Aluminosilicate

    PubMed Central

    Pokusaeva, Karina; Carpenter, Robert

    2015-01-01

    Clostridium difficile is a leading cause of antibiotic-associated diarrhea and the etiologic agent responsible for C. difficile infection. Toxin A (TcdA) and toxin B (TcdB) are nearly indispensable virulence factors for Clostridium difficile pathogenesis. Given the toxin-centric mechanism by which C. difficile pathogenesis occurs, the selective sequestration with neutralization of TcdA and TcdB by nonantibiotic agents represents a novel mode of action to prevent or treat C. difficile-associated disease. In this preclinical study, we used quantitative enzyme immunoassays to determine the extent by which a novel drug, calcium aluminosilicate uniform particle size nonswelling M-1 (CAS UPSN M-1), is capable of sequestering TcdA and TcdB in vitro. The following major findings were derived from the present study. First, we show that CAS UPSN M-1 efficiently sequestered both TcdA and TcdB to undetectable levels. Second, we show that CAS UPSN M-1's affinity for TcdA is greater than its affinity for TcdB. Last, we show that CAS UPSN M-1 exhibited limited binding affinity for nontarget proteins. Taken together, these results suggest that ingestion of calcium aluminosilicate might protect gastrointestinal tissues from antibiotic- or chemotherapy-induced C. difficile infection by neutralizing the cytotoxic and proinflammatory effects of luminal TcdA and TcdB. PMID:26149988

  13. The kinetics of desilication of synthetic spent Bayer liquor seeded with cancrinite and cancrinite/sodalite mixed-phase crystals

    NASA Astrophysics Data System (ADS)

    Barnes, Mark C.; Addai-Mensah, Jonas; Gerson, Andrea R.

    1999-04-01

    Isothermal, batch desilication kinetics of synthetic, sodium aluminate solution (spent Bayer liquor) via cancrinite and cancrinite/sodalite mixed-phase crystal growth, have been studied under conditions at which sodium aluminosilicate scale forms at the surfaces of steel heat exchangers of alumina plant. Seeding with the pure cancrinite and mixed-phase crystals results in the suppression of scale formation and a faster rate of liquor desilication in comparison with its sodalite dimorph. Cancrinite seed crystals prepared from NO -3-rich solutions exhibited crystal growth mechanism and kinetic behaviour different from dimorphic mixed-phase crystals prepared from CO 2-3-rich solutions, when both were used to desilicate CO 2-3-rich spent Bayer liquor. The rate of desilication due to crystal growth on CO 2-3-cancrinite/sodalite mixed phase crystals followed a second-order dependence on the relative supersaturation of SiO 2. An activation energy of 52 kJ mol -1 was estimated for the crystal growth process. For desilication kinetics involving NO -3-cancrinite seed crystal growth, a third-order dependence on relative supersaturation of SiO 2 and an activation energy of 63 kJ mol -1 were obtained.

  14. Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture

    SciTech Connect

    Kim, J; Lin, LC; Swisher, JA; Haranczyk, M; Smit, B

    2012-11-21

    Large-scale simulations of aluminosilicate zeolites were conducted to identify structures that possess large CO2 uptake for postcombustion carbon dioxide capture. In this study, we discovered that the aluminosilicate zeolite structures with the highest CO2 uptake values have an idealized silica lattice with a large free volume and a framework topology that maximizes the regions with nearest-neighbor framework atom distances from 3 to 4.5 angstrom. These predictors extend well to different Si:Al ratios and for both Na+ and Ca2+ cations, demonstrating their universal applicability in identifying the best-performing aluminosilicate zeolite structures.

  15. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  16. Selective laser densification of lithium aluminosilicate glass ceramic tapes

    NASA Astrophysics Data System (ADS)

    Zocca, Andrea; Colombo, Paolo; Günster, Jens; Mühler, Thomas; Heinrich, Jürgen G.

    2013-01-01

    Tapes, cast by blade deposition of a lithium aluminosilicate glass slurry, were sintered using a YAG-fiber laser, with the aim of finding suitable parameters for an additive manufacturing process based on layer-wise slurry deposition and selective laser densification. The influence of the laser parameters (output power and scan velocity) on the sintering was evaluated, by scanning electron microscopy and by X-ray diffraction, on the basis of the quality of the processed layer. Well densified samples could be obtained only in a small window of values for the output power and the scan velocity. The measurement of the width of a set of single scanned lines allowed also to estimate the minimum resolution of the system along the layer plane.

  17. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations.

    PubMed

    Ledeţi, Ionuţ; Ledeţi, Adriana; Vlase, Gabriela; Vlase, Titus; Matusz, Petru; Bercean, Vasile; Şuta, Lenuţa-Maria; Piciu, Doina

    2016-06-05

    In this paper, the thermal stability of pure l-thyroxine (THY) and l-thyroxine sodium salt hydrate (THYSS) vs. two pharmaceutical solid formulations commercialized on both Romanian and European market (with a content of 100μg, respectively 200μg THYSS per tablet) were investigated. In order to determine whether the presence of excipients affects the thermal stability of the active pharmaceutical ingredient (API), the preliminary study of thermal stability in air atmosphere was completed with an in-depth solid-state kinetic study. By kinetic analysis, the non-isothermal degradation of the selected active pharmaceutical ingredients vs. the solid formulation with strength of 200μg THYSS per tablet was investigated. Isoconversional methods (Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Friedman) were employed for the estimation of activation energies values, at five different heating rates, β=5, 7, 10, 12 and 15°Cmin(-1). Also, a fourth method was applied in the processing of data, namely NPK, allowing an objective separation in the physical and chemical processes that contribute to the thermal degradation of the selected compounds. A discussion of thermal stability from the kinetic point of view is also presented.

  18. Effects of feeding synthetic zeolite A and sodium bicarbonate on milk production, nutrient digestion, and rate of digesta passage in dairy cows.

    PubMed

    Johnson, M A; Sweeney, T F; Muller, L D

    1988-04-01

    Four rumen-cannulated Holstein cows were fed synthetic zeolite A and NaHCO3 to evaluate their affect on milk production, nutrient digestibility, rumen fermentation, and rate of digesta passage. Treatments were allocated in a 2 x 2 factorial arrangement within a 4 x 4 Latin-square design. Treatments consisted of control; 1.0% NaHCO3; 2.0% zeolite; and 1.0% NaHCO3 plus 2.0% zeolite. A total mixed ration with 50:50 concentrate to forage (80% corn silage, 20% haylage) DM was fed. Intake of DM was lower for cows receiving zeolite (18.7 vs. 20.7 kg/d). Decreases were noted in daily milk (26.3 vs. 28.9 kg/d). 4% FCM (23.6 vs. 25.6 kg/d); milk fat yield (.86 vs. .93 kg/d); milk protein yield (.85 vs. .95 kg/d); and milk protein percent (3.21 vs. 3.34) with zeolite. Digestibilities of DM, organic matter, and crude protein were also decreased by zeolite but ADF digestion was unaffected. Rumen pH was increased, ruminal propionate decreased, and acetate:propionate ratio increased by zeolite. All other VFA plus rumen NH3 were not affected by treatment. Decreases due to zeolite were observed in liquid fractional rate of passage and liquid flow rate when measured by Cr-EDTA in the feces. No treatment differences were found in fractional rate of passage of feed particles. Addition of NaHCO3 had no significant effects.

  19. Detection and detoxification of aflatoxins: prevention of aflatoxicosis and aflatoxin residues with hydrated sodium calcium aluminosilicate.

    PubMed

    Phillips, T D; Clement, B A; Kubena, L F; Harvey, R B

    1990-01-01

    Our recent findings demonstrate that HSCAS can prevent aflatoxicosis in chickens and swine and significantly decreases the level of aflatoxin M1 residues in the milk of lactating dairy cattle. The basic mechanism for this action appears to involve sequestration of aflatoxin in the gastrointestinal tract and chemisorption (i.e., tight binding) to HSCAS which results in a reduction in aflatoxin bioavailability. Research is in progress to elucidate the specificity of HSCAS action and to construct a series of selective chemisorbents for mycotoxin control in livestock and poultry.

  20. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  1. Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.

    PubMed Central

    Fach, Estelle; Waldman, W James; Williams, Marshall; Long, John; Meister, Richard K; Dutta, Prabir K

    2002-01-01

    Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction

  2. Aluminosilicates as controlled molecular environments for selective photochemical and catalytic reactions

    SciTech Connect

    Carrado, K.A.

    1986-01-01

    This dissertation concerns research that involves photochemical, catalytic and spectroscopic studies of clays, pillared clays and zeolites. Incorporation of uranyl ions into hectorite, montmorillonite, bentonite and vermiculite clays was monitored by XRD and luminescence methods. Excitation and emission characteristics were studied in order to understand the behavior of uranyl ions in clays after various thermal treatments. Luminescence lifetime measurements elucidated the number of uranyl sites. Uranyl-exchanged clays were found to absorb light at lower energies (445-455nm) than analogous uranyl-exchanged zeolites (425nm). Each uranyl-exchanged clay was tested as a catalyst for the photoassisted oxidation of isopropyl alcohol. Energy transfer (ET) between uranyl and Eu(III) ions in different zeolite framework systems was examined. The efficiency of ET (eta/sub t/) was found to be affected by the type of framework present. Pillared bentonites were examined in the hydrocracking of decane. A catalytically and spectroscopically active dopant ion, Cr(III), was introduced into the clays in both pillared and unpillared forms depending upon synthetic conditions. EPR and DRS were employed to monitor the environment of Cr(III) for determination of its location - whether in the micropore structure or associated with alumina pillars. Catalytic behavior based upon this variability of location was examined. Incorporation of Cr(III) ions into an alumina pillar was found to increase the stability and activity with respect to an alumina PILC catalyst. The results of these studies suggest that selective, efficient catalysts can be designed around inorganic ions in aluminosilicate supports.

  3. Structural and redox effects in iron-doped magnesium aluminosilicates

    NASA Astrophysics Data System (ADS)

    Ferreira, N. M.; Kovalevsky, A. V.; Valente, M. A.; Waerenborgh, J. C.; Frade, J. R.; Costa, F. M.

    2017-01-01

    Magnesium aluminosilicates (MAS) represent a great importance for many electrical and catalytic applications. Recently, MAS-based glasses were considered as prospective for use as an electrolyte in steel making by molten oxide electrolysis process, an alternative electrometallurgical technique which offers prospects for environmental and economic advantages over traditional steelmaking. In the present work, low-iron content MAS glasses were processed by an unconventional method: the laser floating zone (LFZ), to simulate the strongly-nonequilibrium high-temperature conditions which may arise during pyroelectrolysis process. The work focuses on the effect of pulling rate on crystallization kinetics, taking into account structural, electrical and magnetic properties of the as-grown material. The results revealed that faster pulling rates promote formation of isolated iron cations in the glass forming network. The crystallization process is strongly affected by lower pulling rates. LFZ method shows good prospects for studying the crystallization mechanisms in silicate-based glasses with additions of redox-active cations, by providing flexibility in tuning their oxidation state and crystalline/amorphous conditions.

  4. Surface functionalization of aluminosilicate nanotubes with organic molecules

    PubMed Central

    Ma, Wei; Yah, Weng On; Otsuka, Hideyuki

    2012-01-01

    Summary The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH) surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid (HT3P) and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid 1,1-dioxide (HT3OP), on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene) (P3HT) chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid. PMID:22428100

  5. Development of aluminosilicate polyelectrolytes for solid-state battery applications

    SciTech Connect

    Rawsky, G.C.; Henretta, K.J.; Shriver, D.F.; Lowrey, R.; Vaynman, S.

    1995-12-31

    The authors have synthesized and characterized a range of novel polyelectrolytes containing weakly basic aluminosilicate anions in the polymer backbone in order to achieve t{sub +} = 1 and high ionic mobility. Room-temperature conductivity is observed to increase in the series: [NaAl(OEOMe){sub 2} ((OE){sub x}O){sub 2/2}]{sub n} < [NaAl(OR){sub 2}(OSiMe{sub 2}(CH{sub 2}){sub 3}(OE){sub x}O(CH{sub 2}){sub 3}SiMe{sub 2}O){sub 2/2}]{sub n} < [NaAl(OSiR{sub 3})(OSiMe{sub 2}(CH{sub 2}){sub 3}(OE){sub x}O(CH{sub 2}){sub 3}SiMe{sub 2}O){sub 3/2}]{sub n}. This trend is ascribed to reduced ion pairing due to decreasing anion basicity, and lowered T{sub g} resulting from increasing siloxy character. The addition of cryptang [2.2.2] increases conductivity by 1--1.5 orders of magnitude. A maximum room-temperature conductivity is observed at a ratio of {approx}10 etheric oxygens/cation. Related lithium polymer electrolytes were evaluated in mechanically joined solid state Li{vert_bar}PE{vert_bar}[Li{sub x}Mn{sub 2}O{sub 4}-C-PE] cells.

  6. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  7. Binding and catalytic reduction of NO by transition metal aluminosilicates

    SciTech Connect

    Klier, K.; Herman, R.G.; Hou, Shaolie.

    1991-09-01

    The objective of this research is to provide the scientific understanding of processes that actively and selectively reduce NO in dilute exhaust streams, as well as in concentrated streams, to N{sub 2}. Experimental studies of NO chemistry in transition metal-containing aluminosilicate catalysts are being carried out with the aim of determining the chemical rules for NO reduction on non-precious metals. The catalyst supports chosen for this investigation are A and Y zeolites, mordenite, and monoliths based on cordierite. The supported transition metal cations that were examined are principally the first row redox metals, e.g. Cr(2), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Cu(I). The reactions of interest are the reductions of NO by H{sub 2}, CO, and CH{sub 4}, as well as the disproportionation of NO. Rare earth cations that possess redox properties were placed in the more shielded sites, e.g. Site I in Y zeolite, prior to or simultaneously with the exchange procedure with the transition metal cations. Theoretical calculations of the electronic structure of the transition metal cations in zeolitic sites were carried out by ab initio methods. The aim of this part of the research is to find the best match between the metal-based antibonding orbitals and the antibonding orbitals of the NO molecule such that the N-O bond is weakened and is readily broken. 9 refs., 4 figs., 3 tabs.

  8. 21 CFR 184.1807 - Sodium thiosulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the reaction of sulfides...

  9. 21 CFR 184.1807 - Sodium thiosulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by...

  10. 21 CFR 184.1807 - Sodium thiosulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by...

  11. 21 CFR 184.1807 - Sodium thiosulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by...

  12. 21 CFR 184.1807 - Sodium thiosulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by...

  13. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  14. Li{sup +} alumino-silicate ion source development for the neutralized drift compression experiment

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2011-01-15

    We report results on lithium alumino-silicate ion source development in preparation for warm dense matter heating experiments on the new neutralized drift compression experiment II. The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of {approx_equal}1275 deg. C, a space-charge limited Li{sup +} beam current density of J {approx_equal}1 mA/cm{sup 2} was obtained. The lifetime of the ion source was {approx_equal}50 h while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 {mu}s.

  15. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts

    NASA Astrophysics Data System (ADS)

    Maneta, Victoria; Baker, Don R.; Minarik, William

    2015-07-01

    New experimental data on the solubility of lithium (Li) at spodumene (LiAlSi2O6) and petalite (LiAlSi4O10) saturation at 500 MPa and 550-750 °C reveal evidence for lithium supersaturation of pegmatite-forming melts before the formation of Li-aluminosilicates. The degree of Li enrichment in granitic melts can reach ~11,000 ppm above the saturation value before the crystallization of Li-aluminosilicate minerals at lower temperatures. Comparison of the experimental results with the spodumene-rich Moblan pegmatite (Quebec) is consistent with extreme Li enrichment of the pegmatite-forming melt prior to emplacement, which cannot be explained with equilibrium crystallization of Li-aluminosilicates from a common granitic melt. The results of this study support the model of disequilibrium fractional crystallization through liquidus undercooling as the most plausible mechanism for the generation of such Li-rich ore resources.

  16. The effects of ochratoxin/aluminosilicate interaction on the tissues and humoral immune response of broilers.

    PubMed

    Santin, Elizabeth; Paulillo, Antonio C; Maiorka, Paulo C; Alessi, Antonio C; Krabbe, Everton L; Maiorka, Alex

    2002-02-01

    This study aimed to evaluate the effect of dietary ochratoxin, in the presence or absence of aluminosilicate, on the histology of the bursa of Fabricius, liver and kidneys, and on the humoral immune response of broilers vaccinated against Newcastle disease virus. The exposure of birds to 2 p.p.m. ochratoxin, in the presence or absence of aluminosilicate, reduced their humoral immune response and the number of mitotic cells in the bursa. The relative weight of the livers of the birds exposed to this toxin was increased and, microscopically, there was hepatocyte vacuolation and megalocytosis with accompanying hyperplasia of the biliary epithelium. The kidneys showed hypertrophy of the renal proximal tubular epithelium, with thickening of the glomerular basement membrane. Aluminosilicate did not ameliorate the deleterious effects of the ochratoxin.

  17. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  18. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  19. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  20. Evaluation of aluminosilicate compounds to reduce aflatoxin residues and toxicity to poultry and livestock: a review report.

    PubMed

    Harvey, R B; Kubena, L F; Phillips, T D

    1993-01-01

    The aflatoxins (AFs) are reported to be hepatotoxic, mutagenic, immunosuppressive, and carcinogenic. Methods to prevent, reduce, or remediate AF toxicity and residues in the environment are in great demand. Various AF-detoxification procedures are reviewed with particular emphasis on ammoniation and the use of adsorbent compounds to bind AF. A series of in vivo experiments by the authors are reviewed that evaluated the ability of a specific hydrated sodium calcium aluminosilicate (HSCAS) adsorbent to reduce the toxicity of AF to poultry and livestock and to reduce AF residues in milk. These studies showed that HSCAS forms stable bonds with AF in vitro, and when added to AF-contaminated poultry and livestock feeds, HSCAS is able to protect chickens, swine, and lambs from the deleterious toxic effects of AF and to reduce AF residues in milk of dairy cows and goats. These results indicate that HSCAS, when used in conjunction with other mycotoxin management practices, may prove effective for the preventive management of AF-contaminated feedstuffs in livestock and poultry and may reduce AF residues in the food-chain.

  1. Technetium (VII) Co-precipitation with Framework Aluminosilicates

    SciTech Connect

    Harsh, James B.; Dickson, Johnbull Otah; Pierce, Eric M.; Bargar, John

    2015-07-13

    Technetium-99 (99Tc), a long-lived radionuclide, is one of the most widespread contaminants within the Hanford subsurface. At some depths, it is only extractable with strong acids, suggesting incorporation into a solid phase. We hypothesized that Tc may have coprecipitated with feldspathoid aluminosilicates under waste tanks that had leaked caustic solutions into the vadose zone. Our objectives were to determine if Tc could be incorporated into the feldspathoids cancrinite and sodalite and under what conditions coprecipitation could occur. Our hypothesis was that sodalite was more likely to incorporate and retain Tc. Our approach was to use known methods of feldspathoid formation in solutions resembling those in Hanford waste tanks contacting sediments in terms of major ion (Na, NO3, OH, Al(OH)4, and Si(OH)4 concentrations. In some cases, Al and Si were supplied from zeolite. We used perrhenate (ReO4) as a surrogate for pertechnetate (TcO4) to avoid the radioactivity. The major findings of this study were 1) ReO4 could be incorporated into either sodalite or cancrinite but the concentration in the solid was < 1% of the competing ion Cl, NO3, or NO2. 2) The small amount of ReO4 incorporated was not exchangeable with NO3 or NO2. 3) In sodalite, NO3 was highly preferred over ReO4 but significant Re-sodalite was formed when the mole fraction in solution (Re/Re+N) exceeded 0.8. 4) A nonlinear relation between the unit cell parameter and amount of Re incorporated suggested that a separate Re-sodalite phase was formed rather than a solid solution. 5) We determined that sodalite preference for sodalite in the presence of different anions increased with the ionic size of the competing anion: Cl < CO3 < NO3 < SO4 < MnO4 < WO4 and significant incorporation did not occur unless the difference in anion radii was less than 12%. 6) Re(VII) was not significantly reduced to Re(IV) under the conditions of this experiment and Re appeared to be a good surrogate for Tc under oxidizing

  2. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    PubMed Central

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-01-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

  3. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-03-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3.

  4. Selectivity modification by ion memory of magneso-silicate and magnesium alumino-silicate as inorganic sorbents.

    PubMed

    Abou-Mesalam, Mamdouh M; El-Naggar, Ibrahim M

    2008-06-15

    Synthetic magneso-silicate and magnesium alumino-silicate as inorganic ion exchange materials with the formula MgSi5.59O(12.18).5.93H2O and MgAl2.32Si5.2O(14.88).18.23H2O, respectively, have been found to be suitable for the removal of Cs+, Co2+ and Eu3+ ions with the selectivity sequence Eu3+>Co2+>Cs+. Samples of Cs-, Co- and Eu-loaded were prepared and thermally treated at 850 degrees C in a furnace for the creation of specific cavity. Surface area, IR and X-ray diffraction patterns of the products were conducted. Surface area values of OMS, OMAS, TMS, TMAS, ETMS and ETMAS were measured and indicated an increasing in the surface area values for the TMS and TMAS samples and decreasing in the ETMS and ETMAS samples. Desorption studies in nitric acid medium were carried out and reloading of the eluted solids with the studied cations were conduced and the data show an ion memory behaviour for the eluted solids. Finally, the rate of Cs+ ion sorption on OMS, OMAS, ETMS and ETMAS was studied. The diffusion coefficients calculated indicated that the diffusion of Cs+ ion is high for the ETMS and ETMAS samples compared to the OMS and OMAS samples.

  5. Sodium Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  6. Sodium Oxybate

    MedlinePlus

    Sodium oxybate is used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and ... urge to sleep during daily activities, and cataplexy). Sodium oxybate is in a class of medications called ...

  7. Sodium - blood

    MedlinePlus

    ... naproxen Lower than normal sodium level is called hyponatremia. It may be due to: Use of medicines ... overview Hepatorenal syndrome Hyperaldosteronism - primary and secondary Hypopituitarism Hypothyroidism Ions Low sodium level Nephrotic syndrome Sweating Review ...

  8. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    USGS Publications Warehouse

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase

  9. Sodium Bicarbonate

    MedlinePlus

    ... to 2 hours after meals, with a full glass of water. If you are using sodium bicarbonate for another reason, it may be taken with or without food. Do not take sodium bicarbonate on an overly full stomach.Dissolve sodium bicarbonate powder in at least 4 ounces (120 milliliters) of ...

  10. Mechanical-structural investigation of chemical strengthening aluminosilicate glass through introducing phosphorus pentoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Wang, Ling; Ye, Feng; Yang, Bin; Chen, Jianding; Chen, Guorong; Sun, Luyi

    2016-11-01

    Chemical strengthening of aluminosilicate glasses through K+-Na+ ion exchange has attracted tremendous attentions because of the accelerating demand for high strength and damage resistance glasses. However, a paramount challenge still exists to fabricate glasses with a higher strength and greater depth of ion-exchange layer. Herein, aluminosilicate glasses with different contents of P2O5 were prepared and the influence of P2O5 on the increased compressive stress and depth of ion-exchange layer was investigated by micro-Raman technique. It was noticed that the hardness, compressive stress, as well as the depth of ion-exchange layer substantially increased with an increasing concentration of P2O5 varied from 1 to 7 mol%. The obtained micro-Raman spectra confirmed the formation of relatively depolymerized silicate anions that accelerated the ion exchange. Phosphorus containing aluminosilicate glasses with a lower polymerization degree exhibited a higher strength and deeper depth of ion-exchange layer, which suggests that the phosphorus containing aluminosilicate glasses have promising applications in flat panel displays, windshields, and wafer sealing substrates.

  11. EFFECT OF IMPURITIES ASSOCIATED WITH ALUMINOSILICATES ON ARSENIC SORPTION AND OXIDATION

    EPA Science Inventory

    Arsenite, As(III), and arsenate, As(V), are of increasing environmental concern. Risk assessment and risk management of arsenic contaminated sites requires a better understanding of arsenic-mineral interactions. Aluminosilicate minerals, such as feldspars and clays, are the mos...

  12. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  13. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    PubMed

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  14. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  15. Sodium in diet

    MedlinePlus

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  16. Influence of Boehmite Precursor on Aluminosilicate Aerogel Pore Structure, Phase Stability and Resistance to Densification at High Temperatures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Newlin, Katy N.

    2011-01-01

    Aluminosilicate aerogels are of interest as constituents of thermal insulation systems for use at temperatures higher than those attainable with silica aerogels. It is anticipated that their effectiveness as thermal insulators will be influenced by their morphology, pore size distribution, physical and skeletal densities. The present study focuses on the synthesis of aluminosilicate aerogel from a variety of Boehmite (precursors as the Al source, and tetraethylorthosilicate (TEOS) as the Si source, and the influence of starting powder on pore structure and thermal stability.

  17. Synthetic multicellularity.

    PubMed

    Maharbiz, Michel M

    2012-12-01

    The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles.

  18. Synthetic DNA

    PubMed Central

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

  19. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  20. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  1. Formation and structure of Langmuir-Blodgett films of organo-modified aluminosilicate with high surface coverage.

    PubMed

    Fujimori, Atsuhiro; Arai, Shuntaro; Kusaka, Jun-ichi; Kubota, Munehiro; Kurosaka, Kei-ichi

    2013-02-15

    We have developed an effective organo-modification method at the organic solvent/distilled water interface of natural aluminosilicate clay surfaces. We also investigated the molecular arrangement of organo-modified aluminosilicate with high surface coverage in Langmuir-Blodgett films (LB) by performing out-of-plane and in-plane X-ray diffraction (XRD) measurements. In addition, the surface morphology of mixed monolayers of organo-modified aluminosilicate and several biodegradable polymers (e.g., poly(L-lactide), PLLA) was also characterized by atomic force microscopy (AFM). The in-plane XRD results of multilayers of organo-modified aluminosilicate formed by the LB method indicate the formation of a two-dimensional lattice of hydrocarbons on the aluminosilicate surface. These hydrocarbons of organo-modified reagents packed hexagonal or orthorhombic in films. Based on our experimental findings, the LB technique enabled the formation of a densely packed organo-modified aluminosilicate monolayer at the water surface. Furthermore, for mixed monolayer systems comprising an organo-modified clay with high surface coverage and biodegradable polymers, a miscible surface was observed by AFM on a mesoscopic scale, whereas those with low surface coverage formed phase-separated structures.

  2. [Assessment of carcinogenic effect of aluminosilicate ceramic fibers produced in Poland. Animal experiments].

    PubMed

    Krajnow, A; Lao, I

    2000-01-01

    The effect of aluminosilicate ceramic fibres produced in Poland was assessed. The experiment was performed on two animal species: Wistar rats and BALB/C mice. The animals were administered intraperitoneally the studied fibres and krokidolit UICC--in doses of 25 and 5 mg and left for survival. All dead and sacrificed animals were examined histopathologically. Carcinogenic properties of ceramic aluminosilicate fibres were found to be rather weak. Only in 1 (2.5%) of 39 rats under study benign mesothelioma of tunica vagiualis testis was diagnosed. Peritoneal mesothelioma was found in none of 50 mice studied. For comparison the effect of krokidolit UICC was assessed. Krokidolit UICC is characterised by strong carcinogenic properties. It induced peritoneal mesothelioma in 43 mice (44.2%) and in 29 (80.5%) of 36 rats under study.

  3. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    PubMed Central

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  4. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  5. One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity

    NASA Astrophysics Data System (ADS)

    Yang, Dongjiang; Xu, Yao; Wu, Dong; Sun, Yuhan

    2008-09-01

    Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N 2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH 3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH 3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH 3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.

  6. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces

    PubMed Central

    Smith, Benjamin J.; Rawal, Aditya; Funkhouser, Gary P.; Roberts, Lawrence R.; Gupta, Vijay; Israelachvili, Jacob N.; Chmelka, Bradley F.

    2011-01-01

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state 1H, 13C, 29Si, and 27Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications. PMID:21562207

  7. Structural and compositional heterogeneities in liquid aluminosilicate: insight from a grain structure model

    NASA Astrophysics Data System (ADS)

    Van Nguyen, Hong; Tran, Duong Thuy; Pham, Hung Khac

    2017-02-01

    Network structure as well as structural and compositional heterogeneities in aluminosilicate (Al2O3-2SiO2) under compression is investigated by analysis and visualization of simulation data. Structural and compositional heterogeneities are clarified through analysis of topology structure and size distribution of TO x -clusters ( T = Si, Al; x = 3, 4, 5, 6) as well as O T y -clusters ( y = 2, 3, 4). The TO x -cluster can be considered as TO x -grains. It appears that the structure of aluminosilicate is the mixture of TO x -grains with a different short-range order structure and this is the origin of structural heterogeneity. Regarding their composition, the OSi y - and OAl y -clusters can be considered as silica- and alumina-grains respectively, and the structure of aluminosilicate can thus be considered to be formed from silica- and alumina-grains. This results in compositional heterogeneity. Moreover, the degree of polymerization and polyamorphism as well as dynamic heterogeneity is also discussed in detail.

  8. Secondary Ion Mass Spectrometry of Zeolite Materials: Observation of Abundant Aluminosilicate Oligomers Using an Ion Trap

    SciTech Connect

    Groenewold, Gary Steven; Kessinger, Glen Frank; Scott, Jill Rennee; Gianotto, Anita Kay; Appelhans, Anthony David; Delmore, James Edward

    2000-12-01

    Oligomeric oxyanions were observed in the secondary ion mass spectra (SIMS) of zeolite materials. The oxyanions have the general composition AlmSinO2(m+n)H(m-1)- (m + n = 2 to 8) and are termed dehydrates. For a given mass, multiple elemental compositions are possible because (Al + H) is an isovalent and isobaric substitute for Si. Using 18 keV Ga+ as a projectile, oligomer abundances are low relative to the monomers. Oligomer abundance can be increased by using the polyatomic projectile ReO4- (~5 keV). Oligomer abundance can be further increased using an ion trap (IT-) SIMS; in this instrument, long ion lifetimes (tens of ms) and relatively high He pressure result in significant collisional stabilization and increased high-mass abundance. The dehydrates rapidly react with adventitious H2O present in the IT-SIMS to form mono-, di-, and trihydrates. The rapidity of the reaction and comparison to aluminum oxyanion hydration suggest that H2O adds to the aluminosilicate oxyanions in a dissociative fashion, forming covalently bound product ions. In addition to these findings, it was noted that production of abundant oligomeric aluminosilicates could be significantly increased by substituting the countercation (NH4+) with the larger alkali ions Rb+ and Cs+. This constitutes a useful tactic for generating large aluminosilicate oligomers for surface characterization and ion-molecule reactivity studies.

  9. The effects of intrapleural injections of alumina and aluminosilicate (ceramic) fibres.

    PubMed

    Pigott, G H; Ishmael, J

    1992-04-01

    Groups of rats, 24 male and 24 female, approximately 8 weeks old, were dosed by a single intrapleural injection with a saline suspension of refractory alumina fibres (Saffil fibres ICI plc) either as manufactured or after extensive thermal ageing; or one of two aluminosilicate ('ceramic') fibres with different diameter distributions. Similar groups were dosed with a suspension of UICC chrysotile A asbestos or saline solution to serve as positive and negative controls respectively. Rats were maintained to 85% mortality and all decedents and terminal sacrifices were closely examined for the presence of mesothelioma. Malignant mesothelioma was diagnosed in ten rats, seven dosed with asbestos and three dosed with aluminosilicate fibre B. No mesothelioma was detected in any rat dosed with Saffil fibres or aluminosilicate fibre A or in negative controls. The results support the predicted inert nature of Saffil alumina fibres and provide further evidence for the importance of fibre dimension in the induction of mesothelioma. The implication of the results for inhalation exposures is discussed.

  10. The effects of intrapleural injections of alumina and aluminosilicate (ceramic) fibres.

    PubMed Central

    Pigott, G. H.; Ishmael, J.

    1992-01-01

    Groups of rats, 24 male and 24 female, approximately 8 weeks old, were dosed by a single intrapleural injection with a saline suspension of refractory alumina fibres (Saffil fibres ICI plc) either as manufactured or after extensive thermal ageing; or one of two aluminosilicate ('ceramic') fibres with different diameter distributions. Similar groups were dosed with a suspension of UICC chrysotile A asbestos or saline solution to serve as positive and negative controls respectively. Rats were maintained to 85% mortality and all decedents and terminal sacrifices were closely examined for the presence of mesothelioma. Malignant mesothelioma was diagnosed in ten rats, seven dosed with asbestos and three dosed with aluminosilicate fibre B. No mesothelioma was detected in any rat dosed with Saffil fibres or aluminosilicate fibre A or in negative controls. The results support the predicted inert nature of Saffil alumina fibres and provide further evidence for the importance of fibre dimension in the induction of mesothelioma. The implication of the results for inhalation exposures is discussed. PMID:1571274

  11. Solubility and solution mechanisms of chlorine in aluminosilicate melts at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Dalou, C.; Mysen, B. O.

    2012-12-01

    We address the effect of alkalies and aluminum on the solution behavior of Cl by combining solubility measurements of Cl and Raman data of Cl-bearing peralkaline aluminosilicate glasses (quenched melt). Six compositions along the join Na2Si3O7(NS3)-Na2(NaAl)3O7 and six compositions along the join K2Si3O7(KS3)-K2(KAl)3O7 were used. In order to isolate potential effects of Al/(Al+Si) from changes on melt polymerization, Al2O3 was exchanged with SiO2 in a charge-balanced form, NaAlO2 and KaAlO2 thus keeping approximately constant NBO/T (0.65 ± 0.02) for all melts (assuming Al3+ in 4-fold coordination in the melts). Starting materials were doped with 5wt% Cl in the form of PdCl2, which releases Cl2 as its gaseous phase during experiment. Samples were synthetized on piston-cylinder apparatus at 1600°C - 1.5 GPa. At the end of the experiments, Pd forms little spheres (1-2 μm) that for most part dissolves into the capsule. Chlorine oversaturation in the melts is ensured by the observation of bubbles in the quenched samples. The Cl solubility in Na-bearing systems is about twice that of the than in K-bearing system and may, therefore, be negatively correlated with ionic radius of the metal cation.. The solubility also decreases with Al/(Al+Si). In NS3 system, it decreases from 4.01 ± 0.13 wt% of Cl in Al-free systems to 1.87 ± 0.19 wt% of Cl for an Al/Al+Si ratio of 0.34. In KS3 system, this decrease is from 2.23 ± 0.08 wt% of Cl in Al-free systems to 0.62 ± 0.05 wt% of Cl for an Al/Al+Si ratio of 0.36. In Al-free systems, preliminary Raman data show the appearance of a peak around 465cm-1, that we assigned to alkali-Cl bonding. The intensity of this 465cm-1 peak increases with Al content confirming the role of Al in Cl solution mechanism.We also identify the molecular Cl peak at 1540cm-1. The peak can be detected only in Al-bearing melts. The Al substitution for Si results in increased abundance of three-dimensional cages on the melt structure into which molecular

  12. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

  13. Sodium MRI.

    PubMed

    Ouwerkerk, Ronald

    2011-01-01

    Sodium ((23)Na) imaging has a place somewhere between (1)H-MRI and MR spectroscopy (MRS). Like MRS it potentially provides information on metabolic processes, but only one single resonance of ionic (23)Na is observed. Therefore pulse sequences do not need to code for a chemical shift dimension, allowing (23)Na images to be obtained at high resolutions as compared to MRS. In this chapter the biological significance of sodium in the brain will be discussed, as well as methods for observing it with (23)Na-MRI. Many vital cellular processes and interactions in excitable tissues depend on the maintenance of a low intracellular and high extracellular sodium concentration. Healthy cells maintain this concentration gradient at the cost of energy. Leaky cell membranes or an impaired energy metabolism immediately leads to an increase in cytosolic total tissue sodium. This makes sodium a biomarker for ischemia, cancer, excessive tissue activation, or tissue damage as might be caused by ablation therapy. Special techniques allow quantification of tissue sodium for the monitoring of disease or therapy in longitudinal studies or preferential observation of the intracellular component of the tissue sodium. New methods and high-field magnet technology provide new opportunities for (23)Na-MRI in clinical and biomedical research.

  14. Dalteparin sodium.

    PubMed

    Pineo, G F; Hull, R D

    2001-08-01

    Dalteparin sodium (Fragmin, Pharmacia Corporation) is a low molecular weight heparin (LMWH) with a mean molecular weight of approximately 5000 Da. As with the other LMWHs, dalteparin sodium has certain advantages over unfractionated heparin (UFH), most important of which are improved bio-availability by sc. injection, a prolonged antithrombotic activity which is highly correlated with body weight permitting the o.d. administration of the drug. Dalteparin sodium has been subjected to a large number of well-designed randomised clinical trials for the prevention and treatment of thrombotic disorders. Based on data from the randomised clinical trials, dalteparin sodium has been approved internationally for a wide spectrum of clinical indications (e.g., prevention of thromboembolic events after surgery). Dalteparin sodium has also been studied in randomised controlled trials in the maintenance of graft patentcy following peripheral vascular surgery, in place of warfarin for the long-term treatment of patients presenting with deep vein thrombosis (DVT), in the prevention of upper extremity thrombosis in patients with indwelling portacath devices and in pregnant patients with a history of previous venous thromboembolism with or without thrombophilia. Dalteparin sodium has been compared with heparin for the prevention of thrombotic complications during haemodyalisis and haemofiltration. These studies have shown promising results but further work is required before dalteparin sodium can be recommended for these indications.

  15. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...lubricants for use at both low and high temperatures, because of their desirable combinations of properties and potentially good availability. Adipic ...azelaic, and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols

  16. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  17. [Preparation technique of Cremastra appendiculata synthetic seed].

    PubMed

    Zhang, Mingsheng; Peng, Siwen; Yang, Xiaorui; Xu, Li

    2009-08-01

    The protocorm-suspension-system of Cremastra appendiculata was founded by liquid-suspension culture. The factors to effect germination rate and seedling conversion rate of C. appendiculata synthetic seeds, such as synthetic coating materials, synthetic endosperm components, storing conditions and germination materials, etc. were studied. The result showed that the germination rate and seedling conversion rate of synthetic seeds were the highest on the MS solid-medium while using 4% sodium alginate + 2% CaCl2 + 2% chitosan as synthetic coating materials, with 1/2 MS liquid-medium + 0.2 mg x L(-1) NAA + 0.1 mg x L(-1) GA3 + 0.5 mg L(-1) BA + 0.4 mg x L(-1) penicillin + 10.0 mg x L(-1) endophyte extract +0.3% carbendazim powder + 0.2% sodium benzoate + 1.0% sucrose as synthetic endosperm. And the germination rate and seedling conversion rate of synthetic seeds could attain to 68% and 65% after 20 days storing at 4 degrees C. The germination rate and seedling conversion rate of synthetic seeds decreased to a great extent with increasing the storing temperature and prolonging storing time.

  18. Synthetic wisdom.

    PubMed

    Kitcher, Philip

    2016-11-01

    Wisdom is a special kind of virtue. It is not to be identified with any outstanding cognitive ability-like having a prodigious memory or knowing a lot. Rather it consists in seeing what is most important and most valuable, either within a particular domain or in life as a whole. In the life of a wise person, that insight should be accompanied by traits of character, enabling the person to pursue what is seen as valuable. Viewing wisdom as a capacity for synthetic understanding, I argue for the need for philosophy, even at a time when all of us have much to learn from the sciences.

  19. Synthetic chloroplasts

    SciTech Connect

    Calvin, M.

    1980-06-01

    The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

  20. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  1. Contribution of Aluminas and Aluminosilicates to the Formation of PCDD/Fs on Fly Ashes

    PubMed Central

    Potter, Phillip M.; Dellinger, Barry; Lomnicki, Slawomir M.

    2015-01-01

    Chlorinated aromatics undergo surface-mediated reactions with metal oxides to form Environmentally Persistent Free Radicals (EPFRs) which can further react to produce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Previous work using laboratory-made fly ash surrogates composed of transition metal oxides deposited on silica powder has confirmed their ability to mimic fly ash in the production of PCDD/Fs. However, little is known about the propensity of aluminas and aluminosilicates, other components of fly ash, to form PCDD/Fs. A fly ash sample containing both alumina and mullite, an aluminosilicate, was tested for PCDD/F formation ability and compared to PCDD/F yields from the thermal degradation of 2-monochlorophenol (2-MCP) precursor over γ-alumina, α-alumina, and mullite. A packed-bed flow reactor was used to investigate the thermal degradation of 2-MCP over the various catalysts at 200–600 °C. Fly ash gave similar PCDD/F yields to surrogates made with similar transition metal content. γ-alumina, which is thermodynamically unfavorable, was very catalytically active and gave low PCDD/F yields despite a high destruction of 2-MCP. Mullite and α-alumina, the thermodynamically favorable form of alumina, yielded higher concentrations of dioxins and products with a higher degree of chlorine substitution than γ-alumina. The data suggest that certain aluminas and aluminosilicates, commonly found in fly ash, are active catalytic surfaces in the formation of PCDD/Fs in the post-flame cool zones of combustion systems and should be considered as additional catalytic surfaces active in the process. PMID:26615490

  2. In vitro osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement

    PubMed Central

    Eid, Ashraf A.; Niu, Li-na; Primus, Carolyn M.; Opperman, Lynne A.; Watanabe, Ikuya; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Introduction Calcium aluminosilicate cements are fast-setting, acid-resistant, bioactive cements that may be used as root-repair materials. This study examined the osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement (Quick-Set) using a murine odontoblast-like cell model. Methods Quick-Set and white ProRoot MTA (WMTA) were mixed with the proprietary gel or deionized water, allowed to set completely in 100% relative humidity and aged in complete growth medium for 2 weeks until rendered non-cytotoxic. Similarly-aged Teflon discs were used as negative control. The MDPC-23 cell-line was used for evaluating changes in mRNA expressions of genes associated with osteogenic/dentinogenic differentiation and mineralization (qRT-PCR) alkaline phosphatase enzyme production and extracellular matrix mineralization (Alizarin red-S staining). Results After MDPC-23 cells were incubated with the materials in osteogenic differentiation medium for 1 week, both cements showed upregulation in ALP and DSPP expression. Fold increases in these two genes were not significantly different between Quick-Set and WMTA. Both cements showed no statistically significant upregulation/downregulation in RUNX2, OCN, BSP and DMP1 gene expression compared with Teflon. Alkaline phosphatase activity of cells cultured on Quick-Set and WMTA were not significantly different at 1 week or 2 weeks, but were significantly higher (p<0.05) than Teflon in both weeks. Both cements showed significantly higher calcium deposition compared with Teflon after 3 weeks of incubation in mineralizing medium (p<0.001). Differences between Quick-Set and WMTA were not statistically significant. Conclusions The experimental calcium aluminosilicate cement exhibits similar osteogenic/dentinogenic properties to WMTA and may be a potential substitute for commercially-available tricalcium silicate cements. PMID:23953291

  3. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    PubMed

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.

  4. Synthetic Brainbows

    PubMed Central

    Wan, Y.; Otsuna, H.; Hansen, C.

    2014-01-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists. PMID:25018576

  5. Synthetic Botany.

    PubMed

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-02-28

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.

  6. Dynamics of Oxidation of a Fe2+-Bearing Aluminosilicate (Basaltic) Melt

    PubMed

    Cooper; Fanselow; Weber; Merkley; Poker

    1996-11-15

    Rutherford backscattering spectroscopy (RBS) and microscopy demonstrate that the approximately 1400°C oxidation of levitated droplets of a natural Fe2+-bearing aluminosilicate (basalt) melt occurs by chemical diffusion of Fe2+ and Ca2+ to the free surface of the droplet; internal oxidation of the melt results from the required counterflux of electron holes. Diffusion of an oxygen species is not required. Oxidation causes the droplets to go subsolidus; magnetite (Fe3O4) forms at the oxidation-solidification front with a morphology suggestive of a Liesegang-band nucleation process.

  7. Tensile and creep behavior of a silicon carbide fiber-reinforced aluminosilicate composite

    SciTech Connect

    Khobaib, M.; Zawada, L.

    1991-08-01

    Tensile and tensile creep tests were conducted with a Nicalon/aluminosilicate (Si-C-O/1723) glass composite. Tensile tests were conducted at room temperature, and the creep tests were conducted at 600, 700, and 750 C. Room temperature tensile test failure features exhibited a tortuous crack path and extensive fiber pull-out. The failure features in creep were characterized by flat fracture and little fiber pull-out. The environment appeared to play a significant role in creep failure of this composite system. 6 refs.

  8. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  9. Physical chemical studies of dispersed aluminosilicate wastes for obtaining the burned building materials

    NASA Astrophysics Data System (ADS)

    Iuriev, I. Y.; Skripnikova, N. K.; Volokitin, G. G.; Volokitin, O. G.; Lutsenko, A. V.; Kosmachev, P. V.

    2015-01-01

    This paper presents results of the studies that determined that grinding can be one of the ways to modify aluminosilicate wastes. The optimal grinding modes were defined in laboratory conditions. Physical and chemical studies of modified ashes were carried out by means of X-ray phase analysis, differential thermal analysis and microscopy. The results have shown that modified ashes of thermal power stations when being applied in production of ceramic brick influence positively the processing properties of raw materials and the ready products.

  10. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    PubMed

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  11. [The forensic chemical study of synthetic detergents].

    PubMed

    Fartushnyĭ, A F; Sergeeva, E E; Kvasov, E B

    1994-01-01

    Six color reactions were developed and thin-layer chromatography conditions defined for identification of components of some synthetic detergents in preparations and cadaveric material. Sensitivity of toxic components identification in biologic objects is 0.1 mg for alkylbenzolsulfonate and 0.25 mg of sodium silicate per 100 g of the object.

  12. Sodium azide

    Integrated Risk Information System (IRIS)

    Sodium azide ; CASRN 26628 - 22 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Acifluorfen, sodium

    Integrated Risk Information System (IRIS)

    Acifluorfen , sodium ; CASRN 62476 - 59 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  14. Sodium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for sodium cyanide is included in the

  15. Sodium diethyldithiocarbamate

    Integrated Risk Information System (IRIS)

    Sodium diethyldithiocarbamate ; CASRN 148 - 18 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  16. Sodium fluoroacetate

    Integrated Risk Information System (IRIS)

    Sodium fluoroacetate ; CASRN 62 - 74 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  17. Effect of Al concentration on the holographic grating efficiency and ionic conductivity in sodium magnesium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hamad, Abdulatif Y.; Wicksted, James P.; Hogsed, Michael R.; Martin, Joel J.; Hunt, Charles A.; Dixon, George S.

    2002-02-01

    A systematic study of grating formation, erasure, and decay in 15Na2O.12MgO.xAl2O3.(73-x)SiO2 glasses doped with 1.26 mol% Eu2O3 is reported as a function of Al2O3 concentration for x=0 to 15. The permanent change in the index of refraction was a linearly increasing function of Al2O3 concentration. The grating buildup and erasure rates also increased with Al2O3 concentrations. This is attributed to the reduced activation energy for forced diffusion of small modifiers bound to AlO-4 clusters rather than to nonbridging oxygens. Ionic conductivities were also measured to confirm the reduction of the activation energies. The results of this study support the model for grating kinetics in rare-earth sensitized glasses proposed recently by Dixon, Hamad, and Wicksted.

  18. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  19. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  20. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites

    USGS Publications Warehouse

    May, Howard M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

    1986-01-01

    Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

  1. Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions

    SciTech Connect

    Myers, Rupert J.; L'Hôpital, Emilie; Provis, John L.; Lothenbach, Barbara

    2015-02-15

    There exists limited information regarding the effect of temperature on the structure and solubility of calcium aluminosilicate hydrate (C–A–S–H). Here, calcium (alumino)silicate hydrate (C–(A–)S–H) is synthesised at Ca/Si = 1, Al/Si ≤ 0.15 and equilibrated at 7–80 °C. These systems increase in phase-purity, long-range order, and degree of polymerisation of C–(A–)S–H chains at higher temperatures; the most highly polymerised, crystalline and cross-linked C–(A–)S–H product is formed at Al/Si = 0.1 and 80 °C. Solubility products for C–(A–)S–H were calculated via determination of the solid-phase compositions and measurements of the concentrations of dissolved species in contact with the solid products, and show that the solubilities of C–(A–)S–H change slightly, within the experimental uncertainty, as a function of Al/Si ratio and temperature between 7 °C and 80 °C. These results are important in the development of thermodynamic models for C–(A–)S–H to enable accurate thermodynamic modelling of cement-based materials.

  2. White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Yang, R.; Qiu, J. R.; Brik, M. G.; Kumar, G. A.; Kityk, I. V.

    2009-01-01

    In this paper, we report on the absorption and photoluminescence properties of oxyfluoride aluminosilicate and boro-aluminosilicate glasses codoped with Sm3+ and Tb3+ ions. The differential thermal analysis profiles of these glasses have been obtained to confirm their thermal stability. From the measured absorption spectrum, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been evaluated for the Sm3+ ion. When excited by ultraviolet light these glasses emit a combination of blue, green and orange-red wavelengths forming white light. The ratio of the intensities of orange-red to green emissions can be tuned by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The excitation and emission spectra have shown a self-quenching effect for the Sm3+ ions and an efficient energy transfer from Tb3+ : 5D4 → Sm3+ : 4G5/2 was observed which was also confirmed by the decay lifetime measurements.

  3. Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate.

    PubMed

    Couto, Rafael Schirmer de Paula; Oliveira, Aline Faria; Guarino, Alcides Wagner Serpa; Perez, Daniel Vidal; Marques, Mônica Regina da Costa

    2017-04-01

    This study aimed to evaluate the ammonia-nitrogen removal by aluminosilicates, using both standard solutions as pretreated landfill leachate. Three types of commercial clays and one commercial zeolite were initially tested using standard solution; however, only one clay with the best removability and the zeolite were tested with pretreated leachate. The chosen clay sorption capacity with the standard solution reached 83%, while with the pretreated leachate solution has reached 95% and zeolites have reached, respectively, a removal of 73% and 81%. For this two adsorbents' studies of equilibrium and kinetic of the sorption were also performed. The Langmuir model was more adequate to describe the ion exchange equilibrium and the sorption mechanism fit the pseudo-second-order kinetic model. Moreover, the pretreatment used on leachate proved to be essential not only for ammonium detection in solution, but also to facilitate its sorption in aluminosilicates. This alternative of ammonia-nitrogen removal also generates a product derived from treatment that can be used as agricultural feedstock in the form of fertilizer.

  4. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  6. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    PubMed Central

    Potgieter, Wilna; Samuels, Caroline Selma; Snyman, Jacques Renè

    2014-01-01

    Purpose The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D), is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1) endoscopically negative gastroesophageal reflux disease (ENGORD) and 2) nonsteroidal anti-inflammatory drug (NSAID) medication. Methods and patients Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary. Results In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05) in severity of symptoms including reduction in heartburn (44%), discomfort (54%), and pain (56%). Symptom-free days improved by 41% compared to the group who received placebo (not significant). This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated clinoptilolite. Treatment with the potentiated clinoptilolite resulted in significant prevention (P≤0.05) of mucosal erosion severity as graded by the gastroenterologist. Conclusion Absorbatox is a

  7. Nuclear Magnetic Resonance Studies of Aluminosilicate Gels Prepared in High-Alkaline and Salt-Concentrated Solutions

    SciTech Connect

    Wang, Li Q.; Mattigod, Shas V.; Parker, Kent E.; Hobbs, David T.; McCready, David E.

    2005-11-01

    Solid-state 29Si, 27Al, and 23Na MAS (magic angle spinning) NMR techniques in combination with x-ray powder diffraction (XRD) are used to characterize aluminosilicate gels as a function of composition, pH, and reaction times. These gels were prepared at 80 C using initial solutions with low Si/Al ratios, high alkaline and salt concentrations that are characteristic of nuclear tank wastes. XRD data show that cancrinite and sodalite are the main crystalline phases in the aluminosilicate gels produced. It is found that the pH and the salt content have significant effects on the nature of the aluminosilicate gels. Higher pH appears to increase the rate of crystallization, the degree of overall crystallinity and the percentage of cancrinite phases in aluminosilicate gels, whereas the high salt concentration promotes the formation of cancrinite and sodalite and prohibits the formation of other zeolites. Complementary to XRD, NMR is extremely useful for providing the information on the structure of amorphous intermediate gels with no long-range order.

  8. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    SciTech Connect

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1/, respectively.

  9. Composites of Polyindole nanowires within Silicate and Aluminosilicate hosts with distinct conductive properties

    NASA Astrophysics Data System (ADS)

    Juárez, J. M.; Gómez Costa, M. B.; Anunziata, O. A.

    2016-07-01

    Nanostructured silicate SBA-15 and aluminosilicate AlSBA-15 were synthesized in order to prepare polyindole composites. The Silica mesoporous materials were prepared by sol- gel method and alumination using post-synthesis technique and analysed by different methods (XRD, BET, TEM, and FTIR). Polyindole/host composites were prepared by in situ oxidative polymerization of pre-adsorbed indole, employing Cl3Fe as oxidant. TG, FTIR, BET, XRD, SEM and TEM were used to characterize the resulting composites. These studies show that the porous structures of the materials are preserved after polymerization, and polyindole is found within the porous channels. The composites have an electrical conductivity range between values higher than those of the pure chemically synthesized polyindole, close to those of the pure electrochemically synthesized polymer and lower than those of the pure chemically synthesized polymer, in the order of 10-8 S/cm.

  10. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  11. Room temperature tensile and fatigue properties of silicon carbide fiber-reinforced aluminosilicate glass

    SciTech Connect

    Zawada, L.P.; Butkus, L.M.; Hartman, G.A.

    1990-10-01

    Matrix-microcracking has been identified as an indicator of the onset of damage accumulation in ceramic matrix composites. Stress levels required to produce microcracking in unidirectional and cross-ply laminates of Nicalon-reinforced aluminosilicate glass were determined during monotonic tension testing. Specimens were then tested in tension-tension fatigue (R = 0.1) at stress levels ranging up to 250 percent of the matrix microcracking stress level. At high stress levels, the unidirectional specimens exhibited a sharp decrease in elastic modulus during the first 10,000 cycles, after which the modulus remained relatively constant until run-out occurred at a million cycles. Similar results were obtained from tests conducted on the cross-ply specimens. It is shown that for this material the fatigue life-limiting stress can be associated with the inelastic stress-strain behavior of those plies having fibers running parallel with the loading axis. 6 refs.

  12. Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass

    SciTech Connect

    Gross, T. M.; Tomozawa, M.

    2008-09-15

    Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

  13. Structural and dynamic properties of calcium aluminosilicate melts: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2013-06-01

    The structural and dynamic properties of calcium aluminosilicate (CaO-Al2O3)1-x(SiO2)x melts with low silica content, namely, along the concentration ratio R = 1 are studied by classical molecular dynamics. An empirical potential has been developed here on the basis of our previous ab initio molecular dynamics. The new potential gives a description of the structural as well as the dynamics with a good accuracy. The self-intermediate scattering function and associated α-relaxation times are analyzed within the mode-coupling theory. Our results indicate a decrease of the fragility whose structural origin is a reduction of the number of fivefold coordinated Al atoms and non-bridging oxygen.

  14. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Wheaton, Bryan; Geisinger, Karen; Credle, Allen; Wang, Jie

    2016-11-01

    Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming) process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD), beam bending viscometry (BBV), and transmission electron microscopy (TEM). Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s) throughout the whole thermal treatment.

  15. A facile strategy to recycle template P123 from mesoporous aluminosilicates by ultrasonic extraction.

    PubMed

    Jin, Jun-su; Cao, Li; Su, Guang-xun; Xu, Chun-yan; Zhang, Ze-ting; Gao, Xiong-hou; Liu, Hong-hai; Liu, Hong-tao

    2014-09-01

    High synthesis cost of mesoporous aluminosilicates (MA) limits their practical application. Recycling of copolymer template employed in preparation of MA is an effective way to reduce the synthesis cost. An ultrasonic extraction strategy for recycling of organic template P123 in MAs is reported. Effects of different extraction parameters on P123 recovery are investigated and the optimum conditions are obtained. 75.0% P123 is recovered from MAs within 10 min by one-step ultrasonication. Characterizations indicated that the resulting P123-free MA (MA-U) exhibits excellent properties compared with that of calcined products. Moreover, recovered P123 can be employed to synthesize high hydrothermally stable MA. This investigation provides a facile strategy to recycle P123 from MA.

  16. Impact of ZnO on the structure of aluminosilicate glazes

    NASA Astrophysics Data System (ADS)

    Leśniak, M.; Partyka, J.; Sitarz, M.

    2016-12-01

    This paper focuses on the effect of the ZnO content on the microstructure and structure of the internal aluminosilicooxygen network of the glazes from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR, FIR spectroscopy and 29Si, 27Al MAS NMR were performed. The study has shown that the experimental glazes are amorphous material. The studies showed that, zinc ions in the structure of the aluminosilicate glazes cause depolymerization of silicon-oxygen network. This means that, the zinc ions Zn2+ in the tested glazes are in octahedral coordination.

  17. Effect of additions of aluminosilicate and silicate materials on the softening temperature of chromite ore

    NASA Astrophysics Data System (ADS)

    Zhdanov, A. V.; Nurmaganbetova, B. N.; Pavlov, V. A.

    2015-07-01

    The temperatures of the beginning and end of softening and the temperature range of softening of the fines of the rich chromite ore of the Donskoy Ore Mining & Processing Plant in Kazakhstan are experimentally determined. The following natural and technical silica-containing materials, which are considered as fluxing additions to decrease the melting temperature of the chromite ore, are investigated: aluminosilicate clays, microsilica, and quartzite of various fractions. The effect of additions of the natural and technical silica-containing materials on the temperatures of the beginning and end of softening and the temperature range of softening of the chromite ore of DODPE is analyzed. The influences of various materials and their fraction compositions on the temperature of softening of the chromite ores are compared.

  18. Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination.

    PubMed

    Liou, Kai-Hsin; Kang, Dun-Yen; Lin, Li-Chiang

    2017-01-18

    Water shortage has become a critical issue. To facilitate the large-scale deployment of reverse-osmosis water desalination to produce fresh water, discovering novel membranes is essential. Here, we computationally demonstrate the great potential of single-walled aluminosilicate nanotubes (AlSiNTs), materials that can be synthesized through scalable methods, in desalination. State-of-the-art molecular dynamics simulations were employed to investigate the desalination performance and structure-performance relationship of AlSiNTs. Free energy profiles, passage time distribution, and water density map were also analyzed to further understand the dependence of transport properties on diameter and water dynamics in the nanotubes. AlSiNTs with an inner diameter of 0.86 nm were found to fully reject NaCl ions while allowing orders of magnitude higher water fluxes compared to currently available reverse osmosis membranes, providing opportunities in water desalination.

  19. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  20. Imprinting the surface of mesoporous aluminosilicates using organic structure-directing agents

    NASA Astrophysics Data System (ADS)

    Sawant, Kaveri R.

    Combining the positive structural features of mesoporous materials and microporous zeolite aluminosilicates can lead to the synthesis and application of new materials useful for catalytic processes involving large organic reactant molecules. We used organic structure-directing agents (SDAs), typically used for the synthesis of zeolites, to imprint the surface of existing mesoporous materials to create novel materials with enhanced structural properties towards this aim: materials with large well-ordered pores allowing access to large reactants with strong accessible acid sites on the surface of the pores leading to stable and active catalysts. We developed new protocols for incorporating tetrapropyl ammonium and N,N,N-trimethyl-1-adamantylammonium, SDAs used for the synthesis of the zeolites ZSM-5 (MFI) and MCM-22 (MWW) respectively, into the walls of the siliceous mesoporous material SBA-15 by using a combination of an organic solvent (glycerol) and water, to form novel porous materials. We studied the evolution of the modified pore structure of the materials by a battery of characterization techniques. Results indicate that the new materials have well-ordered pores with significantly larger mesopore diameters and structurally modified thinner, denser pore walls. We carried out similar treatments and characterization on the aluminum containing form of SBA-15, Al-SBA-15, with high and low amounts of aluminum. Pair distribution function analysis was used to analyze the structural differences in the materials and catalytic test reactions such as cumene and n-hexane cracking to detect the presence of strong acid sites like the ones in ZSM-5. Results similar to the treatments on the all-silica materials, although promising, led to novel meso-micro aluminosilicate materials with limited increase in or no catalytic activity with reference to the test reactions employed. This led to the conclusion that the aluminum in the materials was merely a spectator and did not

  1. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  2. Sodium and Food Sources

    MedlinePlus

    ... Disease Cholesterol High Blood Pressure Million Hearts® WISEWOMAN Sodium and Food Sources Recommend on Facebook Tweet Share ... food [PDF-867K] and how to reduce sodium. Sodium Reduction Is Challenging Types of food matter: More ...

  3. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

  4. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    SciTech Connect

    Bobkov, K K; Rybaltovsky, A A; Vel'miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M; Umnikov, A A; Gur'yanov, A N; Vechkanov, N N; Shestakova, I A

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  5. Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.

    2010-12-01

    Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics

  6. Corrosion of MgO-MgAl{sub 2}O{sub 4} spinel refractory bricks by calcium aluminosilicate slag

    SciTech Connect

    Goto, Kiyoshi; Argent, B.B.; Lee, W.E.

    1997-02-01

    Microstructural analysis of MgO-MgAl{sub 2}O{sub 4} refractory bricks corroded at 1,400--1,500 C by calcium aluminosilicate slag reveals secondary spinel, monticellite, merwinite, and MgO as microscopic corrosion products, generally forming in this sequence as the brick is penetrated. The secondary spinel forms an incomplete layer close to (but not at) the MgO grain. Thermodynamic calculations are used to support a detailed model of the corrosion mechanism.

  7. Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, & Mössbauer spectroscopies

    SciTech Connect

    Mccloy, John S.; Washton, Nancy M.; Gassman, Paul L.; Marcial, Jose; Weaver, Jamie L.; Kukkadapu, Ravi K.

    2015-02-01

    A spectroscopic study was conducted on 6 complex simulant nuclear waste glasses using multi-nuclear NMR, Raman and Mössbauer spectroscopies to explore the role of glass-forming elements Si, Al, B, along with Na and Fe and to understand their connectivity with the goal of understanding melt structure precursors to deleterious feldspathoid nepheline-like crystals formation. NMR showed the appearance of two sites for Al, Si, and Na in the samples which crystallized significant amounts of nepheline, and B speciation changed, typically resulting in more B(IV) after nepheline crystallization. Raman spectroscopy suggested a major part of the glass structure is composed of metaborate chains or rings, thus significant numbers of non-bridging oxygens and a separation of the borate from the alumino-silicate network. Mössbauer combined with Fe redox chemical measurements showed that Fe plays a minor role in these glasses, mostly as Fe3+, but that iron oxide spinel forms with nepheline in all cases. Models of the glass network, speciation of B, and allocation of non-bridging oxygens were computed. The Yun-Dell-Bray model failed to predict the observed high concentration of NBO necessary to explain the metaborate features in the Raman spectra, and it largely over-estimated B(IV) fraction. The model assuming Na-Al-Si moieties and using experimental B(IV) fraction predicted a large amount of NBO consistent with Raman spectra. An alternative notation for appreciating the glass network is suggested and then used to investigate the changes the glass due to crystallization of sodium nepheline and the residual glass network. From a theoretical standpoint, it may be preferred to picture nuclear waste glasses by the Lebedev theory of glass structure where “microcrystallites” of ordered nuclei (or embryos) exist in the matrix of more disordered glass.

  8. (Na{sub 4}BH{sub 4}){sup 3+} guests inside aluminosilicate, gallosilicate and aluminogermanate sodalite host frameworks studied by {sup 1}H, {sup 11}B, and {sup 23}Na MAS NMR spectroscopy

    SciTech Connect

    Buhl, J.-Ch.; Murshed, M.M.

    2009-07-01

    We report tetrahydroborate aluminosilicate, gallosilicate and aluminogermanate sodalites studied by {sup 11}B, {sup 1}H and {sup 23}Na MAS NMR spectroscopy. The spectral parameters are consistent with the local environments of each investigated nucleus obtained from the crystal structures. The {sup 11}B MAS NMR spectra exhibit a sharp narrow line at about -49.0 ppm, which is assigned to BH{sub 4}{sup -} enclathrated into the sodalite framework matrix. The lineshape of the signal shows no quadrupolar interactions due to discreteness and high symmetry of the BH{sub 4}{sup -} unit as well as possible fast dynamic site exchange of hydrogen atoms. The {sup 23}Na MAS NMR signals also show a narrow Gaussian lineshape, which clearly indicates a single type of sodium coordination, and a centrosymmetrical charge distribution around the sodium atom. The {sup 1}H MAS NMR spectra can clearly distinguish between hydrogen in BH{sub 4}{sup -} anions (-0.6 ppm), H{sub 3}O{sub 2}{sup -} anions (1.2 ppm) and H{sub 2}O molecules (5.0 ppm). The structural properties of BH{sub 4}{sup -} intercalation into sodalite framework matrix help connect the microporous materials to hydride-containing A, X and Y type zeolites.

  9. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  10. The effect of TiO2/aluminosilicate nanocomposite additives on the mechanical and thermal properties of polyacrylic coatings

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali

    2015-12-01

    The commercial grade polyacrylic latex was modified in order to prepare a mechanical and thermal improved coating. TiO2/Ag-exchanged-aluminosilicate nanocomposites with montmorillonite, zeolite-A and clinoptilolite aluminosilicates were prepared and used as additive in the matrix of polyacrylic latex to achieve a coating with proper mechanical and thermal properties. X-ray diffraction patterns and FESEM were used to characterize the composition, structure, and morphology of the nanocomposite additives. Polyacrylic coatings modified by TiO2/Ag-exchanged-aluminosilicate nanocomposite additives showed higher adhesion strength and hardness compared to unmodified commercial grade polyacrylic coatings. Differential Scanning Calorimetry (DSC) analysis showed lower glass transition temperature for modified polyacrylic coatings than that of unmodified polyacrylic coatings. The tensile tests were also carried out for unmodified and modified polyacrylic coatings. According to the results, the modified polyacrylic based coating with TiO2/Ag-exchanged-clinoptilolite nanocomposite additive was the best coating considering most of useful properties.

  11. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  12. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  13. Alkali aluminosilicate melts and glasses: structuring at the middle range order of amorphous matter

    NASA Astrophysics Data System (ADS)

    Le Losq, C.; neuville, D. R.

    2012-12-01

    Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviours. It is well known that several parameters impact strongly these properties, such as for instance the temperature, pressure, chemical composition and volatiles concentration, finally influencing eruptive behaviour of volcanoes. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts, like for instance the Vesuvius (Italy) or Erebus (Antartica) magmas. In an oncoming paper in Chemical Geology (Le Losq and Neuville, 2012), we have communicated results of the study of mixing Na-K in tectosilicate melts containing a high concentration of silica (≥75mol%). In the present communication, we will enlarge this first point of view to tectosilicate melts presenting a lower silica concentration. We will first present our viscosity data, and then the Adam and Gibbs theory that allows theoretically modelling Na-K mixing in aluminosilicate melts by using the so-called "mixed alkali effect". On the basis of the rheological results, the Na-K mixing cannot be explained with the ideal "mixed alkali effect", which involves random exchange of Na-K cationic pairs. To go further and as rheological properties are directly linked with structural properties, we will present our first results obtained by Raman and NMR spectroscopy. These last ones provide important structural pieces of information on the polymerization state of glasses and melts, and also on the environment of tetrahedrally coordinated cations. Rheological and structural results all highlight that Na and K are not randomly distributed in aluminosilicate glasses and melts networks. Na melts present a network with some channels and a non-random distribution of Al and Si. K networks are different. They also present a non-random distribution of Al and Si, but in two sub

  14. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  15. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed.

  16. Mechanisms of Tenebrescence and Persistent Luminescence in Synthetic Hackmanite Na8Al6Si6O24(Cl,S)2.

    PubMed

    Norrbo, Isabella; Gluchowski, Pawel; Hyppänen, Iko; Laihinen, Tero; Laukkanen, Pekka; Mäkelä, Jaakko; Mamedov, Fikret; Santos, Hellen S; Sinkkonen, Jari; Tuomisto, Minnea; Viinikanoja, Antti; Lastusaari, Mika

    2016-05-11

    Synthetic hackmanites, Na8Al6Si6O24(Cl,S)2, showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti(3+) originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na4(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time.

  17. Non-bridging Oxygen and Five-coordinated Aluminum in Aluminosilicate Glasses: A Cation Field Strength Study

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Stebbins, J. F.

    2011-12-01

    Linda M. Thompson Jonathan F. Stebbins Dept. of Geological and Environmental Sciences, Stanford University, Stanford CA 94305 Although it is understood in aluminosilicate melts and glasses that non-bridging oxygens (NBO) have significant influence on thermodynamic and transport properties, questions remain about its role and the extent of its influence, particularly in metaluminous and peraluminous compositions. One major question persists regarding whether the formation of NBO is in any way coupled with the formation of VAl (AlO5), which is significantly impacted by cation field strength (defined as the cation charge divided by the square of the distance between the cation and oxygen atoms) (Kelsey et al., 2009). Previous work on calcium and potassium aluminosilicate glasses has shown the presence of NBO on the metaluminous join and persisting into the peraluminous region, with significantly more NBO present in Ca glasses compared to K glasses of similar composition (Thompson and Stebbins, 2011). However, it is unclear if there is any systematic impact on NBO content by cation field strength similar to the impact on VAl. Expanding on the previous study, barium aluminosilicate glasses were synthesized covering a range of compositions crossing the metaluminous (e.g. BaAl2O4-SiO2) join to observe changes in the NBO for comparison against the calcium aluminosilicate glasses, thus looking at the impact of cation size on NBO versus cation charge. In the barium glasses on the 30 mol% SiO2 isopleth, the highest NBO content was 6.9% for the barium rich glass (R = 0.51, where R is Ba2+ / (Ba2+ + 2Al3+)) while the most peraluminous glass (R = 0.45) had an NBO content of 1.9%. Comparison of these results to earlier data shows these numbers are similar to what is observed in the Ca glasses, indicating cation size alone does not have a significant impact on NBO content. However the VAl content does show a decrease (compared to calcium aluminosilicate glasses at similar R values

  18. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    PubMed Central

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics. PMID:23687400

  19. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  20. First Principles Studies of Fe-Containing Aluminosilicate and Aluminogermanate Nanotubes.

    PubMed

    Alvarez-Ramírez, Fernando

    2009-12-08

    A theoretical study of the electronic effects of the inclusion of iron on aluminosilicates and aluminogermanates nanotubes with imogolite-like structure was carried out by unrestricted all-electron density functional theory calculations of periodic boundary models. The iron ion was incorporated to the imogolitic models by an isomorphic substitution of Al by Fe and by the adsorption of the Fe ion in the inner and outer nanotube structure in the octahedral hydrated configuration. Additionally, the effects of the Fe concentration in the interval 0.05 ≤ x ≤ 0.1 were analyzed. We observe a drastic reduction of the bandgap value from 4.6 to 2.6 eV and from 4.2 to 1.0 eV for the silicon and germanium respectively. Finally, in all the models there is a shift of the Fermi energy toward the gap region as a result of the inclusion of iron electronic states in the bandgap region.

  1. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8)

    DOE PAGES

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; ...

    2016-10-13

    Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equationmore » of state with VGGA0 = 687.4Å3, KGGA0 = 51.7 GPa, and GGGA0 = 4.7. The shear modulus and its pressure derivative are K⊕GGA0 = 33.7 GPa, and G⊕GGA0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AVGGAP = 42.8%, and AVGGAS = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.« less

  2. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.

    PubMed

    Kerisit, Sebastien; Liu, Chongxuan

    2014-04-01

    Adsorption at mineral surfaces is a critical factor controlling the mobility of uranium(VI) in aqueous environments. Therefore, molecular dynamics (MD) simulations were performed to investigate uranyl(VI) adsorption onto two neutral aluminosilicate surfaces, namely, the orthoclase (001) surface and the octahedral aluminum sheet of the kaolinite (001) surface. Although uranyl preferentially adsorbs as a bidentate inner-sphere complex on both surfaces, the free energy of adsorption on the orthoclase surface (-15 kcal mol(-1)) is significantly more favorable than that at the kaolinite surface (-3 kcal mol(-1)), which is attributed to differences in surface functional groups and the ability of the orthoclase surface to release a surface potassium ion upon uranyl adsorption. The structures of the adsorbed complexes compare favorably with X-ray absorption spectroscopy results. Simulations of the adsorption of uranyl complexes with up to three carbonate ligands revealed that uranyl complexes coordinated to up to two carbonate ions are stable on the orthoclase surface whereas uranyl carbonate surface complexes are unfavored at the kaolinite surface. Combining the MD-derived equilibrium adsorption constants for orthoclase with aqueous equilibrium constants for uranyl carbonate species indicates the presence of adsorbed uranium complexes with one or two carbonates under alkaline conditions, in support of current uranium(VI) surface complexation models.

  3. Single-Walled Aluminosilicate Nanotube/Poly(vinyl alcohol) Nanocomposite Membranes

    SciTech Connect

    Kang, Dun-Yen; Tong, Ho Ming; Zang, Ji; Choudhury, Rudra Prosad; Sholl, David S.; Beckham, Haskell W.; Jones, Christopher W.; Nair, Sankar

    2012-05-29

    The fabrication, detailed characterization, and molecular transport properties of nanocomposite membranes containing high fractions (up to 40 vol %) of individually-dispersed aluminosilicate single-walled nanotubes (SWNTs) in poly(vinyl alcohol) (PVA), are reported. The microstructure, SWNT dispersion, SWNT dimensions, and intertubular distances within the composite membranes are characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), XRD rocking curve analysis, small-angle X-ray scattering (SAXS), and solid-state NMR. PVA/SWNT nanocomposite membranes prepared from SWNT gels allow uniform dispersion of individual SWNTs in the PVA matrix with a random distribution of orientations. SAXS analysis reveals the length ({approx}500 nm) and outer diameter ({approx}2.2 nm) of the dispersed SWNTs. Electron microscopy indicates good adhesion between the SWNTs and the PVA matrix without the occurrence of defects such as voids and pinholes. The transport properties of the PVA/SWNT membranes are investigated experimentally by ethanol/water mixture pervaporation measurements, computationally by grand canonical Monte Carlo and molecular dynamics, and by a macroscopic transport model for anisotropic permeation through nanotube-polymer composite membranes. The nanocomposite membranes substantially enhance the water throughput with increasing SWNT volume fraction, which leads to a moderate reduction of the water/ethanol selectivity. The model is parameterized purely from molecular simulation data with no fitted parameters, and shows reasonably good agreement with the experimental water permeability data.

  4. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  5. Molecular Dynamics Simulations of Uranyl and Uranyl Carbonate Adsorption at Alumino-silicate Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Liu, Chongxuan

    2014-03-03

    Adsorption at mineral surfaces is a critical factor controlling the mobility of uranium(VI) in aqueous environments. Therefore, molecular dynamics (MD) simulations were performed to investigate uranyl(VI) adsorption onto two neutral alumino-silicate surfaces, namely the orthoclase (001) surface and the octahedral aluminum sheet of the kaolinite (001) surface. Although uranyl preferentially adsorbed as a bi-dentate innersphere complex on both surfaces, the free energy of adsorption at the orthoclase surface (-15 kcal mol-1) was significantly more favorable than that at the kaolinite surface (-3 kcal mol-1), which was attributed to differences in surface functional groups and to the ability of the orthoclase surface to dissolve a surface potassium ion upon uranyl adsorption. The structures of the adsorbed complexes compared favorably with X-ray absorption spectroscopy results. Simulations of the adsorption of uranyl complexes with up to three carbonate ligands revealed that uranyl complexes coordinated to up to 2 carbonate ions are stable on the orthoclase surface whereas uranyl carbonate surface complexes are unfavored at the kaolinite surface. Combining the MD-derived equilibrium adsorption constants for orthoclase with aqueous equilibrium constants for uranyl carbonate species indicates the presence of adsorbed uranium complexes with one or two carbonates in alkaline conditions, in support of current uranium(VI) surface complexation models.

  6. Characterization of Aluminosilicate Formation on the Surface of a Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Young, James S.; Su, Yali; Li, Liyu; Balmer, M Lou; G W Bailey

    2001-10-30

    Millions of gallons of high-level radioactive waste are contained in underground tanks at U.S. Department of Energy sites such as Hanford and Savannah River. Most of the radioactivity is due to 137Cs and 90Sr, which must be extracted in order to concentrate the waste. An ion exchanger, crystalline silicotitanate IONSIV IE911, is being considered for separation for Cs at the Savannah River Site (SRS). While the performance of this ion exchanger has been well characterized under normal operating conditions, Cs removal at slightly elevated temperatures, such as those that may occur in a process upset, is not clear. Our recent study indicates that during exposure to SRS simulant at 55 degrees Celsius and 80 degrees Celsius, an aluminosilicate coating formed on the exchanger surface. There was concern that the coating would affect its ion exchange properties. A LEO 982 field emission scanning electron microscope (FESEM) and an Oxford ISIS energy dispersive x-ray spectrometer (EDS) were used to characterize the coating.

  7. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    PubMed

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and (29)Si and (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  8. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  9. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    NASA Astrophysics Data System (ADS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  10. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials.

    PubMed

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  11. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate.

    SciTech Connect

    Harder, B.; Ramirez-Rico, J.; Almer, J. D.; Kang, L.; Faber, K.

    2011-06-01

    The success of Si-based ceramics as high-temperature structural materials for gas turbine applications relies on the use of environmental barrier coatings (EBCs) with low silica activity, such as Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} (BSAS), which protect the underlying components from oxidation and corrosion in combustion environments containing water vapor. One of the current challenges concerning EBC lifetime is the effect of sandy deposits of calcium-magnesium-aluminosilicate (CMAS) glass that melt during engine operation and react with the EBC, changing both its composition and stress state. In this work, we study the effect of CMAS exposure at 1300 C on the residual stress state and composition in BSAS-mullite-Si-SiC multilayers. Residual stresses were measured in BSAS multilayers exposed to CMAS for different times using high-energy X-ray diffraction. Their microstructure was studied using a combination of scanning electron microscopy and transmission electron microscopy techniques. Our results show that CMAS dissolves the BSAS topcoat preferentially through the grain boundaries, dislodging the grains and changing the residual stress state in the topcoat to a nonuniform and increasingly compressive stress state with increasing exposure time. The presence of CMAS accelerates the hexacelsian-to-celsian phase transformation kinetics in BSAS, which reacts with the glass by a solution-reprecipitation mechanism. Precipitates have crystallographic structures consistent with Ca-doped celsian and Ba-doped anorthite.

  12. Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study

    SciTech Connect

    Bell, J.; Sarin, P; Provis, J; Haggerty, R; Driemeyer, P; Chupas, P; van Deventer, J; Kriven, W

    2008-01-01

    The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer. The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000C resulted in formation of crystalline pollucite (CsAlSi{sub 2}O{sub 6}). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 {angstrom} range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 {angstrom} due to an additional amorphous phase present in the heated geopolymer. On the basis of PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of 9 {angstrom}, despite some differences. Our results suggest that hydrated Cs{sup +} ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds.

  13. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8)

    PubMed Central

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; Heinonen, Olle; Patel, Dhenu; Hariharan, Anant

    2016-01-01

    Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equation of state with  = 687.4 Å3,  = 51.7 GPa, and  = 4.7. The shear modulus and its pressure derivative are  = 33.7 GPa, and  = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy  = 42.8%, and  = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. This could partially account for the Mohorovicic discontinuity in thickened continental crustal regions. PMID:27734903

  14. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    PubMed Central

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties. PMID:27877474

  15. Poorly Crystalline, Iron-Bearing Aluminosilicates and Their Importance on Mars

    NASA Technical Reports Server (NTRS)

    Baker, L. L.; Strawn, D. G.; McDaniel, P. A.; Nickerosn, R. N.; Bishop, J. L.; Ming, D. W.; Morris, Richard V.

    2011-01-01

    Martian rocks and sediments contain weathering products including evaporite salts and clay minerals that only form as a result of interaction between rocks and water [1-6]. These weathering products are key to studying the history of water on Mars because their type, abundance and location provide clues to past conditions on the surface of the planet, as well as to the possible location of present-day reservoirs of water. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals [7-10] including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which affects their spectral and physical properties. Detection and quantification of such minerals in natural environments on earth is difficult due to their variable chemical composition and lack of long-range crystalline order [9, 11, 12]. Despite the difficulty in characterizing these materials, they are common on Earth, and data from orbital remote sensing and rover-based instruments suggest that they are also present on Mars [9, 10, 13-17]. Their accurate detection and quantification require a better understanding of how composition affects their spectral properties. We present here the results of XAFS spectroscopy; these results will be corroborated with planned Mossbauer and reflectance spectroscopy.

  16. Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2012-03-01

    Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm3&cmb.macr;n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure.

  17. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Ngoc; Van Hoang, Vo

    2008-07-01

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al2O3·2SiO2 has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm-3 via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  18. Fabrication of large diameter alumino-silicate K{sup +} sources

    SciTech Connect

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-02-20

    Alumino-silicate K{sup +} sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 {micro}s. The corresponding current density is {approx} 10-15 mA/cm{sup 2}, but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated.

  19. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  20. Doped with Sodium Acetate and Metallic Sodium

    NASA Astrophysics Data System (ADS)

    Tada, Satoki; Isoda, Yukihiro; Udono, Haruhiko; Fujiu, Hirofumi; Kumagai, Shunji; Shinohara, Yoshikazu

    2014-06-01

    We have investigated the thermoelectric properties of p-type Na-doped Mg2 Si0.25Sn0.75 solid solutions prepared by liquid-solid reaction and hot-pressing methods. Na was introduced into Mg2Si0.25Sn0.75 by using either sodium acetate (CH3COONa) or metallic sodium (2 N). The samples doped with sodium acetate consisted of phases with antifluorite structure and a small amount of MgO as revealed by x-ray diffraction, whereas the sample doped with metallic sodium contained the Sn, MgO, and Mg2SiSn phases. The hole concentrations of Mg1.975Na0.025Si0.25Sn0.75 doped by sodium acetate and metallic sodium were 1.84 × 1025 m-3 and 1.22 × 1025 m-3, respectively, resulting in resistivities of 4.96 × 10-5 Ω m (sodium acetate) and 1.09 × 10-5 Ω m (metallic sodium). The Seebeck coefficients were 198 μV K-1 (sodium acetate) and 241 μV K-1 (metallic sodium). The figures of merit for Mg1.975Na0.025Si0.25Sn0.75 were 0.40 × 10-3 K-1 (sodium acetate) and 0.25 × 10-3 K-1 (metallic sodium) at 400 K. Thus, sodium acetate is a suitable Na dopant for Mg2Si1- x Sn x .

  1. Molecular biology of insect sodium channels and pyrethroid resistance.

    PubMed

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S

    2014-07-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.

  2. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    PubMed Central

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  3. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  4. The Roles of Temperature and Composition in High-Pressure Structural Changes in Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2009-12-01

    Extensive recent NMR studies show large effects of composition on the extent of structural change in aluminosilicate glasses quenched from melts at high pressure, which correlate with observed, recovered density increases. Although such results will eventually need to be complemented by quantitative, in situ spectroscopic and scattering measurements, they already provide important constraints on the types of models necessary to capture the complexity of structure-property relationships for multicomponent natural magmas. For example, smaller and/or higher charged network modifier/charge compensator cations (e.g. Mg2+ vs. Ca2+, Ca2+ vs. K+) generally promote greater densification as well as increased conversion of four-coordinated to five- and six-coordinated Al (Al-27 NMR), but such effects may be non-linear in mixed-cation systems. At the same time, simple calculations with estimates of changes in partial molar volumes suggest that much of the observed density increases must be due to compression of “soft” sites in the structure and to the accompanying narrowing of inter-tetrahedral network bond angles (e.g. Si-O-Si). These can in turn be detected as reductions in mean Na-O distances (Na-23 NMR) and shifts in Si-29 spectra. As the field strength of the modifier cation increases farther (e.g. from Ca2+ to La3+), this pattern shifts: such “intermediate” cations can react to pressure increases by increasing their own coordinations and M-O distances (La K-edge XAS), reducing effects on network cation coordination. An extreme example of this can be seen as the Al/Si ratio changes: only at low Al contents are increases in Si coordination large enough to be detected by Si-29 NMR. Numerous recent studies of high-pressure glasses by O-17 NMR (e.g. S.K. Lee et al.) have emphasized the role of non-bridging oxygens (NBO) in increases of Si and Al coordination with pressure, as well as the critical importance of this species to melt properties. It is likely that

  5. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  6. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  7. Communication between cation environments in aluminosilicate frameworks: incommensurately modulated crystal structure of an e-plagioclase.

    PubMed

    Fredrickson, Rie T; Fredrickson, Daniel C

    2016-10-01

    Despite being one of the most common minerals in the earth's crust the crystal structure of intermediate e-plagioclase remains only partially understood, due in a large part to its complex diffraction patterns including satellite reflections. In this article we present a detailed analysis of the structure of e-plagioclase (An44) using single-crystal X-ray diffraction measured at ambient and low temperature (T = 100 K), in which the full modulated structure is successfully refined. As in earlier studies, the diffraction pattern exhibits strong main a-reflections and weak e-satellite reflections. The average structure could be solved in terms of an albite-like basic cell with the triclinic centrosymmetric and non-centrosymmetric space groups P \\bar 1 and P1 (treated in its C \\bar 1 and C1 setting, respectively, to follow conventions in the literature), while the incommensurately modulated structure was modeled in (3 + 1)D superspace, employing both the centro- and non-centrosymmetric superspace groups X \\bar 1(αβγ)0 and X1(αβγ)0, where X refers to a special (3 + 1)D lattice centering with centering vectors (0 0 ½ ½), (½ ½ 0 ½), and (½ ½ ½ 0). Individual positional and occupational modulations for Ca/Na were refined with deeper insights being revealed in the non-centrosymmetric structure model. Through the structural details emerging from this model, the origin of the modulation can be traced to the communication between Ca/Na site positions through their bridging aluminosilicate (Si/Al)O4 tetrahedra.

  8. Fractional excretion of sodium

    MedlinePlus

    FE sodium; FENa ... to a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... your normal foods with a normal amount of salt, unless otherwise instructed by your health care provider. ...

  9. Sodium carbonate poisoning

    MedlinePlus

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do ...

  10. Naproxen sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  11. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  12. Sodium hydroxide poisoning

    MedlinePlus

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  13. Diclofenac sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002630.htm Diclofenac sodium overdose To use the sharing features on this page, please enable JavaScript. Diclofenac sodium is a prescription medicine used to relieve pain ...

  14. Docusate Sodium and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Docusate Sodium Friday, 01 April 2016 In every pregnancy, a ... This sheet talks about whether exposure to docusate sodium may increase the risk for birth defects over ...

  15. Ordered hexagonal mesoporous aluminosilicates synthesized using zeolite as precursor and the wall-thickness tuned by pH control

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Zhu, Guangshang; Shang, Tiecun; Cai, Xiaohui; Liu, Chengzhan; Li, Nan; Wei, Yuhong; Li, Jian; Zhang, Weiwei; Qiu, Shilun

    2005-07-01

    High aluminium content mesoporous aluminosilicates MAS-X1 and MAS-X3 have been successfully synthesized using zeolite FAU-X as precursors and triblock copolymer pluronic P123 as structure directing agent. Samples have been characterized by XRD, TEM, nitrogen adsorption/desorption, 27Al MAS NMR, and ICP element analysis techniques. The salt, NaCl, which was introduced by dissolving the zeolite FAU-X, played an important role in the synthesis of high order sample. The secondary growth of the wall was considered to occur after the pH value had been increased up to five.

  16. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  17. Low sodium level

    MedlinePlus

    ... osmolality Urine sodium Treatment The cause of low sodium must be diagnosed and treated. If cancer is the cause of the condition, then radiation, chemotherapy , or surgery to remove the tumor may correct the sodium imbalance. Other treatments depend on the specific type ...

  18. Production and short-term of synthetic seeds from encapsulated begonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic seeds were formed from in vitro grown Begonia (cvs ‘Sweetheart Mix’ and ‘Baby Wing White’) shoot tips using 3% sodium alginate in Murashige and Skoog (1962) medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by re...

  19. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    DTIC Science & Technology

    1985-11-01

    silica/alumina compounds ( cancrinites ) will not crystallize unless a template compound (sodium sulfate or nitrate) is present in solution to fill the...used in waste dis- posal. The compounds that form in low-temperature clay-alkali reactions (zeo- lites and cancrinites ) are large cage-like crystals that

  20. Sodium in feline nutrition.

    PubMed

    Nguyen, P; Reynolds, B; Zentek, J; Paßlack, N; Leray, V

    2016-08-23

    High sodium levels in cat food have been controversial for a long time. Nonetheless, high sodium levels are used to enhance water intake and urine volume, with the main objective of reducing the risk of urolithiasis. This article is a review of current evidence of the putative risks and benefits of high dietary sodium levels. Its secondary aim is to report a possible safe upper limit (SUL) for sodium intake. The first part of the manuscript is dedicated to sodium physiology, with a focus on the mechanisms of sodium homeostasis. In this respect, there is only few information regarding possible interactions with other minerals. Next, the authors address how sodium intake affects sodium balance; knowledge of these effects is critical to establish recommendations for sodium feed content. The authors then review the consequences of changes in sodium intake on feline health, including urolithiasis, blood pressure changes, cardiovascular alterations and kidney disease. According to recent, long-term studies, there is no evidence of any deleterious effect of dietary sodium levels as high as 740 mg/MJ metabolizable energy, which can therefore be considered the SUL based on current knowledge.

  1. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    NASA Astrophysics Data System (ADS)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-12-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  2. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.

    PubMed

    Custodis, Victoria B F; Karakoulia, Stamatia A; Triantafyllidis, Kostas S; van Bokhoven, Jeroen A

    2016-05-23

    Catalytic fast pyrolysis (CFP) of lignin with amorphous mesoporous aluminosilicates catalysts yields a high fraction of aromatics and a relatively low amount of char/coke. The relationship between the acidity and porosity of Al-MCM-41, Al-SBA-15, and Al-MSU-J with product selectivity during lignin CFP is determined. The acid sites (mild Brønsted and stronger Lewis) are able to catalyze pyrolysis intermediates towards fewer oxygenated phenols and aromatic hydrocarbons. A generalized correlation of the product selectivity and yield with the aluminum content and acidity of the mesoporous aluminosilicates is hard to establish. Zeolitic strong acid sites are not required to achieve high conversion and selectivity to aromatic hydrocarbon because nanosized MCM-41 produces a high liquid yield and selectivity. The two most essential parameters are diffusion, which is influenced by pore and grain size, and the active site, which may be mildly acidic, but is dominated by Lewis acid sites. Nanosized grains and mild acidity are essential ingredients for a good lignin CFP catalyst.

  3. Dietary aluminosilicate supplement enhances immune activity in mice and reinforces clearance of porcine circovirus type 2 in experimentally infected pigs.

    PubMed

    Jung, Bock-Gie; Toan, Nguyen Tat; Cho, Sun-Ju; Ko, Jae-hyung; Jung, Yeon-Kwon; Lee, Bong-Joo

    2010-07-14

    Aluminosilicate is the major component of clay minerals such as zeolite, bentonite and clinoptilolite. The minerals possess a number of beneficial activities, especially in regulating the immune system. The aims of the present study were to evaluate immune enhancing effects of dietary aluminosilicate supplement (DAS) in mice, and to demonstrate clearance effects of DAS against porcine circovirus type 2 (PCV2) in experimentally infected pigs as an initial step towards the development of an antibiotic substitute for use in pigs. Relative messenger RNA expression levels of interferon-gamma, interleukin-4 and tumor necrosis factor-alpha, phagocytic activities of polymorphonuclear leucocytes, serum antibody production level and spleen B cell ratio were significantly increased in the DAS groups of mice compared with the control group (each feeding group had three replications with 5 mice each). The results indicated that general immune activity including cellular and humoral immunity could be enhanced by DAS in mice. In experimentally PCV2-infected pigs, the load of viral genome in nasal swab, serum and lung of the DAS group of pigs was significantly decreased compared with the control group at 28 days post-infection (each group three pigs). Corresponding histopathological analyses demonstrated that pigs in the DAS group displayed mild and less severe abnormal changes compared with the control group, indicating that DAS reinforces clearance of PCV2 in experimentally infected pigs. This may relate to general immune enhancing effects of DAS in mice. Therefore DAS will help the health of animal, especially in swine.

  4. The Effect of Micro/Nano-metrics Size on the Interaction of Jordanian Aluminosilicate Raw Materials with High pH Solution

    NASA Astrophysics Data System (ADS)

    Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador

    2014-05-01

    Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw

  5. Synthetic biological networks

    NASA Astrophysics Data System (ADS)

    Archer, Eric; Süel, Gürol M.

    2013-09-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics.

  6. Possibility of sweet corn synthetic seed production.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2009-08-01

    Somatic embryogenesis in sweet corn has been reported by a number of workers. However, the knowledge maintaining storage life, vigor and viability of these somatic embryos are limited. A model system of synchronous somatic embryos production combined with encapsulation to synthetic seed was studied in sweet corn (Zea mays var. saccharata). In this study immature zygotic embryo cultured on N6 medium, contained 2, 4-D 2 mg L(-1) and sucrose 60 g L(-1) form the embryogenic callus. Higher 2, 4-D levels did not show increasing in inducing embryogenic callus. If the concentration of 2, 4-D decreased globular-stage, somatic zygote form the roots. Somatic embryo develop without surrounding nutritive tissues and protective seed coat has been devoted to causing somatic embryos to functionally mimic embryo, then was encapsulated by 3% (w/v) sodium alginate with 4-6 mm in diameter. It was found that when synthetic seed were treated with 60 g L(-1) sucrose and stored at 15+/-2 degree Celsius for 2 weeks, the survival rate of synthetic seed were 44%, after 8 days of germination test, it was found that there were 91% of which were normal seedling and 9% were abnormal seedling. This result indicated that there is a possibility in sweet corn synthetic seed production. Anyhow, more research for better technique are further required.

  7. What Are Synthetic Cannabinoids?

    MedlinePlus

    ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... they are related to chemicals found in the marijuana plant. Because of this similarity, synthetic cannabinoids are ...

  8. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  9. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  10. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  11. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  12. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2

  13. Comparing the activity of aluminum in two B horizons developed from volcanic ash deposits in Japan, dominated by short-range ordered aluminosilicates and crystalline clay minerals, respectively

    NASA Astrophysics Data System (ADS)

    Yagasaki, Yasumi; Mulder, Jan; Okazaki, Masanori

    2006-01-01

    Mechanisms controlling the activity of free aluminum (Al) in Bw1 horizons of soils developed from volcanic ash deposits in Japan were investigated by means of acid-base titrations and kinetic studies. In a Bw1 horizon, with a high content of acid-oxalate extractable Al, soil solution reached equilibrium with short-range ordered aluminosilicates in the order of days. Relatively fast kinetics of the release and precipitation of Al and Si indicate a high reactivity of short-range ordered aluminosilicates in the soil. In the Bw1 horizon of an adjacent soil, with a high content of crystalline clay minerals like halloysite and interlayered vermiculite, solution remained well undersaturated with respect to short-range ordered aluminosilicates and aluminum hydroxide. Apparent equilibrium with respect to halloysite occurred after more than 30 days. This halloysite ( logKso0=3.74±0.02 (25 °C)) has a solubility that is less than that reported in the literature ( logKso0=4.36 (25°C)). Our findings suggest that different reactive aluminosilicates may control the activity of free Al in sub-surface horizons of volcanic ash soils with different mineralogy.

  14. Sol–gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain

    PubMed Central

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol–gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia–porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol–gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  15. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    PubMed

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  16. The Synthetic Cannabinoids Phenomenon.

    PubMed

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  17. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  18. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  19. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al2O3)1-x(SiO2)x, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.

  20. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential

    SciTech Connect

    Bauchy, M.

    2014-07-14

    We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.

  1. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential.

    PubMed

    Bauchy, M

    2014-07-14

    We study a calcium aluminosilicate glass of composition (SiO2)0.60(Al2O3)0.10(CaO)0.30 by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.

  2. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  3. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  4. The direct synthesis of organic and organometallic-containing MICA-type aluminosilicates

    SciTech Connect

    Carrado, K.A.; Awaluddin, A.

    1993-08-01

    Layer-silicate clay structures can provide supramolecular organization for catalysis, chiral reactions, colloid science, and electron transfer. The authors have successfully modified the experimental preparations of several different layer silicates in order to incorporate a wide variety of organic and organometallic molecules in the clay galleries. Synthesis and physical characterization of these materials are described and compared to ion-exchanged natural clay analogs. In addition, the photophysical properties of organometallic Ru(II) complexes incorporated by direct hydrothermal crystallization into synthetic clays were measured. 3 tabs, 21 refs.

  5. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  6. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. Decode the Sodium Label Lingo

    MedlinePlus

    ... For Preschooler For Gradeschooler For Teen Decode the Sodium Label Lingo Published January 24, 2013 Print Email Reading food labels can help you slash sodium. Here's how to decipher them. "Sodium free" or " ...

  8. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Johnson, R. E.

    2003-08-01

    Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et

  9. Biodegradable synthetic bone composites

    SciTech Connect

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  10. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  11. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  12. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... europa.eu/publications/drug-profiles/synthetic-cathinones www.justice.gov/archive/ndic/pubs44/44571/44571p.pdf For ...

  13. Synthetic Confrontation Therapy.

    ERIC Educational Resources Information Center

    Gilliam, Larry

    After initially dispelling predictable fears that his paper might suggest that computers can be equated with man, the author states the problem: what part, if any, might computers play in counseling. Specifically, the possibilities for therapeutic synthetic (artificial) counseling encounters are discussed. Two propositions are significant: (1) the…

  14. Adaptive synthetic vision

    NASA Astrophysics Data System (ADS)

    Julier, Simon J.; Brown, Dennis; Livingston, Mark A.; Thomas, Justin

    2006-05-01

    Through their ability to safely collect video and imagery from remote and potentially dangerous locations, UAVs have already transformed the battlespace. The effectiveness of this information can be greatly enhanced through synthetic vision. Given knowledge of the extrinsic and intrinsic parameters of the camera, synthetic vision superimposes spatially-registered computer graphics over the video feed from the UAV. This technique can be used to show many types of data such as landmarks, air corridors, and the locations of friendly and enemy forces. However, the effectiveness of a synthetic vision system strongly depends on the accuracy of the registration - if the graphics are poorly aligned with the real world they can be confusing, annoying, and even misleading. In this paper, we describe an adaptive approach to synthetic vision that modifies the way in which information is displayed depending upon the registration error. We describe an integrated software architecture that has two main components. The first component automatically calculates registration error based on information about the uncertainty in the camera parameters. The second component uses this information to modify, aggregate, and label annotations to make their interpretation as clear as possible. We demonstrate the use of this approach on some sample datasets.

  15. Synthetic hydrophilic polymers

    NASA Astrophysics Data System (ADS)

    Rajasekharan Pillai, V. N.; Mutter, Manfred

    1981-11-01

    Synthetic hydrophilic polymers find promising applications in pharmacology, biotechnology and chemistry. The biocompatibility, biodegradability and pharmacological activity of these polymers depend much on their hydrophilic nature. This article summarizes the recent developments in the utilization of the different classes of these hydrophilic polymers as pharmacologically active agents, for enzyme modification and as catalysts and supports for chemical reactions.

  16. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  17. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  18. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  19. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  20. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  1. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  2. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  3. SODIUM DEUTERIUM REACTOR

    DOEpatents

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  4. One-step synthesis of hierarchical aluminosilicate aggregates using bifunctional alkanolamine as single template

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhu, Shu Yan; Wang, Hai Man; Wang, Yi Meng

    2011-11-01

    Highly active, hierarchical zeolite ZSM-5 aggregates have been prepared in a one-step synthesis using alkanolamine as single template. The effects of SiO 2/Al 2O 3, pH and H 2O/SiO 2 on the aggregate morphology of the ZSM-5 nanocrystals were investigated. The obtained aggregate zeolites characterized by SEM, TEM and BET possessed significant textual porosity (up to 0.22 cm 3/g), which could be tuned by the number of substituents in the alkanolamine molecules and the amount of aluminum in the synthetic mixtures. These zeolite aggregates showed high activities for Friedel-Crafts alkylations and may curtail the filtration difficulties during the synthesis and applications to some extent.

  5. Sodium hypochlorite poisoning

    MedlinePlus

    ... poisoning, especially if the product is mixed with ammonia. This article is for information only. Do NOT ... hypochlorite, which may cause severe injury. NEVER mix ammonia with sodium hypochlorite (bleach or bleach-containing products). ...

  6. Sodium hypochlorite dental accidents.

    PubMed

    Goswami, Mridula; Chhabra, Nidhi; Kumar, Gyanendra; Verma, Mahesh; Chhabra, Anuj

    2014-02-01

    Sodium hypochlorite is widely used in dentistry as an intra-canal irrigant, for debridement and to disinfect root canals. Although it is considered to be safe, serious mishap can result from its inappropriate use, and this has been reported infrequently in the literature. Two unusual cases of sodium hypochlorite toxicity and their successful non-surgical management are described in a 14-year-old girl and a 13-year-old boy.

  7. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  8. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  9. [Disorders of sodium metabolism].

    PubMed

    Pizarro-Torres, D

    1991-08-01

    We do not know why sodium was chosen to fill the extracellular space while potassium occupies the intracellular area. The sodium/potassium pump was placed in charge of maintaining this separation. The usual sodium blood concentration, in vertebrates, and in all ages, ranges from 135 to 145 mmol/L, although it may decrease with age. The maintenance of its concentration within these limits, as well as the total amount locally deposited are regulated by an intertwined net of sensors and effectors found in the Central Nervous System, in the cardiovascular apparatus including the right auricle, in the kidneys and adrenal glands, or indirectly due to a number of factors which act on the sodium/potassium pump--for examples the thyroid hormone, the digestive system and the skin. The changes in the metabolism and regulation of water and sodium may cause an excess (hypernatremia) or a deficit (hyponatremia) in the concentration of sodium in plasma--either extreme can be fatal. The prompt correction of these changes should include treating the causes while taking into consideration the time they took to occur. The most frequent cause of these changes in children is diarrheal disease and its inadequate treatment. The correct administration of the oral rehydrating solution recommended by the World Health Organization can prevent fatal endings.

  10. Synthetic Porphyrins and Metalloporphyrins

    DTIC Science & Technology

    1976-12-10

    last type of complexes to be considered are the sterically hindered macrocycles . Examples of this class of complexes exe the capped" or "crow henhe...group IV metalloporphyrins, phthalocyanines and correspond- log Ru"l and Reol complexes induce smaller shifts than the lanthanides (about 8 ppm vs 25...ROLE W1r ROLE wTr ROLE Wt * ~Synthe tic Porphyrins Synthetic lMetalloporphyrinsj tetrapyrrole macrocycles "Inatural" porphyrins * j meso

  11. Synthetic Biological Engineering of Photosynthesis

    DTIC Science & Technology

    2015-11-16

    SECURITY CLASSIFICATION OF: The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local...Research Triangle Park, NC 27709-2211 Synthetic biology , photosynthesis, solar energy, biofuels REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...Synthetic Biological Engineering of Photosynthesis Report Title The overall goal of the grant is to create a synthetic biology platform based on solar

  12. Synthetic biology in plastids.

    PubMed

    Scharff, Lars B; Bock, Ralph

    2014-06-01

    Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

  13. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregation in vitro

    PubMed Central

    Yang, Xiaoyang; Wan, Mengjie; Liang, Ting; Peng, Minyuan; Chen, Fangping

    2017-01-01

    Platelet-derived polyphosphate has previously been indicated to induce coagulation. However, industrially synthesized polyphosphate has been found to have different effects from those of the platelet-derived form. The present study investigated whether synthetic sodium polyphosphate inhibits coagulation using routine coagulation tests and thromboelastography. Synthetic polyphosphate was found to inhibit adenosine diphosphate-, epinephrine-, arachidonic acid-, ristocetin-, thrombin-, oxytocin- and pituitrin-induced platelet aggregation. The effects of synthetic polyphosphate in clotting inhibition were revealed by the analysis of clotting factor activity and platelet aggregation tests. Synthetic polyphosphate may inhibit platelet aggregation by reducing platelet calcium levels, as indicated by the results of flow cytometric analysis and high-throughput fluorescent screening. Furthermore, analysis of thromboxane (TX)B2 by ELISA indicated that synthetic polyphosphate reduces platelet aggregation by inhibiting the TXA2 signaling pathway. In conclusion, synthetic polyphosphate inhibits clotting factor activity and endogenous coagulation by reducing the levels of calcium ions and TXA2 to curb platelet aggregation. PMID:28123708

  14. Al coordination and water speciation in hydrous aluminosilicate glasses: direct evidence from high-resolution heteronuclear 1H-27Al correlation NMR.

    PubMed

    Xue, Xianyu; Kanzaki, Masami

    2007-02-01

    In order to shed light on the dissolution mechanisms of water in depolymerized aluminosilicate melts/glasses, a comprehensive one- (1D) and two-dimensional (2D) NMR study has been carried out on hydrous Ca- and Mg-aluminosilicate glasses of a haplobasaltic composition. The applied techniques include 1D 1H MAS NMR and 27Al-->1H cross-polarization (CP) MAS NMR, and 2D 1H NOESY and double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR and 27Al-->1H heteronuclear correlation (HETCOR) and 3QMAS/HETCOR NMR. Ab initio calculations were also performed to place additional constraints on the 1H NMR characteristics of AlOH and Si(OH)Al groups. This study has revealed, for the first time, the presence of free OH (i.e. (Ca, Mg)OH), SiOH and AlOH species, in addition to molecular H2O, in hydrous glasses of a depolymerized aluminosilicate composition. The AlOH groups are mostly associated with four-coordinate Al, but some are associated with five- and six-coordinate Al.

  15. Precision and Accuracy in the Determination of Sulfur Oxides, Fluoride, and Spherical Aluminosilicate Fly Ash Particles in Project MOHAVE.

    PubMed

    Eatough, Norman L; Eatough, Michele; Joseph, Jyothi M; Caka, Fern M; Lewis, Laura; Eatough, Delbert J

    1997-04-01

    The precision and accuracy of the determination of particulate sulfate and fluoride, and gas phase S02 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for highland low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m(3) and ±2.5 nmol/m(3) for the determination of S02 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m(3) and ±2.0 nmol/m(3) for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is +0.3 nmol/m(3). The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m(3). At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m(3)) is small, but important relative to the precision of the data and the concentrations of particulate sulfate present (typically 5-20 nmol sulfate/m(3)). The concentrations of S02(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SOz(g) plus particulate

  16. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    SciTech Connect

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  17. Sorption of As(V) on aluminosilicates treated with Fe(II) nanoparticles.

    PubMed

    Dousová, Barbora; Grygar, Tomás; Martaus, Alexandr; Fuitová, Lucie; Kolousek, David; Machovic, Vladimír

    2006-10-15

    Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.

  18. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  19. Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag

    PubMed Central

    Karalis, Konstantinos T.; Dellis, Dimitrios; Antipas, Georgios S. E.; Xenidis, Anthimos

    2016-01-01

    The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K). PMID:27455915

  20. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  1. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    NASA Astrophysics Data System (ADS)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  2. Investigation of Yb3+-doped alumino-silicate glasses for high energy class diode pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Körner, Jörg; Hein, Joachim; Tiegel, Mirko; Kuhn, Stefan; Buldt, Joachim; Yue, Fangxin; Seifert, Reinhard; Herrmann, Andreas; Rüssel, Christian; Kaluza, Malte C.

    2015-05-01

    We present a detailed investigation of different compositions of Yb3+-doped alumino-silicate glasses as promising materials for diode-pumped high-power laser applications at 1030 nm due to their beneficial thermo-mechanical properties. To generate comprehensive datasets for emission and absorption cross sections, the spectral properties of the materials were recorded at temperatures ranging from liquid nitrogen to room temperature. It was found that the newly developed materials offer higher emission cross sections at the center laser wavelength of 1030 nm than the so far used alternatives Yb:CaF2 and Yb:FP-glass. This results in a lower saturation fluence that offers the potential for higher laser extraction efficiency. Fluorescence lifetime quenching of first test samples was analyzed and attributed to the hydroxide (OH) concentration in the host material. Applying a sophisticated glass manufacturing process, OH concentrations could be lowered by up to two orders of magnitude, rising the lifetime and the quantum efficiency for samples doped with more than 6.1020 Yb3+ -ions per cm³. First laser experiments showed a broad tuning range of about 60 nm, which is superior to Yb:CaF2 and Yb:FP-glass in the same setup. Furthermore, measurements of the laser induced damage threshold (LIDT) for different coating techniques on doped substrates revealed the appropriateness of the materials for short pulse high-energy laser amplification.

  3. Self-rolling of an aluminosilicate sheet into a single walled imogolite nanotube: The role of the hydroxyl arrangement

    SciTech Connect

    González, R. I.; Rogan, J.; Valdivia, J. A.; Munoz, F.; Valencia, F.; Ramírez, M.; Kiwi, M.; Ramírez, R.

    2015-12-31

    Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focus on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.

  4. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols

    PubMed Central

    Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H.; Bates, Frank S.; Gruner, Sol M; DiSalvo, Francis J.; Wiesner, Ulrich

    2009-01-01

    We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒI=ƒS isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials. PMID:20209023

  5. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  6. Synthetic passive margin stratigraphy

    SciTech Connect

    Turcotte, D.L.; Kenyon, P.M.

    1984-06-01

    Synthetic stratigraphic cross sections are derived mathematically for a variety of simple conditions. The variables considered in the mathematical model include variations in sea level, rate of tectonic subsidence, rate of sedimentation, and rate of erosion. Derived stratigraphic relationships include unconformities, correlative conformities and disconformities, coastal onlap, coastal toplap, erosional truncation, pinch-out, and sigmoidal progradational clinoforms. An important conclusion is that the rate of erosion is a dominant variable in determining the type of stratigraphic section observed. The proposed approach may provide the basis for either a forward or inverse modeling of seismic stratigraphic sections.

  7. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  8. Synthetic Fence Jets

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Apps, Christopher

    2000-11-01

    "Synthetic Jets" have previously been produced where an oscillating flow with zero net mass flux acts on the edges of an orifice. The resulting flow is similar to a normal jet. We have proposed and verified that another type of jet called a "Synthetic Fence Jet" (SFJ or "fe-je") can also be created. We introduced a fence perpendicular to both a wall and an oscillating velocity field. Under certain conditions a jet was formed by vortices of alternating sign. The vortices were shed from the fence and they induced each other away from it. This phenomenon could be used as a method of flow control. The objective of this project was to use flow visualization to prove the existence of and characterize this jet. A test rig was used which incorporates smoke-wire flow visualization; independent oscillation level and frequency control; and computer- controlled data acquisition. It has been discovered that the jet direction can be vectored by altering the forcing waveform shape. To explain this a theory was developed that is based on the Biot-Savart law of vortex dynamics.

  9. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  10. Synthetic collective intelligence.

    PubMed

    Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

    2016-10-01

    Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts.

  11. Sodium storage and injection system

    NASA Technical Reports Server (NTRS)

    Keeton, A. R. (Inventor)

    1979-01-01

    A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.

  12. Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems.

    PubMed

    Crosson, Garry S; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary Kay; O'Day, Peggy A; Mueller, Karl T

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH approximately 13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10(-3), 10(-4), and 10(-5) molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10(-5) m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10(-3) m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and

  13. Solid-State NMR Identification and Quantification of Newly Formed Aluminosilicate Phases in Weathered Kaolinite Systems

    SciTech Connect

    Crosson, Garry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary K.; O'Day, Peggy A.; Mueller, Karl T.

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3 -, 1 mol kg-1 of OH-, and pH ~13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative

  14. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    NASA Astrophysics Data System (ADS)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina

  15. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    NASA Technical Reports Server (NTRS)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  16. Sodium meta-autunite colloids: Synthesis, characterization,stability

    SciTech Connect

    zzuoping@lbl.gov

    2004-04-10

    Waste forms of U such as those in the United States Department of Energy's Hanford Site often contain high concentrations of Na and P. Low solubility sodium uranyl phosphates such as sodium meta-autunite have the potential to form mobile colloids that can facilitate transport of this radionuclide. In order to understand the geochemical behavior of uranyl phosphate colloids, we synthesized sodiummeta-autunite colloids, and characterized their morphology, chemical composition, structure, dehydration, and surface charge. The stability of these synthetic plate-shaped colloids was tested with respect to time and pH. The highest aggregation rate was observed at pH 3, and the rate decreases as pH increases, indicating that higher stability of colloid dispersion under neutral and alkaline pH conditions. The synthetic colloids are all negatively charged and no isoelectric points were found over a pH range of 3 to 9. The zeta-potentials of the colloids in the phosphate solution show a strong pH-dependence in the more acidic range over time, but are relatively constant in the neutral and alkaline pH range. The geochemical behavior of the synthetic colloids can be interpreted using DLVO theory. The results suggest that formation of mobile sodium meta-autunite colloids can enhance the transport of U in some contaminated sediments.

  17. Synthetic biology and genetic causation.

    PubMed

    Oftedal, Gry; Parkkinen, Veli-Pekka

    2013-06-01

    Synthetic biology research is often described in terms of programming cells through the introduction of synthetic genes. Genetic material is seemingly attributed with a high level of causal responsibility. We discuss genetic causation in synthetic biology and distinguish three gene concepts differing in their assumptions of genetic control. We argue that synthetic biology generally employs a difference-making approach to establishing genetic causes, and that this approach does not commit to a specific notion of genetic program or genetic control. Still, we suggest that a strong program concept of genetic material can be used as a successful heuristic in certain areas of synthetic biology. Its application requires control of causal context, and may stand in need of a modular decomposition of the target system. We relate different modularity concepts to the discussion of genetic causation and point to possible advantages of and important limitations to seeking modularity in synthetic biology systems.

  18. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  19. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  20. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  1. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  2. The sodium zenocorona

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.

    1991-01-01

    A recent narrow-band-filtered CCD image by Mendillo et al. (1990) has shown that a sodium corona, produced near Io, extends at least 400 Jupiter radii in the planet's equatorial plane. Isophotes indicate that the polar to equatorial extents are in about 1 to 3 proportions. The image can be reproduced by a model which includes both a high- and an intermediate-speed distribution, with source rates of 2.2 and 1.1 x 10 exp 26 atoms/s, respectively. The high-speed distribution was ejected from Io with a velocity tangential to the satellite orbit of 57 km/s (about 74 km/s relative to Jupiter) plus an isotropic Maxwellian velocity distribution of about 25 km/s. This distribution likely corresponds to a charge exchange source of plasma torus sodium ions which are neutralized in the near-Io atmosphere and are ejected relative to Jupiter with a corotational velocity (74 km/s) plus a thermal ion (25 km/s) Maxwellian distribution. The intermediate speed distribution was ejected from Io with a tangential speed near 20 km/s (37 km/s relative to Jupiter) plus an isotropic Maxwellian velocity distribution of about 12 km/s. This distribution corresponds to the same nonthermal sodium atoms earlier identified near Io in the sodium directional features (Pilcher et al., 1984).

  3. Synthetic and Alternate Fuels Characterization

    DTIC Science & Technology

    1988-02-01

    e-e AD-A197 531 AD_ m iI ORNL/TM-10706 OAK RIDGE NATIONAL Synthetic and Alternate LABORATORY Fuels Characterization •_ _ __ _ _Final Report February...21701-5012 62787A 2787A878 CA 294 11 TITLE (Include Security Classification) Synthetic and Alternate Fuels Characterization 12 PERSONAL AUTHOR(S) W. H...results suggest that highly refined and finished mobility fuels from synthetic or alternate sources will not pose a significantly greater toxicological

  4. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  5. Synthetic quantum systems

    NASA Astrophysics Data System (ADS)

    Cahill, Reginald T.

    2002-10-01

    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.

  6. Evolutionary synthetic biology.

    PubMed

    Peisajovich, Sergio G

    2012-06-15

    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  7. Synthetic biology and occupational risk.

    PubMed

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  8. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  9. Synthetic genomics and synthetic biology applications between hopes and concerns.

    PubMed

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-03-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks - stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications.

  10. Inhaled sodium metabisulphite induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate.

    PubMed Central

    Dixon, C M; Ind, P W

    1990-01-01

    1. The effects of nedocromil sodium and sodium cromoglycate on bronchoconstriction induced by inhaled sodium metabisulphite have been studied in eight atopic subjects, three of whom had mild asthma. 2. Nedocromil sodium (4 mg, 7.8 X 10(-6) M), sodium cromoglycate (10 mg, 24.1 X 10(-6) M) and matched placebo were administered by identical metered dose inhalers 30 min before a dose-response to sodium metabisulphite (5-100 mg ml-1) was performed. 3. Maximum fall in sGaw after placebo pre-treatment was -43.9 +/- 3.3% baseline (mean +/- s.e. mean). At the same metabisulphite concentration maximum fall in sGaw after sodium cromoglycate was -13.0 +/- 3.6% and after nedocromil sodium was +4.3 +/- 6.8%. Nedocromil sodium prevented any significant fall in sGaw even after higher concentrations of metabisulphite. 4. Both nedocromil sodium, 4 mg, and sodium cromoglycate, 10 mg, inhibited sodium metabisulphite induced bronchoconstriction but nedocromil sodium was significantly more effective. Relative in vivo potency of the two drugs is broadly in line with other in vivo and in vitro studies. PMID:2171616

  11. Baking performance of synthetic glycolipids in comparison to commercial surfactants.

    PubMed

    Selmair, Patrick L; Koehler, Peter

    2008-08-13

    To gain insight into structure-activity relationships of glycolipids in breadmaking monogalactosyl dilinoleylglycerol ( 8) and monogalactosyl monolinoleylglycerol ( 6) were synthesized. Then their functional properties in dough and breadmaking were compared to those of commercial surfactants such as lecithins (from soybean, rapeseed, and sunflower), diacetyltartaric acid esters of monoglycerides (DATEM), monoglycerides, and sodium stearoyl-2-lactylate. Chemical synthesis of the galactolipids consisted of a four-step reaction pathway, yielding amounts of 1-1.5 g suitable for the determination of the functional properties. Variation of the acylation time in the third step provided either the monoacyl ( 6) or the diacyl compound ( 8). The functional properties were determined by means of rheological and baking tests on a microscale (10 g of flour). The synthetic galactolipids both displayed an excellent baking performance, with 6 having by far the best baking activity of all examined surfactants. The baking activities of 8, DATEM, and the monoglycerides were in the same range, whereas sodium stearoyl-2-lactylate was less active. Although the lecithins gained similar maxima in bread volume increases as the synthetic surfactants did, considerably higher concentrations were required to do so. An antistaling effect was found for only 6 and not for 8. However, this effect was weaker than for sodium stearoyl-2-lactylate and the monoglycerides.

  12. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; DesMarais, D. J.; Downs, R. T.; Farmer, J. D.; Morookian, J. M.; Morrison, S. M.; Sarrazin, P.; Spanovich, N.; Stolper, E. M.; Treiman, A. H.; Vaniman, D. T.; Yen, A. S.

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in

  13. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8)

    SciTech Connect

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; Heinonen, Olle; Patel, Dhenu; Hariharan, Anant

    2016-10-13

    Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equation of state with VGGA0 = 687.4Å3, KGGA0 = 51.7 GPa, and GGGA0 = 4.7. The shear modulus and its pressure derivative are K⊕GGA0 = 33.7 GPa, and G⊕GGA0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AVGGAP = 42.8%, and AVGGAS = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.

  14. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    PubMed Central

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-01-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach. PMID:28281635

  15. Hanford site sodium management plan

    SciTech Connect

    Guttenberg, S.

    1995-09-25

    The Hanford Site Sodium Management Plan, Revision 1, provides changes to the major elements and management strategy to ensure an integrated and coordinated approach for disposition of the more than 350,000 gallons of sodium and related sodium facilities located at the DOE`s Hanford Site

  16. Holographically Correcting Synthetic Aperture Aberrations.

    DTIC Science & Technology

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  17. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  18. Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions.

    PubMed

    MacCuspie, Robert I; Allen, Andrew J; Hackley, Vincent A

    2011-06-01

    The dispersion stabilization of silver nanoparticles (AgNPs) in synthetic lung fluid was studied to interrogate the effects on colloidal stability due to the principal constituents of the fluid. The colloidal stability of 20 nm citrate-AgNPs dispersed in the presence of each constituent of the synthetic lung fluid (individually, the complete fluid, and without additives) was observed during titration of increasing sodium chloride concentration. A variety of complementary in situ measurement techniques were utilized, including dynamic light scattering, ultraviolet-visible absorption spectroscopy, atomic force microscopy, and small-angle X-ray scattering, which provided a collective set of information that enabled far better understanding of the dispersion behavior in the fluid than any one technique alone. It was observed that AgNPs continued to adsorb bovine serum albumin (BSA) protein from the synthetic lung fluid solution as the sodium chloride concentration increased, until a maximum BSA coating was achieved prior to reaching the physiological sodium chloride concentration of 154 mmol L(-1). BSA was determined to be the constituent of the synthetic lung fluid that is required to provide colloidal stability at high salt loadings, though the phospholipid constituent exerts a subtle effect. Additionally, as AgNPs are a distinctly different class of nanoparticles apart from the carbon nanotubes and titanium dioxide nanoparticles initially reported to be dispersible using this fluid, this work also demonstrates the broad applicability of synthetic lung fluid in providing stable dispersions for engineered nanoparticles for use in biological assays.

  19. Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions

    SciTech Connect

    MacCuspie, R.I.; Allen, A.J.; Hackley, V.A.

    2014-09-24

    The dispersion stabilization of silver nanoparticles (AgNPs) in synthetic lung fluid was studied to interrogate the effects on colloidal stability due to the principal constituents of the fluid. The colloidal stability of 20 nm citrate-AgNPs dispersed in the presence of each constituent of the synthetic lung fluid (individually, the complete fluid, and without additives) was observed during titration of increasing sodium chloride concentration. A variety of complementary in situ measurement techniques were utilized, including dynamic light scattering, ultraviolet-visible absorption spectroscopy, atomic force microscopy, and small-angle X-ray scattering, which provided a collective set of information that enabled far better understanding of the dispersion behavior in the fluid than any one technique alone. It was observed that AgNPs continued to adsorb bovine serum albumin (BSA) protein from the synthetic lung fluid solution as the sodium chloride concentration increased, until a maximum BSA coating was achieved prior to reaching the physiological sodium chloride concentration of 154 mmol L{sup -1}. BSA was determined to be the constituent of the synthetic lung fluid that is required to provide colloidal stability at high salt loadings, though the phospholipid constituent exerts a subtle effect. Additionally, as AgNPs are a distinctly different class of nanoparticles apart from the carbon nanotubes and titanium dioxide nanoparticles initially reported to be dispersible using this fluid, this work also demonstrates the broad applicability of synthetic lung fluid in providing stable dispersions for engineered nanoparticles for use in biological assays.

  20. Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-yuan; Yi, Ling-yun; Zhao, Wei; Chen, De-sheng; Zhao, Hong-xin; Qi, Tao

    2016-08-01

    The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing (V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid (L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed.

  1. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael; Monacos, Steve; Nikzad, Shouleh

    2009-01-01

    Synthetic Foveal imaging Technology (SyFT) is an emerging discipline of image capture and image-data processing that offers the prospect of greatly increased capabilities for real-time processing of large, high-resolution images (including mosaic images) for such purposes as automated recognition and tracking of moving objects of interest. SyFT offers a solution to the image-data processing problem arising from the proposed development of gigapixel mosaic focal-plane image-detector assemblies for very wide field-of-view imaging with high resolution for detecting and tracking sparse objects or events within narrow subfields of view. In order to identify and track the objects or events without the means of dynamic adaptation to be afforded by SyFT, it would be necessary to post-process data from an image-data space consisting of terabytes of data. Such post-processing would be time-consuming and, as a consequence, could result in missing significant events that could not be observed at all due to the time evolution of such events or could not be observed at required levels of fidelity without such real-time adaptations as adjusting focal-plane operating conditions or aiming of the focal plane in different directions to track such events. The basic concept of foveal imaging is straightforward: In imitation of a natural eye, a foveal-vision image sensor is designed to offer higher resolution in a small region of interest (ROI) within its field of view. Foveal vision reduces the amount of unwanted information that must be transferred from the image sensor to external image-data-processing circuitry. The aforementioned basic concept is not new in itself: indeed, image sensors based on these concepts have been described in several previous NASA Tech Briefs articles. Active-pixel integrated-circuit image sensors that can be programmed in real time to effect foveal artificial vision on demand are one such example. What is new in SyFT is a synergistic combination of recent

  2. Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Stebbins, Jonathan F.

    2006-08-01

    Estimation of the framework connectivity and the atomic structure of depolymerized silicate melts and glasses (NBO/T > 0) remains a difficult question in high-temperature geochemistry relevant to magmatic processes and glass science. Here, we explore the extent of disorder and the nature of polymerization in binary Ca-silicate and ternary Ca-aluminosilicate glasses with varying NBO/T (from 0 to 2.67) using O-17 NMR at two different magnetic fields of 9.4 and 14.1 T in conjunction with quantum chemical calculations. Non-random distributions among framework cations (Si and Al) are demonstrated in the variation of relative populations of oxygen sites with NBO/T. The proportion of non-bridging oxygen (NBO, Ca-O-Si) in the binary and ternary aluminosilicate glasses increases with NBO/T. While the trend is consistent with predictions from composition, the detailed fractions apparently deviate from the predicted values, suggesting further complications in the nature of polymerization. The proportion of each bridging oxygen in the glasses also varies with NBO/T. The fractions of Al-O-Si and Al-O-Al increase with increasing polymerization as CaO is replaced with Al 2O 3, while that of Si-O-Si seems to decrease, implying that activity of silica may decrease from calcium silicate to polymerized aluminosilicates (X=constant). Quantum chemical molecular orbital calculations based on density functional theory show that a silicate chain with Al-NBO (Ca-O-Al) has an energy penalty (calculated cluster energy difference) of about 108 kJ/mol compared with the cluster with Ca-O-Si, consistent with preferential depolymerization of Si-networks, reported in an earlier O-17 NMR study [Allwardt, J., Lee, S.K., Stebbins, J.F., 2003. Bonding preferences of non-bridging oxygens in calcium aluminosilicate glass: Evidence from O-17 MAS and 3QMAS NMR on calcium aluminate glass. Am. Mineral.88, 949-954]. These prominent types of non-randomness in the distributions suggest significant chemical

  3. Recent advances in synthetic biosafety

    PubMed Central

    Simon, Anna J.; Ellington, Andrew D.

    2016-01-01

    Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment. PMID:27635235

  4. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  5. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  6. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate solution with...

  7. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  8. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  9. Synthetic retinoids in dermatology

    PubMed Central

    Heller, Elizabeth H.; Shiffman, Norman J.

    1985-01-01

    The potential of vitamin A, or retinol, in the treatment of a variety of skin diseases has long been recognized, but because of serious toxic effects this substance generally could not be used. The recent development and marketing of two relatively nontoxic synthetic analogues, which are known as retinoids, has made it possible to treat some of the diseases that are resistant to standard forms of therapy. Isotretinoin is very effective in cystic and conglobate acne, while etretinate is especially useful in the more severe forms of psoriasis. Good results have also been obtained in other disorders of keratinization. Vitamin A and its derivatives apparently have an antineoplastic effect as well and may come to be used in both the prevention and the treatment of epithelial cancer. In many of these diseases the retinoids act by enhancing the normal differentiation and proliferation of epidermal tissues, but the exact mechanisms are not well understood. Their influence on the intracellular polyamines that control the synthesis of nucleic acids and proteins may be an important factor. Although the retinoids have few serious systemic effects, they are teratogenic, and because they persist in the body their use in women of childbearing potential is limited. ImagesFig. 3 PMID:3158386

  10. Synthetic aperture hitchhiker imaging.

    PubMed

    Yarman, Can Evren; Yazici, Birsen

    2008-11-01

    We introduce a novel synthetic-aperture imaging method for radar systems that rely on sources of opportunity. We consider receivers that fly along arbitrary, but known, flight trajectories and develop a spatio-temporal correlation-based filtered-backprojection-type image reconstruction method. The method involves first correlating the measurements from two different receiver locations. This leads to a forward model where the radiance of the target scene is projected onto the intersection of certain hyperboloids with the surface topography. We next use microlocal techniques to develop a filtered-backprojection-type inversion method to recover the scene radiance. The method is applicable to both stationary and mobile, and cooperative and noncooperative sources of opportunity. Additionally, it is applicable to nonideal imaging scenarios such as those involving arbitrary flight trajectories, and has the desirable property of preserving the visible edges of the scene radiance. We present an analysis of the computational complexity of the image reconstruction method and demonstrate its performance in numerical simulations for single and multiple transmitters of opportunity.

  11. Synthetic carriers of oxygen.

    PubMed

    Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

    1987-01-01

    During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

  12. Computing with synthetic protocells.

    PubMed

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  13. Synthetic biology: Understanding biological design from synthetic circuits

    PubMed Central

    Mukherji, Shankar; van Oudenaarden, Alexander

    2011-01-01

    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to intuitively grasp the ranges of behavior generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes such as gene expression and population dynamics. PMID:19898500

  14. Sodium intake and cardiovascular health.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-03-13

    Sodium is an essential nutrient. Increasing sodium intake is associated with increasing blood pressure, whereas low sodium intake results in increased renin and aldosterone levels. Randomized controlled trials have reported reductions in blood pressure with reductions in sodium intake, to levels of sodium intake <1.5 g/d, and form the evidentiary basis for current population-wide guidelines recommending low sodium intake. Although low sodium intake (<2.0 g/d) has been achieved in short-term feeding clinical trials, sustained low sodium intake has not been achieved by any of the longer term clinical trials (>6-month duration). It is assumed that the blood pressure-lowering effects of reducing sodium intake to low levels will result in large reductions in cardiovascular disease globally. However, current evidence from prospective cohort studies suggests a J-shaped association between sodium intake and cardiovascular events, based on studies from >300 000 people, and suggests that the lowest risk of cardiovascular events and death occurs in populations consuming an average sodium intake range (3-5 g/d). The increased risk of cardiovascular events associated with higher sodium intake (>5 g/d) is most prominent in those with hypertension. A major deficit in the field is the absence of large randomized controlled trials to provide definitive evidence on optimal sodium intake for preventing cardiovascular events. Pending such trials, current evidence would suggest a recommendation for moderate sodium intake in the general population (3-5 g/d), with targeting the lower end of the moderate range among those with hypertension.

  15. 3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury

    PubMed Central

    Yuan, Wa; Chen, Qin; Zeng, Jing; Xiao, Hai; Huang, Zhi-hua; Li, Xiao; Lei, Qiong

    2017-01-01

    3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein (an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage.

  16. Spicing thing up: Synthetic cannabinoids

    PubMed Central

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  17. Synthetic biology and personalized medicine.

    PubMed

    Jain, K K

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task.

  18. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  19. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  20. [Industrial hygiene in the modern manufacture of synthetic detergents].

    PubMed

    Akinfieva, T A; Kuchma, V R; Lashnev, M P; Moiseev, Iu V; Strongina, O M

    1992-01-01

    Work conditions in the synthetic detergents production according to the new technology created by Sumitomo (Japan) were evaluated from hygienic point of view. The main unfavourable factor is the contamination of air by initial products (aerosols of sodium tripoli phosphate, carboxy methylcellulose, optic bleacher, enzymes et al.) and dust of the final product. Sulphur oxides appear in the air of the sulphating unit. Levels of noise and vibration are surpassed. At the same time the studied technology is more profitable than the current ones. Parameters of the cardiovascular, central nervous and neuromuscular systems do not indicate the physical and neuropsychic fatigue.

  1. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    SciTech Connect

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M. )

    1990-08-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.

  2. Synthetic biology for therapeutic applications.

    PubMed

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  3. Synthetic Biology for Therapeutic Applications

    PubMed Central

    2015-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

  4. Fast dynamics of H{sub 2}O in hydrous aluminosilicate glasses studied with quasielastic neutron scattering

    SciTech Connect

    Indris, Sylvio; Heitjans, Paul; Behrens, Harald; Zorn, Reiner; Frick, Bernhard

    2005-02-01

    We studied the dynamics of dissolved water in aluminosilicate glasses with the compositions NaAlSi{sub 3}O{sub 8}{center_dot}0.3H{sub 2}O, NaAlSi{sub 3}O{sub 8}{center_dot}1.3H{sub 2}O and Ca{sub 0.5}AlSi{sub 3}O{sub 8}{center_dot}1.3H{sub 2}O using quasielastic neutron scattering. As shown by near-infrared spectroscopy on these samples, H{sub 2}O molecules are the predominant hydrous species in the water-rich glasses whereas OH groups bound to tetrahedrally coordinated cations are predominant at low water contents. Backscattering and time-of-flight methods were combined to investigate motional correlation times in the range between 0.2 ps and 2 ns. For the water-rich glasses an elastic scan between 2 K and 420 K shows that the dynamical processes set in at lower temperatures in the Ca-bearing glass than in the Na-bearing glass. This is corroborated by the broadening of the inelastic spectra S(Q,{omega}). The shape of the scattering function S(Q,t) suggests a distribution of activation barriers for the motion of hydrous species in the disordered structure of the glass. The distribution is narrower and the average activation energy is smaller in the Ca-bearing glass than in the Na-bearing glass. No indication for dynamics of hydrous species was found at temperatures up to 520 K in the water-poor glass NaAlSi{sub 3}O{sub 8}{center_dot}0.3H{sub 2}O containing dissolved water mainly in the form of OH groups. It is concluded that H{sub 2}O molecules are the dynamic species in the above-mentioned time regime in the water-rich glasses. The dynamic process is probably a rotation of H{sub 2}O molecules around their bisector axis.

  5. Elasticity of Hydrous Aluminosilicate Mineral, Topaz-OH (Al2SiO4(OH)2) at High Pressures

    NASA Astrophysics Data System (ADS)

    Hariharan, A.; Mookherjee, M.; Tsuchiya, J.

    2015-12-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons. Upon full geometry optimization, we find that there are two distinct crystal structures for the topaz-OH. The first crystal structure has an orthorhombic Pbnm space group symmetry, and the second crystal structure has a monoclinic P21/c space group symmetry. At static conditions, the monoclinic (P21/c) topaz-OH has lower energy compared to the orthorhombic (Pbnm) topaz-OH. The energy of the monoclinic (P21/c) topaz-OH remains stable at least up to 40 GPa, i.e., pressures beyond the thermodynamic stability of the topaz-OH. Based on the results from first principles simulation, the equation of state for the monoclinic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 348.63 (±0.04) Å3, K0 = 164.7 (±0.04) GPa, and K'0 = 4.24 (±0.05). The equation of state for the orthorhombic topaz-OH is well represented by a third-order Birch-Murnaghan formulation, with V0 = 352.47 (±0.04) Å3, K0 = 166.4 (±0.06) GPa, and K'0 = 4.03 (±0.04). While the bulk modulus is very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic moduli are very sensitive to the position of the proton and the orientation of the hydroxyl (O-H) groups. In the hydrated sedimentary layer of a subducting slab, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to

  6. Synthetic Transformation on Shikimic Acid.

    DTIC Science & Technology

    1988-03-15

    position with manganese dioxide, producing 74 and 75 respectively. Ketoaldehyde 75 was reacted in a Lewis acid catalyzed Diels-Alder reaction with 3,5...epoxide that was produced under these conditions was the syn compound 21b. This observation suggests that the reaction proceeds by selective activation...sodium ethoxide nor quantitative deprotonation with a full equivalent of sodium hydride produced a reaction below 150 0 C. At 150 0 C in dimethylformamide

  7. Structural properties of liquid aluminosilicate with varying Al2O3/SiO2 ratios: Insight from analysis and visualization of molecular dynamics data

    NASA Astrophysics Data System (ADS)

    Yen, N. V.; Lan, M. T.; Vinh, L. T.; Hong, N. V.

    2017-02-01

    Molecular dynamics (MD) simulations and visualizations were explored to investigate the changes in structure of liquid aluminosilicates. The models were constructed for four compositions with varying Al2O3/SiO2 ratio. The local structure and network topology was analyzed through the pair of radial distribution functions, bond angle, bond length and coordination number distributions. The results showed that the structure of aluminosilicates mainly consists of the basic structural units TOy (T is Al or Si; y = 3, 4, 5). Two adjacent units TOy are linked to each other through common oxygen atoms and form continuous random network of basic structural units TOy. The bond statistics (corner-, edge- and face- sharing) between two adjacent TOy units are investigated in detail. The self-diffusion coefficients for three atomic types are affected by the degree of polymerization (DOP) of network characterized by the proportions of nonbridging oxygen (NBO) and Qn species in the system. It was found that Q4 and Q3 tetrahedral species (tetrahedron with four and three bridging oxygens, respectively) decreases, while Q0 (with four nonbridging oxygen) increase with increasing Al2O3/SiO2 molar ratio, suggesting that a less polymerized network was formed. The structural and dynamical heterogeneities, micro-phase separation and liquid-liquid phase transition are also discussed in this work.

  8. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells.

    PubMed

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2015-11-30

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.

  9. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    PubMed Central

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338

  10. Magnetometry with mesospheric sodium

    PubMed Central

    Higbie, James M.; Rochester, Simon M.; Patton, Brian; Holzlöhner, Ronald; Bonaccini Calia, Domenico; Budker, Dmitry

    2011-01-01

    Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. PMID:21321235

  11. Astronomy and Sodium Lighting,

    DTIC Science & Technology

    1984-02-01

    o-... 0 -23- rincreased Oxygen Atoms , Soodum Oxygen Atoms Peckg trom LPS Ligh t Level Limit Motel Br-ue Green...Yellow Orcrge Red Fig. 5 - San Jose 1979 with bPS street lights New Sodium Peaks frome Oxyge.n Atom’s HPS Oxygen Atoms Full Growth Light Level- 1990...Light LevelI 1979 Light Level I L Light Level - 0 Lmt Broad Specr ,,m Excess Li;hl SVoel Blue Gpen Yelloo Oro-’e Red Fig. 6 -- Sarn Jose with 11PS street

  12. Synthetic Turf Multiplies Stadium Use.

    ERIC Educational Resources Information Center

    Leach, Richard

    1979-01-01

    The high school stadium in Flint, Michigan, once was used only for varsity football games. After the installation of synthetic turf, an average of 332 events have been staged there each year. (Author/MLF)

  13. A Course on Synthetic Fuels.

    ERIC Educational Resources Information Center

    Kimmel, Howard S.; Tomkins, Reginald P. T.

    1985-01-01

    A senior-level, elective course on synthetic fuels was developed for chemistry and chemical engineering majors. The topics covered in this course, instructional strategies used, and independent student projects are described. (JN)

  14. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  15. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  16. Synthetic Biology for Specialty Chemicals.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  17. Approaches to chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology.

  18. Programming languages for synthetic biology.

    PubMed

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  19. Sodium bicarbonate in chemical flooding: Part 1: Topical report. [Sodium bicarbonate and sodium carbonate

    SciTech Connect

    Peru, D.A.; Lorenz, P.B.

    1987-07-01

    To compare oil recovery and alkali consumption in alkaline flooding using sodium bicarbonate with other alkaline agents, coreflooding experiments were performed in turn with viscosified sodium bicarbonate and viscosified sodium carbonate solutions. Oil recovery was monitored, and the effluent brine from these corefloods was analyzed for silicon, aluminum, pH, and total inorganic carbon. The results indicate that viscosified sodium bicarbonate recovered more of the asphaltic Cerro-Negro crude than of the less asphaltic Wilmington crude oil. The recovery efficiency using the viscosified sodium carbonate was similar for the two crudes. For both crudes, the percent oil recovery using viscosified sodium carbonate was slightly higher than that using the viscosified sodium bicarbonate. Mineral dissolution and decrease in pH were found to be greater in corefloods using viscosified sodium carbonate. Total inorganic carbon recovery can be obtained in corefloods with either agent, provided that a sufficient water drive follows the chemical slug. Long-term experiments were performed by recirculating alkaline solutions through oil-free, unfired Berea sandstone to monitor the rock/alkali interactions. The experimental results indicate an eight-fold decrease in quartz dissolution by sodium bicarbonate compared with sodium carbonate. Moderate magnesium solubility was observed at the pH of the bicarbonate solution. Low solubility of magnesium and aluminum at the pH of the carbonate indicates the possible formation of precipitates. In these experiments 13% of the carbonate was converted to bicarbonate. Total alkalinity was not significantly decreased with either agent. 18 refs., 5 tabs.

  20. Synthetic biology as red herring.

    PubMed

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy.

  1. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  2. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    Although surviving in situ micro-organisms eventually consume spilled oil, extensive inundation of shore biota by oil requires cleanup to enable ecological recovery within normal time scales. Although effective in calm seas and quiet waters, oil is advected over and under conventional curtain oil booms by wave actions and currents when seas are running. Most sorbent booms are not reusable, and are usually disposed of in landfills, creating excessive waste. A new concept is proposed for a floating oil barrier, to be positioned off vulnerable coasts, to interdict, contain, and sequester spilled oil, which can then be recovered and the barrier reused. While conventional oil boom designs rely principally on the immiscibility of oil in water and its relative buoyancy, the new concept barrier avoids the pitfalls of the former by taking advantage of the synergistic benefits of numerous fluid and material properties, including: density, buoyancy, elasticity, polarity, and surface area to volume ratio. Modeled after Zostera marina, commonly called eelgrass, the new barrier, referred to as synthetic eelgrass (SE), behaves analogously. Eelgrass has very long narrow, ribbon-like, leaves which support periphyton, a complex matrix of algae and heterotrophic microbes, which position themselves there to extract nutrients from the seawater flowing past them. In an analogous fashion, oil on, or in, seawater, which comes in contact with SE, is adsorbed on the surface and sequestered there. Secured to the bottom, in shoal waters, SE rises to the surface, and, if the tide is low enough, floats on the sea surface down wind, or down current to snare floating oil. The leaves of SE, called filaments, consist of intrinsically buoyant strips of ethylene methyl acrylate, aka EMA. EMA, made of long chain, saturated, hydrocarbon molecules with nearly homogeneous electron charge distributions, is a non-polar material which is oleophilic and hydrophobic. Oil must be in close proximity to the

  3. Sialons from natural aluminosilicates

    SciTech Connect

    Mukerji, J.; Bandyopadhyay, S. )

    1988-07-01

    The synthesis of the high-temperature material sialon (Si{sub 6{minus}z}Al{sub z}O{sub z}N{sub 8{minus}z}) by carbothermic reduction followed by nitridation has been examined. Kaolin, sillimanite, and pyrophillite can be converted to {beta}{prime}-sialon having z values of 2, 2.5, and 0.8, respectively. Other phases that appear in small quantities along with the sialon are mainly alumina and mullite, and trace amounts of AlN and the AlON spinel phase also form. The carbon content at {ge}90% theoretical is very sensitive to nitrogen uptake and phase composition. The uniform mixing of carbon with clay is equally important. Fireclay without an Fe{sub 2}O{sub 3} catalyst produces the same product that does kaolin with an Fe{sub 2}O{sub 3} catalyst.

  4. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    ERIC Educational Resources Information Center

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  5. GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE

    EPA Science Inventory

    The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...

  6. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  7. Bacterial sodium channels: models for eukaryotic sodium and calcium channels.

    PubMed

    Scheuer, Todd

    2014-01-01

    Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.

  8. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium benzoate. 184.1733 Section 184.1733 Food and... Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate,...

  9. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or...

  10. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  11. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  12. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and....1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium hydroxide. (b) The ingredient...

  13. Stability of aztreonam and ampicillin sodium-sulbactam sodium in 0.9% sodium chloride injection.

    PubMed

    Belliveau, P P; Nightingale, C H; Quintiliani, R

    1994-04-01

    The stability of aztreonam, ampicillin sodium, and sulbactam sodium admixed in 0.9% sodium chloride injection and stored at room temperature and under refrigeration was studied. Each of the following admixtures was prepared in 0.9% sodium chloride injection: (1) aztreonam 10 mg/mL; (2) ampicillin 20 mg/mL (as the sodium salt) and sulbactam 10 mg/mL (as the sodium salt); and (3) aztreonam 10 mg/mL, ampicillin 20 mg/mL, and sulbactam 10 mg/mL. Three minibags of each admixture were stored at room temperature and three were refrigerated. Every 12 hours, up to 96 hours, the admixtures were visually inspected and 5-mL samples were withdrawn for high-performance liquid chromatography and pH testing. No color change or precipitation was observed in any sample. In admixtures containing ampicillin, ampicillin was the first or only drug to lose more than 10% of initial concentration. In the ampicillin-sulbactam admixture, ampicillin was stable for 32 hours at room temperature and 68 hours refrigerated. In the aztreonam-ampicillin-sulbactam admixture, ampicillin was stable for 30 hours at room temperature and 94 hours refrigerated. Aztreonam 10 mg/mL, ampicillin 20 mg/mL (as the sodium salt), and sulbactam 10 mg/mL (as the sodium salt) in 0.9% sodium chloride injection were stable in combination for up to 30 hours at room temperature and 94 hours under refrigeration.

  14. Sodium fluoroacetate poisoning.

    PubMed

    Proudfoot, Alex T; Bradberry, Sally M; Vale, J Allister

    2006-01-01

    Sodium fluoroacetate was introduced as a rodenticide in the US in 1946. However, its considerable efficacy against target species is offset by comparable toxicity to other mammals and, to a lesser extent, birds and its use as a general rodenticide was therefore severely curtailed by 1990. Currently, sodium fluoroacetate is licensed in the US for use against coyotes, which prey on sheep and goats, and in Australia and New Zealand to kill unwanted introduced species. The extreme toxicity of fluoroacetate to mammals and insects stems from its similarity to acetate, which has a pivotal role in cellular metabolism. Fluoroacetate combines with coenzyme A (CoA-SH) to form fluoroacetyl CoA, which can substitute for acetyl CoA in the tricarboxylic acid cycle and reacts with citrate synthase to produce fluorocitrate, a metabolite of which then binds very tightly to aconitase, thereby halting the cycle. Many of the features of fluoroacetate poisoning are, therefore, largely direct and indirect consequences of impaired oxidative metabolism. Energy production is reduced and intermediates of the tricarboxylic acid cycle subsequent to citrate are depleted. Among these is oxoglutarate, a precursor of glutamate, which is not only an excitatory neurotransmitter in the CNS but is also required for efficient removal of ammonia via the urea cycle. Increased ammonia concentrations may contribute to the incidence of seizures. Glutamate is also required for glutamine synthesis and glutamine depletion has been observed in the brain of fluoroacetate-poisoned rodents. Reduced cellular oxidative metabolism contributes to a lactic acidosis. Inability to oxidise fatty acids via the tricarboxylic acid cycle leads to ketone body accumulation and worsening acidosis. Adenosine triphosphate (ATP) depletion results in inhibition of high energy-consuming reactions such as gluconeogenesis. Fluoroacetate poisoning is associated with citrate accumulation in several tissues, including the brain. Fluoride

  15. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems.

  16. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment.

  17. Sodium heat transfer system modeling

    NASA Astrophysics Data System (ADS)

    Baker, A. F.; Fewell, M. E.

    1983-11-01

    The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.

  18. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  19. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  20. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  1. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  2. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate.

    PubMed

    Brodu, Nicolas; Zaitan, Hicham; Manero, Marie-Hélène; Pic, Jean-Stéphane

    2012-01-01

    A hybrid process combining adsorption and ozonation was examined as an alternative treatment for odorous volatile organic compounds (VOCs). Methyl ethyl ketone (MEK) was chosen to study the influence of operating parameters. Two synthetic aluminosilicates (faujasite-Y and ZSM-5) were tested for adsorption and reactivity with ozone. The adsorption equilibrium measurement on both adsorbents showed that adsorption performance depends on temperature but is not sensitive to relative humidity, due to the hydrophobic properties of the materials. Adsorbed VOCs were oxidized at low temperature when ozonated flow was sent to the reactor. Regeneration of the fixed bed was achieved at the same time, releasing mainly CO(2) and H(2)O. Intermediates of oxidation, such as 2,3-butanedione and acetic acid, were identified, leading to incomplete mineralization. The influence of concentration and humidity are discussed. Four successive cycles were tested: after the first adsorption/ozonation cycle, the adsorption efficiency was not affected during subsequent cycles. These results show that the same sample of adsorbent can be used in the treatment process for a long time. Ozonation regeneration is a promising process for VOC removal.

  3. Evolutionary primacy of sodium bioenergetics

    PubMed Central

    Mulkidjanian, Armen Y; Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2008-01-01

    Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section. PMID:18380897

  4. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    PubMed

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts.

  5. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  6. Designer Drugs: A Synthetic Catastrophe.

    PubMed

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants.

  7. Synthetic neurosteroids on brain protection

    PubMed Central

    Rey, Mariana; Coirini, Héctor

    2015-01-01

    Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions. PMID:25788907

  8. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  9. Designer Drugs: A Synthetic Catastrophe

    PubMed Central

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2016-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are “Not for Human Consumption”, therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance use disorder treatment centers. Urine Drug Testing is utilized as a clinical diagnostic tool in substance use disorder treatment centers, and the furious pace at which new synthetic stimulants are introduced to the black market are making the detection via urine increasingly difficult. This article will discuss the prevalence, pharmacology and difficulty developing laboratory assays to detect synthetic stimulants. PMID:27617301

  10. US Competitiveness in Synthetic Biology.

    PubMed

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  11. US Competitiveness in Synthetic Biology

    PubMed Central

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative—additional investments will expand markets—but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized. PMID:26690379

  12. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations

    PubMed Central

    2015-01-01

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively. PMID:26244620

  13. Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical γ-AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Cui, Xueliang; Dong, Chunxu; Dong, Zhengping

    2016-12-01

    In this study, a novel catalyst has been prepared through supporting Pd nanoparticles (NPs) on the surface of boehmite (γ-AlOOH) based hollow aluminosilicate microspheres (HAM@γ-AlOOH). The prepared Pd/HAM@γ-AlOOH catalyst has high catalytic activity for the hydrogenation of nitroarenes to their corresponding amino derivatives with high yields at ambient conditions. The high catalytic efficiency is attributed to the large pore size of the flower-like hierarchical flakes structure of HAM@γ-AlOOH, that gives Pd NPs on the support surface easy accessibility. Moreover, the Pd/HAM@γ-AlOOH catalyst can also be easily recycled at least five times without obvious decrease of catalytic activity. This work may provide a useful method for the fabrication of supported noble metal NP-based catalysts on the surface of mesoporous hierarchical structure materials with easy accessibility and superior activity.

  14. Design Automation in Synthetic Biology.

    PubMed

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks.

  15. Synthetic Aperture Radar Oceanographic Investigations.

    DTIC Science & Technology

    1987-03-01

    Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

  16. Synthetic biology in cellular immunotherapy

    PubMed Central

    Chakravarti, Deboki; Wong, Wilson W.

    2015-01-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

  17. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and....1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium hydroxide or sodium...

  18. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and....1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b)...

  19. Tables of thermodynamic properties of sodium

    SciTech Connect

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  20. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil

    PubMed Central

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-01-01

    ABSTRACT A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision. PMID:27365537

  1. Voltammetric Determination of Dinonyl Diphenylamine and Butylated Hydroxytoluene in Mineral and Synthetic Oil.

    PubMed

    Xiang, Yaling; Qian, Xuzheng; Hua, Meng; Cheng, Bingxue; Chen, Wu; Li, Jian

    2016-07-02

    A method is reported for the determination of diphenylamine and butylated hydroxytoluene in mineral and synthetic oil. The procedure used differential pulse voltammetry with a glassy carbon electrode. This method was then used for determining these antioxidants in supporting electrolyte consisting of dilute sulfuric acid and sodium dodecyl sulfonate in ethanol. Anodic peaks were obtained for both analytes. Oxidation peaks at 250 mV were observed from a mixture of butylated hydroxytoluene and dinonyl diphenylamine, allowing their simultaneous determination. This approach was successfully used for the determination of dinonyl diphenylamine and butylated hydroxytoluene in fortified mineral and synthetic oils with good accuracy and precision.

  2. Scattering of Light by Colloidal Aluminosilicate Particles Produces the Unusual Sky-Blue Color of Río Celeste (Tenorio Volcano Complex, Costa Rica)

    PubMed Central

    Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E.; Chavarría, Max

    2013-01-01

    Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams—Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)—is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one. PMID:24058661

  3. Surfactant-enhanced sodium bicarbonate flooding. Project OE6

    SciTech Connect

    Peru, D.A.

    1986-08-01

    Three anionic and four nonionic surfactants were tested for their emulsification behavior with TRONACRAB (sodium bicarbonate) and Wilmington crude oil. Three of the surfactants were found to enhance the solubilization of oil in the brine phase in the presence of TRONACARB according to the screening guide established in this study. Interfacial tension measurements were made on the most promising systems. The results support the hypothesis that a synergistic relationship can exist between low concentrations of synthetic surfactant and TRONACRAB. In batch experiments using kaolinite and in a linear coreflood using consolidated Berea sandstone, TRONACRAB reduced adsorption of surfactant by up to 93%. TRONACARB was less effective in preventing adsorption onto crushed Berea sandstone probably due to an unusually high amount of ferrodolomite (calcium magnesium carbonate with iron impurities). The following conclusion have been made from the results of this work. (1) Addition of water-soluble synthetic surfactants to brines containing TRONACARB enhances the aqueous solubility of surfactants formed in situ. (2) The greatest solubilization of oil into the brine phase occurs when TRONACARB is used with synthetic surfactant. (3) The use of TRONACARB in combination with synthetic surfactants results in ultralow interfacial tension upon contact with the oil phase. (4) TRONACARB decreases the temperature at which ninionics can solubilize oil effectively (lower IFT). The use of nonionics at lower temperatures will reduce adsorption significantly. (5) TRONACARB is as useful as higher pH alkaline agents in preventing adsoprtion of anionic surfactants. 12 refs., 10 figs., 4 tabs.

  4. Electrochemical Oxidation of Synthetic Dyes in Simulated Wastewaters

    NASA Astrophysics Data System (ADS)

    Gallios, G.; Violintzis, X.; Voinovskii, I.; Voulgaropoulos, A.

    An electrochemical oxidation method for the degradation of synthetic reactive azodyes found in textile wastewaters is discussed. Four commercial synthetic dyes (black, blue, red and yellow) commonly used in dying operations were studied in single, binary and ternary mixtures. Low (100 mg/L) and high (500, 1,000 and 2,000 mg/L) initial dye concentrations were studied. The effect of various sodium chloride concentrations (as supporting electrolyte) on the effectiveness of electrochemical oxidation was examined. The effect of current intensity (1.5, 2.5 and 3.0 A) and pH (vales 3, 5, 7 and 10) was studied as well. The kinetics of the electrochemical oxidation for each dye were studied and compared. The conditions for effective dye degradation even from 2,000 mg/L initial concentration were established. The method was proved very effective even with binary and ternary mixtures of basic synthetic dyes. The Chemical Oxygen Demand (COD) and the Total Organic Carbon (TOC) were reduced by 60% and 25% respectively, meaning that the treated solutions were friendlier to the environment.

  5. Formulation of soluble oils with synthetic and petroleum sulfonates

    SciTech Connect

    Eckard, A.; Riff, I.; Weaver, J.

    1997-06-01

    Metalworking fluids for metal removal are formulated to provide cooling, lubrication, and rust protection when cutting and machining metals. There are basically four types of cutting fluids: straight oils, synthetics, semisynthetic fluids and soluble oils. The last type is the most widely used for metal removal operations such as cutting, drilling and grinding. Soluble oils used for metalworking operations are normally the oil-in-water type, with oil as the internal phase and water as the external phase. The soluble oils can have rather complex compositions, usually containing two or more emulsifiers and coupling agents, as well as additives to provide rust inhibition, lubricity, detergency, resistance to bacterial attack and foam control. The dominant emulsifier in a soluble oil is usually sodium sulfonate which also has the secondary benefit of being a rust inhibitor. Soluble oil emulsions based on petroleum or synthetic sulfonates have been found to improve lubrication and cleaning of metal parts and equipment. As has been done previously, a series of emulsification studies were conducted using petroleum and synthetic sulfonates. Emulsifier level, coemulsifiers and minor formulation adjustments were made to optimize each system. This study was made using naphthenic oil basestock. Formulations were evaluated using criteria including concentrate stability, hard and soft water emulsion stability, emulsibility, foaming tendency and response to defoamers, antirust properties and cost effectiveness of individual formulations. The results of these evaluations are presented in the present paper.

  6. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  7. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  8. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, Eugene R.; Mitchell, Alexander R.; Pearson, Karen W.; Smith, Robert E.

    1983-01-01

    Synthetic substrates are provided which may be represented as A-D. The A moiety thereof includes an amino acid, polypeptide, or derivative thereof. The D moiety thereof includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons.

  9. Synthetic stellar libraries for Gaia

    NASA Astrophysics Data System (ADS)

    Sordo, R.

    A large database of synthetic stellar libraries has been collected for the Gaia mission. I will present the libraries in the context of their usage in APSIS, the system of algorithms developed to deal with the automated classification and parameter determination of the observed sources.

  10. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  11. Modeling Transport Through Synthetic Nanopores

    PubMed Central

    Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

    2011-01-01

    Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

  12. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  13. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  14. Synthetic substrates for enzyme analysis

    DOEpatents

    Bissell, E.R.; Mitchell, A.R.; Pearson, K.W.; Smith, R.E.

    1983-06-14

    Synthetic substrates are provided which may be represented as A-D. The A moiety includes an amino acid, polypeptide, or derivative. The D moiety includes 7-amino coumarin derivatives having an electron withdrawing substituent group at the 3 position carbon or fused between the 3 and 4 position carbons. No Drawings

  15. Leaching behaviour of synthetic aggregates.

    PubMed

    van der Sloot, H A; Hoede, D; Cresswell, D J; Barton, J R

    2001-01-01

    In the framework of EU project "Utilising innovative kiln technology to recycle waste into synthetic aggregate" (BRST-CT98-5234), the leaching behaviour of synthetic aggregates has been studied to assess its environmental compatibility in the various stages of its use. Since the conditions are very different for the different uses, the assessment calls for a variety of different leaching conditions. The pH dependence test is used to cover important differences in pH environment to which the materials are exposed to as well as for an assessment of the buffering capacity of the material. Synthetic aggregate features a low buffer capacity, which makes it sensitive to externally imposed pH conditions. Utilisation and storage exposed to acidic conditions needs to be avoided. The results of the pH dependence test and column leaching test are mutually consistent. The CEN TC 154 method appears to provide systematically low values due to the arbitrary selection of test conditions. Synthetic aggregate studied to date will not adversely affect the concrete in its service life. The main issue for aggregate use is the recycling and the "end of life" condition, when the material becomes construction debris. Not metals, but oxyanions, such as Cr VI and Mo are most relevant under these conditions. A concise test has been applied to assess crucial aspects of leaching for different production mixes.

  16. Future of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  17. The synthetic biology open language.

    PubMed

    Myers, Chris; Clancy, Kevin; Misirli, Goksel; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline; Roehner, Nicholas; Sauro, Herbert M

    2015-01-01

    The design and construction of engineered organisms is an emerging new discipline called synthetic biology and holds considerable promise as a new technological platform. The design of biologically engineered systems is however nontrivial, requiring contributions from a wide array of disciplines. One particular issue that confronts synthetic biologists is the ability to unambiguously describe novel designs such that they can be reengineered by a third-party. For this reason, the synthetic biology open language (SBOL) was developed as a community wide standard for formally representing biological designs. A design created by one engineering team can be transmitted electronically to another who can then use this design to reproduce the experimental results. The development and the community of the SBOL standard started in 2008 and has since grown in use with now over 80 participants, including international, academic, and industrial interests. SBOL has stimulated the development of repositories and software tools to help synthetic biologists in their design efforts. This chapter summarizes the latest developments and future of the SBOL standard and its supporting infrastructure.

  18. Stereoscopy in cinematographic synthetic imagery

    NASA Astrophysics Data System (ADS)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  19. Sodium management in dialysis by conductivity.

    PubMed

    Bosetto, A; Bene, B; Petitclerc, T

    1999-07-01

    The determination of dialysate sodium concentration is one of the challenges of dialysis prescription, because no accurate information on the predialytic sodium overload is available. Too low dialysate sodium is responsible for intradialytic intolerance symptoms, whereas too high sodium may lead to long-term water sodium overload with cardiovascular hazards (hypertension, left heart failure). We propose here a biofeedback system based on noninvasive repeated measures of ionic dialysance and plasma water conductivity used here as a surrogate of plasma water sodium. This system achieves a stable postdialytic sodium pool and subsequently a dialysate sodium concentration adapted to the inter dialytic sodium load. This new tool in dialysate sodium prescription aims at reducing the morbidity related to patient sodium balance impairment.

  20. Rheological behavior of poly(lactic acid)/synthetic mica nanocomposites.

    PubMed

    Souza, D H S; Andrade, C T; Dias, M L

    2013-04-01

    Poly(lactic acid) nanocomposites were prepared with three synthetic fluoromicas in a twin-screw extruder. Sodium and two organomodified synthetic fluoromicas at different compositions were used. The effect of mica type and composition on the rheological behavior of the nanocomposites was evaluated. The sodium fluoromica did not have a significant effect on the poly(lactic acid) rheological properties, while addition of the organophilic micas to poly(lactic acid) has a strong effect on the rheology, showing a pronounced shear thinning behavior. The dynamic rheological studies revealed that the nanocomposites with organomica have a higher viscosity and more pronounced elastic properties than neat poly(lactic acid). Both storage and loss moduli increased with mica content.

  1. Solution dynamics of synthetic and natural polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  2. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    Report 3. DATES COVERED (From – To) 1 April 2007 – 01 April 2008 4. TITLE AND SUBTITLE Lifetime of Sodium Beta-alumina Membranes in Molten Sodium ...ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells...However, there are some uncertainties about the lifetime of the sodium beta-alumina membranes in contact with molten sodium hydroxide. The main objective

  3. HIGH TEMPERATURE PROPERTIES OF SODIUM

    DTIC Science & Technology

    turboelectric systems utilizing sodium ass the working fluid to 2500F. This report covers the status of the measurement program and presents thermoelectric stability data for several noble metal thermocouples at 2500F.

  4. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  5. Catalyst for sodium chlorate decomposition

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1972-01-01

    Production of oxygen by rapid decomposition of cobalt oxide and sodium chlorate mixture is discussed. Cobalt oxide serves as catalyst to accelerate reaction. Temperature conditions and chemical processes involved are described.

  6. Ultrasonic imaging in liquid sodium

    SciTech Connect

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  7. Clay-polymer nanocomposite material from the delamination of kaolinite in the presence of sodium polyacrylate.

    PubMed

    Letaief, Sadok; Detellier, Christian

    2009-09-15

    A chemical route for the delamination of kaolinite in a polymeric matrix is reported in this work. The strategy that was used is based on mixing polyelectrolytes of opposite charges, an organic polyanion, polyacrylate, with an inorganic polycation resulting from the modification of the internal surfaces of kaolinite. The delamination was carried out by the reaction of sodium polyacrylate (PANa) with kaolinite whose internal aluminol surfaces were previously grafted with triethanolamine and subsequently quaternized with iodomethane (TOIM-K) to form an extended lamellar inorganic polycation. X-ray diffraction as well as scanning electron microscopy (SEM) confirmed the complete delamination of the kaolinite particles. 13C CP/MAS NMR showed the removal of the ammonium groups resulting from hydrolysis of the internal surfaces once exposed, and 29Si CP/MAS NMR spectra were in agreement with the retention of the 1:1 aluminosilicate kaolinite layers structures. From the thermogravimetry (TG) data, the respective percentages in mass of PA and kaolinite in the delaminated nanocomposite could be estimated to be 61% and 39%, respectively, in the conditions of the particular experiment. The procedure was repeated several times to show the reproducibility of the delamination. The interlayer functionalization of kaolinite was crucial for the success of the delamination procedure. SEM pictures show that some individual kaolinite platelets fold and form curved structures.

  8. Design and evaluation of fast dissolving tablets containing diclofenac sodium using fenugreek gum as a natural superdisintegrant

    PubMed Central

    Kumar, M. Uday; Babu, M. Kishore

    2014-01-01

    Objective To formulate diclofenac sodium as fast dissolving tablets (FDTs) using fenugreek gum as a natural superdisintegrant which also possess anti-inflammatory activity. Methods An attempt was made to extract the fenugreek gum and evaluated it for various physicochemical characterizations. The swelling index and viscosity of fenugreek gum was 221% and 293.4 mpa.s respectively. FDTs of diclofenac sodium was formulated by direct compression technique using different concentrations (1%-6%, w/w) of fenugreek gum as a natural superdisintegrant and compared with renowned synthetic superdisintegrants like sodium starch glycolate and croscarmellose sodium. The anti-inflammatory activity of a formulation was evaluated with carrageenan induced experimental rats. Results The formulated tablets were evaluated for various physical tests like weight variation, friability, hardness and results complied with the limits. The drug release from all the formulations ascertained first order kinetics. Among all the formulations F3 containing fenugreek gum with the concentration of 6% produced least disintegrating time 21 seconds resulting in higher drug release rate 93.74% at the end of 25 min. Hence, it was considered as optimized formulation. The present study revealed that the fenugreek gum as a natural superdisintegrant showed better disintegrating property than the most widely used synthetic superdisintegrants like sodium starch glycolate and croscarmellose sodium in the formulations of FDTs. Conclusions The results suggested that the fenugreek gum act as a good super disintegrating agent and it showed promising additive anti-inflammatory activity with diclofenac sodium. PMID:25183106

  9. Dietary sodium and cardiovascular disease.

    PubMed

    Smyth, Andrew; O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-06-01

    Although an essential nutrient, higher sodium intake is associated with increasing blood pressure (BP), forming the basis for current population-wide sodium restriction guidelines. While short-term clinical trials have achieved low intake (<2.0 g/day), this has not been reproduced in long-term trials (>6 months). Guidelines assume that low sodium intake will reduce BP and reduce cardiovascular disease (CVD), compared to moderate intake. However, current observational evidence suggests a J-shaped association between sodium intake and CVD; the lowest risks observed with 3-5 g/day but higher risk with <3 g/day. Importantly, these observational data also confirm the association between higher intake (>5 g/day) and increased risk of CVD. Although lower intake may reduce BP, this may be offset by marked increases in neurohormones and other adverse effects which may paradoxically be adverse. Large randomised clinical trials with sufficient follow-up are required to provide robust data on the long-term effects of sodium reduction on CVD incidence. Until such trials are completed, current evidence suggests that moderate sodium intake for the general population (3-5 g/day) is likely the optimum range for CVD prevention.

  10. Outgassing of Two Synthetic Fuels.

    DTIC Science & Technology

    1981-09-01

    ATOMIC ADSORPTION /OTHER QUANTITATIVE METHODS Sodium (Na) < 1 p/m Calcium (Ca) p/m Potassium (K) < 1 p/m Lead ( Pb ) p/m Na + K p/m Mercury (Hg) p/m...Na) < I pirn Calcium (Ca) p, m Potassium (K) < I p/rn Lead ( Pb ) p m Na + K p/rn Mercury (Hg) pim Vanadium (V) < I pim Arsenic (As) ɚ p/rm p/rn p/m

  11. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  12. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate,...

  13. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  14. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  15. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  16. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  17. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  18. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  19. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  20. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  1. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  2. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  3. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  4. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  5. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  6. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  7. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  8. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium sesquicarbonate (Na2CO3·NaHCO3·2H2O, CAS Reg. No..., centrifugation, and drying; (2) double refining of trona ore, a naturally occurring impure sodium...

  9. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... byproducts so that the level of sodium nitrite does not exceed 20 parts per million. (b) To assure safe...

  10. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric...

  11. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  12. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate,...

  13. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  14. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye....

  15. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  16. 21 CFR 184.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sesquicarbonate. 184.1792 Section 184.1792... Listing of Specific Substances Affirmed as GRAS § 184.1792 Sodium sesquicarbonate. (a) Sodium... naturally occurring impure sodium sesquicarbonate. (b) The ingredient meets the specifications of the...

  17. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  18. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  19. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium...

  20. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...