Science.gov

Sample records for synthetic splicing ribozymes

  1. Trans-splicing with the group I intron ribozyme from Azoarcus

    PubMed Central

    Dolan, Gregory F.; Müller, Ulrich F.

    2014-01-01

    Group I introns are ribozymes (catalytic RNAs) that excise themselves from RNA primary transcripts by catalyzing two successive transesterification reactions. These cis-splicing ribozymes can be converted into trans-splicing ribozymes, which can modify the sequence of a separate substrate RNA, both in vitro and in vivo. Previous work on trans-splicing ribozymes has mostly focused on the 16S rRNA group I intron ribozyme from Tetrahymena thermophila. Here, we test the trans-splicing potential of the tRNAIle group I intron ribozyme from the bacterium Azoarcus. This ribozyme is only half the size of the Tetrahymena ribozyme and folds faster into its active conformation in vitro. Our results showed that in vitro, the Azoarcus and Tetrahymena ribozymes favored the same set of splice sites on a substrate RNA. Both ribozymes showed the same trans-splicing efficiency when containing their individually optimized 5′ terminus. In contrast to the previously optimized 5′-terminal design of the Tetrahymena ribozyme, the Azoarcus ribozyme was most efficient with a trans-splicing design that resembled the secondary structure context of the natural cis-splicing Azoarcus ribozyme, which includes base-pairing between the substrate 5′ portion and the ribozyme 3′ exon. These results suggested preferred trans-splicing interactions for the Azoarcus ribozyme under near-physiological in vitro conditions. Despite the high activity in vitro, however, the splicing efficiency of the Azoarcus ribozyme in Escherichia coli cells was significantly below that of the Tetrahymena ribozyme. PMID:24344321

  2. Computational prediction of efficient splice sites for trans-splicing ribozymes

    PubMed Central

    Meluzzi, Dario; Olson, Karen E.; Dolan, Gregory F.; Arya, Gaurav; Müller, Ulrich F.

    2012-01-01

    Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3′-terminal portion of an external mRNA with their own 3′-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3′-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3′-exon and extended guide sequences. PMID:22274956

  3. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices.

    PubMed

    Weigand, Julia E; Wittmann, Alexander; Suess, Beatrix

    2012-01-01

    Within the last few years, a set of synthetic riboswitches has been engineered, which expands the toolbox of genetic regulatory devices. Small molecule binding aptamers have been used for the design of such riboswitches by insertion into untranslated regions of mRNAs, exploiting the fact that upon ligand binding the RNA structure interferes either with translation initiation or pre-mRNA splicing in yeast. In combination with self-cleaving ribozymes, aptamers have been used to modulate RNA stability. In this chapter, we discuss the applicability of different aptamers, ways to identify novel genetic devices, the pros and cons of various insertion sites and the application of allosteric ribozymes. Our expertise help to apply synthetic riboswitches to engineer complex genetic circuits.

  4. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.

    PubMed

    Lee, Elaine R; Baker, Jenny L; Weinberg, Zasha; Sudarsan, Narasimhan; Breaker, Ronald R

    2010-08-13

    Group I self-splicing ribozymes commonly function as components of selfish mobile genetic elements. We identified an allosteric group I ribozyme, wherein self-splicing is regulated by a distinct riboswitch class that senses the bacterial second messenger c-di-GMP. The tandem RNA sensory system resides in the 5' untranslated region of the messenger RNA for a putative virulence gene in the pathogenic bacterium Clostridium difficile. c-di-GMP binding by the riboswitch induces folding changes at atypical splice site junctions to modulate alternative RNA processing. Our findings indicate that some self-splicing ribozymes are not selfish elements but are harnessed by cells as metabolite sensors and genetic regulators.

  5. Thermozymes: Synthetic RNA thermometers based on ribozyme activity.

    PubMed

    Saragliadis, Athanasios; Krajewski, Stefanie S; Rehm, Charlotte; Narberhaus, Franz; Hartig, Jörg S

    2013-06-01

    Synthetic biology approaches often combine natural building blocks to generate new cellular activities. Here, we make use of two RNA elements to design a regulatory device with novel functionality. The system is based on a hammerhead ribozyme (HHR) that cleaves itself to generate a liberated ribosome-binding site and, thus, permits expression of a downstream gene. We connected a temperature-responsive RNA hairpin to the HHR and, thus, generated a temperature-controlled ribozyme that we call thermozyme. Specifically, a Salmonella RNA thermometer (RNAT) known to modulate small heat shock gene expression by temperature-controlled base-pairing and melting was fused to the ribozyme. Following an in vivo screening approach, we isolated two functional thermozymes. In vivo expression studies and in vitro structure probing experiments support a mechanism in which rising temperatures melt the thermometer structure impairing the self-cleavage reaction of the ribozyme. Since RNA cleavage is necessary to liberate the RBS, these engineered thermozymes shut off gene expression in response to a temperature increase and, thus, act in a reverse manner as the natural RNAT. Our results clearly emphasize the highly modular nature and biotechnological potential of ribozyme-based RNA thermometers.

  6. Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake.

    PubMed Central

    Bramlage, B; Alefelder, S; Marschall, P; Eckstein, F

    1999-01-01

    Two synthetic hammerhead ribozymes, one unmodified and the other with 2"-modifications and four phosphorothioate groups, targeting a single GUA site in the luciferase mRNA, were compared for their inhibition of gene expression in cell cultureand their cellular uptake was also analysed. A HeLa X1/5 cell line stably expressing luciferase, under an inducible promoter, was treated with these ribozymes by liposome-mediated transfection to determine their activity.Luciferase expression in cells was inhibited to approximately 50% with little difference between the unmodified and the 2"-modified ribozyme. A similar degree of inhibition was observed with two catalytically inactive ribozymes, indicating that inhibition was mainly due to an antisense effect. A ribozyme carrying a cholesterol moiety, applied to the cells without carrier, showed no inhibition. Northern blotting indicated a similar amount of cellular uptake of all ribozymes. The unmodified ribozyme was essentially evenly distributed between cytoplasm and nucleus, whereas a higher proportion of the phosphorothioate-containing ribozyme was observed in the nucleus. Fluorescence microscopy, including confocal microscopy using 5"-fluorescein-labelled ribozymes, showed that the unmodified and 2"-modified ribozymes were present in the cytoplasm and in the nucleus to a similar extent, whereas the fluorescence of the phosphorothioate-containing ribozyme was much stronger in the nucleus. Both ribozymes inhibited luciferase expression to a comparable degree, suggesting that the ribozyme in the nucleus did not contribute significantly to the inhibition. Ribozymes with a cholesterol moiety were predominantly trapped in the cell membrane, explaining their inability to interfere with gene expression. PMID:10454613

  7. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme

    PubMed Central

    Curtis, Edward A.; Bartel, David P.

    2013-01-01

    The relationship between genotype and phenotype is often described as an adaptive fitness landscape. In this study, we used a combination of recombination, in vitro selection, and comparative sequence analysis to characterize the fitness landscape of a previously isolated kinase ribozyme. Point mutations present in improved variants of this ribozyme were recombined in vitro in more than 1014 different arrangements using synthetic shuffling, and active variants were isolated by in vitro selection. Mutual information analysis of 65 recombinant ribozymes isolated in the selection revealed a rugged fitness landscape in which approximately one-third of the 91 pairs of positions analyzed showed evidence of correlation. Pairs of correlated positions overlapped to form densely connected networks, and groups of maximally connected nucleotides occurred significantly more often in these networks than they did in randomized control networks with the same number of links. The activity of the most efficient recombinant ribozyme isolated from the synthetically shuffled pool was 30-fold greater than that of any of the ribozymes used to build it, which indicates that synthetic shuffling can be a rich source of ribozyme variants with improved properties. PMID:23798664

  8. Ribozyme Stability, Exon Skipping, and a Potential Role for RNA Helicase in Group I Intron Splicing by Coxiella burnetii▿

    PubMed Central

    Hicks, Linda D.; Warrier, Indu; Raghavan, Rahul; Minnick, Michael F.

    2011-01-01

    The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo. PMID:21803999

  9. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.

    PubMed

    Monachello, Dario; Michel, François; Costa, Maria

    2016-03-01

    When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled.

  10. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron

    PubMed Central

    Monachello, Dario; Michel, François; Costa, Maria

    2016-01-01

    When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled. PMID:26769855

  11. Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns.

    PubMed

    Casalino, Lorenzo; Palermo, Giulia; Rothlisberger, Ursula; Magistrato, Alessandra

    2016-08-24

    Group II introns are Mg(2+)-dependent ribozymes that are considered to be the evolutionary ancestors of the eukaryotic spliceosome, thus representing an ideal model system to understand the mechanism of conversion of premature messenger RNA (mRNA) into mature mRNA. Neither in splicing nor for self-cleaving ribozymes has the role of the two Mg(2+) ions been established, and even the way the nucleophile is activated is still controversial. Here we employed hybrid quantum-classical QM(Car-Parrinello)/MM molecular dynamics simulations in combination with thermodynamic integration to characterize the molecular mechanism of the first and rate-determining step of the splicing process (i.e., the cleavage of the 5'-exon) catalyzed by group II intron ribozymes. Remarkably, our results show a new RNA-specific dissociative mechanism in which the bulk water accepts the nucleophile's proton during its attack on the scissile phosphate. The process occurs in a single step with no Mg(2+) ion activating the nucleophile, at odds with nucleases enzymes. We suggest that the novel reaction path elucidated here might be an evolutionary ancestor of the more efficient two-metal-ion mechanism found in enzymes.

  12. Ribozyme-based insulator parts buffer synthetic circuits from genetic context.

    PubMed

    Lou, Chunbo; Stanton, Brynne; Chen, Ying-Ja; Munsky, Brian; Voigt, Christopher A

    2012-11-01

    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5' untranslated region (5'-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.

  13. Ribozyme-based insulator parts buffer synthetic circuits from genetic context

    PubMed Central

    Lou, Chunbo; Stanton, Brynne; Chen, Ying-Ja; Munsky, Brian; Voigt, Christopher A

    2014-01-01

    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression1–4. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit5–9. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as ‘insulator parts’, is screened in Escherichia coli. We find that ribozymes that cleave the 5′ untranslated region (5′-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs. PMID:23034349

  14. Characterization of cis-acting RNA elements of Zika virus by using a self-splicing ribozyme-dependent infectious clone.

    PubMed

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang; Qin, Cheng-Feng

    2017-08-16

    Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in E. coli hosts has hindered the development of ZIKV infectious clones. Herein, using a novel self-splicing ribozyme-based strategy, we have generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5' -SLA promoter and 5' -3' cyclization sequences (CS) were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and re-emerging flaviviruses.IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable

  15. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.

    PubMed

    Karbstein, Katrin; Lee, Jihee; Herschlag, Daniel

    2007-04-24

    Several ribozyme constructs have been used to dissect aspects of the group I self-splicing reaction. The Tetrahymena L-21 ScaI ribozyme, the best studied of these intron analogues, catalyzes a reaction analogous to the first step of self-splicing, in which a 5'-splice site analogue (S) and guanosine (G) are converted into a 5'-exon analogue (P) and GA. This ribozyme preserves the active site but lacks a short 5'-terminal segment (called the IGS extension herein) that forms dynamic helices, called the P1 extension and P10 helix. The P1 extension forms at the 5'-splice site in the first step of self-splicing, and P10 forms at the 3'-splice site in the second step of self-splicing. To dissect the contributions from the IGS extension and the helices it forms, we have investigated the effects of each of these elements at each reaction step. These experiments were performed with the L-16 ScaI ribozyme, which retains the IGS extension, and with 5'- and 3'-splice site analogues that differ in their ability to form the helices. The presence of the IGS extension strengthens binding of P by 40-fold, even when no new base pairs are formed. This large effect was especially surprising, as binding of S is essentially unaffected for S analogues that do not form additional base pairs with the IGS extension. Analysis of a U.U pair immediately 3' to the cleavage site suggests that a previously identified deleterious effect from a dangling U residue on the L-21 ScaI ribozyme arises from a fortuitous active site interaction and has implications for RNA tertiary structure specificity. Comparisons of the affinities of 5'-splice site analogues that form only a subset of base pairs reveal that inclusion of the conserved G.U base pair at the cleavage site of group I introns destabilizes the P1 extension >100-fold relative to the stability of a helix with all Watson-Crick base pairs. Previous structural data with model duplexes and the recent intron structures suggest that this effect can be

  16. Hammerhead ribozyme cleavage of hamster prion pre-mRNA in complex cell-free model systems.

    PubMed

    Denman, R B; Purow, B; Rubenstein, R; Miller, D L

    1992-07-31

    The cleavage properties of a trans-acting hammerhead ribozyme targeted 51 bases upstream of the putative splicing branch point in the hamster prion pre-mRNA intron were investigated in cell-free model systems in vitro. The specificity of cleavage was demonstrated by the inability of this ribozyme to cleave a non-homologous synthetic message encoding part of the beta amyloid peptide precursor, beta APP, and by the inability of the prion pre-mRNA to be cleaved by a ribozyme targeted to beta amyloid peptide precursor mRNA. Also, the addition of total RNA isolated from rat brain had only a minimal effect on the cleavage of the prion substrate pre-mRNA by the ribozyme. Finally neither the presence of 100 ng of nuclear or cytoplasmic proteins were found to affect the rate of cleavage in vitro.

  17. Synthesis of ribozyme against vascular endothelial growth factor165 and its biological activity in vitro

    PubMed Central

    Gu, Zhong-Ping; Wang, Yun-Jie; Wu, Yu; Li, Jin-Ge; Chen, Nong-An

    2004-01-01

    AIM: To investigate the designation, synthesis and biological activity of against vascular endothelial growth factor165 (VEGF165) ribozyme. METHODS: The ribozyme against VEGF165 was designed with computer. The transcriptional vector was constructed which included the anti-VEGF165 ribozyme and 5’, 3’ self-splicing ribozymes. The hammerhead ribozyme and substrate VEGF165 mRNA were synthesized through transcription in vitro. The cleavage activity of the ribozyme on target RNA was observed in a cell-free system. RESULTS: The anti-VEGF165 ribozyme was released properly from the transcription of pGEMRz212 cleaved by 5’ and 3’ self-splicing ribozymes which retained its catalytic activity, and the cleavage efficiency of ribozyme reached 90.7%. CONCLUSION: The anti-VEGF165 ribozyme designed with computer can cleave VEGF165 mRNA effectively. PMID:15133860

  18. Ribozymes and their medical implications

    SciTech Connect

    Cech, T.R.

    1988-11-25

    Certain RNA molecules can mediate their own cleavage or splicing or act as enzymes to promote reactions on substrate RNA molecules. Thus, RNA is not restricted to being a passive carrier of genetic information but can have an active role in directing cellular biochemistry. These findings suggest the possibility that other cellular RNA's, including the RNA components of small nuclear ribonucleoproteins, of the ribosome, and of various ribonucleoprotein enzymes, are catalysts. RNA enzymes (ribozymes) can be used as sequence-specific RNA cleavage agents in vitro, providing useful tools for biochemical studies of RNA. On a more speculative note, ribozymes directed against viral RNAs have the potential of serving as therapeutic agents. Finally, some infectious agents including hepatitis delta virus and perhaps poliovirus and rhinoviruses, are themselves ribozymes, providing potential targets for pharmaceuticals.

  19. Investigation of the recognition of an important uridine in an internal loop of a hairpin ribozyme prepared using post-synthetically modified oligonucleotides.

    PubMed Central

    Komatsu, Y; Kumagai, I; Ohtsuka, E

    1999-01-01

    We introduced 4-thio- ((4S)U), 2-thio- ((2S)U), 4- O -methyluridine ((4Me)U) and cytidine substitutions for U+2, which is an important base for cleavage in a substrate RNA. Oligonucleotides containing 4-thio- and 4- O -methyluridine were prepared by a new convenient post-synthetic modification method using a 4- O - p -nitrophenyl-uridine derivative. A hairpin ribozyme cleaved the substrate RNA with either C+2, (4S)U+2 or (4Me)U+2 at approximately 14-, 6- and 4-fold lower rates, respectively, than that of the natural substrate. In contrast, the substrate with a (2S)U+2 was cleaved with the same activity as the natural substrate. These results suggest that the O4 of U+2 is involved in hydrogen bonding at loop A, but the O2 of U+2 is not recognized by the active residues. Circular dichroism data of the ribozymes containing (4S)U+2 and (2S)U+2, as well as the susceptibility of the thiocarbonyl group to hydrogen peroxide, suggest that a conformational change of U+2 occurs during the domain docking in the cleavage reaction. We propose here the conformational change of U+2 from the ground state to the active molecule during the reaction. PMID:10536137

  20. Molecular characterization of a new member of the lariat capping twin-ribozyme introns

    PubMed Central

    2014-01-01

    Background Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. Results We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2′,5′ lariat cap at the 5′ end of the homing endonuclease mRNA, and thus contributes to intron mobility. Conclusions The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component. PMID:25342998

  1. RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.

    PubMed

    Fiskaa, Tonje; Lundblad, Eirik W; Henriksen, Jørn R; Johansen, Steinar D; Einvik, Christer

    2006-06-01

    Trans-splicing group I ribozymes have been introduced in order to mediate RNA reprogramming (including RNA repair) of therapeutically relevant RNA transcripts. Efficient RNA reprogramming depends on the appropriate efficiency of the reaction, and several attempts, including optimization of target recognition and ribozyme catalysis, have been performed. In most studies, the Tetrahymena group IC1 ribozyme has been applied. Here we investigate the potential of group IC1 and group IE intron ribozymes, derived from the myxomycetes Didymium and Fuligo, in addition to the Tetrahymena ribozyme, for RNA reprogramming of a mutated alpha-mannosidase mRNA sequence. Randomized internal guide sequences were introduced for all four ribozymes and used to select accessible sites within isolated mutant alpha-mannosidase mRNA from mammalian COS-7 cells. Two accessible sites common to all the group I ribozymes were identified and further investigated in RNA reprogramming by trans-splicing analyses. All the myxomycete ribozymes performed the trans-splicing reaction with high fidelity, resulting in the conversion of mutated alpha-mannosidase RNA into wild-type sequence. RNA protection analysis revealed that the myxomycete ribozymes perform trans-splicing at approximately similar efficiencies as the Tetrahymena ribozyme. Interestingly, the relative efficiency among the ribozymes tested correlates with structural features of the P4-P6-folding domain, consistent with the fact that efficient folding is essential for group I intron trans-splicing.

  2. Use of a synthetic DNA oligonucleotide to probe the precision of RNA splicing in a yeast mitochondrial petite mutant.

    PubMed Central

    Tabak, H F; van der Laan, J; Osinga, K A; Schouten, J P; van Boom, J H; Veeneman, G H

    1981-01-01

    In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA. Images PMID:7029466

  3. Total chemical synthesis of a ribozyme derived from a group I intron.

    PubMed

    Whoriskey, S K; Usman, N; Szostak, J W

    1995-03-28

    We describe the complete chemical synthesis of a ribozyme that catalyzes template-directed oligonucleotide ligation. The specific activity of the synthetic ribozyme is nearly identical to that of the same enzyme generated by in vitro transcription with T7 RNA polymerase. The ribozyme is derived from a group I intron and consists of three RNA fragments of 36, 43, and 59 nt that self-assemble to form a catalytically active complex. We have site-specifically substituted ribonucleotide analogs into this enzyme and have identified two 2'-hydroxyl groups that are required for full catalytic activity. In contrast, neither the 2'-hydroxyl nor the exocyclic amino group of the conserved guanosine in the guanosine binding site is necessary for catalysis. By allowing the ribozyme to be modified as easily as its substrates, this synthetic ribozyme system should be useful for testing specific hypotheses concerning ribozyme-substrate interactions and tertiary interactions within the ribozyme.

  4. Total chemical synthesis of a ribozyme derived from a group I intron.

    PubMed Central

    Whoriskey, S K; Usman, N; Szostak, J W

    1995-01-01

    We describe the complete chemical synthesis of a ribozyme that catalyzes template-directed oligonucleotide ligation. The specific activity of the synthetic ribozyme is nearly identical to that of the same enzyme generated by in vitro transcription with T7 RNA polymerase. The ribozyme is derived from a group I intron and consists of three RNA fragments of 36, 43, and 59 nt that self-assemble to form a catalytically active complex. We have site-specifically substituted ribonucleotide analogs into this enzyme and have identified two 2'-hydroxyl groups that are required for full catalytic activity. In contrast, neither the 2'-hydroxyl nor the exocyclic amino group of the conserved guanosine in the guanosine binding site is necessary for catalysis. By allowing the ribozyme to be modified as easily as its substrates, this synthetic ribozyme system should be useful for testing specific hypotheses concerning ribozyme-substrate interactions and tertiary interactions within the ribozyme. Images Fig. 2 Fig. 3 PMID:7708666

  5. Ribozyme-Spherical Nucleic Acids

    PubMed Central

    Hao, Liangliang; Kouri, Fotini M.; Briley, William E.; Stegh, Alexander H.; Mirkin, Chad A.

    2015-01-01

    Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme SNA are characterized in the context of the targeted knockdown of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture. PMID:26271335

  6. Twister ribozymes as highly versatile expression platforms for artificial riboswitches

    PubMed Central

    Felletti, Michele; Stifel, Julia; Wurmthaler, Lena A.; Geiger, Sophie; Hartig, Jörg S.

    2016-01-01

    The utilization of ribozyme-based synthetic switches in biotechnology has many advantages such as an increased robustness due to in cis regulation, small coding space and a high degree of modularity. The report of small endonucleolytic twister ribozymes provides new opportunities for the development of advanced tools for engineering synthetic genetic switches. Here we show that the twister ribozyme is distinguished as an outstandingly flexible expression platform, which in conjugation with three different aptamer domains, enables the construction of many different one- and two-input regulators of gene expression in both bacteria and yeast. Besides important implications in biotechnology and synthetic biology, the observed versatility in artificial genetic control set-ups hints at possible natural roles of this widespread ribozyme class. PMID:27670347

  7. A versatile cis-blocking and trans-activation strategy for ribozyme characterization

    PubMed Central

    Kennedy, Andrew B.; Liang, Joe C.; Smolke, Christina D.

    2013-01-01

    Synthetic RNA control devices that use ribozymes as gene-regulatory components have been applied to controlling cellular behaviors in response to environmental signals. Quantitative measurement of the in vitro cleavage rate constants associated with ribozyme-based devices is essential for advancing the molecular design and optimization of this class of gene-regulatory devices. One of the key challenges encountered in ribozyme characterization is the efficient generation of full-length RNA from in vitro transcription reactions, where conditions generally lead to significant ribozyme cleavage. Current methods for generating full-length ribozyme-encoding RNA rely on a trans-blocking strategy, which requires a laborious gel separation and extraction step. Here, we develop a simple two-step gel-free process including cis-blocking and trans-activation steps to support scalable generation of functional full-length ribozyme-encoding RNA. We demonstrate our strategy on various types of natural ribozymes and synthetic ribozyme devices, and the cleavage rate constants obtained for the RNA generated from our strategy are comparable with those generated through traditional methods. We further develop a rapid, label-free ribozyme cleavage assay based on surface plasmon resonance, which allows continuous, real-time monitoring of ribozyme cleavage. The surface plasmon resonance-based characterization assay will complement the versatile cis-blocking and trans-activation strategy to broadly advance our ability to characterize and engineer ribozyme-based devices. PMID:23155065

  8. The unforeseeable hammerhead ribozyme

    PubMed Central

    Hammann, Christian

    2009-01-01

    Despite its small size, the complex behavior of the hammerhead ribozyme keeps surprising us, even more than 20 years after its discovery. Here, we summarize recent developments in the field, in particular the discovery of the first split hammerhead ribozyme. PMID:20948624

  9. Probing the Tetrahymena group I ribozyme reaction in both directions.

    PubMed

    Karbstein, Katrin; Carroll, Kate S; Herschlag, Daniel

    2002-09-17

    The Tetrahymena L-21 ScaI ribozyme derived from the self-splicing group I intron catalyzes a reversible reaction analogous to the first step of self-splicing: CCCUCUA (S) + [UC]G right harpoon over left harpoon CCCUCU (P) + [UC]GA. To relate our understanding of the ribozyme to the self-splicing reaction and to further the mechanistic dissection of the ribozyme reaction, we have established a quantitative kinetic and thermodynamic framework for the forward and reverse reaction of the L-21 ScaI ribozyme under identical conditions. Examination of the framework shows that binding of products is cooperative with binding enhanced 5-fold, as was observed previously for binding of the substrates. Further, binding of UCGA is 12-fold weaker than binding of the unphosphorylated UCG, analogous to the 20-fold weaker binding of phosphorylated S relative to P; the molecular interactions underlying the stronger binding of UCG were traced to the 3'-hydroxyl group of UCG. The symmetrical effects on binding of substrates and products result in the equilibrium between ribozyme-bound species, K(int), that is essentially unperturbed from the solution equilibrium, K(ext) (K(int) = [E.P.UCGA]/[E.S.UCG] = 4.6 and K(ext) = [P][UCGA]/[S][UCG] = 1.9). Last, we show that the pK(a) values of the nucleophiles in the forward and reverse reactions are >/=10. This observation suggests that metal ion activation of the nucleophile and stabilization of the leaving group can only account for a portion of the rate enhancement of this ribozyme. These and prior results suggest that the Tetrahymena group I ribozyme, analogous to protein enzymes, uses multiple catalytic strategies to achieve its large rate enhancement.

  10. Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus.

    PubMed

    Fukushima, Akiko; Fukuda, Noboru; Lai, Yimu; Ueno, Takahiro; Moriyama, Mitsuhiko; Taguchi, Fumihiro; Iguchi, Akifumi; Shimizu, Kazushi; Kuroda, Kazumichi

    2009-01-01

    Severe acute respiratory syndrome (SARS) is a severe pulmonary infectious disease caused by a novel coronavirus. To develop an effective and specific medicine targeting the SARS-coronavirus (CoV), a chimeric DNA-RNA hammerhead ribozyme was designed and synthesized using a sequence homologous with the mouse hepatitis virus (MHV). Chimeric DNA-RNA hammerhead ribozyme targeting MHV and SARS-CoV were designed and synthesized.To confirm its activity, in vitro cleavage reactions were performed with the synthesized ribozyme. Effects of the chimeric ribozyme were evaluated on multiplication of MHV. Effects of the chimeric ribozyme on expression of SARS-CoV were evaluated in cultured 3T3 cells. The synthetic ribozyme cleaved the synthetic target MHV and SARS-CoV RNA into fragments of predicted length. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited multiplication of MHV in DBT cells by about 60%. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited the expression of SARS-CoV RNA in 3T3 cells transfected with the recombinant plasmid. The chimeric DNA-RNA ribozyme targeting SARS-CoV significantly inhibited MHV viral activity and expression of recombinant SARS RNA in vitro. These findings indicate that the synthetic chimeric DNA-RNA ribozyme could provide a feasible treatment for SARS. Copyright (c) 2009 S. Karger AG, Basel.

  11. High-throughput assay and engineering of self-cleaving ribozymes by sequencing

    PubMed Central

    Kobori, Shungo; Nomura, Yoko; Miu, Anh; Yokobayashi, Yohei

    2015-01-01

    Self-cleaving ribozymes are found in all domains of life and are believed to play important roles in biology. Additionally, self-cleaving ribozymes have been the subject of extensive engineering efforts for applications in synthetic biology. These studies often involve laborious assays of multiple individual variants that are either designed rationally or discovered through selection or screening. However, these assays provide only a limited view of the large sequence space relevant to the ribozyme function. Here, we report a strategy that allows quantitative characterization of greater than 1000 ribozyme variants in a single experiment. We generated a library of predefined ribozyme variants that were converted to DNA and analyzed by high-throughput sequencing. By counting the number of cleaved and uncleaved reads of every variant in the library, we obtained a complete activity profile of the ribozyme pool which was used to both analyze and engineer allosteric ribozymes. PMID:25829176

  12. Intracellular metabolism of a 2'-O-methyl-stabilized ribozyme after uptake by DOTAP transfection or asfree ribozyme. A study by capillary electrophoresis.

    PubMed Central

    Prasmickaite, L; Hogset, A; Maelandsmo, G; Berg, K; Goodchild, J; Perkins, T; Fodstad, O; Hovig, E

    1998-01-01

    The uptake and cellular metabolism of a fluorescein-labelled synthetic ribozyme stabilized by 2'- O -methyl modification and a 3' inverted thymidine have been studied, employing capillary gel electrophoresis as a novel and efficient analytical method. After internalization by DOTAP transfection, electrophoretic peaks of intact ribozyme and different degradation products were easily resolved and the amount of intracellular intact ribozyme was quantified to >10(7) molecules/cell at the peak value after 4 h transfection. On further incubation the amount of intracellular intact ribozyme decreased due to both degradation and efflux from the cell. However, even after 48 h incubation there were still >10(6) intact ribozyme molecules/cell. Clear differences both in uptake and in metabolism were seen when comparing DOTAP transfection with the uptake of free ribozyme. Fluorescence microscopy studies indicated that the ribozyme was mainly localized in intracellular granules, probably not accessible to target mRNA. This implies that agents able to release the intact ribozyme from intracellular vesicles into the cytosol should have a considerable potential for increasing the biological effects of synthetic ribozymes. PMID:9722645

  13. Group II Introns: Mobile Ribozymes that Invade DNA

    PubMed Central

    Lambowitz, Alan M.; Zimmerly, Steven

    2011-01-01

    SUMMARY Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors (“targetrons”), which have the unique feature of readily programmable DNA target specificity. PMID:20463000

  14. A Faster Triphosphorylation Ribozyme

    PubMed Central

    Dolan, Gregory F.; Akoopie, Arvin; Müller, Ulrich F.

    2015-01-01

    In support of the RNA world hypothesis, previous studies identified trimetaphosphate (Tmp) as a plausible energy source for RNA world organisms. In one of these studies, catalytic RNAs (ribozymes) that catalyze the triphosphorylation of RNA 5'-hydroxyl groups using Tmp were obtained by in vitro selection. One ribozyme (TPR1) was analyzed in more detail. TPR1 catalyzes the triphosphorylation reaction to a rate of 0.013 min-1 under selection conditions (50 mM Tmp, 100 mM MgCl2, 22°C). To identify a triphosphorylation ribozyme that catalyzes faster triphosphorylation, and possibly learn about its secondary structure TPR1 was subjected to a doped selection. The resulting ribozyme, TPR1e, contains seven mutations relative to TPR1, displays a previously unidentified duplex that constrains the ribozyme's structure, and reacts at a 24-fold faster rate than the parent ribozyme. Under optimal conditions (150 mM Tmp, 650 mM MgCl2, 40°C), the triphosphorylation rate of TRP1e reaches 6.8 min-1. PMID:26545116

  15. Metal Ions: Supporting Actors in the Playbook of Small Ribozymes

    PubMed Central

    Johnson-Buck, Alexander E.; McDowell, Sarah E.; Walter, Nils G.

    2012-01-01

    Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes – the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes – catalyze the same self-cleavage reaction as RNAse A, resulting in two products, one bearing a 2′–3′ cyclic phosphate and the other a 5′-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general. PMID:22010272

  16. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain

    NASA Technical Reports Server (NTRS)

    Jaeger, L.; Wright, M. C.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

  17. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain

    NASA Technical Reports Server (NTRS)

    Jaeger, L.; Wright, M. C.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

  18. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction

    PubMed Central

    Gleitsman, Kristin R.

    2014-01-01

    Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs. PMID:25246656

  19. A natural ribozyme with 3′,5′ RNA ligase activity

    PubMed Central

    Vicens, Quentin; Cech, Thomas R

    2010-01-01

    Using electrophoresis, sequencing and enzymatic digestion, we show that the group I intron from the cyanobacterium Anabaena sp. PCC 7120 catalyzes phosphodiester bond formation using a triphosphate on the 5′-terminal nucleotide, much like protein polymerases and engineered ribozymes. In the process, this ribozyme forms a unique circular RNA that incorporates the exogenous guanosine cofactor added during self-splicing. This finding may have relevance to a prebiotic RNA world and to modern biology. PMID:19125157

  20. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events

    PubMed Central

    Tilgner, Hagen; Jahanbani, Fereshteh; Blauwkamp, Tim; Moshrefi, Ali; Jaeger, Erich; Chen, Feng; Harel, Itamar; Bustamante, Carlos D; Rasmussen, Morten; Snyder, Michael P

    2016-01-01

    Alternative splicing shapes mammalian transcriptomes, with many RNA molecules undergoing multiple distant alternative splicing events. Comprehensive transcriptome analysis, including analysis of exon co-association in the same molecule, requires deep, long-read sequencing. Here we introduce an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools (≤1,000 molecules/pool, ≤1 molecule/gene for most genes) of full-length cDNAs are amplified, fragmented and short-read-sequenced. We demonstrate that these RNA sequences reconstructed from the short reads from each of the pools are mostly close to full length and contain few insertion and deletion errors. We report many previously undescribed isoforms (human brain: ∼13,800 affected genes, 14.5% of molecules; mouse brain ∼8,600 genes, 18% of molecules) and up to 165 human distant molecularly associated exon pairs (dMAPs) and distant molecularly and mutually exclusive pairs (dMEPs). Of 16 associated pairs detected in the mouse brain, 9 are conserved in human. Our results indicate conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms. PMID:25985263

  1. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events.

    PubMed

    Tilgner, Hagen; Jahanbani, Fereshteh; Blauwkamp, Tim; Moshrefi, Ali; Jaeger, Erich; Chen, Feng; Harel, Itamar; Bustamante, Carlos D; Rasmussen, Morten; Snyder, Michael P

    2015-07-01

    Alternative splicing shapes mammalian transcriptomes, with many RNA molecules undergoing multiple distant alternative splicing events. Comprehensive transcriptome analysis, including analysis of exon co-association in the same molecule, requires deep, long-read sequencing. Here we introduce an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools (≤1,000 molecules/pool, ≤1 molecule/gene for most genes) of full-length cDNAs are amplified, fragmented and short-read-sequenced. We demonstrate that these RNA sequences reconstructed from the short reads from each of the pools are mostly close to full length and contain few insertion and deletion errors. We report many previously undescribed isoforms (human brain: ∼13,800 affected genes, 14.5% of molecules; mouse brain ∼8,600 genes, 18% of molecules) and up to 165 human distant molecularly associated exon pairs (dMAPs) and distant molecularly and mutually exclusive pairs (dMEPs). Of 16 associated pairs detected in the mouse brain, 9 are conserved in human. Our results indicate conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms.

  2. The ubiquitous hammerhead ribozyme

    PubMed Central

    Hammann, Christian; Luptak, Andrej; Perreault, Jonathan; de la Peña, Marcos

    2012-01-01

    The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs. PMID:22454536

  3. Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme.

    PubMed

    Kobori, Shungo; Takahashi, Kei; Yokobayashi, Yohei

    2017-04-14

    Chemically regulated self-cleaving ribozymes, or aptazymes, are emerging as a promising class of genetic devices that allow dynamic control of gene expression in synthetic biology. However, further expansion of the limited repertoire of ribozymes and aptamers, and development of new strategies to couple the RNA elements to engineer functional aptazymes are highly desirable for synthetic biology applications. Here, we report aptazymes based on the recently identified self-cleaving pistol ribozyme class using a guanine aptamer as the molecular sensing element. Two aptazyme architectures were studied by constructing and assaying 17 728 mutants by deep sequencing. Although one of the architectures did not yield functional aptazymes, a novel aptazyme design in which the aptamer and the ribozyme were placed in tandem yielded a number of guanine-inhibited ribozymes. Detailed analysis of the extensive sequence-function data suggests a mechanism that involves a competition between two mutually exclusive RNA structures reminiscent of natural bacterial riboswitches.

  4. Group I Ribozymes as a Paradigm for RNA Folding and Evolution

    NASA Astrophysics Data System (ADS)

    Woodson, Sarah A.; Chauhan, Seema

    Group I ribozymes are an ancient class of RNA catalysts that serve as a paradigm for the self-assembly of complex structures of non-coding RNA. The diversity of subtypes illustrates the modular character of RNA architecture and the potential for the evolution of new functions. The folding mechanisms of group I ribozymes illustrate the hierarchy of folding transitions and the importance of kinetic partitioning among competing folding pathways. Studies on group I splicing factors demonstrate how proteins facilitate the assembly of splicing complexes by stabilizing tertiary interactions between domains and by ATP-dependent cycles of RNA unfolding.

  5. A reverse transcriptase ribozyme.

    PubMed

    Joyce, Gerald F; Samanta, Biswajit

    2017-09-26

    A highly evolved RNA polymerase ribozyme was found to also be capable of functioning as a reverse transcriptase, an activity that has never been demonstrated before for RNA. This activity is thought to have been crucial for the transition from RNA to DNA genomes during the early history of life on Earth, when it similarly could have arisen as a secondary function of an RNA-dependent RNA polymerase. The reverse transcriptase ribozyme can incorporate all four dNTPs and can generate products containing up to 32 deoxynucleotides. It is likely that this activity could be improved through evolution, ultimately enabling the synthesis of complete DNA genomes. DNA is much more stable compared to RNA and thus provides a larger and more secure repository for genetic information.

  6. A ribozyme selected from variants of U6 snRNA promotes 2',5'-branch formation.

    PubMed Central

    Tuschl, T; Sharp, P A; Bartel, D P

    2001-01-01

    In vitro selection was used to sample SnRNA-related sequences for ribozyme activities, and several 2',5'-branch-forming ribozymes were isolated. One such ribozyme is highly dependent upon an 11-nt motif that contains a conserved U6 snRNA sequence (ACAGAGA-box) known to be important for pre-mRNA splicing. The ribozyme reaction is similar to the first step of splicing in that an internal 2'-hydroxyl of an unpaired adenosine attacks at the 5'-phosphate of a guanosine. It differs in that the leaving group is diphosphate rather than a 5' exon. The finding that lariat formation can be accomplished by a small RNA with sequences related to U6 snRNA indicates that the RNA available in the spliceosome may be involved in RNA-catalyzed branch formation. PMID:11214178

  7. Use of an engineered ribozyme to produce a circular human exon.

    PubMed Central

    Mikheeva, S; Hakim-Zargar, M; Carlson, D; Jarrell, K

    1997-01-01

    We report the use of an engineered ribozyme to produce a circular human exon in vitro. Specifically, we have designed a derivative of a yeast self-splicing group II intron that is able to catalyze the formation of a circular exon encoding the first kringle domain (K1) of the human tissue plasminogen activator protein. We show that the circular K1 exon is formed with high fidelity in vitro. Furthermore, the system is designed such that the circular exon that is produced consists entirely of human exon sequence. Thus, our results demonstrate that all yeast exon sequences are dispensable for group II intron catalyzed inverse splicing. This is the first demonstration that an engineered ribozyme can be used to create a circular exon containing only human sequences, linked together at a precise desired ligation point. We expect these results to be generalizable, so that similar ribozymes can be designed to precisely create circular derivatives of any nucleotide sequence. PMID:9396820

  8. Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    PubMed Central

    Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L.; Mechery, Vinodh; Meyer, Michelle M.; Clote, Peter

    2014-01-01

    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

  9. Ribozyme-Mediated Repair of Mutant p53 Transcripts in Breast Cancer Cells

    DTIC Science & Technology

    1998-09-01

    To ascertain if repair of mutant p53 transcripts renders breast cancer cells less tumorigenic. 1.2. Targeted trans-splicing by the Tetrahymena ...rewrite parts of the initial transcript. The self-splicing reaction of the group I intron ribozyme from Tetrahymena thermophila is perhaps the most... Tetrahymena can splice an exon attached to its 3’ end onto a targeted 5’ exon RNA that is present in trans (Fig. 1B). In this reaction, the 5’ exon is

  10. Design and function of triplex hairpin ribozymes.

    PubMed

    Aquino-Jarquin, Guillermo; Rojas-Hernández, Ramiro; Alvarez-Salas, Luis Marat

    2010-01-01

    Triplex ribozymes allow for the individual activity of multiple trans-acting ribozymes producing higher target cleavage relative to tandem-expressed RZs. A triplex expression system based on a single hairpin ribozyme for the multiple expression (multiplex) vectors can be engineered to target RNAs with single or multiple antisense-accessible sites. System construction relies on triplex expression modules consisting of hairpin ribozyme cassettes flanked by ribozymes lacking catalytic domains. Multiplex vectors can be generated with single or multiple specificity by tandem cloning of triplex expression modules. Triplex ribozymes are initially tested in vitro using cis- and trans-cleavage assays against radioactive-labeled targets. In addition, triplex ribozymes are tested for cis and trans cleavage in vivo by transfection in cultured cells followed by ribonuclease protection assays (RPAs) and RT-PCR. The use of triplex configurations with multiplex ribozymes will provide the basis for the development of future RZ-based therapies and technologies.

  11. An mRNA is capped by a 2', 5' lariat catalyzed by a group I-like ribozyme.

    PubMed

    Nielsen, Henrik; Westhof, Eric; Johansen, Steinar

    2005-09-02

    Twin-ribozyme introns are formed by two ribozymes belonging to the group I family and occur in some ribosomal RNA transcripts. The group I-like ribozyme, GIR1, liberates the 5' end of a homing endonuclease messenger RNA in the slime mold Didymium iridis. We demonstrate that this cleavage occurs by a transesterification reaction with the joining of the first and the third nucleotide of the messenger by a 2',5'-phosphodiester linkage. Thus, a group I-like ribozyme catalyzes an RNA branching reaction similar to the first step of splicing in group II introns and spliceosomal introns. The resulting short lariat, by forming a protective 5' cap, might have been useful in a primitive RNA world.

  12. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes.

    PubMed

    Beilstein, Kim; Wittmann, Alexander; Grez, Manuel; Suess, Beatrix

    2015-05-15

    Robust synthetic devices are requisite for the construction of synthetic genetic circuits and important scientific and technological tools to control cellular processes. We developed tetracycline-dependent ribozymes, which can switch on gene expression up to 8.7-fold upon addition of tetracycline. A tetracycline aptamer was grafted onto the hammerhead ribozyme in such a way that ligand binding to the aptamers destroys a loop-loop interaction within the ribozyme thereby inhibiting ribozyme cleavage and allowing gene expression. The advantage of the presented regulatory system is its independence of any regulatory proteins. The stable integration of the ribozyme into the genome of HeLa cells indicates a low background activity in the absence of ligand. Furthermore, the ligand concentration required to robustly flip the switch does not affect cell viability and therefore allows a long-term application of the system. These properties turn the tetracycline-dependent ribozymes into a very promising tool for conditional gene expression in mammalian cells.

  13. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.

    PubMed Central

    Downs, W D; Cech, T R

    1996-01-01

    The kinetics of RNA folding were examined in the L-21 ribozyme, an RNA enzyme derived from the self-splicing Tetrahymena intron. Three UV-inducible crosslinks were mapped, characterized, and used as indicators for the folded state of the ribozyme. Together these data suggest that final structures are adopted first by the P4-P6 independently folding domain and only later in a region that positions the P1 helix (including the 5' splice site), a region whose folding is linked to that of a portion of the catalytic core. At intermediate times, a non-native structure forms in the region of the triple helical scaffold, which connects the major folding domains. At 30 degrees C, the unfolded ribozyme passes through these stages with a half-life of 2 min from the time magnesium cations are provided. At higher temperatures, the half-life is shortened but the order of events is unchanged. Thermal melting of the fully folded ribozyme also revealed a multi-stage process in which the steps of folding are reversed: the kinetically slowest structure is the least stable and melts first. These structures of the ribozyme also bind Mg2+ cooperatively and their relative affinity for binding seems to be a major determinant in the order of events during folding. Na+ can also substitute for Mg2+ to give rise to the same crosslinkable structures, but only at much higher concentrations. Specific binding sites for Mg2+ may make this cation particularly efficient at electrostatic stabilization during folding of these ribozyme structures. PMID:8756414

  14. Selective Inactivation of Functional RNAs by Ribozyme-Catalyzed Covalent Modification.

    PubMed

    Poudyal, Raghav R; Benslimane, Malak; Lokugamage, Melissa P; Callaway, Mackenzie K; Staller, Seth; Burke, Donald H

    2017-03-17

    The diverse functions of RNA provide numerous opportunities for programming biological circuits. We describe a new strategy that uses ribozyme K28min to covalently tag a specific nucleobase within an RNA or DNA target strand to regulate and selectively inactivate those nucleic acids. K28min variants with appropriately reprogrammed internal guide sequences efficiently tagged multiple sites from an mRNA and from aptamer and ribozyme targets. Upon covalent modification by the corresponding K28min variant, an ATP-binding aptamer lost all affinity for ATP, and the fluorogenic Mango aptamer lost its ability to activate fluorescence of its dye ligand. Modifying a hammerhead ribozyme near the catalytic core led to loss of almost all of its substrate-cleaving activity, but modifying the same hammerhead ribozyme within a tertiary stabilizing element that reduces magnesium dependence only impaired substrate cleavage at low magnesium concentration. Thus, ribozyme-mediated covalent modification can be used both to selectively inactivate and to fine-tune the activities of targeted functional RNAs, analogous to the effects of post-translational modifications of proteins. Ribozyme-catalyzed covalent modification could therefore be developed to regulate nucleic acids components of synthetic and natural circuits.

  15. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.

    PubMed

    Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2014-04-01

    Two modular elements (P5abc and ΔP5) in the Tetrahymena group I ribozyme can be separated physically to generate a two-piece ribozyme derivative consisting of a separately prepared P5abc (P5 RNA) and the rest of the intron (ΔP5 RNA). Molecular recognition in the interface assembling P5 RNA and ΔP5 RNA is strong and specific, and the catalytic ability of the two-piece ribozyme is comparable to that of the parent unimolecular ribozyme. We designed alternative P14 (L5c-L2) interacting modules participating in the assembly of P5 and ΔP5 and investigated their ability in the context of complex formation of the two-piece ribozyme and in vivo splicing of the unimolecular intron ribozyme. Combined use of alternative P14 and L5b-P6 interacting modules provided robust orthogonality to the P5/ΔP5 assembly interface of the bimolecular complex. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Kinetics of hairpin ribozyme cleavage in yeast.

    PubMed Central

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A). PMID:9292496

  17. Optimizing ribozymes for somatic cell gene therapy.

    PubMed

    Branch, A D; Klotman, P E

    1998-01-01

    Therapeutic ribozymes are created through a multistep process that requires trial and error. There are few established rules governing ribozyme design, but guidelines are emerging. It is not yet known whether hammerheads and hairpins, the two ribozymes most widely studied as potential gene therapy agents, have the inherent capability to ablate single genes. Their capacity for specificity and selectivity remains to be explored through rigorous experimentation. These experiments require a battery of control molecules, the characteristics of which are outlined here. Methods for completing the steps in the ribozyme development process, from the selection of a target gene to the quantitation of RNA levels, are also presented and discussed.

  18. Recent developments in the hammerhead ribozyme field.

    PubMed Central

    Vaish, N K; Kore, A R; Eckstein, F

    1998-01-01

    Developments in the hammerhead ribozyme field during the last two years are reviewed here. New results on the specificity of this ribozyme, the mechanism of its action and on the question of metal ion involvement in the cleavage reaction are discussed. To demonstrate the potential of ribozyme technology examples of the application of this ribozyme for the inhibition of gene expression in cell culture, in animals, as well as in plant models are presented. Particular emphasis is given to critical steps in the approach, including RNA site selection, delivery, vector development and cassette construction. PMID:9826743

  19. Cryoenzymology of the hammerhead ribozyme.

    PubMed Central

    Feig, A L; Ammons, G E; Uhlenbeck, O C

    1998-01-01

    The technique of cryoenzymology has been applied to the hammerhead ribozyme in an attempt to uncover a structural rearrangement step prior to cleavage. Several cryosolvents were tested and 40% (v/v) methanol in water was found to perturb the system only minimally. This solvent allowed the measurement of ribozyme activity between 30 and -33 degrees C. Eyring plots are linear down to -27 degrees C, but a drastic reduction in activity occurs below this temperature. However, even at extremely low temperatures, the rate is still quite pH dependent, suggesting that the chemical step rather than a structural rearrangement is still rate-limiting. The nonlinearity of the Eyring plot may be the result of a transition to a cold-denatured state or a glassed state. PMID:9769099

  20. Protein-responsive ribozyme switches in eukaryotic cells

    PubMed Central

    Kennedy, Andrew B.; Vowles, James V.; d'Espaux, Leo; Smolke, Christina D.

    2014-01-01

    Genetic devices that directly detect and respond to intracellular concentrations of proteins are important synthetic biology tools, supporting the design of biological systems that target, respond to or alter specific cellular states. Here, we develop ribozyme-based devices that respond to protein ligands in two eukaryotic hosts, yeast and mammalian cells, to regulate the expression of a gene of interest. Our devices allow for both gene-ON and gene-OFF response upon sensing the protein ligand. As part of our design process, we describe an in vitro characterization pipeline for prescreening device designs to identify promising candidates for in vivo testing. The in vivo gene-regulatory activities in the two types of eukaryotic cells correlate with in vitro cleavage activities determined at different physiologically relevant magnesium concentrations. Finally, localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or cytoplasm, providing new insight into their mechanism of action. By extending the sensing capabilities of this important class of gene-regulatory device, our work supports the implementation of ribozyme-based devices in applications requiring the detection of protein biomarkers. PMID:25274734

  1. Influence of Substrate and Ribozyme Sequences on the Functions of Ribozyme.

    PubMed

    Song, Ren-Tao; Li, Jie; Jin, Hai-Ling; Zhang, Qing-Qi; Xu, Zheng-Kai

    1997-01-01

    The mono-component ribozyme RZ1, RZ3 and RZ4 were ligated in different orders into two tri-component ribozymes RZ134 and RZ413.Both tri-component ribozymes could cleave individual specific substrate sequences from different regions of the tobacco mosaic virus (TMV) RNA. The cleavage efficiency and specificity of each unit-ribozymes in the tri-component ribozymes to its substrate was similar to its mono-ribozyme counterpart. When the three substrates were mixed and used as substrates for the tri-component ribozymes, only the activity of the unit-ribozymes RZ4 was clearly observed, the activities of the other two unit-ribozymes were greatly reduced. The reduction was mainly due to the fact that the two substrates BT2(+) and BT2(-) for RZ1 and RZ3 were complementary in sequence to each other and therefore formed duplex in the target region, thus must have strongly prevented the two ribozymes from forming the correct structures required for cleavage activity. In addition to its activity on the substrate BT2(+), the ribozyme RZ1 was found unexpectedly to be able to cleave BT4(-) specifically into various unique products.

  2. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  3. How do metal ions direct ribozyme folding?

    NASA Astrophysics Data System (ADS)

    Denesyuk, Natalia A.; Thirumalai, D.

    2015-10-01

    Ribozymes, which carry out phosphoryl-transfer reactions, often require Mg2+ ions for catalytic activity. The correct folding of the active site and ribozyme tertiary structure is also regulated by metal ions in a manner that is not fully understood. Here we employ coarse-grained molecular simulations to show that individual structural elements of the group I ribozyme from the bacterium Azoarcus form spontaneously in the unfolded ribozyme even at very low Mg2+ concentrations, and are transiently stabilized by the coordination of Mg2+ ions to specific nucleotides. However, competition for scarce Mg2+ and topological constraints that arise from chain connectivity prevent the complete folding of the ribozyme. A much higher Mg2+ concentration is required for complete folding of the ribozyme and stabilization of the active site. When Mg2+ is replaced by Ca2+ the ribozyme folds, but the active site remains unstable. Our results suggest that group I ribozymes utilize the same interactions with specific metal ligands for both structural stability and chemical activity.

  4. HDV-like self-cleaving ribozymes

    PubMed Central

    Webb, Chiu-Ho T

    2011-01-01

    HDV ribozymes catalyze their own scission from the transcript during rolling circle replication of the hepatitis delta virus. In vitro selection of self-cleaving ribozymes from a human genomic library revealed an HDV-like ribozyme in the second intron of the human CPEB3 gene and recent results suggest that this RNA affects episodic memory performance. Bioinformatic searches based on the secondary structure of the HDV/CPEB3 fold yielded numerous functional ribozymes in a wide variety of organisms. Genomic mapping of these RNAs suggested several biological roles, one of which is the 5′ processing of non-LTR retrotransposons. The family of HDV-like ribozymes thus continues to grow in numbers and biological importance. PMID:21734469

  5. Increased Ribozyme Activity in Crowded Solutions*

    PubMed Central

    Desai, Ravi; Kilburn, Duncan; Lee, Hui-Ting; Woodson, Sarah A.

    2014-01-01

    Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg2+ concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg2+ threshold at which activity was detected and increased total RNA cleavage at high Mg2+ concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates. PMID:24337582

  6. Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme.

    PubMed

    Matzner, Daniel; Schüller, Anna; Seitz, Torben; Wittmann, Valentin; Mayer, Günter

    2017-09-12

    The glmS ribozyme is a bacterial gene-regulating riboswitch that controls cell wall synthesis, depending on glucosamine-6-phosphate as a cofactor. Due to the presence of this ribozyme in several human pathogen bacteria (e.g., MRSA, VRSA), the glmS ribozyme represents an attractive target for the development of artificial cofactors. The substitution of the ring oxygen in carbohydrates by functionalized methylene groups leads to a new generation of glycomimetics that exploits distinct interaction possibilities with their target structure in biological systems. Herein, we describe the synthesis of mono-fluoro-modified carba variants of α-d-glucosamine and β-l-idosamine. (5aR)-Fluoro-carba-α-d-glucosamine-6-phosphate is a synthetic mimic of the natural ligand of the glmS ribozyme and is capable of effectively addressing its unique self-cleavage mechanism. However, in contrast to what was expected, the activity is significantly decreased compared to its non-fluorinated analog. By combining self-cleavage assays with the Bacillus subtilis and Staphylococcus aureus glmS ribozyme and molecular docking studies, we provide a structure-activity relationship for fluorinated carba-sugars. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Visualizing group II intron catalysis through the stages of splicing

    PubMed Central

    Marcia, Marco; Pyle, Anna Marie

    2012-01-01

    SUMMARY Group II introns are self-splicing ribozymes that share a reaction mechanism and a common ancestor with the eukaryotic spliceosome, thereby providing a model system for understanding the chemistry of pre-mRNA splicing. Here we report fourteen crystal structures of a group II intron at different stages of catalysis. We provide a detailed mechanism for the first step of splicing, we describe a reversible conformational change between the first and the second steps of splicing, and we present the ligand-free intron structure after splicing, in an active state that corresponds to the retrotransposable form of the intron. During each reaction, the reactants are aligned and activated by a heteronuclear four-metal-ion center that contains a metal cluster and obligate monovalent cations, adopting a structural arrangement similar to that of protein endonucleases. Based on our data, we propose a model for the splicing cycle and show that it is applicable to the eukaryotic spliceosome. PMID:23101623

  8. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.

    PubMed

    Tasiouka, K I; Burke, J M

    1994-06-24

    Here, we show that a single RNA molecule derived from a group-I intron can provide the catalytic activity, the substrate recognition domain and the attacking nucleophile in a reaction that mimics the exon ligation step of splicing. To accomplish this reaction, we have linked a 5' exon sequence to the 3' end of an attenuated form of the self-splicing Tetrahymena rRNA intron. The ribozyme (I-E1) attacks an oligoribonucleotide analog of the 3' splice site (I'-E2) to generate a product containing ligated exons (I-E1-E2) and a small intron fragment (I'). Two modified introns were constructed and tested for activity. A construct designed to interact with the 3' splice site through intermolecular P9.0 and P10 helices was found to be inactive due to failure to form a stable ribozyme-substrate complex. A second modified intron and substrate combination was engineered, in which the complex was further stabilized by an intermolecular P9.2 helix. In this case, stable complexes and reaction products were identified. The reaction efficiency was low compared to splicing of the unmodified intron-containing precursor, and will be optimized in future experiments. Following optimization, we believe that this system may be exploited to examine the functional consequences of a wide variety of 3' splice-site modifications, and may provide the basis for development of highly selective trans-acting ribozymes.

  9. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.

    PubMed Central

    Ikawa, Y; Shiraishi, H; Inoue, T

    1999-01-01

    The peripheral P2.1 domain of the Tetrahymena group I intron ribozyme has been shown to be non-essential for splicing. We found, however, that separately prepared P2.1 RNA efficiently accelerates the 3' splice-site-specific hydrolysis reaction of a mutant ribozyme lacking both P2.1 and its upstream region in trans. We report here the unusual properties of this trans-activation. Compensatory mutational analysis revealed that non-native long-range base-pairings between the loop region of P2.1 RNA and L5c region of the mutant ribozyme are needed for the activation in spite of the fact that P2.1 forms base-pairings with P9.1 in the Tetrahymena ribozyme. The trans -activation depends on the non-native RNA-RNA interaction together with the higher order structure of P2.1 RNA. This activation is unique among the known trans-activations that utilize native tertiary interactions or RNA chaperons. PMID:10075996

  10. Isolation of fast purine nucleotide synthase ribozymes.

    PubMed

    Lau, Matthew W L; Cadieux, Kelly E C; Unrau, Peter J

    2004-12-08

    Here we report the in vitro selection of fast ribozymes capable of promoting the synthesis of a purine nucleotide (6-thioguanosine monophosphate) from tethered 5-phosphoribosyl 1-pyrophosphate (PRPP) and 6-thioguanine ((6S)Gua). The two most proficient purine synthases have apparent efficiencies of 284 and 230 M(-1) min(-1) and are both significantly more efficient than pyrimidine nucleotide synthase ribozymes selected previously by a similar approach. Interestingly, while both ribozymes showed good substrate discrimination, one ribozyme had no detectable affinity for 6-thioguanine while the second had a K(m) of approximately 80 muM, indicating that these ribozymes use considerably different modes of substrate recognition. The purine synthases were isolated after 10 rounds of selection from two high-diversity RNA pools. The first pool contained a long random sequence region. The second pool contained random sequence elements interspersed with the mutagenized helical elements of a previously characterized 4-thiouridine synthase ribozyme. While nearly all of the ribozymes isolated from this biased pool population appeared to have benefited from utilizing one of the progenitor's helical elements, little evidence for more complicated secondary structure preservation was evident. The discovery of purine synthases, in addition to pyrimidine synthases, demonstrates the potential for nucleotide synthesis in an 'RNA World' and provides a context from which to study small molecule RNA catalysis.

  11. Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA.

    PubMed Central

    Campbell, T B; Cech, T R

    1995-01-01

    Positions 2-6 of the substrate-binding internal guide sequence (IGS) of the L-21 Sca I form of the Tetrahymena thermophila intron were mutagenized to produce a GN5 IGS library. Ribozymes within the GN5 library capable of efficient cleavage of an 818-nt human immunodeficiency virus type 1 vif-vpr RNA, at 37 degrees C, were identified by ribozyme-catalyzed guanosine addition to the 3' cleavage product. Three ribozymes (IGS = GGGGCU, GGCUCC, and GUGGCU) within the GN5 library that actively cleaved the long substrate were characterized kinetically and compared to the wild-type ribozyme (GGAGGG) and two control ribozymes (GGAGUC and GGAGAU). The two control ribozymes have specific sites within the long substrate, but were not identified during screening of the library. Under single-turnover conditions, ribozymes GGGGCU, GGCUCC, and GUGGCU cleaved the 818-nt substrate 4- to 200-fold faster than control ribozymes. Short cognate substrates, which should be structureless and therefore accessible to ribozyme binding, were cleaved at similar rates by all ribozymes except GGGGCU, which showed a fourfold rate enhancement. The rate of cleavage of long relative to short substrate under single-turnover conditions suggests that GGCUCC and GUGGCU were identified because of accessibility to their specific cleavage sites within the long substrate (substrate-specific effects), whereas GGGGCU was identified because of an enhanced rate of substrate binding despite a less accessible site in the long substrate. Even though screening was performed with 100-fold excess substrate (relative to total ribozyme), the rate of multiple-turnover catalysis did not contribute to identification of trans-cleaving ribozymes in the GN5 library. PMID:7489519

  12. Conditional control of suicide gene expression in tumor cells with theophylline-responsive ribozyme.

    PubMed

    Zhang, Y; Wang, J; Cheng, H; Sun, Y; Liu, M; Wu, Z; Pei, R

    2017-02-01

    Numerous synthetic RNA-based controls for integrating sensing switches with function devices have been demonstrated in a variety of organisms for gene regulation. Although potential advantages of RNA-based genetic control strategies have been shown in clinical applications, successfully extending these engineered systems into medical applications has seldom been reported. Here, a synthetic RNA-based ribozyme system and its application in advancing rationally designed cellular therapy were described. The theophylline-responsive, ribozyme-based device provided a powerful platform for suicide gene expression regulation in tumor cells. Moreover, we demonstrate the ability of our synthetic controller to modulate effectively the viability of the cells in response to drug input. Our RNA-based regulatory system could dose-dependently fine-tune transgene expression in mammalian cells and address urgent limitations in existing genetic control strategies for gene- and cell-based therapies in the future.

  13. Preparation and identification of anti-transforming growth factor β1 U1 small nuclear RNA chimeric ribozyme in vitro

    PubMed Central

    Lin, Ju-Sheng; Song, Yu-Hu; Kong, Xin-Juan; Li, Bin; Liu, Nan-Zhi; Wu, Xiao-Li; Jin, You-Xin

    2003-01-01

    AIM: To study the preparation and cleavage activity of anti-transforming growth factor (TGF)β1 U1 small nuclear (sn) RNA chimeric hammerhead ribozymes in vitro. METHODS: TGFβ1 partial gene fragment was cloned into T-vector at the downstream of T7 promoter. 32p-labeled TGFβ1 partial transcripts as target RNA were transcribed in vitro and purified by denaturing polyacrylamide gel electrophoresis (PAGE). Anti-TGFβ1 ribozymes were designed by computer, then synthetic ribozyme fragments were cloned into the U1 ribozyme vector pZeoU1EcoSpe containing U1 snRNA promoter/enhancer and terminator. 32p-labeled U1 snRNA chimeric ribozyme transcripts were gel-purified, incubated with target-RNAs at different conditions and autoradiographed after running denaturing PAGE. RESULTS: Active U1snRNA chimeric ribozyme (U1Rz803) had the best cleavage activity at 50 °C; at 37 °C, it was active, Km = 34.48 nmol/L, Kcat = 0.14 min-1; while the point mutant ribozyme U1Rz803m had no cleavage activity, so these indicated the design of U1Rz803 was correct. CONCLUSION: U1Rz803 prepared in this study possessed the perfect specific catalytic cleavage activity. These results indicate U1 snRNA chimeric ribozyme U1Rz803 may suppress the expression of TGFβ1 in vivo, therefore it may provide a new avenue for the treatment of liver fibrosis in the future. PMID:12632521

  14. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  15. Predicted group II intron lineages E and F comprise catalytically active ribozymes.

    PubMed

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-09-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.

  16. Predicted group II intron lineages E and F comprise catalytically active ribozymes

    PubMed Central

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-01-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms. PMID:23882113

  17. A strategy for developing a hammerhead ribozyme for selective RNA cleavage depending on substitutional RNA editing

    PubMed Central

    Fukuda, Masatora; Kurihara, Kei; Tanaka, Yasuyoshi; Deshimaru, Masanobu

    2012-01-01

    Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo. PMID:22798264

  18. A ribozyme that ligates RNA to protein.

    PubMed

    Baskerville, Scott; Bartel, David P

    2002-07-09

    We have used a combination of in vitro selection and rational design to generate ribozymes that form a stable phosphoamide bond between the 5' terminus of an RNA and a specific polypeptide. This reaction differs from that of previously identified ribozymes, although the product is analogous to the enzyme-nucleotidyl intermediates isolated during the reactions of certain proteinaceous enzymes, such as guanyltransferase, DNA ligase, and RNA ligase. Comparative sequence analysis of the isolated ribozymes revealed that they share a compact secondary structure containing six stems arranged in a four-helix junction and branched pseudoknot. An optimized version of the ribozyme reacts with substrate-fusion proteins, allowing it to be used to attach RNA tags to proteins both in vitro and within bacterial cells, suggesting a simple way to tag a specific protein with amplifiable information.

  19. Kinetic Analysis of δ Ribozyme Cleavage†

    PubMed Central

    Mercure, Stéphane; Lafontaine, Daniel; Ananvoranich, Sirinart; Perreault, Jean-Pierre

    2010-01-01

    The ability of δ ribozyme to catalyze the cleavage of an 11-mer RNA substrate was examined under both single- and multiple-turnover conditions. In both cases only small differences in the kinetic parameters were observed in the presence of either magnesium or calcium as cofactor. Under multiple-turnover conditions, the catalytic efficiency of the ribozyme (kcat/KM) was higher at 37 °C than at 56 °C. The cleavage reaction seems to be limited by the product release step at 37 °C and by the chemical cleavage step at 56 °C. We observed substrate inhibition at high concentrations of the 11-mer substrate. Cleavage rate constants were determined with a structural derivative characterized by an ultrastable L4 tetraloop. The kinetic parameters (kcat and KM) and dissociation constant (Kd) were almost identical for both ribozymes, suggesting that the stability of the L4 loop has a negligible impact on the catalytic activities of the examined ribozymes. Various cleavage inhibition and gel-shift assays with analogues, substrate, and both active and inactive ribozymes were performed. The 2′-hydroxyl group adjacent to the scissile phosphate was shown to be involved in binding with the ribozyme, while the essential cytosine residue of the J4/2 junction was shown to contribute to substrate association. We clearly show that substrate binding to the δ ribozyme is not restricted to the formation of a helix located downstream of the cleavage site. Using these results, we postulate a kinetic pathway involving a conformational transition step essential for the formation of the active ribozyme/substrate complex. PMID:9836591

  20. A peripheral element assembles the compact core structure essential for group I intron self-splicing

    PubMed Central

    Xiao, Mu; Li, Tingting; Yuan, Xiaoyan; Shang, Yuan; Wang, Fu; Chen, Shoudeng; Zhang, Yi

    2005-01-01

    The presence of non-conserved peripheral elements in all naturally occurring group I introns underline their importance in ensuring the natural intron function. Recently, we reported that some peripheral elements are conserved in group I introns of IE subgroup. Using self-splicing activity as a readout, our initial screening revealed that one such conserved peripheral elements, P2.1, is mainly required to fold the catalytically active structure of the Candida ribozyme, an IE intron. Unexpectedly, the essential function of P2.1 resides in a sequence-conserved short stem of P2.1 but not in a long-range interaction associated with the loop of P2.1 that stabilizes the ribozyme structure. The P2.1 stem is indispensable in folding the compact ribozyme core, most probably by forming a triple helical interaction with two core helices, P3 and P6. Surprisingly, although the ribozyme lacking the P2.1 stem renders a loosely folded core and the loss of self-splicing activity requires two consecutive transesterifications, the mutant ribozyme efficiently catalyzes the first transesterification reaction. These results suggest that the intron self-splicing demands much more ordered structure than does one independent transesterification, highlighting that the universally present peripheral elements achieve their functional importance by enabling the highly ordered structure through diverse tertiary interactions. PMID:16100381

  1. In vivo evolution of a catalytic RNA couples trans-splicing to translation.

    PubMed

    Olson, Karen E; Dolan, Gregory F; Müller, Ulrich F

    2014-01-01

    How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme's trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.

  2. Self-Incorporation of Coenzymes by Ribozymes

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    RNA molecules that are assembled from the four standard nucleotides contain a limited number of chemical functional groups, a characteristic that is generally thought to restrict the potential for catalysis by ribozymes. Although polypeptides carry a wider range of functional groups, many contemporary protein-based enzymes employ coenzymes to augment their capabilities. The coenzymes possess additional chemical moieties that can participate directly in catalysis and thereby enhance catalytic function. In this work, we demonstrate a mechanism by which ribozymes can supplement their limited repertoire of functional groups through RNAcatalyzed incorporation of various coenzymes and coenzyme analogues. The group I ribozyme of Tetrahymena thermophila normally mediates a phosphoester transfer reaction that results in the covalent attachment of guanosine to the ribozyme. Here, a shortened version of the ribozyme is shown to catalyze the self-incorporation of coenzymes and coenzyme analogues, such as NAD+ and dephosphorylated CoA-SH. Similar ribozyme activities may have played an important role in the "RNA world," when RNA enzymes are thought to have maintained a complex metabolism in the absence of proteins and would have benefited from the inclusion of additional functional groups.

  3. A Self-Replicating Ligase Ribozyme

    NASA Technical Reports Server (NTRS)

    Paul, Natasha; Joyce, Gerald F.

    2002-01-01

    A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of Itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 per min, whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 x 10(exp -11) M per min. Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.

  4. A Self-Replicating Ligase Ribozyme

    NASA Technical Reports Server (NTRS)

    Paul, Natasha; Joyce, Gerald F.

    2002-01-01

    A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of Itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 per min, whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 x 10(exp -11) M per min. Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.

  5. Intron cleavage affects processing of alternatively spliced transcripts

    PubMed Central

    Pastor, Tibor; Dal Mas, Andrea; Talotti, Gabriele; Bussani, Erica; Pagani, Franco

    2011-01-01

    We previously showed that the insertion of a hammerhead ribozyme (Rz) in a critical intronic position between the EDA exon and a downstream regulatory element affects alternative splicing. Here we evaluate the effect of other intronic cotranscriptional cleavage events on alternative pre-mRNA processing using different ribozymes (Rz) and Microprocessor target sequences (MTSs). In the context of the fibronectin EDA minigene, intronic MTSs were cleaved very inefficiently and did not affect alternative splicing or the level of mature transcripts. On the contrary, all hammerhead Rz derivatives and hepatitis δ Rz were completely cleaved before a splicing decision and able to affect alternative splicing. Despite the very efficient Rz-mediated cleavage, the levels of mature mRNA were only reduced to ∼40%. We show that this effect on mature transcripts occurs regardless of the type and intronic position of Rzs, or changes in alternative splicing and exon definition. Thus, we suggest that intron integrity is not strictly required for splicing but is necessary for efficient pre-mRNA biosynthesis. PMID:21673105

  6. High‐Throughput Mutational Analysis of a Twister Ribozyme

    PubMed Central

    Kobori, Shungo

    2016-01-01

    Abstract Recent discoveries of new classes of self‐cleaving ribozymes in diverse organisms have triggered renewed interest in the chemistry and biology of ribozymes. Functional analysis and engineering of ribozymes often involve performing biochemical assays on multiple ribozyme mutants. However, because each ribozyme mutant must be individually prepared and assayed, the number and variety of mutants that can be studied are severely limited. All of the single and double mutants of a twister ribozyme (a total of 10 296 mutants) were generated and assayed for their self‐cleaving activity by exploiting deep sequencing to count the numbers of cleaved and uncleaved sequences for every mutant. Interestingly, we found that the ribozyme is highly robust against mutations such that 71 % and 30 % of all single and double mutants, respectively, retain detectable activity under the assay conditions. It was also observed that the structural elements that comprise the ribozyme exhibit distinct sensitivity to mutations. PMID:27461281

  7. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  8. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  9. Synthesis of 2'-modified nucleotides and their incorporation into hammerhead ribozymes.

    PubMed Central

    Beigelman, L; Karpeisky, A; Matulic-Adamic, J; Haeberli, P; Sweedler, D; Usman, N

    1995-01-01

    Several 2'-modified ribonucleoside phosphoramidites have been prepared for structure-activity studies of the hammerhead ribozyme. The aim of these studies was to design and synthesize catalytically active and nuclease-resistant ribozymes. Synthetic schemes for stereoselective synthesis of the R isomer of 2'-deoxy-2'-C-allyl uridine and cytidine phosphoramidites, based on the Keck allylation procedure, were developed. Protection of the 2'-amino group in 2'-deoxy-2'-aminouridine was optimized and a method for the convenient preparation of 5'-O-dimethoxytrityl-2'-deoxy-2'-phthalimidouridine 3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) was developed. During the attempted preparation of the 2'-O-t-butyldimethylsilyl-3'-O-phosphoramidite of arabinouridine a reversed regioselectivity in the silylation reaction, compared with the published procedure, was observed, as well as the unexpected formation of the 2,2'-anhydronucleoside. A possible mechanism for this cyclization is proposed. The synthesis of 2'-deoxy-2'-methylene and 2'-deoxy-2'-difluoromethylene uridine phosphoramidites is described. Based on a '5-ribose' model for essential 2'-hydroxyls in the hammerhead ribozyme these 2'-modified monomers were incorporated at positions U4 and/or U7 of the catalytic core. A number of these ribozymes had almost wild-type catalytic activity and improved stability in human serum, compared with an all-RNA molecule. PMID:7501467

  10. 2-C-methyluridine modified hammerhead ribozyme against the estrogen receptor.

    PubMed

    Pontiggia, Rodrigo; Pontiggia, Osvaldo; Simian, Marina; Montserrat, Javier M; Engels, Joachim W; Iribarren, Adolfo M

    2010-05-01

    A new synthesis of 2'-C-methyluridine phosphoramidite is presented. Special emphasis is dedicated to the improvement of the protection of the tertiary 2'-hydroxyl group. Comparison to previous protecting strategies and analysis of stability under 5'-DMTr removing conditions are discussed. The synthetic incorporation of this modified nucleoside into the catalytic core of a hammerhead ribozyme against the estrogen receptor alpha protein (ER-alpha), and transfection experiments in MCF-7 cell line are also presented.

  11. Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo.

    PubMed

    Sioud, M

    1996-05-01

    We have utilized synthetic ribozymes to modulate the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-alpha) by peritoneal cells. Two hammerhead ribozymes (mRz1 and mRz2) were prepared by transcription in vitro and their activities in vitro and in vivo were investigated. Both ribozymes cleaved their RNA target with an apparent turnover number (kcat) of 2 min(-1), and inhibited TNF-alpha gene expression in vitro by 50% and 70%, respectively. When mRz1 and mRz2, entrapped in liposomes, were delivered into mice by intraperitoneal injection, they inhibited LPS-induced TNF-alpha gene expression in vivo with mRz2 being the most effective. This enhanced activity could result from the facilitation of catalysis by cellular endogenous proteins, since they specifically bind to mRz2 as compared to mRz1. Furthermore, a significant mRz2 activity can be recovered from peritoneal cells 2 days post-administration in vivo. The anti-TNF-alpha ribozyme treatment in vivo resulted in a more significant reduction of LPS-induced IFN-gamma protein secretion compared to IL-10. In contrast to this pleiotropic effect, the anti-TNF-alpha ribozyme treatment did not affect the heterogenous expression of Fas ligand by peritoneal cells, indicating the specificity of the treatment. Taken together, the present data indicate that the biological effects of TNF-alpha can be modulated by ribozymes. In addition, the data suggest that ribozymes can be administered in a drug-like manner, and therefore indicate their potential in clinical applications.

  12. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome

    PubMed Central

    Sontheimer, Erik J.; Gordon, Peter M.; Piccirilli, Joseph A.

    1999-01-01

    The identical reaction pathway executed by the spliceosome and self-splicing group II intron ribozymes has prompted the idea that both may be derived from a common molecular ancestor. The minimal sequence and structural similarities between group II introns and the spliceosomal small nuclear RNAs, however, have left this proposal in question. Mechanistic comparisons between group II self-splicing introns and the spliceosome are therefore important in determining whether these two splicing machineries may be related. Here we show that 3′-sulfur substitution at the 5′ splice site of a group II intron causes a metal specificity switch during the first step of splicing. In contrast, 3′-sulfur substitution has no significant effect on the metal specificity of the second step of cis-splicing. Isolation of the second step uncovers a metal specificity switch that is masked during the cis-splicing reaction. These results demonstrate that group II intron ribozymes are metalloenzymes that use a catalytic metal ion for leaving group stabilization during both steps of self-splicing. Furthermore, because 3′-sulfur substitution of a spliceosomal intron has precisely the same effects as were observed during cis-splicing of the group II intron, these results provide striking parallels between the catalytic mechanisms employed by these two systems. PMID:10398685

  13. Crystal Structure of the VS ribozyme

    PubMed Central

    Suslov, Nikolai B.; DasGupta, Saurja; Huang, Hao; Fuller, James R.; Lilley, David M.J.; Rice, Phoebe A.; Piccirilli, Joseph A.

    2015-01-01

    Varkud Satellite (VS) ribozyme mediates rolling circle replication of a plasmid found in the Neurospora mitochondria. We report crystal structures of this ribozyme at 3.1Å resolution, revealing an intertwined dimer formed by an exchange of substrate helices. Within each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional significance of active site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution. PMID:26414446

  14. Schistosome satellite DNA encodes active hammerhead ribozymes.

    PubMed

    Ferbeyre, G; Smith, J M; Cedergren, R

    1998-07-01

    Using a computer program designed to search for RNA structural motifs in sequence databases, we have found a hammerhead ribozyme domain encoded in the Smalpha repetitive DNA of Schistosoma mansoni. Transcripts of these repeats are expressed as long multimeric precursor RNAs that cleave in vitro and in vivo into unit-length fragments. This RNA domain is able to engage in both cis and trans cleavage typical of the hammerhead ribozyme. Further computer analysis of S. mansoni DNA identified a potential trans cleavage site in the gene coding for a synaptobrevin-like protein, and RNA transcribed from this gene was efficiently cleaved by the Smalpha ribozyme in vitro. Similar families of repeats containing the hammerhead domain were found in the closely related Schistosoma haematobium and Schistosomatium douthitti species but were not present in Schistosoma japonicum or Heterobilharzia americana, suggesting that the hammerhead domain was not acquired from a common schistosome ancestor.

  15. Crystallographic analysis of small ribozymes and riboswitches.

    PubMed

    Lippa, Geoffrey M; Liberman, Joseph A; Jenkins, Jermaine L; Krucinska, Jolanta; Salim, Mohammad; Wedekind, Joseph E

    2012-01-01

    Ribozymes and riboswitches are RNA motifs that accelerate biological reactions and regulate gene expression in response to metabolite recognition, respectively. These RNA molecules gain functionality via complex folding that cannot be predicted a priori, and thus requires high-resolution three-dimensional structure determination to locate key functional attributes. Herein, we present an overview of the methods used to determine small RNA structures with an emphasis on RNA preparation, crystallization, and structure refinement. We draw upon examples from our own research in the analysis of the leadzyme ribozyme, the hairpin ribozyme, a class I preQ(1) riboswitch, and variants of a larger class II preQ(1) riboswitch. The methods presented provide a guide for comparable investigations of noncoding RNA molecules including a 48-solution, "first choice" RNA crystal screen compiled from our prior successes with commercially available screens.

  16. In vitro Selection of glmS Ribozymes

    PubMed Central

    Link, Kristian H.; Breaker, Ronald R.

    2017-01-01

    Summary Riboswitches modulate gene expression in eubacteria and eukaryotes in response to changing concentrations of small molecule metabolites. In most examples studied to date, riboswitches achieve both metabolite sensing and gene control functions without the obligate involvement of protein factors. These findings validate the hypothesis that RNA molecules could be engineered to function as designer gene control elements that sense and respond to different ligands. We believe that reverse engineering natural riboswitches could provide an intellectual foundation for those who wish to build synthetic riboswitches. Also, natural riboswitches might serve as starting points for efforts to change ligand specificity or gene control function through mutation and selection in vitro. In this chapter, we describe how in vitro selection can be used to create variant glmS ribozymes. Additionally, we discuss how these techniques can be extended to other riboswitch classes. PMID:19381572

  17. Application of computational technologies to ribozyme biotechnology products

    NASA Astrophysics Data System (ADS)

    Christoffersen, Ralph E.; McSwiggen, James; Konings, Danielle

    1994-07-01

    Ribozymes are RNA molecules that act enzymatically to cleave other RNA molecules. The cleavage reaction requires the binding of ribozyme to specific sites on the target RNA through (mostly) Watson-Crick base-pairing interactions. Association of ribozyme with target completes a three-dimensional ribozyme/target complex which results in cleavage of the target RNA. We are employing both computational and experimental approaches to identify sites on target RNA molecules that are open to ribozyme attack and to determine which ribozymes are most active against those sites. Two types of computational technologies are available for aiding in the identification of target sites and design of active ribozymes. First, DNA/RNA sequence analysis software is employed to identify sequence motifs necessary for ribozyme cleavage and to look for sequence conservation between different sources of the target organism so that ribozymes with the broadest possible target range can be designed. Second, RNA folding algorithms are employed to predict the secondary structure of both ribozyme and target RNA in an attempt to identify combinations of ribozyme and target site that will successfully associate prior to ribozyme cleavage. The RNA folding algorithms utilize a set of thermodynamic parameters obtained from measurements on short RNA duplexes; while these rules give reasonable predictions of secondary structure for a small set of highly structured RNAs, they remain largely untested for predicting the structure of messenger RNAs. This paper outlines the current status of designing ribozymes that fold correctly and of locating target sites that are sufficiently unfolded to allow ribozyme cleavage.

  18. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    DTIC Science & Technology

    2015-11-04

    CD. 2014. Protein-responsive ribozyme switches in eukaryotic cells. Nuc Acids Res. 42: 12306-21. 3. Bloom RJ, Winkler SM, Smolke CD. 2015. Synthetic...tailoring of RNA device activity. Nuc Acids Res. 40: e154. 2. Kennedy AB, Liang JC, Smolke CD. 2013. A versatile cis-blocking and trans-activation...strategy for ribozyme characterization. Nuc Acids Res. 41: e41. 3. Wei KY, Chen YY, Smolke CD. 2013. A yeast-based rapid prototype platform for gene

  20. Ribozymes that can be regulated by external stimuli.

    PubMed

    Frommer, Jennifer; Appel, Bettina; Müller, Sabine

    2015-02-01

    Ribozymes have been known for about 30 years, and nowadays are understood well enough to be turned into useful tools for a number of applications in vitro and in vivo. Allosteric ribozymes switch on and off their activity in response to a specific chemical (ligand) or physical (temperature, light) signal. The possibility of controlling ribozyme activity by external stimuli is of particular relevance for applications in different fields, such as environmental and medicinal diagnostics, molecular computing, control of gene expression and others. Herein, we review recent advances and describe selected examples of addressable ribozymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2006-12-01

    Chloroplast genomes in plants and green algae contain numerous group II introns, large ribozymes that splice via the same chemical steps as spliceosome-mediated splicing in the nucleus. Most chloroplast group II introns are degenerate, requiring interaction with nucleus-encoded proteins to splice in vivo. Genetic approaches in maize (Zea mays) and Chlamydomonas reinhardtii have elucidated distinct sets of proteins that assemble with chloroplast group II introns and facilitate splicing. Little information is available, however, concerning these processes in Arabidopsis (Arabidopsis thaliana). To determine whether the paucity of data concerning chloroplast splicing factors in Arabidopsis reflects a fundamental difference between protein-facilitated group II splicing in monocot and dicot plants, we examined the mutant phenotypes associated with T-DNA insertions in Arabidopsis genes encoding orthologs of the maize chloroplast splicing factors CRS1, CAF1, and CAF2 (AtCRS1, AtCAF1, and AtCAF2). We show that the splicing functions and intron specificities of these proteins are largely conserved between maize and Arabidopsis, indicating that these proteins were recruited to promote the splicing of plastid group II introns prior to the divergence of monocot and dicot plants. We show further that AtCAF1 promotes the splicing of two group II introns, rpoC1 and clpP-intron 1, that are found in Arabidopsis but not in maize; AtCAF1 is the first splicing factor described for these introns. Finally, we show that a strong AtCAF2 allele conditions an embryo-lethal phenotype, adding to the body of data suggesting that cell viability is more sensitive to the loss of plastid translation in Arabidopsis than in maize.

  2. Structural and biochemical characterization of DSL ribozyme.

    PubMed

    Horie, Souta; Ikawa, Yoshiya; Inoue, Tan

    2006-01-06

    We recently reported on the molecular design and synthesis of a new RNA ligase ribozyme (DSL), whose active site was selected from a sequence library consisting of 30 random nucleotides set on a defined 3D structure of a designed RNA scaffold. In this study, we report on the structural and biochemical analyses of DSL. Structural analysis indicates that the active site, which consists of the selected sequence, attaches to the folded scaffold as designed. To see whether DSL resembles known ribozymes, a biochemical assay was performed. Metal-dependent kinetic studies suggest that the ligase requires Mg2+ ions. The replacement of Mg2+ with Co(NH3)6(3+) prohibits the reaction, indicating that DSL requires innersphere coordination of Mg2+ for a ligation reaction. The results show that DSL has requirements similar to those of previously reported catalytic RNAs.

  3. Solvent Structure and Hammerhead Ribozyme Catalysis

    PubMed Central

    Martick, Monika; Lee, Tai-Sung; York, Darrin M.; Scott, William G.

    2008-01-01

    SUMMARY Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 Å structure of the full-length hammerhead ribozyme by using X-ray crystallography in combination with molecular dynamics simulations. A single Mn2+ is observed to bind directly to the A9 phosphate in the active site, accompanying a hydrogen-bond network involving a well-ordered water molecule spanning N1 of G12 (the general base) and 2′-O of G8 (previously implicated in general acid catalysis) that we propose, based on molecular dynamics calculations, facilitates proton transfer in the cleavage reaction. Phosphate-bridging metal interactions and other mechanistic hypotheses are also tested with this approach. PMID:18420140

  4. One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

    NASA Astrophysics Data System (ADS)

    Schultes, Erik A.; Bartel, David P.

    2000-07-01

    We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.

  5. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells.

    PubMed

    Collis, S J; Tighe, A; Scott, S D; Roberts, S A; Hendry, J H; Margison, G P

    2001-04-01

    The strand transferase RAD51 is a component of the homologous recombination repair pathway. To examine the contribution of RAD51 to the genotoxic effects of ionising radiation, we have used a novel ribozyme strategy. A reporter gene vector was constructed so that expression of an inserted synthetic double-stranded ribozyme-encoding oligonucleotide would be under the control of the cytomegalovirus immediate-early gene enhancer/promoter system. The prostate tumour cell line LNCaP was transfected with this vector or a control vector, and a neomycin resistance gene on the vector was used to create geneticin-resistant stable cell lines. Three stable cell lines were shown by western blot analysis to have significant down-regulation of RAD51 to 20-50% of the levels expressed in control cell lines. All three cell lines had a similar increased sensitivity to gamma-irradiation by 70 and 40%, respectively, compared to normal and empty vector-transfected cells, corresponding to dose-modifying factors of approximately 2.0 and 1.5 in the mid-range of the dose-response curves. The amount of RAD51 protein in transfected cell lines was shown to strongly correlate with the alpha parameter obtained from fitted survival curves. These results highlight the importance of RAD51 in cellular responses to radiation and are the first to indicate the potential use of RAD51-targeted ribozyme minigenes in tumour radiosensitisation.

  6. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells

    PubMed Central

    Collis, S. J.; Tighe, A.; Scott, S. D.; Roberts, S. A.; Hendry, J. H.; Margison, G. P.

    2001-01-01

    The strand transferase RAD51 is a component of the homologous recombination repair pathway. To examine the contribution of RAD51 to the genotoxic effects of ionising radiation, we have used a novel ribozyme strategy. A reporter gene vector was constructed so that expression of an inserted synthetic double-stranded ribozyme-encoding oligonucleotide would be under the control of the cytomegalovirus immediate-early gene enhancer/promoter system. The prostate tumour cell line LNCaP was transfected with this vector or a control vector, and a neomycin resistance gene on the vector was used to create geneticin-resistant stable cell lines. Three stable cell lines were shown by western blot analysis to have significant down-regulation of RAD51 to 20–50% of the levels expressed in control cell lines. All three cell lines had a similar increased sensitivity to γ-irradiation by 70 and 40%, respectively, compared to normal and empty vector-transfected cells, corresponding to dose-modifying factors of ∼2.0 and 1.5 in the mid-range of the dose-response curves. The amount of RAD51 protein in transfected cell lines was shown to strongly correlate with the α parameter obtained from fitted survival curves. These results highlight the importance of RAD51 in cellular responses to radiation and are the first to indicate the potential use of RAD51-targeted ribozyme minigenes in tumour radiosensitisation. PMID:11266555

  7. Assembly and activation of a kinase ribozyme

    PubMed Central

    Burke, Donald H.; Rhee, Steven S.

    2010-01-01

    RNA activities can be regulated by modulating the relative energies of all conformations in a folding landscape; however, it is often unknown precisely how peripheral elements perturb the overall landscape in the absence of discrete alternative folds (inactive ensemble). This work explores the effects of sequence and secondary structure in governing kinase ribozyme activity. Kin.46 catalyzes thiophosphoryl transfer from ATPγS onto the 5′ hydroxyl of polynucleotide substrates, and is regulated 10,000-fold by annealing an effector oligonucleotide to form activator helix P4. Transfer kinetics for an extensive series of ribozyme variants identified several dispensable internal single-stranded segments, in addition to a potential pseudoknot at the active site between segments J1/4 and J3/2 that is partially supported by compensatory rescue. Standard allosteric mechanisms were ruled out, such as formation of discrete repressive structures or docking P4 into the rest of the ribozyme via backbone 2′ hydroxyls. Instead, P4 serves both to complete an important structural element (100-fold contribution to the reaction relative to a P4-deleted variant) and to mitigate nonspecific, inhibitory effects of the single-stranded tail (an additional 100-fold contribution to the apparent rate constant, kobs). Thermodynamic activation parameters ΔH‡ and ΔS‡, calculated from the temperature dependence of kobs, varied with tail length and sequence. Inhibitory effects of the unpaired tail are largely enthalpic for short tails and are both enthalpic and entropic for longer tails. These results refine the structural view of this kinase ribozyme and highlight the importance of nonspecific ensemble effects in conformational regulation by peripheral elements. PMID:20935068

  8. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. © 2014 McNeil and Zimmerly; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. An engineered small RNA-mediated genetic switch based on a ribozyme expression platform

    PubMed Central

    Klauser, Benedikt; Hartig, Jörg S.

    2013-01-01

    An important requirement for achieving many goals of synthetic biology is the availability of a large repertoire of reprogrammable genetic switches and appropriate transmitter molecules. In addition to engineering genetic switches, the interconnection of individual switches becomes increasingly important for the construction of more complex genetic networks. In particular, RNA-based switches of gene expression have become a powerful tool to post-transcriptionally program genetic circuits. RNAs used for regulatory purposes have the advantage to transmit, sense, process and execute information. We have recently used the hammerhead ribozyme to control translation initiation in a small molecule-dependent fashion. In addition, riboregulators have been constructed in which a small RNA acts as transmitter molecule to control translation of a target mRNA. In this study, we combine both concepts and redesign the hammerhead ribozyme to sense small trans-acting RNAs (taRNAs) as input molecules resulting in repression of translation initiation in Escherichia coli. Importantly, our ribozyme-based expression platform is compatible with previously reported artificial taRNAs, which were reported to act as inducers of gene expression. In addition, we provide several insights into key requirements of riboregulatory systems, including the influences of varying transcriptional induction of the taRNA and mRNA transcripts, 5′-processing of taRNAs, as well as altering the secondary structure of the taRNA. In conclusion, we introduce an RNA-responsive ribozyme-based expression system to the field of artificial riboregulators that can serve as reprogrammable platform for engineering higher-order genetic circuits. PMID:23585277

  10. The structure and active site of the Varkud satellite ribozyme.

    PubMed

    Lafontaine, D A; Norman, D G; Lilley, D M

    2002-11-01

    The Varkud satellite ribozyme is the largest of the small nucleolytic ribozymes, and the only one for which there is no crystal structure. It can be divided into a trans -acting ribozyme, consisting of five helices organized by two three-way helical junctions, and a stem-loop substrate with which it interacts, primarily by tertiary interactions. We have determined the global fold of the ribozyme, and the manner by which it interacts with the substrate. The substrate interacts with a cleft formed between helices II and VI (organized by the lower helical junction), where it contacts the A730 loop, the probable active site of the ribozyme. Within this loop, there is a critical adenine base (A756) that is a candidate for direct nucleobase participation in the cleavage reaction.

  11. Biochemical analysis of hatchet self-cleaving ribozymes

    PubMed Central

    Li, Sanshu; Lünse, Christina E.; Harris, Kimberly A.; Breaker, Ronald R.

    2015-01-01

    Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg2+ to promote RNA strand scission with a maximum rate constant of ∼4 min−1. As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2′-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer. PMID:26385510

  12. The Hammerhead Ribozyme: A Long History for a Short RNA.

    PubMed

    de la Peña, Marcos; García-Robles, Inmaculada; Cervera, Amelia

    2017-01-04

    Small nucleolytic ribozymes are a family of naturally occurring RNA motifs that catalyse a self-transesterification reaction in a highly sequence-specific manner. The hammerhead ribozyme was the first reported and the most extensively studied member of this family. However, and despite intense biochemical and structural research for three decades since its discovery, the history of this model ribozyme seems to be far from finished. The hammerhead ribozyme has been regarded as a biological oddity typical of small circular RNA pathogens of plants. More recently, numerous and new variations of this ribozyme have been found to inhabit the genomes of organisms from all life kingdoms, although their precise biological functions are not yet well understood.

  13. Hammerhead ribozyme targeting connective tissue growth factor mRNA blocks transforming growth factor-beta mediated cell proliferation.

    PubMed

    Blalock, Timothy D; Yuan, Rong; Lewin, Alfred S; Schultz, Gregory S

    2004-06-01

    Excessive scarring following trauma or surgery of cornea, conjunctiva or retina can greatly impair visual outcome. At present, no agents are clinically available that selectively reduce activity of genes that regulate fibrosis. Connective tissue growth factor (CTGF) has been linked to fibrosis in several tissues, including cornea and conjunctiva. In this study, hammerhead ribozymes targeting CTGF mRNA were synthesized, kinetic parameters were measured, and the effect on TGF-beta-mediated cell proliferation was measured in cultured human fibroblasts. The mRNA sequence of human CTGF was scanned for potential hammerhead ribozyme cleavage sites, and predicted secondary folding structures around the sites were calculated. Synthetic 12mer ribozymes and 33mer oligonucleotide mRNA targets corresponding to two sites were synthesized, and kinetic constants calculated from Hanes-Wolff plots of in vitro cleavage reactions. The ribozyme with higher percentage cleavage and kinetic rate was cloned into an expression plasmid (pTR-UF21) and stably transfected into cultured human fibroblasts. An inactive ribozyme plasmid served as a negative control. The effects of the ribozyme on expression of TGF-beta-induced CTGF mRNA and protein levels were measured using ELISA and real-time TaqMan quantitative RT-PCR. Finally, the effect of the CTGF ribozyme on TGF-beta-mediated proliferation of fibroblasts was measured using a non-radioactive cell proliferation microtiter assay. Of the eight potential hammerhead ribozyme cleavage sites in human CTGF mRNA, two sites (CHR 745, and CHR 859) were identified with optimal secondary folding. CHR 859 cleaved 94% of the target mRNA, compared to 46% cleavage for CHR 745 after 16 hr of reaction. CHR 859 had a K(m) of 1.56 microM and a K(cat) of 2.97 min(-1), while CHR 745 had a K(m) of 7.80 microM and a K(cat) of 5.7 min(-1). The turnover numbers (K(cat)/K(m)) of CHR 859 and CHR 745 were 1.9 x 10(6) M min(-1) and 7.4 x 10(5) M min(-1), respectively

  14. Low Selection Pressure Aids the Evolution of Cooperative Ribozyme Mutations in Cells*

    PubMed Central

    Amini, Zhaleh N.; Müller, Ulrich F.

    2013-01-01

    Understanding the evolution of functional RNA molecules is important for our molecular understanding of biology. Here we tested experimentally how two evolutionary parameters, selection pressure and recombination, influenced the evolution of an evolving RNA population. This was done using four parallel evolution experiments that employed low or gradually increasing selection pressure, and recombination events either at the end or dispersed throughout the evolution. As model system, a trans-splicing group I intron ribozyme was evolved in Escherichia coli cells over 12 rounds of selection and amplification, including mutagenesis and recombination. The low selection pressure resulted in higher efficiency of the evolved ribozyme populations, whereas differences in recombination did not have a strong effect. Five mutations were responsible for the highest efficiency. The first mutation swept quickly through all four evolving populations, whereas the remaining four mutations accumulated later and more efficiently under low selection pressure. To determine why low selection pressure aided this evolution, all evolutionary intermediates between the wild type and the 5-mutation variant were constructed, and their activities at three different selection pressures were determined. The resulting fitness profiles showed a high cooperativity among the four late mutations, which can explain why high selection pressure led to inefficient evolution. These results show experimentally how low selection pressure can benefit the evolution of cooperative mutations in functional RNAs. PMID:24089519

  15. The Azoarcus Group I Intron Ribozyme Misfolds and Is Accelerated for Refolding by ATP-dependent RNA Chaperone Proteins*

    PubMed Central

    Sinan, Selma; Yuan, Xiaoyan; Russell, Rick

    2011-01-01

    Structured RNAs traverse complex energy landscapes that include valleys representing misfolded intermediates. In Neurospora crassa and Saccharomyces cerevisiae, efficient splicing of mitochondrial group I and II introns requires the DEAD box proteins CYT-19 and Mss116p, respectively, which promote folding transitions and function as general RNA chaperones. To test the generality of RNA misfolding and the activities of DEAD box proteins in vitro, here we measure native folding of a small group I intron ribozyme from the bacterium Azoarcus by monitoring its catalytic activity. To develop this assay, we first measure cleavage of an oligonucleotide substrate by the prefolded ribozyme. Substrate cleavage is rate-limited by binding and is readily reversible, with an internal equilibrium near unity, such that the amount of product observed is less than the amount of native ribozyme. We use this assay to show that approximately half of the ribozyme folds readily to the native state, whereas the other half forms an intermediate that transitions slowly to the native state. This folding transition is accelerated by urea and increased temperature and slowed by increased Mg2+ concentration, suggesting that the intermediate is misfolded and must undergo transient unfolding during refolding to the native state. CYT-19 and Mss116p accelerate refolding in an ATP-dependent manner, presumably by disrupting structure in the intermediate. These results highlight the tendency of RNAs to misfold, underscore the roles of CYT-19 and Mss116p as general RNA chaperones, and identify a refolding transition for further dissection of the roles of DEAD box proteins in RNA folding. PMID:21878649

  16. Probing the hammerhead ribozyme structure with ribonucleases.

    PubMed Central

    Hodgson, R A; Shirley, N J; Symons, R H

    1994-01-01

    Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural. Images PMID:8202361

  17. The meaning of a minuscule ribozyme

    PubMed Central

    Yarus, Michael

    2011-01-01

    The smallest ribozyme that carries out a complex group transfer is the sequence GUGGC-3′, acting to aminoacylate GCCU-3′ (and host a manifold of further reactions) in the presence of substrate PheAMP. Here, I describe the enzymatic rate, the characterization of about 20 aminoacyl-RNA and peptidyl-RNA products and the pathways of these GUGGC/GCCU reactions. Finally, the topic is evolution, and the potential implications of these data for the advent of translation itself. PMID:21930581

  18. A conformational switch controls hepatitis delta virus ribozyme catalysis.

    PubMed

    Ke, Ailong; Zhou, Kaihong; Ding, Fang; Cate, Jamie H D; Doudna, Jennifer A

    2004-05-13

    Ribozymes enhance chemical reaction rates using many of the same catalytic strategies as protein enzymes. In the hepatitis delta virus (HDV) ribozyme, site-specific self-cleavage of the viral RNA phosphodiester backbone requires both divalent cations and a cytidine nucleotide. General acid-base catalysis, substrate destabilization and global and local conformational changes have all been proposed to contribute to the ribozyme catalytic mechanism. Here we report ten crystal structures of the HDV ribozyme in its pre-cleaved state, showing that cytidine is positioned to activate the 2'-OH nucleophile in the precursor structure. This observation supports its proposed role as a general base in the reaction mechanism. Comparison of crystal structures of the ribozyme in the pre- and post-cleavage states reveals a significant conformational change in the RNA after cleavage and that a catalytically critical divalent metal ion from the active site is ejected. The HDV ribozyme has remarkable chemical similarity to protein ribonucleases and to zymogens for which conformational dynamics are integral to biological activity. This finding implies that RNA structural rearrangements control the reactivity of ribozymes and ribonucleoprotein enzymes.

  19. Intermolecular domain docking in the hairpin ribozyme

    PubMed Central

    Sumita, Minako; White, Neil A.; Julien, Kristine R.; Hoogstraten, Charles G.

    2013-01-01

    The hairpin ribozyme is a prototype small, self-cleaving RNA motif. It exists naturally as a four-way RNA junction containing two internal loops on adjoining arms. These two loops interact in a cation-driven docking step prior to chemical catalysis to form a tightly integrated structure, with dramatic changes occurring in the conformation of each loop upon docking. We investigate the thermodynamics and kinetics of the docking process using constructs in which loop A and loop B reside on separate molecules. Using a novel CD difference assay to isolate the effects of metal ions linked to domain docking, we find the intermolecular docking process to be driven by sub-millimolar concentrations of the exchange-inert Co(NH3)63+. RNA self-cleavage requires binding of lower-affinity ions with greater apparent cooperativity than the docking process itself, implying that, even in the absence of direct coordination to RNA, metal ions play a catalytic role in hairpin ribozyme function beyond simply driving loop-loop docking. Surface plasmon resonance assays reveal remarkably slow molecular association, given the relatively tight loop-loop interaction. This observation is consistent with a “double conformational capture” model in which only collisions between loop A and loop B molecules that are simultaneously in minor, docking-competent conformations are productive for binding. PMID:23324606

  20. Molecular Crowding Accelerates Ribozyme Docking and Catalysis

    PubMed Central

    2015-01-01

    All biological processes take place in highly crowded cellular environments. However, the effect that molecular crowding agents have on the folding and catalytic properties of RNA molecules remains largely unknown. Here, we have combined single-molecule fluorescence resonance energy transfer (smFRET) and bulk cleavage assays to determine the effect of a molecular crowding agents on the folding and catalysis of a model RNA enzyme, the hairpin ribozyme. Our single-molecule data reveal that PEG favors the formation of the docked (active) structure by increasing the docking rate constant with increasing PEG concentrations. Furthermore, Mg2+ ion-induced folding in the presence of PEG occurs at concentrations ∼7-fold lower than in the absence of PEG, near the physiological range (∼1 mM). Lastly, bulk cleavage assays in the presence of the crowding agent show that the ribozyme’s activity increases while the heterogeneity decreases. Our data is consistent with the idea that molecular crowding plays an important role in the stabilization of ribozyme active conformations in vivo. PMID:25399908

  1. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay

    PubMed Central

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-01-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes. PMID:26939886

  2. Understanding splicing regulation through RNA splicing maps.

    PubMed

    Witten, Joshua T; Ule, Jernej

    2011-03-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein-RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation.

  3. Understanding splicing regulation through RNA splicing maps

    PubMed Central

    Witten, Joshua T.; Ule, Jernej

    2011-01-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein–RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation. PMID:21232811

  4. A ribozyme that triphosphorylates RNA 5′-hydroxyl groups

    PubMed Central

    Moretti, Janina E.; Müller, Ulrich F.

    2014-01-01

    The RNA world hypothesis describes a stage in the early evolution of life in which RNA served as genome and as the only genome-encoded catalyst. To test whether RNA world organisms could have used cyclic trimetaphosphate as an energy source, we developed an in vitro selection strategy for isolating ribozymes that catalyze the triphosphorylation of RNA 5′-hydroxyl groups with trimetaphosphate. Several active sequences were isolated, and one ribozyme was analyzed in more detail. The ribozyme was truncated to 96 nt, while retaining full activity. It was converted to a trans-format and reacted with rates of 0.16 min−1 under optimal conditions. The secondary structure appears to contain a four-helical junction motif. This study showed that ribozymes can use trimetaphosphate to triphosphorylate RNA 5′-hydroxyl groups and suggested that RNA world organisms could have used trimetaphosphate as their energy source. PMID:24452796

  5. Inhibition of HIV-1 gp41 expression with hammerhead ribozymes.

    PubMed

    Fedoruk-Wyszomirska, Agnieszka; Szymański, Maciej; Głodowicz, Paweł; Gabryelska, Marta; Wyszko, Eliza; Estrin, William J; Barciszewski, Jan

    2015-10-01

    Despite great progress in the treatment of AIDS, HIV-1 remains one of the major concerns as a human pathogen. One of the therapeutic strategies against viral infections is the application of catalytic ribonucleic acids (ribozymes) that can significantly reduce expression of a target gene by site-specific hydrolysis of its mRNA. In the present paper, we report a study on the activity of several variants of hammerhead ribozymes targeting a conserved region within mRNA encoding HIV-1 envelope glycoprotein gp41. On the basis of the data from in vitro assays and gene silencing in the cultured cells, we propose a new hammerhead ribozyme targeting the gp41-encoding sequence that can be potentially used as a therapeutic agent in AIDS treatment. Moreover, we demonstrate that the hydrolytic activity of the ribozyme in the intracellular environment cannot be inferred solely from the results of in vitro experiments.

  6. Chemistry and biology of self-cleaving ribozymes

    PubMed Central

    Jimenez, Randi M.; Polanco, Julio A.; Lupták, Andrej

    2015-01-01

    Self-cleaving ribozymes were discovered thirty years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be employed as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered. PMID:26481500

  7. Structural roles of monovalent cations in the HDV ribozyme.

    PubMed

    Ke, Ailong; Ding, Fang; Batchelor, Joseph D; Doudna, Jennifer A

    2007-03-01

    The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.

  8. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme.

    PubMed Central

    Jankowsky, E; Schwenzer, B

    1996-01-01

    Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems. PMID:8602353

  9. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  10. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  11. A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA

    PubMed Central

    Martick, Monika; Horan, Lucas H.; Noller, Harry F.; Scott, William G.

    2008-01-01

    Structured RNAs embedded in the untranslated regions (UTRs) of messenger RNAs can regulate gene expression. In bacteria, control of a metabolite gene is mediated by the self-cleaving activity of a ribozyme embedded in its 5′ UTR1. This discovery has raised the question of whether gene-regulating ribozymes also exist in eukaryotic mRNAs. Here we show that highly active hammerhead ribozymes2,3 are present in the 3′ UTRs of rodent C-type lectin type II (Clec2) genes4–7. Using a hammerhead RNA motif search with relaxed delimitation of the non-conserved regions, we detected ribozyme sequences in which the invariant regions, in contrast to the previously identified continuous hammerheads8–10, occur as two fragments separated by hundreds of nucleotides. Notably, a fragment pair can assemble to form an active hammerhead ribozyme structure between the translation termination and the poly-adenylation signals within the 3′ UTR. We demonstrate that this hammerhead structure can self-cleave both in vitro and in vivo, and is able to reduce protein expression in mouse cells. These results indicate that an unrecognized mechanism of post-transcriptional gene regulation involving association of discontinuous ribozyme sequences within an mRNA may be modulating the expression of several CLEC2 proteins that function in bone remodelling and the immune response of several mammals. PMID:18615019

  12. RNA folding, neutral networks, and the evolution of ribozymes

    NASA Astrophysics Data System (ADS)

    Schultes, Erik

    2003-03-01

    Natural ribozymes are often represented by molecules having very different nucleotide sequences. This observation implies the existence of paths through sequence space that have permitted the evolutionary drift from an ancestral sequence to each isolate without loss of function. The set of all possible paths neutral for a defined fold and activity compose a ``neutral network." We have demonstrated the close proximity of neutral networks for the HDV self-cleaving ribozyme and the class III self-ligating ribozyme. First, we engineered a single RNA sequence that can assume either of the ribozyme folds and catalyze the two respective reactions (approximately 100 fold faster than the analogous uncatalyzed reactions). Minor variants of this sequence can be highly active for one or the other reaction, with only four nucleotide substitutions separating fully active self-cleaving and ligase ribozymes. We have also shown that these sequences can be accessed from each prototype ribozyme sequence via a series of neutral point mutations involving only one or two changes per step. These data demonstrate that new RNA folds could arise in the course of evolution from pre-existing folds without a need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no similarity in sequence, structure or function might nonetheless share a common ancestry.

  13. Efficient Ligation of the Schistosoma Hammerhead Ribozyme

    PubMed Central

    Canny, Marella D.; Jucker, Fiona M.; Pardi, Arthur

    2011-01-01

    The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by a ~2,000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2–3 at physiological Mg2+ ion concentrations (0.1 –1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules, and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme. PMID:17319693

  14. Inhibition of the hammerhead ribozyme by neomycin.

    PubMed Central

    Stage, T K; Hertel, K J; Uhlenbeck, O C

    1995-01-01

    A series of antibiotics was tested for stimulation or inhibition of the hammerhead ribozyme cleavage reaction. Neomycin was found to be a potent inhibitor of the reaction with a Kl of 13.5 microM. Two hammerheads with well-characterized kinetics were used to determine which steps in the reaction mechanism were inhibited by neomycin. The data suggest that neomycin interacts preferentially with the enzyme-substrate complex and that this interaction leads to a reduction in the cleavage rate by stabilizing the ground state of the complex and destabilizing the transition state of the cleavage step. A comparison of neomycin with other aminoglycosides and inhibitors of hammerhead cleavage implies that the ammonium ions of neomycin are important for the antibiotic-hammerhead interaction. PMID:7489494

  15. Pentamidine Inhibition of Group I Intron Splicing in Candida albicans Correlates with Growth Inhibition

    PubMed Central

    Miletti, Karl E.; Leibowitz, Michael J.

    2000-01-01

    We previously demonstrated that pentamidine, which has been clinically used against Pneumocystis carinii, inhibits in vitro a group I intron ribozyme from that organism. Another fungal pathogen, Candida albicans, also harbors a group I intron ribozyme (Ca.LSU) in the essential rRNA genes in almost half of the clinical isolates analyzed. To determine whether pentamidine inhibits Ca.LSU in vitro and in cells, phylogenetically closely related intron-containing (4-1) and intronless (62-1) strains were studied. Splicing in vitro of the Ca.LSU group I intron ribozyme was completely inhibited by pentamidine at 200 μM. On rich glucose medium, the intron-containing strain was more sensitive to growth inhibition by pentamidine than was the intronless strain, as measured by disk or broth microdilution assays. On rich glycerol medium, they were equally susceptible to pentamidine. At pentamidine levels selectively inhibiting the intron-containing strain (1 μM) in glucose liquid cultures, inhibition of splicing and rRNA maturation was detected by quantitative reverse transcription-PCR within 1 min with a 10- to 15-fold accumulation of precursor rRNA. No comparable effect was seen in the intronless strain. These results correlate the cellular splicing inhibition of Ca.LSU with the growth inhibition of strain 4-1 harboring Ca.LSU. Broth microdilution assays of 13 Candida strains showed that intron-containing strains were generally more susceptible to pentamidine than the intronless strains. Our data suggest that ribozymes found in pathogenic microorganisms but absent in mammals may be targets for antimicrobial therapy. PMID:10722497

  16. Crystallization and preliminary diffraction analysis of a group I ribozyme from bacteriophage Twort

    SciTech Connect

    Chase, Elaine; Golden, Barbara L.

    2005-01-01

    A group I self-splicing RNA has been synthesized and cocrystallized with a four-nucleotide product RNA. Iodination of the product RNA produces a heavy-atom derivative suitable for structure determination. Group I introns are catalytic RNAs that are capable of performing a variety of phosphotransesterification reactions including self-splicing and RNA cleavage. The reactions are efficient, accurate and dependent only on the presence of guanosine-nucleotide substrate and sufficient magnesium ion to stabilize the structure of the RNA. To understand how the group I intron active-site facilitates catalysis, crystals of a 242-nucleotide ribozyme bound to a four-nucleotide product RNA have been produced that diffract to 3.6 Å resolution. The space group of these crystals is I2{sub 1}2{sub 1}2{sub 1} and the unit-cell parameters are a = 94.6, b = 141.0, c = 210.9 Å. A single heavy-atom derivative has been synthesized by covalent modification of the product RNA with iodine.

  17. Folding pathways of the Tetrahymena ribozyme.

    PubMed

    Mitchell, David; Russell, Rick

    2014-06-12

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Folding pathways of the Tetrahymena ribozyme

    PubMed Central

    Mitchell, David; Russell, Rick

    2014-01-01

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min–1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here, we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min–1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the ‘choice’ is enforced by energy barriers that grow larger as folding progresses. PMID:24747051

  19. Ribozyme genes protecting transgenic melon plants against potyviruses.

    PubMed

    Huttner, E; Tucker, W; Vermeulen, A; Ignart, F; Sawyer, B; Birch, R

    2001-04-01

    Potyviruses are the most important viral pathogens of crops worldwide. Under a contract with Gene Shears Pty Limited, we are using ribozyme genes to protect melon plants against two potyviruses: WMV2 and ZYMV. Different polyribozyme genes were designed, built and introduced into melons plants. Transgenic melon plants containing a resistance gene were obtained and their progeny was challenged by the appropriate virus. Most of the genes tested conferred some degree of resistance to the viruses in glasshouse trials. Melon plants from one family containing one gene directed against WMV2 were also field-trialed on small plots under natural infection pressure and were found immune to WMV2. Field trial is in progress for plants containing genes against ZYMV. Some of the ribozyme genes used in the plants were also assayed in a transient expression system in tobacco cells. This enabled us to study the sequence discrimination capacity of the ribozyme in the case of one ribozyme target site. We found that a mutated target GUG (non cleavable) was less susceptible to inhibition by the ribozyme gene than the corresponding wild type target GUA (cleavable). Work is now in progress to incorporate multiple resistance genes in melon plants, in constructs designed in compliance with the evolving European regulations concerning transgenic plants. The use of ribozyme genes to protect plants against viruses provides an alternative to the technologies currently used for protecting crops against viruses, based on the concept of Pathogen Derived Resistance (see for example 14). In the light of concerns expressed by some plant virologists (13) about the use of viral genes in transgenic plants, it may be that ribozyme genes will find many uses in this area of agricultural biotechnology.

  20. A ribozyme with DNA in the hybridising arms displays enhanced cleavage ability.

    PubMed Central

    Hendry, P; McCall, M J; Santiago, F S; Jennings, P A

    1992-01-01

    Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate. PMID:1280808

  1. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification.

    PubMed Central

    Grosshans, C A; Cech, T R

    1991-01-01

    The L-21 Scal form of the Tetrahymena ribozyme acts as a sequence-specific endonuclease. This ribozyme has a homogeneous 5' end but a somewhat heterogeneous 3' end, as is typical of RNA synthesized by transcription in vitro. To produce a more homogeneous ribozyme for both structural and enzymological studies, a hammerhead ribozyme was inserted at the 3' end of the Tetrahymena ribozyme. During transcription the hammerhead moiety self-cleaves to produce the L-21 A Tetrahymena ribozyme, which ends at A410 with a 2',3'-cyclic phosphate terminus. The new ribozyme has endoribonuclease activity equivalent to that of L-21 Scal under conditions where binding of substrate is rate-limiting, as well as under conditions where chemical cleavage by guanosine is rate-limiting. However, the L-21 A has lost activity in oligo(C) disproportionation (e.g., 2 pC5----pC4 + pC6), consistent with the previous proposal that this reaction occurs predominantly through a covalent ribozyme-substrate intermediate involving the 3'-terminal hydroxyl group of the ribozyme. Formation of such an intermediate would be prevented by the 2',3'-cyclic phosphate terminus. Thus the L-21 A ribozyme has simplified enzymatic activity, being fully active as an endonuclease but blocked for disproportionation. Images PMID:1650453

  2. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-03

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.

  3. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    PubMed Central

    Matsumura, Shigeyoshi; Ito, Tatsunobu; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2015-01-01

    The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules. PMID:25811638

  4. In vitro evolution of a ribozyme that contains 5-bromouridine

    NASA Technical Reports Server (NTRS)

    Dai, X.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The Tetrahymena group I ribozyme was modified by replacing all 99 component uridine residues with 5-bromouridine. This resulted in a 13-fold reduction in catalytic efficiency in the RNA-catalyzed phosphoester-transfer reaction compared to the behavior of the unmodified ribozyme. A population of 10(13) variant ribozymes was constructed, each containing 5-bromouridine in place of uridine. Five successive 'generations' of in vitro evolution were carried out, selecting for improved phosphoester transferase activity. The evolved molecules exhibited a 27-fold increase in catalytic efficiency compared to the wild-type bromouridine-containing ribozyme, even exceeding that of the wild-type ribozyme in the non-brominated form. Three specific mutations were found to be responsible for this altered behavior. These mutations enhanced activity in the context of 5-bromouridine, but were detrimental in the context of unmodified uridine. The evolved RNAs not only tolerated but came to exploit the presence of the nucleotide analogue in carrying out their catalytic function.

  5. In vitro evolution of a ribozyme that contains 5-bromouridine

    NASA Technical Reports Server (NTRS)

    Dai, X.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The Tetrahymena group I ribozyme was modified by replacing all 99 component uridine residues with 5-bromouridine. This resulted in a 13-fold reduction in catalytic efficiency in the RNA-catalyzed phosphoester-transfer reaction compared to the behavior of the unmodified ribozyme. A population of 10(13) variant ribozymes was constructed, each containing 5-bromouridine in place of uridine. Five successive 'generations' of in vitro evolution were carried out, selecting for improved phosphoester transferase activity. The evolved molecules exhibited a 27-fold increase in catalytic efficiency compared to the wild-type bromouridine-containing ribozyme, even exceeding that of the wild-type ribozyme in the non-brominated form. Three specific mutations were found to be responsible for this altered behavior. These mutations enhanced activity in the context of 5-bromouridine, but were detrimental in the context of unmodified uridine. The evolved RNAs not only tolerated but came to exploit the presence of the nucleotide analogue in carrying out their catalytic function.

  6. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  7. Kinetic partitioning mechanism of HDV ribozyme folding.

    PubMed

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  8. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  9. Antibiotic inhibition of group I ribozyme function.

    PubMed

    von Ahsen, U; Davies, J; Schroeder, R

    1991-09-26

    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  10. In-ice evolution of RNA polymerase ribozyme activity

    PubMed Central

    Attwater, James; Wochner, Aniela; Holliger, Philipp

    2014-01-01

    Mechanisms of molecular self-replication have the potential to shed light upon the origins of life. In particular, self-replication through RNA-catalysed templated RNA synthesis is thought to have supported a primordial ‘RNA World’. However, existing polymerase ribozymes lack the capacity to synthesise RNAs approaching their own size. Here we report the in vitro evolution of such catalysts directly in the RNA-stabilising medium of water-ice, which yielded RNA polymerase ribozymes specifically adapted to sub-zero temperatures and able to synthesise RNA in ices at temperatures as low as −19°C. Combination of cold-adaptive mutations with a previously described 5′ extension operating at ambient temperatures enabled the design of a first polymerase ribozyme capable of catalysing the accurate synthesis of an RNA sequence longer than itself (adding up to 206 nucleotides), an important stepping stone towards RNA self-replication. PMID:24256864

  11. Origins of the temperature dependence of hammerhead ribozyme catalysis.

    PubMed Central

    Peracchi, A

    1999-01-01

    The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. PMID:10390528

  12. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  13. Structural studies on an internal loop from a hairpin ribozyme

    SciTech Connect

    Cai, Z.; SantaLucia, J. Jr.; Tinoco, I. Jr.

    1994-12-01

    Ribozymes, RNA enzymes, catalyze site-specific RNA cleavage and ligation reactions. We are studying the three-dimensional structure of a hairpin ribozyme derived from the minus strand of tobacco ring spot virus satellite RNA ((-)sTRSV), which has been engineering to specifically cleave the HIV-1 RNA. The minimum structure for the catalytic reaction involves a 50-nucleotide ribozyme and a 14-nucleotide substrate. The proposed secondary structure of the ribozyme-substrate complex consists of four short helices separated by two internal loops. The relatively large size (64-nucleotide) of the ribozyme-substrate complex presents formidable problems in solving the structure using NMR. Therefore we are studying smaller structural subunits of the complex. We are determining the high resolution structure of the symmetric internal loop involving the cleavage site and the flanking helices. One strand of the internal loop was selectively {sup 13}C-labeled at C8 of each purine and C6 of each pyrimidine. By using {sup 13}C-edited two-dimensional NMR, the proton NOESY spectrum was greatly simplified. This allowed unambiguous sequential proton resonance assignments along each strand. Three-dimensional {sup 1}-{sup 13}C HMQC-NOESY was used to further facilitate resonance assignments. We are also enzymatically synthesizing the entire 50-nucleotide ribozyme and will combine it with the {sup 13}C-labeled substrate. Through comparison of the NOE connectivities of the labeled nucleotides from the internal loop alone with those from the entire complex, the differences between the two structures can be elucidated.

  14. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo

    PubMed Central

    Potratz, Jeffrey P.; Campo, Mark Del; Wolf, Rachel Z.; Lambowitz, Alan M.; Russell, Rick

    2011-01-01

    The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize non-native intronic structure. Nevertheless, Mss116p acceleration of all three constructs depends upon ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mtDNA containing only the single intron aI5γ, we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing conversion of non-functional to functional RNA structure. PMID:21679717

  15. The evolution of spliced leader trans-splicing in nematodes.

    PubMed

    Pettitt, Jonathan; Harrison, Neale; Stansfield, Ian; Connolly, Bernadette; Müller, Berndt

    2010-08-01

    Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes.

  16. Computational Mutagenesis Studies of Hammerhead Ribozyme Catalysis

    PubMed Central

    Lee, Tai-Sung; York, Darrin M.

    2010-01-01

    Computational studies of the mutational effects at the C3, G8, and G5 positions of the hammerhead ribozyme (HHR) are reported based on a series of twenty four 100-ns molecular dynamics simulations of the native and mutated HHR in the reactant state and in an activated precursor state (G8:2′OH deprotonated). Invoking the assumptions that G12 acts as the general base while the 2′OH of G8 acts as a general acid, the simulations are able to explain the origins of experimentally observed mutational effects, including several that are not easily inferred from the crystal structure. Simulations suggest that the Watson-Crick base-pairing between G8 and C3, the hydrogen bond network between C17 and G5, and the base stacking interactions between G8 and C1.1, collectively, are key to maintaining an active site structure conducive for catalytic activity. Mutation-induced disruption of any of these interactions will adversely affect activity. The simulation results predict that the C3U/G8D double mutant, where D is 2,6-diaminopurine, will have a rescue effect relative to the corresponding single mutations. Two general conclusions about the simulations emerge from this work. Firstly, mutation simulations may require 30 ns or more to suitably relax such that the mutational effects become apparent. Secondly, in some cases, it is necessary to look beyond the reactant state in order to interpret mutational effects in terms of catalytically active structure. The present simulation results lead to better understanding of the origin of experimental mutational effects, and provide insight into the key conserved features necessary to maintain the integrity of the active site architecture. PMID:20812715

  17. Splice-switching antisense oligonucleotides as therapeutic drugs

    PubMed Central

    Havens, Mallory A.; Hastings, Michelle L.

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials. PMID:27288447

  18. Evolution in vitro: analysis of a lineage of ribozymes

    NASA Technical Reports Server (NTRS)

    Lehman, N.; Joyce, G. F.

    1993-01-01

    Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.

  19. Amplification of RNA by an RNA polymerase ribozyme

    PubMed Central

    Horning, David P.; Joyce, Gerald F.

    2016-01-01

    In all extant life, genetic information is stored in nucleic acids that are replicated by polymerase proteins. In the hypothesized RNA world, before the evolution of genetically encoded proteins, ancestral organisms contained RNA genes that were replicated by an RNA polymerase ribozyme. In an effort toward reconstructing RNA-based life in the laboratory, in vitro evolution was used to improve dramatically the activity and generality of an RNA polymerase ribozyme by selecting variants that can synthesize functional RNA molecules from an RNA template. The improved polymerase ribozyme is able to synthesize a variety of complex structured RNAs, including aptamers, ribozymes, and, in low yield, even tRNA. Furthermore, the polymerase can replicate nucleic acids, amplifying short RNA templates by more than 10,000-fold in an RNA-catalyzed form of the PCR. Thus, the two prerequisites of Darwinian life—the replication of genetic information and its conversion into functional molecules—can now be accomplished with RNA in the complete absence of proteins. PMID:27528667

  20. Multiple Translational Products from a Five-Nucleotide Ribozyme

    NASA Astrophysics Data System (ADS)

    Turk, R. M.; Yarus, M.

    2010-04-01

    This work shows that a tiny RNA enzyme can catalyze one of the key reactions in modern protein synthesis. The small size and minimal chemical requirements for this ribozyme support the idea of facile assembly and function of RNA enzymes during the origin of life on Earth.

  1. Metals induce transient folding and activation of the twister ribozyme.

    PubMed

    Panja, Subrata; Hua, Boyang; Zegarra, Diego; Ha, Taekjip; Woodson, Sarah A

    2017-10-01

    Twister is a small ribozyme present in almost all kingdoms of life that rapidly self-cleaves in variety of divalent metal ions. We used activity assays, bulk FRET and single-molecule FRET (smFRET) to understand how different metal ions promote folding and self-cleavage of the Oryza sativa twister ribozyme. Although most ribozymes require additional Mg(2+) for catalysis, twister inverts this expectation, requiring 20-30 times less Mg(2+) to self-cleave than to fold. Transition metals such as Co(2+), Ni(2+) and Zn(2+) activate twister more efficiently than Mg(2+) ions. Although twister is fully active in ≤ 0.5 mM MgCl2, smFRET experiments showed that the ribozyme visits the folded state infrequently under these conditions. Comparison of folding and self-cleavage rates indicates that most folding events lead to catalysis, which correlates with metal bond strength. Thus, the robust activity of twister reports on transient metal ion binding under physiological conditions.

  2. Evolution in vitro: analysis of a lineage of ribozymes

    NASA Technical Reports Server (NTRS)

    Lehman, N.; Joyce, G. F.

    1993-01-01

    Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.

  3. Delta ribozyme has the ability to cleave in transan mRNA.

    PubMed Central

    Roy, G; Ananvoranich, S; Perreault, J P

    1999-01-01

    We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy. PMID:9927724

  4. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core

    PubMed Central

    Truong, David M.; Sidote, David J.; Russell, Rick; Lambowitz, Alan M.

    2013-01-01

    Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA (“ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites (“retrohoming”). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg2+ concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg2+ transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg2+ concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg2+ concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg2+ binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg2+-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg2+ concentrations, with implications for evolution and potential applications in gene targeting. PMID:24043808

  5. The organization and contribution of helicases to RNA splicing.

    PubMed

    De, Inessa; Schmitzová, Jana; Pena, Vladimir

    2016-01-01

    Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out.

  6. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.

    PubMed

    Paukstelis, Paul J; Chen, Jui-Hui; Chase, Elaine; Lambowitz, Alan M; Golden, Barbara L

    2008-01-03

    The 'RNA world' hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter's domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts ('RNPzymes'). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNA(Tyr) and promotes the splicing of mitochondrial group I introns. Here we determine a 4.5-A co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNA(Tyr). This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.

  7. Inhibition of self-splicing group I intron RNA: high-throughput screening assays.

    PubMed Central

    Mei, H Y; Cui, M; Sutton, S T; Truong, H N; Chung, F Z; Czarnik, A W

    1996-01-01

    High-throughput screening assays have been developed to rapidly identify small molecule inhibitors targeting catalytic group I introns. Biochemical reactions catalyzed by a self-splicing group I intron derived from Pneumocystis carinii or from bacteriophage T4 have been investigated. In vitro biochemical assays amenable to high-throughput screening have been established. Small molecules that inhibit the functions of group I introns have been identified. These inhibitors should be useful in better understanding ribozyme catalysis or in therapeutic intervention of group I intron-containing microorganisms. PMID:9016680

  8. In vitro selection of adenine-dependent ribozyme against Tpl2/Cot oncogene.

    PubMed

    Li, Yan-Li; Vergne, Jacques; Torchet, Claire; Maurel, Marie-Christine

    2009-01-01

    Hairpin ribozymes possess the properties of RNA sequence-specific recognition and site-specific cleavage. These properties make them a powerful extension of the antisense approach for the inhibition of gene expression. From a randomized RNA pool of hairpin ribozymes, using the systematic evolution of ligands by exponential enrichment, we have obtained an adenine-dependent hairpin ribozyme, Tpl2/Cot (tumour progression locus 2) ribozyme, which cleaves the Tpl2/Cot kinase mRNA sequence at nucleotides A225/G226 relative to the start codon of translation. This serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in cancer. The selected 'Tpl2/Cot-YL ribozyme' efficiently cleaves its target sequence in cis and in trans; furthermore, the ribozyme efficiently cleaves a longer target sequence of 54 nucleotides in trans, as well as the full-length mRNA.

  9. Micromachined multifiber optic splices

    NASA Astrophysics Data System (ADS)

    Sellers, Gregory J.; Roth, Richard F.

    1995-05-01

    A multifiber mechanical splice concept has been developed for simultaneous mechanical joining of optical fibers in cable. This splice uses a novel 'multifiber positioner' to secure and precisely position the mating pairs of individual optical fibers to achieve excellent light throughput characteristics. The multifiber positioner is a micromachined structure that includes multiple V-grooves in silicon created via anisotropic etching. This concept has been used to create a 4-channel optical splice suitable for aircraft application. The multifiber positioner is mounted on a flexible polymeric 'elevator' and housed within a protective metal shell. The splice and shell design have been developed to facilitate user-friendly operation. The shell assembly includes a novel method for cable attachment and provides an environmental seal. The splice design concept should allow practical field use in adverse conditions.

  10. Splicing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Carson, Susan D.; Salazar, Roberto A.

    1991-12-01

    Polymethylmethacrylate (PMMA) plastic optical fiber (500 micrometers diameter, fluoropolymer cladding) has been spliced using a fused silica sleeve and a variety of solvent/PMMA solutions as adhesives. Mechanical splicing using index matching fluid has also been investigated. To ensure good bonding and minimize scattering, fiber ends are polished prior to application of adhesive. Using an LED ((lambda) max approximately 640 nm), losses are routinely less than 1.0 dB/splice, and some adhesive formulations have exhibited losses as low as 0.2 dB/splice. Five-meter fibers with as many as ten splices/fiber have been monitored over a period of several months. No fiber has exhibited an increase in optical loss with time.

  11. Ribozyme Targeting the Novel Fusion Junction of EGFRvIII in Breast Cancer

    DTIC Science & Technology

    2003-07-01

    targeting the novel junction of EGFRvyII. * Demonstrate the therapeutic efficacy of an anti-EGFRvIll hammerhead ribozyme targeting the endogenous...first demonstration of the therapeutic efficacy of an anti-EGFRvlII hammerhead ribozyme targeting the endogenous EGFRvAII expression against human...202-687-7505.designed and generated a tumor specific hammerhead ribozyme E-mail: Tangc@georgetown.edu targeted to the novel fusion junction of

  12. Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA

    PubMed Central

    Shaked, Hadassa; Wachtel, Chaim; Tulinski, Pawel; Yahia, Nasreen Hag; Barda, Omer; Darzynkiewicz, Edward; Nilsen, Timothy W.; Michaeli, Shulamit

    2010-01-01

    In trypanosomes a 39 nucleotide exon, the spliced leader (SL) is donated to all mRNAs from a small RNA, the SL RNA, by trans-splicing. Since the discovery of trans-splicing in trypanosomes two decades ago, numerous attempts failed to reconstitute the reaction in vitro. In this study, a crude whole-cell extract utilizing the endogenous SL RNA and synthetic tubulin pre-mRNA were used to reconstitute the trans-splicing reaction. An RNase protection assay was used to detect the trans-spliced product. The reaction was optimized and shown to depend on ATP and intact U2 and U6 snRNPs. Mutations introduced at the polypyrimidine tract and the AG splice site reduced the reaction efficiency. To simplify the assay, RT–PCR and quantitative real-time PCR assays were established. The system was used to examine the structural requirements for SL RNA as a substrate in the reaction. Interestingly, synthetic SL RNA assembled poorly to its cognate particle and was not utilized in the reaction. However, SL RNA synthesized in cells lacking Sm proteins, which is defective in cap-4 modification, was active in the reaction. This study is the first step towards further elucidating the mechanism of trans-splicing, an essential reaction which determines the trypanosome transcriptome. PMID:20159996

  13. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2'-O-methylation.

    PubMed Central

    Goodchild, J

    1992-01-01

    RNA catalysts (ribozymes) designed to cleave sequences unique to viral RNA's might be developed as therapeutics. For this purpose, they would require high catalytic efficiency and resistance to nucleases. Reported here are two approaches that can be used in combination to improve these properties. First, catalytic efficiency can be improved by oligonucleotides (facilitators) that bind to the substrate contiguously with the 3'-end of the ribozyme. Second, 2'-O-methylation of flanking sequences of the ribozyme increases catalytic activity as well as resistance to nucleases. In combination with a facilitator oligodeoxynucleotide, the cleavage rate was increased 20 fold over that of the unmodified ribozyme. Images PMID:1383929

  14. Isolation of new ribozymes from a large pool of random sequences

    NASA Technical Reports Server (NTRS)

    Bartel, David P.; Szostak, Jack W.

    1993-01-01

    An iterative in vitro selection procedure was used to isolate a new class of catalytic RNAs (ribozymes) from a large pool of random-sequence RNA molecules. These ribozymes ligate two RNA molecules that are aligned on a template by catalyzing the attack of a 3'-hydroxyl on an adjacent 5'-triphosphate - a reaction similar to that employed by the familiar protein enzymes that synthesize RNA. The corresponding uncatalyzed reaction also yields a 3',5'-phosphodiester bond. In vitro evolution of the population of new ribozymes led to improvement of the average ligation activity and the emergence of ribozymes with reaction rates 7 million times faster than the uncatalyzed reaction rate.

  15. Isolation of new ribozymes from a large pool of random sequences

    NASA Technical Reports Server (NTRS)

    Bartel, David P.; Szostak, Jack W.

    1993-01-01

    An iterative in vitro selection procedure was used to isolate a new class of catalytic RNAs (ribozymes) from a large pool of random-sequence RNA molecules. These ribozymes ligate two RNA molecules that are aligned on a template by catalyzing the attack of a 3'-hydroxyl on an adjacent 5'-triphosphate - a reaction similar to that employed by the familiar protein enzymes that synthesize RNA. The corresponding uncatalyzed reaction also yields a 3',5'-phosphodiester bond. In vitro evolution of the population of new ribozymes led to improvement of the average ligation activity and the emergence of ribozymes with reaction rates 7 million times faster than the uncatalyzed reaction rate.

  16. Mutation analysis of the base-pair connecting two functional modules in the DSL ribozyme.

    PubMed

    Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya

    2008-01-01

    The class DSL ribozyme is one of artificial RNA enzymes generated by module-based molecular design. In the structure of this ribozyme, two most important functional modules are connected by a U-A base-pair. We have examined the possible importance of this base-pair by site-directed mutation experiments using the DSL-1S ribozyme and its derivative possessing altered modular organization. The analysis indicated that the DSL-1S ribozyme preferred U-A pair at the positions whereas the derivative preferred A-U pair.

  17. Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation.

    PubMed

    Gaines, Colin S; York, Darrin M

    2016-03-09

    We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path to gain insight into its mechanism. The results, together with recent biochemical experiments, provide support for a mechanism involving general-acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, currently, there is a lack of a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as a general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by

  18. Ribozyme catalysis with a twist: the active state of the twister ribozyme in solution predicted from molecular simulation

    PubMed Central

    Gaines, Colin S.; York, Darrin M.

    2016-01-01

    We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path in order to gain insight into its mechanism. Results, together with recent biochemical experiments, provide support for a mechanism involving general acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be - a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, there currently lacks a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by

  19. A triplex ribozyme expression system based on a single hairpin ribozyme.

    PubMed

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M

    2008-09-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.

  20. A Triplex Ribozyme Expression System Based on a Single Hairpin Ribozyme

    PubMed Central

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A.

    2008-01-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with trans-cleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies. PMID:18707243

  1. Freeze-thaw cycles as drivers of complex ribozyme assembly

    PubMed Central

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-01-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools. PMID:25991529

  2. Freeze-thaw cycles as drivers of complex ribozyme assembly

    NASA Astrophysics Data System (ADS)

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-06-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.

  3. Unraveling the Mechanisms of Ribozyme Catalysis with Multiscale Simulations

    NASA Astrophysics Data System (ADS)

    Lee, Tai-Sung; Giambaşu, George M.; Moser, Adam; Nam, Kwangho; Silva-Lopez, Carlos; Guerra, Francesca; Nieto-Faza, Olalla; Giese, Timothy J.; Gao, Jiali; York, Darrin M.

    Description of a multiscale simulation strategy we have developed to attack problems of RNA catalysis is presented. Ribozyme systems give special challenges not present in typical protein systems, and consequently demand new methods. The main methodological components are herein summarized, including the assembly of the QCRNA database, parameterization of the AM1/d-PhoT Hamiltonian, and development of new semiempirical functional forms for improved charge-dependent response properties, methods for coupling many-body exchange, correlation and dispersion into the QM/MM interaction, and generalized methods for linear-scaling electrostatics, solvation and solvent boundary potentials. Results for a series of case studies ranging from noncatalytic reaction models that compare the effect of new DFT functionals, and on catalytic RNA systems including the hairpin, hammerhead and L1 ligase ribozymes are discussed

  4. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins

    PubMed Central

    Serganov, Alexander; Patel, Dinshaw J.

    2015-01-01

    Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins. PMID:17846637

  5. Hairpin ribozyme-catalyzed ligation in water-alcohol solutions.

    PubMed

    Vlassov, Alexander V; Johnston, Brian H; Kazakov, Sergei A

    2005-12-01

    The hairpin ribozyme (HPR) is a naturally existing RNA that catalyzes site-specific RNA cleavage and ligation. At 37 degrees C and in the presence of divalent metal ions (M(2+)), the HPR efficiently cleaves RNA substrates in trans. Here, we show that the HPR can catalyze efficient M(2+)-independent ligation in trans in aqueous solutions containing any of several alcohols, including methanol, ethanol, and isopropanol, and millimolar concentrations of monovalent cations. Ligation proceeds most efficiently in 60% isopropanol at 37 degrees C, whereas the reverse (cleavage) reaction is negligible under these conditions. We suggest that dehydration of the RNA is the key factor promoting HPR activity in water- alcohol solutions. Alcohol-induced ribozyme ligation may have practical applications.

  6. Monitoring Retroviral RNA Dimerization In Vivo via Hammerhead Ribozyme Cleavage

    PubMed Central

    Pal, Bijay K.; Scherer, Lisa; Zelby, Laurie; Bertrand, Edouard; Rossi, John J.

    1998-01-01

    We have used a strategy for colocalization of Psi (Ψ)-tethered ribozymes and targets to demonstrate that Ψ sequences are capable of specific interaction in the cytoplasm of both packaging and nonpackaging cells. These results indicate that current in vitro dimerization models may have in vivo counterparts. The methodology used may be applied to further genetic analyses on Ψ domain interactions in vivo. PMID:9733882

  7. Coupling transcription and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2007-01-01

    Alternative splicing regulation not only depends on the interaction of splicing factors with splicing enhancers and silencers in the pre-mRNA, but also on the coupling between transcription and splicing. This coupling is possible because splicing is often cotranscriptional and promoter identity and occupation may affect alternative splicing. We discuss here the different mechanisms by which transcription regulates alternative splicing. These include the recruitment of splicing factors to the transcribing polymerase and "kinetic coupling", which involves changes in the rate of transcriptional elongation that in turn affect the timing in which splice sites are presented to the splicing machinery. The recruitment mechanism may depend on the particular features of the carboxyl terminal domain of RNA polymerase II, whereas kinetic coupling seems to be linked to how changes in chromatin structure and other factors affect transcription elongation.

  8. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    PubMed Central

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  9. Prebiotic Factors Influencing the Activity of a Ligase Ribozyme.

    PubMed

    Anella, Fabrizio; Danelon, Christophe

    2017-04-06

    An RNA-lipid origin of life scenario provides a plausible route for compartmentalized replication of an informational polymer and subsequent division of the container. However, a full narrative to form such RNA protocells implies that catalytic RNA molecules, called ribozymes, can operate in the presence of self-assembled vesicles composed of prebiotically relevant constituents, such as fatty acids. Hereby, we subjected a newly engineered truncated variant of the L1 ligase ribozyme, named tL1, to various environmental conditions that may have prevailed on the early Earth with the objective to find a set of control parameters enabling both tL1-catalyzed ligation and formation of stable myristoleic acid (MA) vesicles. The separate and concurrent effects of temperature, concentrations of Mg(2+), MA, polyethylene glycol and various solutes were investigated. The most favorable condition tested consists of 100 mM NaCl, 1 mM Mg(2+), 5 mM MA, and 4 °C temperature, whereas the addition of Mg(2+)-chelating solutes, such as citrate, tRNAs, aspartic acid, and nucleoside triphosphates severely inhibits the reaction. These results further solidify the RNA-lipid world hypothesis and stress the importance of using a systems chemistry approach whereby a wide range of prebiotic factors interfacing with ribozymes are considered.

  10. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  11. The Hammerhead Ribozyme: Structure, Catalysis and Gene Regulation

    PubMed Central

    Scott, William G.; Horan, Lucas H.; Martick, Monika

    2014-01-01

    The hammerhead ribozyme has long been considered a prototype for understanding RNA catalysis, but discrepancies between the earlier crystal structures of a minimal hammerhead self-cleaving motif and various biochemical investigations frustrated attempt to understand hammerhead ribozyme catalysis in terms of structure. With the discovery that a tertiary contact distal from the ribozyme’s active site greatly enhances its catalytic prowess, and the emergence of new corresponding crystal structures of full-length hammerhead ribozymes, a unified understanding of catalysis in terms of the structure is now possible. A mechanism in which the invariant residue G12 functions as a general base, and the 2′-OH moiety of the invariant G8, itself forming a tertiary base pair with the invariant C3, is the general acid, appears consistent with both the crystal structure and biochemical experimental results. Originally discovered in the context of plant satellite RNA viruses, the hammerhead more recently has been found embedded in the 3′-untranslated region of mature mammalian mRNAs, suggesting additional biological roles in genetic regulation. PMID:24156940

  12. Structure of ribonuclease P--a universal ribozyme.

    PubMed

    Torres-Larios, Alfredo; Swinger, Kerren K; Pan, Tao; Mondragón, Alfonso

    2006-06-01

    Ribonuclease P (RNase P) is one of only two known universal ribozymes and was one of the first ribozymes to be discovered. It is involved in RNA processing, in particular the 5' maturation of tRNA. Unlike most other natural ribozymes, it recognizes and cleaves its substrate in trans. RNase P is a ribonucleoprotein complex containing one RNA subunit and as few as one protein subunit. It has been shown that, in bacteria and in some archaea, the RNA subunit alone can support catalysis. The structure and function of bacterial RNase P RNA have been studied extensively, but the detailed catalytic mechanism is not yet fully understood. Recently, structures of one of the structural domains and of the entire RNA component of RNase P from two different bacteria have been described. These structures provide the first atomic-level information on the structural assembly of the RNA component, and the regions involved in substrate recognition and catalysis. Comparison of these structures reveals a highly conserved core that comprises two universally conserved structural modules. Interestingly, the same structural core can be found in the context of different scaffolds.

  13. A ribozyme composed of only two different nucleotides.

    PubMed

    Reader, John S; Joyce, Gerald F

    RNA molecules are thought to have been prominent in the early history of life on Earth because of their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, owing to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unit. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyse the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalysed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.

  14. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs.

    PubMed

    Cervera, Amelia; De la Peña, Marcos

    2014-11-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Local neutral networks help maintain inaccurately replicating ribozymes.

    PubMed

    Szilágyi, András; Kun, Ádám; Szathmáry, Eörs

    2014-01-01

    The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.

  16. Investigating a New Generation of Ribozymes in Order to Target HCV

    PubMed Central

    Lévesque, Michel V.; Lévesque, Dominique; Brière, Francis P.; Perreault, Jean-Pierre

    2010-01-01

    For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed

  17. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  18. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Simon, Dawn M.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5′ splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5′ exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  19. Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme.

    PubMed

    Suga, Keishi; Tanaka, Seishiro; Umakoshi, Hiroshi

    2016-01-01

    The hammerhead ribozyme (HHR) is one of smallest catalytic RNAs, composed of a catalytic core and three stems; it undergoes self-cleavage in the presence of divalent magnesium ions (Mg(2+)) or other cations. It is hypothesized that the function and metabolism of RNAs might be regulated via interaction with lipid membranes in the prebiotic world. Using synthetic RNAs that model the core fragment of hammerhead ribozyme-like assembly (HHR-a), we investigated the enhancement of the self-cleavage reaction of HHR-a induced by the liposomes, both in the absence and presence of Mg(2+). The HHR-a activity was enhanced by 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DPPC) = 8/2 liposome with Mg(2+), while other liposomes did not so significant. In the presence of DOPE/DPPC = 8/2 liposome, the HHR-a activity was observed without Mg(2+), revealed by the conformational change of the HHR inhibitor complex induced by the interaction with the liposome. The UV resonance Raman spectroscopy analysis investigated the interaction between lipid molecules and nucleobases, suggesting that the ethanolamine group of DOPE molecules are assumed to act as monovalent cations alternative to Mg(2+), depending on the liposome membrane characteristics.

  20. RNA helicases in splicing.

    PubMed

    Cordin, Olivier; Beggs, Jean D

    2013-01-01

    In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.

  1. Electrical-splicing connector

    NASA Technical Reports Server (NTRS)

    Stringer, E. J.

    1977-01-01

    Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.

  2. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.

    PubMed Central

    Mobley, E M; Pan, T

    1999-01-01

    Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are approximately 0.7 min(-1)in 10 mM MgCl(2)at 37 degrees C, approximately 4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate. PMID:10518624

  3. Screening effective target sites on mRNA: a ribozyme library approach.

    PubMed

    Unwalla, Hoshang J; Rossi, John J

    2012-01-01

    Hammerhead ribozymes have been extensively used as RNA-inactivating agents for therapy as well as forward genomics. A ribozyme can be designed so as to specifically pair with virtually any target RNA, and cleave the phosphodiester backbone at a specified location, thereby functionally inactivating the RNA. Two major factors that determine whether ribozymes will be effective for posttranscriptional gene silencing are colocalization of the ribozyme and the target RNAs, and the choice of an appropriate target site on the mRNA. Complex secondary structures and the ability to bind to some of the cellular proteins mandate that some RNA sequences could stearically occlude binding of RNA-based antivirals like ribozymes to these sites. The use of ribozyme libraries in cell culture factors in these interactions to select for target sites on the RNA, which are more accessible to RNA-based antivirals like ribozymes or siRNA. This chapter provides a useful guide toward using ribozyme libraries to screen for effective target sites on mRNA.

  4. Inhibition of Plasmodium falciparum ispH (lytB) gene expression by hammerhead ribozyme.

    PubMed

    Vinayak, Sumiti; Sharma, Yagya D

    2007-01-01

    The nonmevalonate pathway of isoprenoid biosynthesis in the apicoplast of the human malaria parasite Plasmodium falciparum is distinct from the mevalonate-dependent pathway of humans and thus a good drug target. We describe here the hammerhead ribozyme based cleavage of the ispH (lytB) gene transcript involved in the last step of this nonmevalonate pathway. Using RNA folding program, three hammerhead ribozymes named as RZ(876), RZ(1260), and RZ(1331) were predicted against ispH (lytB) mRNA. Messenger walk screening (RNaseH) assay confirmed the target accessibility for these ribozymes. All three ribozymes cleaved the target RNA in vitro but RZ(876) exhibited the highest catalytic potential (62.92%). Therefore, RZ(876) was chemically synthesized with appropriate chemical modifications to protect it from nuclease attack while using it for in vitro parasite growth inhibition assay. This ribozyme RZ(876) was able to inhibit 87.36% parasite growth at 30 microM concentration compared to the untreated culture. However, an absolute inhibition of 29.41% was achieved compared to the control ribozyme (RZ(ctrl)). Nonetheless, the growth inhibition effect was found to be sequence-specific as indicated by the decreased level of ispH (lytB) transcript after ribozyme treatment. In conclusion, we have identified the ispH (lytB) as a potential target whose transcript can be cleaved by a ribozyme RZ(876).

  5. Effective Inhibition of Human Immunodeficiency Virus 1 Replication by Engineered RNase P Ribozyme

    PubMed Central

    Trang, Phong; Vu, Gia-Phong; Lu, Sangwei; Wu, Jianguo; Liu, Fenyong

    2012-01-01

    Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G83 -> U83 and G340 -> A340) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application. PMID:23300569

  6. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat

    PubMed Central

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-01-01

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism. PMID:27404720

  7. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.

    PubMed Central

    Tang, J; Breaker, R R

    1997-01-01

    We have designed a self-cleaving ribozyme construct that is rendered inactive during preparative in vitro transcription by allosteric interactions with ATP. This allosteric ribozyme was constructed by joining a hammerhead domain to an ATP-binding RNA aptamer, thereby creating a ribozyme whose catalytic rate can be controlled by ATP. Upon purification by PAGE, the engineered ribozyme undergoes rapid self-cleavage when incubated in the absence of ATP. This strategy of "allosteric delay" was used to prepare intact hammerhead ribozymes that would otherwise self-destruct during transcription. Using a similar strategy, we have prepared a combinatorial pool of RNA in order to assess the catalytic fitness of ribozymes that carry the natural consensus sequence for the hammerhead. Using in vitro selection, this comprehensive RNA pool was screened for sequence variants of the hammerhead ribozyme that also display catalytic activity. We find that sequences that comprise the core of naturally occurring hammerhead dominate the population of selected RNAs, indicating that the natural consensus sequence of this ribozyme is optimal for catalytic function. PMID:9257650

  8. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme.

    PubMed Central

    Ojwang, J O; Hampel, A; Looney, D J; Wong-Staal, F; Rappaport, J

    1992-01-01

    Ribozymes are RNAs that possess the dual properties of RNA sequence-specific recognition, analogous to conventional antisense molecules, and RNA substrate destruction via site-specific cleavage. The cleavage reaction is catalytic in that more than one substrate molecule is processed per ribozyme molecule. We have designed a hairpin ribozyme that cleaves human immunodeficiency virus type 1 (HIV-1) RNA in the leader sequence (at nucleotides +111/112 relative to the transcription initiation site). The ribozyme was tested in vitro and gave efficient and specific cleavage of RNA containing the leader sequence. To test the antiviral efficacy of this ribozyme, we have cotransfected into HeLa cells HIV-1 proviral DNA and a plasmid expressing the ribozyme from the human beta-actin promoter. HIV-1 expression was inhibited as measured by p24 antigen levels and reduced Tat activity. The antiviral effect of the ribozyme appears to be specific and results from directed RNA cleavage; activity requires both a target sequence and a functional RNA catalytic center. These results suggest that this HIV-1-directed hairpin ribozyme may be useful as a therapeutic agent. Images PMID:1438280

  9. Hairpin Ribozyme Genes Curtail Alcohol Drinking: from Rational Design to in vivo Effects in the Rat.

    PubMed

    Sapag, Amalia; Irrazábal, Thergiory; Lobos-González, Lorena; Muñoz-Brauning, Carlos R; Quintanilla, María Elena; Tampier, Lutske

    2016-07-12

    Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

  10. Differential gene expression and alternative splicing between diploid and tetraploid watermelon lines

    USDA-ARS?s Scientific Manuscript database

    Synthetic tetraploid plants have been used for production of seedless triploid watermelon lines being pollinated with diploid plants. When compared to their diploid or triploid counterparts, the tetraploid exhibit wide phenotypic differences. Though many factors, including alternative splicing (AS),...

  11. A widespread self-cleaving ribozyme class is revealed by bioinformatics

    PubMed Central

    Roth, Adam; Weinberg, Zasha; Chen, Andy G. Y.; Kim, Peter B.; Ames, Tyler D.; Breaker, Ronald R.

    2013-01-01

    Ribozymes are noncoding RNAs that promote chemical transformations with rate enhancements approaching those of protein enzymes. Although ribozymes are likely to have been abundant during the RNA world era, only ten classes are known to exist among contemporary organisms. We report the discovery and analysis of an additional self-cleaving ribozyme class, called twister, which is present in many species of bacteria and eukarya. Nearly 2700 twister ribozymes were identified that conform to a secondary structure consensus that is small yet complex, with three stems conjoined by internal and terminal loops. Two pseudoknots provide tertiary structure contacts that are critical for catalytic activity. The twister ribozyme motif provides another example of a natural RNA catalyst and calls attention to the potentially varied biological roles of this and other classes of widely distributed self-cleaving RNAs. PMID:24240507

  12. Transition State Features in the Hepatitis Delta Virus (HDV) Ribozyme Reaction Revealed by Atomic Perturbations

    PubMed Central

    Koo, Selene C.; Lu, Jun; Li, Nan-Sheng; Leung, Edward; Das, Subha R.; Harris, Michael E.; Piccirilli, Joseph A.

    2016-01-01

    Endonucleolytic ribozymes constitute a class of non-coding RNAs that catalyze single strand RNA scission. With crystal structures available for all of the known ribozymes, a major challenge involves relating functional data to the physically observed RNA architecture. In the case of the HDV ribozyme, there are three high-resolution crystal structures, the product state of the reaction and two precursor variants, with distinct mechanistic implications. Here, we develop new strategies to probe the structure and catalytic mechanism of a ribozyme. First, we use double mutant cycles to distinguish differences in functional group proximity implicated by the crystal structures. Second, we use a corrected form of the Brønsted equation to assess the functional significance of general acid catalysis in the system. Our results delineate the functional relevance of atomic interactions inferred from structure, and suggest that the HDV ribozyme transition state resembles the cleavage product in the degree of proton transfer to the leaving group. PMID:26125657

  13. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme.

    PubMed

    Perrotta, A T; Shih, I; Been, M D

    1999-10-01

    Ribozymes use a number of the same catalytic strategies as protein enzymes. However, general base catalysis by a ribozyme has not been demonstrated. In the hepatitis delta virus antigenomic ribozyme, imidazole buffer rescued activity of a mutant with a cytosine-76 (C76) to uracil substitution. In addition, a C76 to adenine substitution reduced the apparent pKa (where Ka is the acid constant) of the self-cleavage reaction by an amount consistent with differences in the pKa values of these two side chains. These results suggest that, in the wild-type ribozyme, C76 acts as a general base. This finding has implications for potential catalytic functions of conserved cytosines and adenines in other ribozymes and in ribonuclear proteins with enzymatic activity.

  14. Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes.

    PubMed

    Fei, Qi; Zhang, Hongyu; Fu, Lili; Dai, Xinlan; Gao, Baomei; Ni, Min; Ge, Chao; Li, Jinjun; Ding, Xia; Ke, Yuwen; Yao, Xuebiao; Zhu, Jingde

    2008-06-01

    To improve the efficacy of gene therapy for cancer, we designed four hammerhead ribozyme adenoviruses (R1 to R4) targeting the exposed regions of survivin mRNA. In addition to the in vitro characterization, which included a determination of the sequence specificity of cleavage by primer extension, assays for cell proliferation and for in vivo tumor growth were used to score for ribozyme efficiency. The resulting suppression of survivin expression induced mitotic catastrophe and cell death via the caspase-3-dependent pathway. Importantly, administration of the ribozyme adenoviruses inhibited tumor growth in a hepatocellular carcinoma xenograft mouse model. Co-expression of R1, R3 and R4 ribozymes synergistically suppressed survivin and, as this combination targets all major forms of the survivin transcripts, produced the most potent anti-cancer effects. The adenoviruses carrying the multiple hammerhead ribozymes described in this report offered a robust gene therapy strategy against cancer.

  15. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications.

    PubMed Central

    Williams, D M; Pieken, W A; Eckstein, F

    1992-01-01

    The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed. Images PMID:1736306

  16. Cobalt(III)Hexaammine-Dependent Photocrosslinks in the Hairpin Ribozyme

    PubMed Central

    Kraemer-Chant, Christina M.; Heckman, Joyce E.; Lambert, Dominic; Burke, John M.

    2014-01-01

    We have utilized the hairpin ribozyme, an RNA enzyme whose structure has been solved by high-resolution methods, to develop a new tool for mapping nucleobase-stacking interactions and potential metal-binding sites in RNA molecules. This tool involves the photoactivation of a specifically bound cobalt(III)hexaammine molecule at wavelengths corresponding to excitation of the metal ion complex only; no base excitation is involved. The photoexcitation initiates a process which strongly promotes the formation of a novel covalent bond or crosslink between one base (termed the “first base”), which is close in space to the excited cobalt(III)hexaammine complex, and another base upon which the first base is closely stacked. These crosslinked species can be isolated and sequenced; their activities can be analyzed to ensure that the crosslinked structures represent an active conformation of the molecule. We have shown that, as in electron transfer in DNA, several criteria must be met to result in the successful formation of these crosslinks. These include the appropriate oxidation potential of the first donor base, the stacking and close interaction of the two donor bases involved in the crosslink, and the binding of a specific cobalt(III)hexaammine molecule to the first donor base. Additionally, we have determined that this crosslinking is pH-sensitive, although the cause of this sensitivity remains unknown. This tool has proven useful in the past for the analysis of the hairpin ribozyme folded structure, and has been applied to identifying potential metal-binding sites on the hairpin and extended hammerhead ribozymes. PMID:24295878

  17. RiboaptDB: A Comprehensive Database of Ribozymes and Aptamers

    PubMed Central

    Thodima, Venkata; Pirooznia, Mehdi; Deng, Youping

    2006-01-01

    Background Catalytic RNA molecules are called ribozymes. The aptamers are DNA or RNA molecules that have been selected from vast populations of random sequences, through a combinatorial approach known as SELEX. The selected oligo-nucleotide sequences (~200 bp in length) have the ability to recognize a broad range of specific ligands by forming binding pockets. These novel aptamer sequences can bind to nucleic acids, proteins or small organic and inorganic chemical compounds and have many potential uses in medicine and technology. Results The comprehensive sequence information on aptamers and ribozymes that have been generated by in vitro selection methods are included in this RiboaptDB database. Such types of unnatural data generated by in vitro methods are not available in the public 'natural' sequence databases such as GenBank and EMBL. The amount of sequence data generated by in vitro selection experiments has been accumulating exponentially. There are 370 artificial ribozyme sequences and 3842 aptamer sequences in the total 4212 sequences from 423 citations in this RiboaptDB. We included general search feature, and individual feature wise search, user submission form for new data through online and also local BLAST search. Conclusion This database, besides serving as a storehouse of sequences that may have diagnostic or therapeutic utility in medicine, provides valuable information for computational and theoretical biologists. The RiboaptDB is extremely useful for garnering information about in vitro selection experiments as a whole and for better understanding the distribution of functional nucleic acids in sequence space. The database is updated regularly and is publicly available at . PMID:17118149

  18. Sequence specificity of the hammerhead ribozyme revisited; the NHH rule.

    PubMed Central

    Kore, A R; Vaish, N K; Kutzke, U; Eckstein, F

    1998-01-01

    The sequence specificity of hammerhead ribozyme cleavage has been re-evaluated with respect to the NUH rule. Contrary to previous reports it was found that substrates with GAC triplets were also cleaved. This was established in three different sequence contexts. The rate of cleavage under single turnover conditions was between 3 and 7% that of cleavage 3' of GUC. Specificity of cleavage of substrates containing a central A in the cleavable triplet can be described as NAH, where N can be any nucleotide and H any nucleotide but G. As cleavage 3' of NCH triplets has recently been described, the NUH rule can be reformulated to NHH. PMID:9722629

  19. RNA self-ligation: from oligonucleotides to full length ribozymes.

    PubMed

    Gwiazda, Slawomir; Salomon, Kristina; Appel, Bettina; Müller, Sabine

    2012-07-01

    The RNA-world-theory is one possible explanation of how life on earth has evolved. In this context it is of high interest to search for molecular systems, capable of self-organization into structures with increasing complexity. We have engineered a simple catalytic system in which two short RNA molecules can catalyze their own ligation to form a larger RNA construct. The system is based on the hairpin ribozyme using a 2',3'-cyclophosphate as activated species for ligation. 2',3'-cyclic phosphates can be easily formed and occur in many natural systems, thus being superior candidates for activated building blocks in RNA world scenarios.

  20. Substrate specificity and reaction kinetics of an X-motif ribozyme

    PubMed Central

    LAZAREV, DENIS; PUSKARZ, IZABELA; BREAKER, RONALD R.

    2003-01-01

    The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions. PMID:12756327

  1. Speciation of a group I intron into a lariat capping ribozyme

    PubMed Central

    Meyer, Mélanie; Nielsen, Henrik; Oliéric, Vincent; Roblin, Pierre; Johansen, Steinar D.; Westhof, Eric; Masquida, Benoît

    2014-01-01

    The lariat-capping (LC) ribozyme is a natural ribozyme isolated from eukaryotic microorganisms. Despite apparent structural similarity to group I introns, the LC ribozyme catalyzes cleavage by a 2′,5′ branching reaction, leaving the 3′ product with a 3-nt lariat cap that functionally substitutes for a conventional mRNA cap in the downstream pre-mRNA encoding a homing endonuclease. We describe the crystal structures of the precleavage and postcleavage LC ribozymes, which suggest that structural features inherited from group I ribozymes have undergone speciation due to profound changes in molecular selection pressure, ultimately giving rise to an original branching ribozyme family. The structures elucidate the role of key elements that regulate the activity of the LC ribozyme by conformational switching and suggest a mechanism by which the signal for branching is transmitted to the catalytic core. The structures also show how conserved interactions twist residues, forming the lariat to join chemical groups involved in branching. PMID:24821772

  2. Applicability of PM3 to transphosphorylation reaction path: Toward designing a minimal ribozyme

    NASA Technical Reports Server (NTRS)

    Manchester, John I.; Shibata, Masayuki; Setlik, Robert F.; Ornstein, Rick L.; Rein, Robert

    1993-01-01

    A growing body of evidence shows that RNA can catalyze many of the reactions necessary both for replication of genetic material and the possible transition into the modern protein-based world. However, contemporary ribozymes are too large to have self-assembled from a prebiotic oligonucleotide pool. Still, it is likely that the major features of the earliest ribozymes have been preserved as molecular fossils in the catalytic RNA of today. Therefore, the search for a minimal ribozyme has been aimed at finding the necessary structural features of a modern ribozyme (Beaudry and Joyce, 1990). Both a three-dimensional model and quantum chemical calculations are required to quantitatively determine the effects of structural features of the ribozyme on the reaction it catalyzes. Using this model, quantum chemical calculations must be performed to determine quantitatively the effects of structural features on catalysis. Previous studies of the reaction path have been conducted at the ab initio level, but these methods are limited to small models due to enormous computational requirements. Semiempirical methods have been applied to large systems in the past; however, the accuracy of these methods depends largely on a simple model of the ribozyme-catalyzed reaction, or hydrolysis of phosphoric acid. We find that the results are qualitatively similar to ab initio results using large basis sets. Therefore, PM3 is suitable for studying the reaction path of the ribozyme-catalyzed reaction.

  3. Activation of the glmS Ribozyme Nucleophile via Overdetermined Hydrogen Bonding.

    PubMed

    Bingaman, Jamie L; Gonzalez, Inanllely Y; Wang, Bo; Bevilacqua, Philip C

    2017-08-22

    RNA enzymes, or ribozymes, catalyze internal phosphodiester bond cleavage using diverse catalytic strategies. These include the four classic strategies: in-line nucleophilic attack, deprotonation of the 2'-OH nucleophile, protonation of the 5'-O leaving group, and stabilization of developing charge on the nonbridging oxygen atoms of the scissile phosphate. In addition, we recently identified two additional ribozyme strategies: acidification of the 2'-OH and release of the 2'-OH from inhibitory interactions. Herein, we report inverse thio effects in the presence of glmS ribozyme variants and a 1-deoxyglucosamine 6-phosphate cofactor analogue and demonstrate that activation of the 2'-OH nucleophile is promoted by competitive hydrogen bonding among diverse ribozyme moieties for the pro-RP nonbridging oxygen. We conclude that the glmS ribozyme uses an overdetermined set of competing hydrogen bond donors in its active site to ensure potent activation and regulation by the cofactor. Nucleophile activation through competitive, overdetermined hydrogen bonding could be a general strategy for ribozyme activation and may be applicable for controlling the function of ribozymes and riboswitches in the laboratory.

  4. Applicability of PM3 to transphosphorylation reaction path: Toward designing a minimal ribozyme

    NASA Technical Reports Server (NTRS)

    Manchester, John I.; Shibata, Masayuki; Setlik, Robert F.; Ornstein, Rick L.; Rein, Robert

    1993-01-01

    A growing body of evidence shows that RNA can catalyze many of the reactions necessary both for replication of genetic material and the possible transition into the modern protein-based world. However, contemporary ribozymes are too large to have self-assembled from a prebiotic oligonucleotide pool. Still, it is likely that the major features of the earliest ribozymes have been preserved as molecular fossils in the catalytic RNA of today. Therefore, the search for a minimal ribozyme has been aimed at finding the necessary structural features of a modern ribozyme (Beaudry and Joyce, 1990). Both a three-dimensional model and quantum chemical calculations are required to quantitatively determine the effects of structural features of the ribozyme on the reaction it catalyzes. Using this model, quantum chemical calculations must be performed to determine quantitatively the effects of structural features on catalysis. Previous studies of the reaction path have been conducted at the ab initio level, but these methods are limited to small models due to enormous computational requirements. Semiempirical methods have been applied to large systems in the past; however, the accuracy of these methods depends largely on a simple model of the ribozyme-catalyzed reaction, or hydrolysis of phosphoric acid. We find that the results are qualitatively similar to ab initio results using large basis sets. Therefore, PM3 is suitable for studying the reaction path of the ribozyme-catalyzed reaction.

  5. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  6. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA

    PubMed Central

    Birgisdottir, Åsa B.; Johansen, Steinar

    2005-01-01

    The wide, but scattered distribution of group I introns in nature is a result of two processes; the vertical inheritance of introns with or without losses, and the occasional transfer of introns across species barriers. Reversal of the group I intron self-splicing reaction, termed reverse splicing, coupled with reverse transcription and genomic integration potentially mediate an RNA-based intron mobility pathway. Compared to the well characterized endonuclease-mediated intron homing, reverse splicing is less specific and represents a likely explanation for many intron transpositions into new genomic sites. However, the frequency and general role of an RNA-based mobility pathway in the spread of natural group I introns is still unclear. We have used the twin-ribozyme intron (Dir.S956-1) from the myxomycete Didymium iridis to test how a mobile group I intron containing a homing endonuclease gene (HEG) selects between potential insertion sites in the small subunit (SSU) rRNA in vitro, in Escherichia coli and in yeast. Surprisingly, the results show a site-specific RNA-based targeting of Dir.S956-1 into its natural (S956) SSU rRNA site. Our results suggest that reverse splicing, in addition to the established endonuclease-mediated homing mechanism, potentially accounts for group I intron spread into the homologous sites of different strains and species. PMID:15817568

  7. Isolation of novel ribozymes that ligate AMP-activated RNA substrates

    NASA Technical Reports Server (NTRS)

    Hager, A. J.; Szostak, J. W.

    1997-01-01

    BACKGROUND: The protein enzymes RNA ligase and DNA ligase catalyze the ligation of nucleic acids via an adenosine-5'-5'-pyrophosphate 'capped' RNA or DNA intermediate. The activation of nucleic acid substrates by adenosine 5'-monophosphate (AMP) may be a vestige of 'RNA world' catalysis. AMP-activated ligation seems ideally suited for catalysis by ribozymes (RNA enzymes), because an RNA motif capable of tightly and specifically binding AMP has previously been isolated. RESULTS: We used in vitro selection and directed evolution to explore the ability of ribozymes to catalyze the template-directed ligation of AMP-activated RNAs. We subjected a pool of 10(15) RNA molecules, each consisting of long random sequences flanking a mutagenized adenosine triphosphate (ATP) aptamer, to ten rounds of in vitro selection, including three rounds involving mutagenic polymerase chain reaction. Selection was for the ligation of an oligonucleotide to the 5'-capped active pool RNA species. Many different ligase ribozymes were isolated; these ribozymes had rates of reaction up to 0.4 ligations per hour, corresponding to rate accelerations of approximately 5 x10(5) over the templated, but otherwise uncatalyzed, background reaction rate. Three characterized ribozymes catalyzed the formation of 3'-5'-phosphodiester bonds and were highly specific for activation by AMP at the ligation site. CONCLUSIONS: The existence of a new class of ligase ribozymes is consistent with the hypothesis that the unusual mechanism of the biological ligases resulted from a conservation of mechanism during an evolutionary replacement of a primordial ribozyme ligase by a more modern protein enzyme. The newly isolated ligase ribozymes may also provide a starting point for the isolation of ribozymes that catalyze the polymerization of AMP-activated oligonucleotides or mononucleotides, which might have been the prebiotic analogs of nucleoside triphosphates.

  8. Isolation of novel ribozymes that ligate AMP-activated RNA substrates

    NASA Technical Reports Server (NTRS)

    Hager, A. J.; Szostak, J. W.

    1997-01-01

    BACKGROUND: The protein enzymes RNA ligase and DNA ligase catalyze the ligation of nucleic acids via an adenosine-5'-5'-pyrophosphate 'capped' RNA or DNA intermediate. The activation of nucleic acid substrates by adenosine 5'-monophosphate (AMP) may be a vestige of 'RNA world' catalysis. AMP-activated ligation seems ideally suited for catalysis by ribozymes (RNA enzymes), because an RNA motif capable of tightly and specifically binding AMP has previously been isolated. RESULTS: We used in vitro selection and directed evolution to explore the ability of ribozymes to catalyze the template-directed ligation of AMP-activated RNAs. We subjected a pool of 10(15) RNA molecules, each consisting of long random sequences flanking a mutagenized adenosine triphosphate (ATP) aptamer, to ten rounds of in vitro selection, including three rounds involving mutagenic polymerase chain reaction. Selection was for the ligation of an oligonucleotide to the 5'-capped active pool RNA species. Many different ligase ribozymes were isolated; these ribozymes had rates of reaction up to 0.4 ligations per hour, corresponding to rate accelerations of approximately 5 x10(5) over the templated, but otherwise uncatalyzed, background reaction rate. Three characterized ribozymes catalyzed the formation of 3'-5'-phosphodiester bonds and were highly specific for activation by AMP at the ligation site. CONCLUSIONS: The existence of a new class of ligase ribozymes is consistent with the hypothesis that the unusual mechanism of the biological ligases resulted from a conservation of mechanism during an evolutionary replacement of a primordial ribozyme ligase by a more modern protein enzyme. The newly isolated ligase ribozymes may also provide a starting point for the isolation of ribozymes that catalyze the polymerization of AMP-activated oligonucleotides or mononucleotides, which might have been the prebiotic analogs of nucleoside triphosphates.

  9. SpliceDisease database: linking RNA splicing and disease

    PubMed Central

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease. PMID:22139928

  10. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  11. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  12. Rolling Circle Transcription of Ribozymes Targeted to ras and mdr-1

    DTIC Science & Technology

    2001-09-01

    ssDNA) to direct transcription of an tion-PCR, and recyclization were carried out to optimize active hammerhead ribozyme in E. coli cells. transcription...transcription I hammerhead ribozyme I in vitro selection and 12.5 units/ml RNase inhibitor (Promega), in a total reaction volume of 15 tk1. After a...sequence encoding a ssDNA, and splint ssDNA were ethanol-precipitated and used as hammerhead ribozyme . templates to begin the next round of in vitro

  13. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  14. Probing the active site of a diels-alderase ribozyme by photoaffinity cross-linking.

    PubMed

    Wombacher, Richard; Jäschke, Andres

    2008-07-09

    The active site of a Diels-Alderase ribozyme is located in solution by photoaffinity cross-linking using a productlike azidobenzyl probe. Two key nucleotides are identified that contact the Diels-Alder product in a conformation-dependent fashion. The design of such probes does not require knowledge of the three-dimensional structure of the ribozyme, and the technique yields both static and dynamic structural information. This work establishes photoaffinity cross-linking as an empirical approach that is applied here for the first time to an artificial ribozyme.

  15. Inhibition of ribozymes by deoxyribonucleotides and the origin of DNA.

    PubMed

    León, P E

    1998-08-01

    Two catalytic functions were required, minimally, for the appearance of DNA in evolution: a ribonucleotide reductase (RNR) and a reverse transcriptase (RT). If one accepts the explanatory strength of the RNA world model, it is clear that DNA molecules arose in the RNA world at some stage during the early evolution of cells. I suggest that competition for limited and valuable resources such as nucleotides, amino acids, and sugars made an early appearance among RNA cells, RNA viruses, viroids, and RNA plasmids. Structural and functional similarities between the different types of polymerases favor the simple hypothesis that the first RTs were RNA polymerase mutants that preferentially joined together preexisting deoxyribonucleotide triphosphates (dNTPs) using RNA templates. What was the role of dNTPs inside cells before DNA was synthesized and tested by natural selection? The oxygen atom that is removed by the reductase is of crucial importance to many ribozyme functions, since the 2'-OH is a strong nucleophile that forms transitional states during catalysis. Consequently, a RNR may have been used by cellular parasites to inhibit ribozyme action. Thus, DNA may have been, initially, an inert by-product of retrotranscription in lineages that acquired RTs and could synthesize DNA molecules using cellular RNA templates to detoxify the intracellular environment. DNA was useless as template until a transcriptase (DNA-dependent RNA polymerase) evolved that could copy (-)DNA to reconstitute the (+)RNA genome, indeed a successful way of confronting ribonuclease threats in the RNA world.

  16. Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme.

    PubMed Central

    Sigurdsson, S T; Tuschl, T; Eckstein, F

    1995-01-01

    Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure. PMID:7489517

  17. The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements.

    PubMed

    Przybilski, Rita; Hammann, Christian

    2007-10-01

    Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson-Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson-Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3-R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem-loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson-Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes.

  18. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  19. Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function

    NASA Technical Reports Server (NTRS)

    Doudna, J. A.; Szostak, J. W.; Rich, A.; Usman, N.

    1990-01-01

    The chemical synthesis of a fully protected ribonucleoside phosphoramidite, containing 2-aminopurine as the base component, and its incorporation into short oligoribonucleotides as substrates for an engineered ribozyme from Tetrahymena is described.

  20. Pressure modulates the self-cleavage step of the hairpin ribozyme.

    PubMed

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-30

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  1. Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation.

    PubMed

    Conley, Shannon M; Whalen, Patrick; Lewin, Alfred S; Naash, Muna I

    2016-01-01

    The G90D mutation in the rhodopsin gene leads to autosomal dominant congenital stationary night blindness (CSNB) in patients. This occurs because the G90D mutant protein cannot efficiently bind chromophore and is constitutively active. To combat this mutation, we designed and characterized two different hammerhead ribozymes to cleave G90D transcript. In vitro testing showed that the G90D1 ribozyme efficiently and specifically cleaved the mutant transcript while G90D2 cleaved both WT and mutant transcript. AAV-mediated delivery of G90D1 under the control of the mouse opsin promoter (MOP500) to G90D transgenic eyes showed that the ribozyme partially retarded the functional degeneration (as measured by electroretinography [ERG]) associated with this mutation. These results suggest that with additional optimization, ribozymes may be a useful part of the gene therapy knockdown strategy for dominant retinal disease.

  2. Pressure modulates the self-cleavage step of the hairpin ribozyme

    NASA Astrophysics Data System (ADS)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  3. A common speed limit for RNA-cleaving ribozymes and deoxyribozymes.

    PubMed

    Breaker, Ronald R; Emilsson, Gail Mitchell; Lazarev, Denis; Nakamura, Shingo; Puskarz, Izabela J; Roth, Adam; Sudarsan, Narasimhan

    2003-08-01

    It is widely believed that the reason proteins dominate biological catalysis is because polypeptides have greater chemical complexity compared with nucleic acids, and thus should have greater enzymatic power. Consistent with this hypothesis is the fact that protein enzymes typically exhibit chemical rate enhancements that are far more substantial than those achieved by natural and engineered ribozymes. To investigate the true catalytic power of nucleic acids, we determined the kinetic characteristics of 14 classes of engineered ribozymes and deoxyribozymes that accelerate RNA cleavage by internal phosphoester transfer. Half approach a maximum rate constant of approximately 1 min(-1), whereas ribonuclease A catalyzes the same reaction approximately 80,000-fold faster. Additional biochemical analyses indicate that this commonly encountered ribozyme "speed limit" coincides with the theoretical maximum rate enhancement for an enzyme that uses only two specific catalytic strategies. These results indicate that ribozymes using additional catalytic strategies could be made that promote RNA cleavage with rate enhancements that equal those of proteins.

  4. Identification of Hammerhead Ribozymes in All Domains of Life Reveals Novel Structural Variations

    PubMed Central

    Perreault, Jonathan; Weinberg, Zasha; Roth, Adam; Popescu, Olivia; Chartrand, Pascal; Ferbeyre, Gerardo; Breaker, Ronald R.

    2011-01-01

    Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of “type II” hammerheads, and our findings reveal that this permuted form occurs in bacteria as frequently as type I and III architectures. We also identified a commonly occurring pseudoknot that forms a tertiary interaction critical for high-speed ribozyme activity. Genomic contexts of many hammerhead ribozymes indicate that they perform biological functions different from their known role in generating unit-length RNA transcripts of multimeric viroid and satellite virus genomes. In rare instances, nucleotide variation occurs at positions within the catalytic core that are otherwise strictly conserved, suggesting that core mutations are occasionally tolerated or preferred. PMID:21573207

  5. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules.

    PubMed

    Ishikawa, Junya; Matsumura, Shigeyoshi; Jaeger, Luc; Inoue, Tan; Furuta, Hiroyuki; Ikawa, Yoshiya

    2009-10-15

    The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions.

  6. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements

    PubMed Central

    PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.

    2004-01-01

    It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442

  7. A hammerhead ribozyme substrate and reporter for in vitro kinetoplastid RNA editing.

    PubMed Central

    Wang, Bingbing; Salavati, Reza; Heidmann, Stefan; Stuart, Kenneth

    2002-01-01

    Current in vitro assays for RNA editing in kinetoplastids directly examine the products generated by incubation of pre-mRNA substrate with guide RNA (gRNA) and mitochondrial (mt) extract. RNA editing substrates that are modeled on hammerhead ribozymes were designed with catalytic cores that contained or lacked additional uridylates (Us). They proved to be sensitive reporters of editing activity when used for in vitro assays. A deletion editing substrate that is based on A6 pre-mRNA had no ribozyme activity, but its incubation with gRNA and mt extract resulted in its deletion editing and production of a catalytically active ribozyme. Hammerhead ribozymes are thus sensitive tools to assay in vitro RNA editing. PMID:11991648

  8. Pressure modulates the self-cleavage step of the hairpin ribozyme

    PubMed Central

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-01-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties. PMID:28358002

  9. Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function

    NASA Technical Reports Server (NTRS)

    Doudna, J. A.; Szostak, J. W.; Rich, A.; Usman, N.

    1990-01-01

    The chemical synthesis of a fully protected ribonucleoside phosphoramidite, containing 2-aminopurine as the base component, and its incorporation into short oligoribonucleotides as substrates for an engineered ribozyme from Tetrahymena is described.

  10. RNA splicing during terminal erythropoiesis.

    PubMed

    Conboy, John G

    2017-05-01

    Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.

  11. Long-distance communication in the HDV ribozyme: insights from molecular dynamics and experiments.

    PubMed

    Veeraraghavan, Narayanan; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2010-09-10

    The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme-the protonated C41 base triple-and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.

  12. Alternative splicing interference by xenobiotics.

    PubMed

    Zaharieva, Emanuela; Chipman, J Kevin; Soller, Matthias

    2012-06-14

    The protein coding sequence of most eukaryotic genes (exons) is interrupted by non-coding parts (introns), which are excised in a process termed splicing. To generate a mature messenger RNA (mRNA) hundreds of combinatorial protein-protein and RNA-protein interactions are required to splice out often very large introns with high fidelity and accuracy. Inherent to splicing is the use of alternative splice sites generating immense proteomic diversity from a limited number of genes. In humans, alternative splicing is a major mode of regulating gene expression, occurs in over 90% of genes and is particularly abundant in the brain. Only recently, it has been recognized that the complexity of the splicing process makes it susceptible to interference by various xenobiotics. These compounds include antineoplastic substances, commonly used drugs and food supplements and cause a spectrum of effects ranging from deleterious inhibition of general splicing to highly specific modifications of alternative splicing affecting only certain genes. Alterations in splicing have been implicated in numerous diseases such as cancer and neurodegeneration. Splicing regulation plays an important role in the execution of programmed cell death. The switch between anti- and pro-apoptotic isoforms by alternative splice site selection and misregulation of a number of splicing factors impacts on cell survival and disease. Here, our current knowledge is summarized on compounds interfering with general and alternative splicing and of the current methodology to study changes in these processes relevant to the field of toxicology and future risk assessments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Splicing-factor alterations in cancers

    PubMed Central

    Anczuków, Olga; Krainer, Adrian R.

    2016-01-01

    Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators. PMID:27530828

  14. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  15. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.

    PubMed Central

    Fu, D J; McLaughlin, L W

    1992-01-01

    Eight modified ribozymes of 19 residues have been prepared with individual purine amino or hydroxyl groups excised. The modified ribozymes were chemically synthesized with the substitution of a single 2'-deoxyadenosine, 2'-deoxyguanosine, inosine, or purine riboside for residues G10, A11, G13, or A14. Five of the modified ribozymes cleaved the 24-mer substrate with little change in rate as monitored by simple first-order kinetics. However, deletion of the 2-amino group at G10 (replacement with inosine) or deletion of either of the 2'-hydroxyls at G10 or G13 (replacement with 2'-deoxyguanosine) resulted in ribozymes with a drastic decrease in cleavage efficiency. Increasing the concentration of the Mg2+ cofactor from 10 mM to 50 mM significantly enhanced cleavage efficiency by these three derivatives. Steady-state kinetic assays for these three ribozymes indicated that the modifications result in both an increase in Km and a decrease in kcat. These results suggest that the exocyclic amino group at-G10 and the hydroxyls at G10 and G13 are important both for ribozyme-substrate binding and for the Mg(2+)-catalyzed cleavage reaction. PMID:1570323

  16. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme

    DOE PAGES

    Lee, Hui-Ting; Kilburn, D.; Behrouzi, R.; ...

    2014-12-05

    The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+more » concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.« less

  17. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme

    PubMed Central

    Lee, Hui-Ting; Kilburn, Duncan; Behrouzi, Reza; Briber, Robert M.; Woodson, Sarah A.

    2015-01-01

    The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+ concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly. PMID:25541198

  18. An in vitro evolved glmS ribozyme has the wildtype fold but loses coenzyme dependence

    PubMed Central

    Lau, Matthew W. L.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Uniquely among known ribozymes, the glmS ribozyme-riboswitch requires a small-molecule coenzyme, glucosamine-6-phosphate (GlcN6P). Although consistent with its gene-regulatory function, use of GlcN6P is unexpected because all other characterized self-cleaving ribozymes employ RNA functional groups or divalent cations for catalysis. To determine what active site features make this ribozyme reliant on GlcN6P, and to evaluate whether it might have evolved from a coenzyme-independent ancestor, we isolated a GlcN6P-independent variant through in vitro selection. Three active site mutations suffice to generate a highly reactive RNA that adopts the wildtype fold but employs divalent cations for catalysis and is insensitive to GlcN6P. Biochemical and crystallographic comparisons of wildtype and mutant ribozymes show that a handful of functional groups fine-tune the RNA to be either coenzyme- or cation-dependent. These results indicate that a few mutations can confer novel biochemical activities on structured RNAs. Thus, families of structurally related ribozymes with divergent function may exist. PMID:24096303

  19. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-06-25

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels.

  20. cis-Acting 5' hammerhead ribozyme optimization for in vitro transcription of highly structured RNAs.

    PubMed

    Meyer, Mélanie; Masquida, Benoît

    2014-01-01

    RNA-mediated biological processes usually require precise definition of 5' and 3' ends. RNA ends obtained by in vitro transcription using T7 RNA polymerase are often heterogeneous in length and sequence. An efficient strategy to overcome these drawbacks consists of inserting an RNA with known boundaries in between two ribozymes, usually a 5' hammerhead and a 3' hepatitis delta virus ribozymes, that cleave off the desired RNA. In practice, folding of the three RNAs challenges each other, potentially preventing thorough processing. Folding and cleavage of the 5' hammerhead ribozyme relies on a sequence of nucleotides belonging to the central RNA making it more sensitive than the usual 3' hepatitis delta virus ribozyme. The intrinsic stability of the central RNA may thus prevent correct processing of the full transcript. Here, we present a method in which incorporation of a full-length hammerhead ribozyme with a specific tertiary interaction prevents alternative folding with the lariat capping GIR1 ribozyme and enables complete cleavage in the course of the transcription. This strategy may be transposable for in vitro transcription of any highly structured RNA.

  1. Polymerase ribozyme efficiency increased by G/T-rich DNA oligonucleotides

    PubMed Central

    Yao, Chengguo; Müller, Ulrich F.

    2011-01-01

    The RNA world hypothesis states that the early evolution of life went through a stage where RNA served as genome and as catalyst. The replication of RNA world organisms would have been facilitated by ribozymes that catalyze RNA polymerization. To recapitulate an RNA world in the laboratory, a series of RNA polymerase ribozymes was developed previously. However, these ribozymes have a polymerization efficiency that is too low for self-replication, and the most efficient ribozymes prefer one specific template sequence. The limiting factor for polymerization efficiency is the weak sequence-independent binding to its primer/template substrate. Most of the known polymerase ribozymes bind an RNA heptanucleotide to form the P2 duplex on the ribozyme. By modifying this heptanucleotide, we were able to significantly increase polymerization efficiency. Truncations at the 3′-terminus of this heptanucleotide increased full-length primer extension by 10-fold, on a specific template sequence. In contrast, polymerization on several different template sequences was improved dramatically by replacing the RNA heptanucleotide with DNA oligomers containing randomized sequences of 15 nt. The presence of G and T in the random sequences was sufficient for this effect, with an optimal composition of 60% G and 40% T. Our results indicate that these DNA sequences function by establishing many weak and nonspecific base-pairing interactions to the single-stranded portion of the template. Such low-specificity interactions could have had important functions in an RNA world. PMID:21622900

  2. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    PubMed

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  3. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme

    PubMed Central

    Boots, Jennifer L.; Canny, Marella D.; Azimi, Ehsan; Pardi, Arthur

    2008-01-01

    The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed. PMID:18755844

  4. Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme

    PubMed Central

    Inoue, Atsushi; Takagi, Yasuomi; Taira, Kazunari

    2004-01-01

    Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst. PMID:15302920

  5. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme

    SciTech Connect

    Lee, Hui-Ting; Kilburn, D.; Behrouzi, R.; Briber, R. M.; Woodson, S. A.

    2014-12-05

    The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+ concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.

  6. Robust Suppression of HIV Replication by Intracellularly Expressed Reverse Transcriptase Aptamers Is Independent of Ribozyme Processing

    PubMed Central

    Lange, Margaret J; Sharma, Tarun K; Whatley, Angela S; Landon, Linda A; Tempesta, Michael A; Johnson, Marc C; Burke, Donald H

    2012-01-01

    RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two “minimal core” hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation. PMID:22948672

  7. Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint.

    PubMed

    Gabryelska, Marta Magdalena; Wyszko, Eliza; Szymański, Maciej; Popenda, Mariusz; Barciszewski, Jan

    2013-05-01

    Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure-function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate-ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.

  8. Enzymatic and antisense effects of a specific anti-Ki-ras ribozyme in vitro and in cell culture.

    PubMed Central

    Giannini, C D; Roth, W K; Piiper, A; Zeuzem, S

    1999-01-01

    Due to their mode of action, ribozymes show antisense effects in addition to their specific cleavage activity. In the present study we investigated whether a hammerhead ribozyme is capable of cleaving mutated Ki-ras mRNA in a pancreatic carcinoma cell line and whether antisense effects contribute to the activity of the ribozyme. A 2[prime]-O-allyl modified hammerhead ribozyme was designed to cleave specifically the mutated form of the Ki- ras mRNA (GUU motif in codon 12). The activity was monitored by RT-PCR on Ki- ras RNA expression by determination of the relative amount of wild type to mutant Ki-ras mRNA, by 5-bromo-2[prime]-deoxy-uridine incorporation on cell proliferation and by colony formation in soft agar on malignancy in the human pancreatic adenocarcinoma cell line CFPAC-1, which is heterozygous for the Ki-ras mutation. A catalytically inactive ribozyme was used as control to differentiate between antisense and cleavage activity and a ribozyme with random guide sequences as negative control. The catalytically active anti-Ki-ras ribozyme was at least 2-fold more potent in decreasing cellular Ki-ras mRNA levels, inhibiting cell proliferation and colony formation in soft agar than the catalytically inactive ribozyme. The catalytically active anti-Ki-ras ribozyme, but not the catalytically inactive or random ribozyme, increased the ratio of wild type to mutated Ki-ras mRNA in CFPAC-1 cells. In conclusion, both cleavage activity and antisense effects contribute to the activity of the catalytically active anti-Ki-ras hammerhead ribozyme. Specific ribozymes might be useful in the treatment of pancreatic carcinomas containing an oncogenic GTT mutation in codon 12 of the Ki-ras gene. PMID:10373591

  9. Transcription and splicing: when the twain meet.

    PubMed

    Brody, Yehuda; Shav-Tal, Yaron

    2011-01-01

    Splicing can occur co-transcriptionally. What happens when the splicing reaction lags after the completed transcriptional process? We found that elongation rates are independent of ongoing splicing on the examined genes and suggest that when transcription has completed but splicing has not, the splicing machinery is retained at the site of transcription, independently of the polymerase.

  10. A hammerhead ribozyme inhibits ADE1 gene expression in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1995-03-21

    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  11. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  12. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  13. RNA splicing: disease and therapy.

    PubMed

    Douglas, Andrew G L; Wood, Matthew J A

    2011-05-01

    The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. The mechanism of pre-mRNA splicing is highly complex, requiring multiple interactions between pre-mRNA, small nuclear ribonucleoproteins and splicing factor proteins. Regulation of this process is even more complicated, relying on loosely defined cis-acting regulatory sequence elements, trans-acting protein factors and cellular responses to varying environmental conditions. Many different human diseases can be caused by errors in RNA splicing or its regulation. Targeting aberrant RNA provides an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. Antisense oligonucleotide therapies show particular promise in this area and, if coupled with improved delivery strategies, could open the door to a multitude of novel personalized therapies.

  14. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site

    PubMed Central

    Bonneau, Eric; Girard, Nicolas; Boisbouvier, Jérôme; Legault, Pascale

    2011-01-01

    The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem–loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson–Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme. PMID:21266483

  15. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  16. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.

    PubMed Central

    Allain, F H; Varani, G

    1995-01-01

    The upstream site of cleavage of all group I self-splicing introns is identified by an absolutely conserved U.G base pair. Although a wobble C.A pair can substitute the U.G pair, all other combinations of nucleotides at this position abolish splicing, suggesting that it is an unusual RNA structure, rather than sequence, that is recognized by the catalytic intron core. RNA enzymes are metalloenzymes, and divalent metal ion binding may be an important requirement for splice site recognition and catalysis. The paramagnetic broadening of NMR resonances upon manganese binding at specific sites was used to probe the interaction between divalent metal ions and an oligonucleotide model of a group I intron ribozyme substrate. Unlike previous studies in which only imino proton resonances were monitored, we have used isotopically labelled RNA and a set of complete spectral assignments to identify the location of the divalent metal binding site with much greater detail than previously possible. Two independent metal binding sites were identified for this oligonucleotide. A first metal binding site is located in the major groove of the three consecutive G.C base pairs at the end of double helical stem. A second site is found in the major groove of the RNA double helix in the vicinity of the U.G base pair. These results suggest that metal ion coordination (or a metal bridge) and tertiary interactions identified biochemically, may be used by group I intron ribozymes for substrate recognition. Images PMID:7885828

  17. Alternative RNA splicing and cancer

    PubMed Central

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  18. The neurogenetics of alternative splicing

    PubMed Central

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079

  19. Alternative RNA splicing and cancer.

    PubMed

    Liu, Sali; Cheng, Chonghui

    2013-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.

  20. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  1. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  2. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape

    PubMed Central

    Sripathi, Kamali N.; Tay, Wendy W.; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G.

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. PMID:24854621

  3. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.

    PubMed

    Sripathi, Kamali N; Tay, Wendy W; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G

    2014-07-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.

  4. Learning to live together: mutualism between self-splicing introns and their hosts

    PubMed Central

    2011-01-01

    Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress. PMID:21481283

  5. Measurements of weak interactions between truncated substrates and a hammerhead ribozyme by competitive kinetic analyses: implications for the design of new and efficient ribozymes with high sequence specificity

    PubMed Central

    Kasai, Yasuhiro; Shizuku, Hideki; Takagi, Yasuomi; Warashina, Masaki; Taira, Kazunari

    2002-01-01

    Exploitation of ribozymes in a practical setting requires high catalytic activity and strong specificity. The hammerhead ribozyme R32 has considerable potential in this regard since it has very high catalytic activity. In this study, we have examined how R32 recognizes and cleaves a specific substrate, focusing on the mechanism behind the specificity. Comparing rates of cleavage of a substrate in a mixture that included the correct substrate and various substrates with point mutations, we found that R32 cleaved the correct substrate specifically and at a high rate. To clarify the source of this strong specificity, we quantified the weak interactions between R32 and various truncated substrates, using truncated substrates as competitive inhibitors since they were not readily cleaved during kinetic measurements of cleavage of the correct substrate, S11. We found that the strong specificity of the cleavage reaction was due to a closed form of R32 with a hairpin structure. The self-complementary structure within R32 enabled the ribozyme to discriminate between the correct substrate and a mismatched substrate. Since this hairpin motif did not increase the Km (it did not inhibit the binding interaction) or decrease the kcat (it did not decrease the cleavage rate), this kind of hairpin structure might be useful for the design of new ribozymes with strong specificity and high activity. PMID:12034825

  6. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  7. Cellular stress and RNA splicing.

    PubMed

    Biamonti, Giuseppe; Caceres, Javier F

    2009-03-01

    In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.

  8. Splicing of aged fibers

    NASA Astrophysics Data System (ADS)

    Volotinen, Tarja T.; Yuce, Hakan H.; Bonanno, Nicholas; Frantz, Rolf A.; Duffy, Sean

    1993-11-01

    The deployment of fiber in the subscriber loop will require that an optical fiber network maintain the highest possible level of reliability over time, despite being subjected to extremes of temperature, humidity, and other environmental and mechanical stresses imposed on the outside plant. At the same time, both the initial cost and the ongoing maintenance expenses for loop equipment must be kept low. Fiber in the Loop (FITL) applications will entail increased fiber handling. Cable lengths will be shorter, and fiber counts higher, than has been the case so far in long-distance applications. There will also be more cable sheath openings per unit length of cable and/or fiber, as well as more splicing and connectorization. It may become a common practice that a customer is connected to a cable installed many years earlier. In subscriber loops, cables and fibers will be installed in harsher and more varying environments. Fibers will be exposed to higher humidity and temperature, particularly in splice boxes mounted on building walls, in pedestal cabinets, and in other similar enclosures. Corrosive gases and/or liquids may also be present at some locations and will adversely affect the fibers. The combination of increased handling, greater exposure, and more stressful environments may give rise to a need for new, more stringent requirements for fiber mechanical reliability. These can include increaSed fiber strength, increased aging resistance, and increased fatigue resistance.

  9. Effects of variations in length of hammerhead ribozyme antisense arms upon the cleavage of longer RNA substrates.

    PubMed Central

    Sioud, M

    1997-01-01

    The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs. PMID:9016562

  10. Modulation of c-fms proto-oncogene in an ovarian carcinoma cell line by a hammerhead ribozyme.

    PubMed Central

    Yokoyama, Y.; Morishita, S.; Takahashi, Y.; Hashimoto, M.; Tamaya, T.

    1997-01-01

    Co-expression of macrophage colony-stimulating factor (M-CSF) and its receptor (c-fms) is often found in ovarian epithelial carcinoma, suggesting the existence of autocrine regulation of cell growth by M-CSF. To block this autocrine loop, we have developed hammerhead ribozymes against c-fms mRNA. As target sites of the ribozyme, we chose the GUC sequence in codon 18 and codon 27 of c-fms mRNA. Two kinds of ribozymes were able to cleave an artificial c-fms RNA substrate in a cell-free system, although the ribozyme against codon 18 was much more efficient than that against codon 27. We next constructed an expression vector carrying a ribozyme sequence that targeted the GUC sequence in codon 18 of c-fms mRNA. It was introduced into TYK-nu cells that expressed M-CSF and its receptor. Its transfectant showed a reduced growth potential. The expression levels of c-fms protein and mRNA in the transfectant were clearly decreased with the expression of ribozyme RNA compared with that of an untransfected control or a transfectant with the vector without the ribozyme sequence. These results suggest that the ribozyme against GUC in codon 18 of c-fms mRNA is a promising tool for blocking the autocrine loop of M-CSF in ovarian epithelial carcinoma. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:9376277

  11. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  12. Crystal structure of Pistol, a class of self-cleaving ribozyme

    PubMed Central

    Nguyen, Laura A.; Wang, Jimin; Steitz, Thomas A.

    2017-01-01

    Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile by deprotonating the 2′-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5′ leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis. PMID:28096403

  13. Inducible Knockdown of Plasmodium Gene Expression Using the glmS Ribozyme

    PubMed Central

    Prommana, Parichat; Uthaipibull, Chairat; Wongsombat, Chayaphat; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth; Knuepfer, Ellen; Holder, Anthony A.; Shaw, Philip J.

    2013-01-01

    Conventional reverse genetic approaches for study of Plasmodium malaria parasite gene function are limited, or not applicable. Hence, new inducible systems are needed. Here we describe a method to control P. falciparum gene expression in which target genes bearing a glmS ribozyme in the 3′ untranslated region are efficiently knocked down in transgenic P. falciparum parasites in response to glucosamine inducer. Using reporter genes, we show that the glmS ribozyme cleaves reporter mRNA in vivo leading to reduction in mRNA expression following glucosamine treatment. Glucosamine-induced ribozyme activation led to efficient reduction of reporter protein, which could be rapidly reversed by removing the inducer. The glmS ribozyme was validated as a reverse-genetic tool by integration into the essential gene and antifolate drug target dihydrofolate reductase-thymidylate synthase (PfDHFR-TS). Glucosamine treatment of transgenic parasites led to rapid and efficient knockdown of PfDHFR-TS mRNA and protein. PfDHFR-TS knockdown led to a growth/arrest mutant phenotype and hypersensitivity to pyrimethamine. The glmS ribozyme may thus be a tool for study of essential genes in P. falciparum and other parasite species amenable to transfection. PMID:24023691

  14. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage

    PubMed Central

    Kapral, Gary J.; Jain, Swati; Noeske, Jonas; Doudna, Jennifer A.; Richardson, David C.; Richardson, Jane S.

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme essential for processing viral transcripts during rolling circle viral replication. The first crystal structure of the cleaved ribozyme was solved in 1998, followed by structures of uncleaved, mutant-inhibited and ion-complexed forms. Recently, methods have been developed that make the task of modeling RNA structure and dynamics significantly easier and more reliable. We have used ERRASER and PHENIX to rebuild and re-refine the cleaved and cis-acting C75U-inhibited structures of the HDV ribozyme. The results correct local conformations and identify alternates for RNA residues, many in functionally important regions, leading to improved R values and model validation statistics for both structures. We compare the rebuilt structures to a higher resolution, trans-acting deoxy-inhibited structure of the ribozyme, and conclude that although both inhibited structures are consistent with the currently accepted hammerhead-like mechanism of cleavage, they do not add direct structural evidence to the biochemical and modeling data. However, the rebuilt structures (PDBs: 4PR6, 4PRF) provide a more robust starting point for research on the dynamics and catalytic mechanism of the HDV ribozyme and demonstrate the power of new techniques to make significant improvements in RNA structures that impact biologically relevant conclusions. PMID:25326328

  15. Activation of PKR by RNA misfolding: HDV ribozyme dimers activate PKR

    PubMed Central

    Heinicke, Laurie A.; Bevilacqua, Philip C.

    2012-01-01

    Protein Kinase R (PKR), the double-stranded RNA (dsRNA)-activated protein kinase, plays important roles in innate immunity. Previous studies have shown that PKR is activated by long stretches of dsRNA, RNA pseudoknots, and certain single-stranded RNAs; however, regulation of PKR by RNAs with globular tertiary structure has not been reported. In this study, the HDV ribozyme is used as a model of a mostly globular RNA. In addition to a catalytic core, the ribozyme contains a peripheral 13-bp pairing region (P4), which, upon shortening, affects neither the catalytic activity of the ribozyme nor its ability to crystallize. We report that the HDV ribozyme sequence alone can activate PKR. To elucidate the RNA structural basis for this, we prepared a number of HDV variants, including those with shortened or lengthened P4 pairing regions, with the anticipation that lengthening the P4 extension would yield a more potent activator since it would offer more base pairs of dsRNA. Surprisingly, the variant with a shortened P4 was the most potent activator. Through native gel mobility and enzymatic structure mapping experiments we implicate misfolded HDV ribozyme dimers as the PKR-activating species, and show that the shortened P4 leads to enhanced occupancy of the RNA dimer. These observations have implications for how RNA misfolding relates to innate immune response and human disease. PMID:23105000

  16. The Effect of Cytidine on the Structure and Function of an RNA Ligase Ribozyme

    NASA Technical Reports Server (NTRS)

    Rogers, Jeff; Joyce, Gerald F.

    2001-01-01

    A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random- sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5' -phosphodiester linkage with a catalytic rate of 0.016/min. The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32/min. The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.

  17. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1996-08-09

    A hammerhead ribozyme designed to cleave the yeast ADE1 mRNA has been expressed in yeast under the control of a galactose-inducible promoter. RNA prepared from the galactose-induced yeast cultures possesses an activity that cleaves ADE1 mRNA in vitro. However, in spite of high expression levels of the ribozyme, no cleavage activity could be demonstrated in vivo. On the other hand, when the yeast cells expressing hammerhead RNA were treated with the alpha-factor mating pheromone, the level of ADE1 mRNA was reduced by 50%. Similar reductions were observed when this strain was cultured in the presence of lithium acetate or in nitrogen-free medium. Moreover, control experiments in which disabled hammerhead genes were expressed showed no such reductions. Extension of the length of the flanking recognition arms of the ribozyme from a total of 10 to 16 or 24 nucleotides diminished the inhibitory effect of the ribozyme. These data suggest that ribozymes are able to cleave a trans-RNA target in yeast.

  18. Crystal structure of Pistol, a class of self-cleaving ribozyme.

    PubMed

    Nguyen, Laura A; Wang, Jimin; Steitz, Thomas A

    2017-01-31

    Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile by deprotonating the 2'-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5' leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis.

  19. An ultraviolet crosslink in the hammerhead ribozyme dependent on 2-thiocytidine or 4-thiouridine substitution.

    PubMed Central

    Wang, L; Ruffner, D E

    1997-01-01

    The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly. PMID:9336468

  20. Conformational heterogeneity and the determinants of tertiary stabilization in the hammerhead ribozyme from Dolichopoda cave crickets

    PubMed Central

    Roychowdhury-Saha, Manami; Roychowdhury, Sugata

    2011-01-01

    Repetitive DNA elements in Dolichopoda cave cricket genomes contain extended hammerhead ribozymes that are functional in adult crickets, but that exhibit very low self-cleavage activity in vitro relative to other extended hammerhead ribozymes. We find that the parental ribozyme tends to misfold into alternate secondary structures in vitro, complicating analysis of contributions by specific nucleotides to activity under biologically relevant magnesium concentrations. However, minor sequence alterations that stabilize the active secondary structure, without altering candidate tertiary interacting nucleotides, boosted observed rates more than 50-fold (4.4 ± 1.7 min−1) and doubled the cleavage extent (>60%) in submillimolar magnesium. Productive alterations included flipping two base pairs in stem I, lengthening stem I and opening stem III to generate a trans-cleaving ribozyme. Specific peripheral nucleotides involved in tertiary stabilization were then identified through kinetic analysis for a series of sequence variants and by correlating plateau cleavage values with band intensity in native gel electrophoresis. These results demonstrate that conformational heterogeneity governs self-cleavage by the wild-type Dolichopoda hammerhead ribozyme in vitro, and they suggest a strategy for improving activity and enhancing the suitability of HHRz for intracellular and biotechnology applications. PMID:21712651

  1. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study.

    PubMed Central

    Bassi, G S; Murchie, A I; Walter, F; Clegg, R M; Lilley, D M

    1997-01-01

    The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA. PMID:9405376

  2. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home.

    PubMed

    de la Peña, Marcos; Cervera, Amelia

    2017-04-27

    A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs (circRNAs) of small size (600-1000 nt). Related circRNAs with self-cleaving ribozymes had already been described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a common occurrence of circRNAs with self-cleaving motifs among eukaryotes.

  3. In silico ribozyme evolution in a metabolically coupled RNA population.

    PubMed

    Könnyű, Balázs; Szilágyi, András; Czárán, Tamás

    2015-05-27

    The RNA World hypothesis offers a plausible bridge from no-life to life on prebiotic Earth, by assuming that RNA, the only known molecule type capable of playing genetic and catalytic roles at the same time, could have been the first evolvable entity on the evolutionary path to the first living cell. We have developed the Metabolically Coupled Replicator System (MCRS), a spatially explicit simulation modelling approach to prebiotic RNA-World evolution on mineral surfaces, in which we incorporate the most important experimental facts and theoretical considerations to comply with recent knowledge on RNA and prebiotic evolution. In this paper the MCRS model framework has been extended in order to investigate the dynamical and evolutionary consequences of adding an important physico-chemical detail, namely explicit replicator structure - nucleotide sequence and 2D folding calculated from thermodynamical criteria - and their possible mutational changes, to the assumptions of a previously less detailed toy model. For each mutable nucleotide sequence the corresponding 2D folded structure with minimum free energy is calculated, which in turn is used to determine the fitness components (degradation rate, replicability and metabolic enzyme activity) of the replicator. We show that the community of such replicators providing the monomer supply for their own replication by evolving metabolic enzyme activities features an improved propensity for stable coexistence and structural adaptation. These evolutionary advantages are due to the emergent uniformity of metabolic replicator fitnesses imposed on the community by local group selection and attained through replicator trait convergence, i.e., the tendency of replicator lengths, ribozyme activities and population sizes to become similar between the coevolving replicator species that are otherwise both structurally and functionally different. In the most general terms it is the surprisingly high extra viability of the metabolic

  4. Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor.

    PubMed

    Mishra, Sumona Karjee; Chilakamarthi, Ushasri; Deb, J K; Mukherjee, Sunil Kumar

    2014-05-21

    Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA. However, this activity in vivo is often controlled by the dominance of antisense or other double-stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus (MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalytically active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over the action mechanism of ribozymes in vivo. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs.

    PubMed

    Cervera, Amelia; Urbina, Denisse; de la Peña, Marcos

    2016-06-23

    Catalytic RNAs, or ribozymes, are regarded as fossils of a prebiotic RNA world that have remained in the genomes of modern organisms. The simplest ribozymes are the small self-cleaving RNAs, like the hammerhead ribozyme, which have been historically considered biological oddities restricted to some RNA pathogens. Recent data, however, indicate that small self-cleaving ribozymes are widespread in genomes, although their functions are still unknown. We reveal that hammerhead ribozyme sequences in plant genomes form part of a new family of small non-autonomous retrotransposons with hammerhead ribozymes, referred to as retrozymes. These elements contain two long terminal repeats of approximately 350 bp, each harbouring a hammerhead ribozyme that delimitates a variable region of 600-1000 bp with no coding capacity. Retrozymes are actively transcribed, which gives rise to heterogeneous linear and circular RNAs that accumulate differentially depending on the tissue or developmental stage of the plant. Genomic and transcriptomic retrozyme sequences are highly heterogeneous and share almost no sequence homology among species except the hammerhead ribozyme motif and two small conserved domains typical of Ty3-gypsy long terminal repeat retrotransposons. Moreover, we detected the presence of RNAs of both retrozyme polarities, which suggests events of independent RNA-RNA rolling-circle replication and evolution, similarly to that of infectious circular RNAs like viroids and viral satellite RNAs. Our work reveals that circular RNAs with hammerhead ribozymes are frequently occurring molecules in plant and, most likely, metazoan transcriptomes, which explains the ubiquity of these genomic ribozymes and suggests a feasible source for the emergence of circular RNA plant pathogens.

  6. Viroid replication: rolling-circles, enzymes and ribozymes.

    PubMed

    Flores, Ricardo; Gas, María-Eugenia; Molina-Serrano, Diego; Nohales, María-Ángeles; Carbonell, Alberto; Gago, Selma; De la Peña, Marcos; Daròs, José-Antonio

    2009-09-01

    Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5' and 3' termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.

  7. Modulation of the ribozyme and deoxyribozyme activities using tetraalkylammonium ions.

    PubMed

    Nakano, Shu-Ichi; Watabe, Takaaki; Sugimoto, Naoki

    2017-09-22

    Nucleic acid enzymes require specific metal ions to be catalytically active. The functions of the metal ions in structural and catalytic roles are affected by competing cations. Large-sized tetraalkylammonium ions have a greater propensity to preferentially bind to single strands of RNA and DNA, unlike metal ions. Here, the large cations were used in the reactions of lead-dependent ribozyme and 17E deoxyribozyme that require divalent metal ions to cleave the substrate sequence. Kinetic analysis showed that tetraalkylammonium ions influenced the rate of substrate cleavage, and the effects were different depending on nucleic acid enzymes and metal ions used. Importantly, the large cations increased the metal ion concentration dependence of cleavage rates and enhanced the monitoring ability of the enzyme to changes in metal ion concentrations. The same effect was also observed for the metal ion concentration dependence of the thermal stability of RNA and DNA structures, indicating that the large cations affect the binding of structural metal ions. The use of large tetraalkylammonium ions provides new ways to study the importance of metal ions in nucleic acid enzymes and also to modulate the functionality of nucleic acid enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Extraordinary rates of transition metal ion-mediated ribozyme catalysis

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2006-01-01

    In pre-steady-state, fast-quench kinetic analysis, the tertiary-stabilized hammerhead ribozyme “RzB” cleaves its substrate RNA with maximal measured k obs values of ∼3000 min−1 in 1 mM Mn2+ and ∼780 min−1 in 1 mM Mg2+ at 37°C (pH 7.4). Apparent pKa for the catalytic general base is ∼7.8–8.5, independent of the corresponding metal hydrate pKa, suggesting potential involvement of a nucleobase as general base as suggested previously from nucleobase substitution studies. The pH-rate profile is bell-shaped for Cd2+, for which the general catalytic acid has a pKa of 7.3 ± 0.1. Simulations of the pH-rate relation suggest a pKa for the general catalytic acid to be ∼9.5 in Mn2+ and >9.5 in Mg2+. The acid pKa's follow the trend in the pKa of the hydrated metal ions but are displaced by ∼1–2 pH units in the presence of Cd2+ and Mn2+. One possible explanation for this trend is direct metal ion coordination with a nucleobase, which then acts as general acid. PMID:16912216

  9. Characterization of a native hammerhead ribozyme derived from schistosomes

    PubMed Central

    OSBORNE, EDITH M.; SCHAAK, JANELL E.; DEROSE, VICTORIA J.

    2005-01-01

    A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop–loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop–loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop–loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5′ to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5′ to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence. PMID:15659358

  10. Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis

    PubMed Central

    Martick, Monika; Scott, William G.

    2015-01-01

    SUMMARY Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 Å resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner. PMID:16859740

  11. RNA Synthesis by in Vitro Selected Ribozymes for Recreating an RNA World

    PubMed Central

    Martin, Lyssa L.; Unrau, Peter J.; Müller, Ulrich F.

    2015-01-01

    The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory. PMID:25610978

  12. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation

    PubMed Central

    Serganov, Alexander; Keiper, Sonja; Malinina, Lucy; Tereshko, Valentina; Skripkin, Eugene; Höbartner, Claudia; Polonskaia, Anna; Phan, Anh Tuân; Wombacher, Richard; Micura, Ronald; Dauter, Zbigniew; Jäschke, Andres; Patel, Dinshaw J

    2015-01-01

    The majority of structural efforts addressing RNA’s catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a λ-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions. PMID:15723077

  13. Capturing Hammerhead Ribozyme Structures in Action by Modulating General Base Catalysis

    PubMed Central

    Chi, Young-In; Martick, Monika; Lares, Monica; Kim, Rosalind; Scott, William G; Kim, Sung-Hou

    2008-01-01

    We have obtained precatalytic (enzyme–substrate complex) and postcatalytic (enzyme–product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pKa that does not significantly perturb the ribozyme's atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme–substrate and enzyme–product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures. PMID:18834200

  14. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.

    PubMed Central

    Guo, Feng; Cech, Thomas R

    2002-01-01

    In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo. PMID:12022231

  15. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.

    PubMed

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L

    2015-10-20

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.

  16. Molecular Crowding Favors Reactivity of a Human Ribozyme Under Physiological Ionic Conditions

    PubMed Central

    Strulson, Christopher A.; Yennawar, Neela H.; Rambo, Robert P.; Bevilacqua, Philip C.

    2013-01-01

    In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus (HDV)-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that under physiological free Mg2+ concentrations (~0.1 to 0.5 mM Mg2+), both crowders and cosolutes stimulate the rate of self-cleavage, up to ~6-fold, but that in 10 mM Mg2+—conditions widely used for in vitro ribozyme studies—these same additives have virtually no effect on self-cleavage rate. We further observe a dependence of self-cleavage rate on crowder size, wherein rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases in both low and high Mg2+ concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering (SAXS) experiments reveal a structural basis for this stimulation in that higher molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg2+ that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg2+ and no crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions. PMID:24187989

  17. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    PubMed Central

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  18. A small modified hammerhead ribozyme and its conformational characteristics determined by mutagenesis and lattice calculation.

    PubMed Central

    Lustig, B; Lin, N H; Smith, S M; Jernigan, R L; Jeang, K T

    1995-01-01

    A prototypic hammerhead ribozyme has three helices that surround an asymmetrical central core loop. We have mutagenized a hammerhead type ribozyme. In agreement with previous studies, progressive removal of stem-loop II from a three stemmed ribozyme showed that this region is not absolutely critical for catalysis. However, complete elimination of stem II and its loop did reduce, but did not eliminate, function. In a stem-loop II-deleted ribozyme, activity was best preserved when a purine, preferably a G, was present at position 10.1. This G contributed to catalysis irregardless of its role as either one part of a canonical pair with a C residue at 11.1 or a lone nucleotide with C (11.1) deleted. Computational methods using lattices generated 87 million three-dimensional chain forms for a stem-loop II-deleted RNA complex that preserved one potential G.C base pair at positions 10.1 and 11.1. This exhaustive set of chain forms included one major class of structures with G(10.1) being spatially proximal to the GUCX cleavage site of the substrate strand. Strong correlations were observed between colinear arrangement of stems I and III, constraints of base-pairing in the central core loop, and one particular placement of G(10.1) relative to the cleavage site. Our calculations of a stem-loop II-deleted ribozyme indicate that without needing to invoke any other constraints, the inherent asymmetry in the lengths of the two loop strands (3 nt in one and 7 nt in the other) that compose the core and flank G10.1-C11.1 stipulated strongly this particular G placement. This suggests that the hammerhead ribozyme maintains an asymmetry in its internal loop for a necessary structure/function reason. Images PMID:7567466

  19. Design and Analysis of Hammerhead Ribozyme Activity Against an Artificial Gene Target

    PubMed Central

    Carter, James; Nawtaisong, Pruksa; Balaraman, Velmurugan; Fraser, Malcolm J.

    2014-01-01

    In vitro cleavage assays are routinely conducted to properly assess the catalytic activity of hammerhead ribozymes (HHR) against target RNA molecules like the dengue virus RNA genomes. These experiments are performed for initial assessment of HHR catalysis in a cell-free system and have been simplified by the substitution of agarose gel electrophoresis for SDS-PAGE. Substituting mobility assays enables the analysis of ribozymes in a more rapid fashion without radioisotopes. Here we describe the in vitro transcription of an HHR and corresponding target from T7-promoted plasmids into RNA molecules leading to the analysis of HHR activity against the RNA target by in vitro cleavage assays. PMID:24318886

  20. The Small Ribozymes: Common and Diverse Features Observed through the FRET Lens

    PubMed Central

    Walter, Nils G.; Perumal, Shiamalee

    2011-01-01

    The hammerhead, hairpin, HDV, VS and glmS ribozymes are the five known, naturally occurring catalytic RNAs classified as the “small ribozymes”. They share common reaction chemistry in cleaving their own backbone by phosphodiester transfer, but are diverse in their secondary and tertiary structures, indicating that Nature has found at least five independent solutions to a common chemical task. Fluorescence resonance energy transfer (FRET) has been extensively used to detect conformational changes in these ribozymes and dissect their reaction pathways. Common and diverse features are beginning to emerge that, by extension, highlight general biophysical properties of non-protein coding RNAs. PMID:21796234

  1. Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme

    PubMed Central

    Einvik, Christer; Nielsen, Henrik; Nour, Reza; Johansen, Steinar

    2000-01-01

    DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5′-end of the intron endonuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological function. DiGIR1 is the smallest functional group I ribozyme known from nature and has an unusual core organization including the 6 bp P15 pseudoknot. Here we report results of functional and structural analyses that identify RNA elements critical for hydrolysis outside the DiGIR1 ribozyme core moiety. Results from deletion analysis, disruption/compensation mutagenesis and RNA structure probing analysis all support the existence of two new segments, named P2 and P2.1, involved in the hydrolysis of DiGIR1. Significant decreases in the hydrolysis rate, kobs, were observed in disruption mutants involving both segments. These effects were restored by compensatory base pairing mutants. The possible role of P2 is to tether the ribozyme core, whereas P2.1 appears to be more directly involved in catalysis. PMID:10773091

  2. RNA splicing and splicing regulator changes in prostate cancer pathology.

    PubMed

    Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J

    2017-04-05

    Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.

  3. Evolution of ribozymes in the presence of a mineral surface.

    PubMed

    Stephenson, James D; Popović, Milena; Bristow, Thomas F; Ditzler, Mark A

    2016-12-01

    Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. © 2016 Stephenson et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. Domain structure of the ribozyme from eubacterial ribonuclease P.

    PubMed Central

    Loria, A; Pan, T

    1996-01-01

    Large RNAs can be composed of discrete domains that fold independently. One such "folding domain" has been identified previously in the ribozyme from Bacillus subtilis ribonuclease P (denoted P RNA). This domain contains roughly one-third of all residues. Folding of an RNA construct consisting of the remaining two-thirds of B. subtilis P RNA was examined by Fe(II)-EDTA hydroxyl radical protection. This molecule folds into the proper higher-order structure under identical conditions as the full-length P RNA, suggesting the presence of a second folding domain in B. subtilis P RNA. Folding analysis of the Escherichia coli P RNA by hydroxyl radical protection shows that this P RNA is completely folded at 5-6 mM Mg2+. In order to analyze the structural organization of folding domains in E. coli P RNA, constructs were designed based on the domain structure of B. subtilis P RNA. Fe(II)-EDTA protection indicates that E. coli P RNA also contains two folding domains. Despite the significant differences at the secondary structure level, both P RNAs appear to converge structurally at the folding domain level. The pre-tRNA substrate, localized in previous studies, may bind across the folding domains with the acceptor stem/3'CCA contacting the domain including the active site and the T stem-loop contacting the other. Because all eubacterial P RNAs share considerable homology in secondary structure to either B. subtilis or E. coli P RNA, these results suggest that this domain structure may be applicable for most, if not all, eubacterial P RNAs. Identification of folding domains should be valuable in dissecting structure-function relationship of large RNAs. PMID:8718684

  5. Evolution of ribozymes in the presence of a mineral surface

    PubMed Central

    Stephenson, James D.; Popović, Milena; Bristow, Thomas F.

    2016-01-01

    Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980

  6. Exploring ribozyme conformational changes with X-ray crystallography.

    PubMed

    Spitale, Robert C; Wedekind, Joseph E

    2009-10-01

    Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.

  7. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.

    PubMed

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  8. A mechanistic framework for co-transcriptional folding of the HDV genomic ribozyme in the presence of downstream sequence.

    PubMed

    Diegelman-Parente, Amy; Bevilacqua, Philip C

    2002-11-15

    Hepatitis delta virus (HDV) is a circular pathogenic RNA that uses self-cleavage by closely related 84 nt genomic and antigenomic ribozymes to facilitate the replication of its genome. Downstream of each ribozyme is a stretch of nucleotides termed the attenuator that functions to base-pair with and unfold the ribozyme into a rod-like fold. The competing rates of RNA synthesis, ribozyme folding and cleavage, and rod folding are therefore likely to affect the efficiency of co-transcriptional self-cleavage. In these studies, co-transcriptional folding of the genomic ribozyme was assayed in vitro by monitoring co-transcriptional self-cleavage of transcripts having variable lengths of sequence downstream of the ribozyme. Co-transcriptional cleavage data were simulated successfully only with kinetic models in which cleavage-inactive channels were populated during transcription. Partitioning to and escape from these channels was influenced, in part, by whether the available attenuator sequence could form structures with the ribozyme, and by the stability of such structures. Surprisingly, only 23 nt of attenuator were needed for strong inactivation of cleavage. Self-cleavage of certain 3'-virus-containing sequences could be restored, partially, by renaturation; however, self-cleavage of transcripts with a full-length attenuator could not be restored efficiently by renaturation in vitro. This suggests that in the presence of the attenuator, the cleavage-active ribozyme fold is not the thermodynamically most stable species. In accordance with this model, the efficiency of self-cleavage of the ribozyme followed by a full-length attenuator was increased by decreasing the rate of transcription. These results suggest that, in the absence of additional factors, efficient co-transcriptional cleavage of the full-length genomic HDV RNA may require cleavage to occur prior to synthesis of the attenuator.

  9. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  10. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  11. Intracellular Immunization of Human Fetal Cord Blood Stem/Progenitor Cells with a Ribozyme Against Human Immunodeficiency Virus Type 1

    NASA Astrophysics Data System (ADS)

    Yu, Mang; Leavitt, Mark C.; Maruyama, Midori; Yamada, Osamu; Young, Dennis; Ho, Anthony D.; Wong-Staal, Flossie

    1995-01-01

    Successful treatment of human immunodeficiency virus infection may ultimately require targeting of hematopoietic stem cells. Here we used retroviral vectors carrying the ribozyme gene to transduce CD34^+ cells from human fetal cord blood. Transduction and ribozyme expression had no apparent adverse effect on cell differentiation and/or proliferation. The macrophage-like cells, differentiated from the stem/progenitor cells in vitro, expressed the ribozyme gene and resisted infection by a macrophage tropic human immunodeficiency virus type 1. These results suggest the feasibility of stem cell gene therapy for human immunodeficiency virus-infected patients.

  12. Spliced-leader trans-splicing in freshwater planarians.

    PubMed

    Zayas, Ricardo M; Bold, Tyler D; Newmark, Phillip A

    2005-10-01

    trans-Splicing, in which a spliced-leader (SL) RNA is appended to the most 5' exon of independently transcribed pre-mRNAs, has been described in a wide range of eukaryotes, from protozoans to chordates. Here we describe trans-splicing in the freshwater planarian Schmidtea mediterranea, a free-living member of the phylum Platyhelminthes. Analysis of an expressed sequence tag (EST) collection from this organism showed that over 300 transcripts shared one of two approximately 35-base sequences (Smed SL-1 and SL-2) at their 5' ends. Examination of genomic sequences encoding representatives of these transcripts revealed that these shared sequences were transcribed elsewhere in the genome. RNA blot analysis, 5' and 3' rapid amplification of cDNA ends, as well as genomic sequence data showed that 42-nt SL sequences were derived from small RNAs of approximately 110 nt. Similar sequences were also found at the 5' ends of ESTs from the planarian Dugesia japonica. trans-Splicing has already been described in numerous representatives of the phylum Platyhelminthes (trematodes, cestodes, and polyclads); its presence in two representatives of the triclads supports the hypothesis that this mode of RNA processing is ancestral within this group. The upcoming complete genome sequence of S. mediterranea, combined with this animal's experimental accessibility and susceptibility to RNAi, provide another model organism in which to study the function of the still-enigmatic trans-splicing.

  13. Antisense Oligonucleotide Mediated Splice Correction of a Deep Intronic Mutation in OPA1

    PubMed Central

    Bonifert, Tobias; Gonzalez Menendez, Irene; Battke, Florian; Theurer, Yvonne; Synofzik, Matthis; Schöls, Ludger; Wissinger, Bernd

    2016-01-01

    Inherited optic neuropathies (ION) present an important cause of blindness in the European working-age population. Recently we reported the discovery of four independent families with deep intronic mutations in the main inherited optic neuropathies gene OPA1. These deep intronic mutations cause mis-splicing of the OPA1 pre-messenger-RNA transcripts by creating cryptic acceptor splice sites. As a rescue strategy we sought to prevent mis-splicing of the mutant pre-messenger-RNA by applying 2′O-methyl-antisense oligonucleotides (AONs) with a full-length phosphorothioate backbone that target the cryptic acceptor splice sites and the predicted novel branch point created by the deep intronic mutations, respectively. Transfection of patient-derived primary fibroblasts with these AONs induced correct splicing of the mutant pre-messenger-RNA in a time and concentration dependent mode of action, as detected by pyrosequencing of informative heterozygous variants. The treatment showed strong rescue effects (~55%) using the cryptic acceptor splice sites targeting AON and moderate rescue (~16%) using the branch point targeting AON. The highest efficacy of Splice correction could be observed 4 days after treatment however, significant effects were still seen 14 days post-transfection. Western blot analysis revealed increased amounts of OPA1 protein with maximum amounts at ~3 days post-treatment. In summary, we provide the first mutation-specific in vitro rescue strategy for OPA1 deficiency using synthetic AONs. PMID:27874857

  14. Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution

    NASA Technical Reports Server (NTRS)

    Tsang, Joyce; Joyce, Gerald F.

    1996-01-01

    In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.

  15. NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme.

    PubMed

    Fürtig, Boris; Richter, Christian; Schell, Peter; Wenter, Philipp; Pitsch, Stefan; Schwalbe, Harald

    2008-01-01

    In order to relate the conformational dynamics of the hammerhead ribozyme to its biological function the cleavage reaction catalyzed by the hammerhead ribozyme was monitored by time-resolved nuclear magnetic resonance (NMR) spectroscopy. For this purpose, the two nucleosides around the scissile phosphodiester bond were selectively (13)C labelled in multi-step organic syntheses starting from uniformly (13)C-labelled glucose. The phosphoamidites were incorporated using phosphoamidite chemistry in the hammerhead substrate strand. In addition, the 2'-OH group on the 5'-side of the hammerhead substrate strand was labelled with a photolabile protecting group. This labelling strategy enabled a detailed characterisation of the nucleotides around the scissile phosphodiester bond in the ground state conformation of the hammerhead ribozyme in the absence and presence of Mg(2+) ions as well as of the product state. Photochemical induction of the reaction in situ was further characterized by time-resolved NMR spectroscopy. The detailed structural and dynamic investigations revealed that the conformation of the hammerhead ribozyme is significantly affected by addition of Mg(2+) leading to an ensemble of conformations where dynamic transitions between energetically similar conformations occur on the ms-timescale in the presence of Mg(2+). The dynamic transitions are localized around the catalytic core. Cleavage from this ensemble cannot be described by mono-exponential kinetics but follows bi-exponential kinetics. A model is described to take into account these experimental data.

  16. Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations

    PubMed Central

    Nivón, Lucas G.; Shakhnovich, Eugene I.

    2011-01-01

    We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a monte carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here we introduce a simple model of tertiary structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition state ensemble (TSE) of the RNA during folding to its active “docked” conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters we introduce a novel method to benchmark monte carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential which discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures. PMID:21740912

  17. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  18. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage

    PubMed Central

    Ren, Aiming; Vušurović, Nikola; Gebetsberger, Jennifer; Gao, Pu; Juen, Michael; Kreutz, Christoph; Micura, Ronald; Patel, Dinshaw J.

    2016-01-01

    The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report on the crystal structure of the env25 pistol ribozyme, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2′-O of G for attack on the adjacent to-be-cleaved P-O5′ bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2′-OH positions) are aligned to act as general base and general acid respectively to accelerate cleavage chemistry, with their roles confirmed from cleavage assays on mutants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defines how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on mutants identifying key residues participating in acid-base catalyzed cleavage chemistry. PMID:27398999

  19. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  20. Self-replication reactions dependent on tertiary interaction motifs in an RNA ligase ribozyme.

    PubMed

    Ohmori, Rei; Saito, Hirohide; Ikawa, Yoshiya; Fujita, Yoshihiko; Inoue, Tan

    2011-10-01

    RNA can function both as an informational molecule and as a catalyst in living organisms. This duality is the premise of the RNA world hypothesis. However, one flaw in the hypothesis that RNA was the most essential molecule in primitive life is that no RNA self-replicating system has been found in nature. To verify whether RNA has the potential for self-replication, we constructed a new RNA self-assembling ribozyme that could have conducted an evolvable RNA self-replication reaction. The artificially designed, in vitro selected ligase ribozyme was employed as a prototype for a self-assembling ribozyme. The ribozyme is composed of two RNA fragments (form R1·Z1) that recognize another R1·Z1 molecule as their substrate and perform the high turnover ligation reaction via two RNA tertiary interaction motifs. Furthermore, the substrate recognition of R1·Z1 is tolerant of mutations, generating diversity in the corresponding RNA self-replicating network. Thus, we propose that our system implies the significance of RNA tertiary motifs in the early RNA molecular evolution of the RNA world.

  1. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme

    PubMed Central

    Kath-Schorr, Stephanie; Wilson, Timothy J.; Li, Nan-Sheng; Lu, Jun; Piccirilli, Joseph A.; Lilley, David M. J.

    2012-01-01

    The catalytic mechanism by which the hairpin ribozyme accelerates cleavage or ligation of the phosphodiester backbone of RNA has been incompletely understood. There is experimental evidence for an important role for an adenine (A38) and a guanine (G8), and it has been proposed that these act in general acid-base catalysis. In this work we show that a large reduction in cleavage rate on substitution of A38 by purine (A38P) can be reversed by replacement of the 5′-oxygen atom at the scissile phosphate by sulfur (5′-PS), which is a much better leaving group. This is consistent with A38 acting as the general acid in the unmodified ribozyme. The rate of cleavage of the 5′-PS substrate by the A38P ribozyme increases with pH log-linearly, indicative of a requirement for a deprotonated base with a relatively high pKa. On substitution of G8 by diaminopurine, the 5′-PS substrate cleavage rate at first increases with pH and then remains at a plateau, exhibiting an apparent pKa consistent with this nucleotide acting in general base catalysis. Alternative explanations for the pH dependence of hairpin ribozyme reactivity are discussed, from which we conclude that general acid-base catalysis by A38 and G8 is the simplest and most probable explanation consistent with all the experimental data. PMID:22958171

  2. Nucleotide synthetase ribozymes may have emerged first in the RNA world

    PubMed Central

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2007-01-01

    Though the “RNA world” hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, “RNA replicase.” However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells. PMID:17878321

  3. Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs.

    PubMed

    Walter, Nils G; Engelke, David R

    2002-10-01

    Catalytic RNAs, or ribozymes, are a fossil record of the ancient molecular evolution of life on earth and still provide the essential core of macromolecule synthesis in all life forms today. Are they also an avenue to the development of new catalysts to recreate evolution, or to use as therapeutics and molecule sensors.

  4. Monitoring Tertiary Interactions in the Hammerhead Ribozyme Using Pulsed EPR Spectroscopy

    SciTech Connect

    Kim, Nak-Kyoon; Bowman, Michael K.; DeRose, Victoria J.

    2004-01-01

    The hammerhead ribozyme is a small, self-cleaving catalytic RNA which activates a site-specific phosphodiester bond cleavage reaction. The folding pathway of the hammerhead ribozyme is critical to its catalytic activity, which has been known to depend on the metal ion concentration (DeRose, V.J., 2003, Curr. Op. Struct. Biol. 13, 317-324). Recently, it has been proposed that an extended hammerhead ribozyme that contains putative intramolecular loop-loop interactions between two helical regions has enhanced reactivity, and at lower cation concentrations (Khorvona, A., Lescoute, A., Westhof, E., Jayasena, S.D., 2003, Nat. Struc. Biol. 10, 708-712). In order to investigate potential tertiary interactions between the two loops as well as the folding pathway of the hammerhead ribozyme, site-directed spin labels have been introduced to stems I and II. Tertiary interactions can be predicted by measuring inter-spin distances (Kim, N.-K. Murali, A., DeRose, V.J., Submitted) with increasing metal concentration, and the distance distributions between two sites in the internal loops can be obtained using pulsed EPR techniques (DEER, double electron electron resonance), with which inter-spin distances can be measured up to 60{angstrom}. (Schiemann, O., Weber, A., Edwards, T.E., Prisner, T.F., Sigurdsson, S.T., J. Am. Chem. Soc. 2003, 125, 3434-3435).

  5. Efficient hammerhead ribozyme and antisense RNA targeting in a slow ribosome Escherichia coli mutant.

    PubMed

    Chen, H; Ferbeyre, G; Cedergren, R

    1997-05-01

    We have evaluated inhibition of the plasmid-born chloramphenicol acetyl transferase gene (CAT) by the hammerhead ribozyme and antisense RNA in Escherichia coli where the translation and transcription rates have been modified. Whereas neither antisense nor the hammerhead had an inhibitory effect on CAT activity in wild-type E. coli, both reduced the level of the messenger RNA and the activity of the CAT gene by almost 60% in a slow ribosome mutant. Streptomycin, which increases the speed of translation in this mutant strain, restored full CAT activity. The level of CAT activity expressed from a T7 RNA polymerase promoter was not affected by the presence of either antisense RNA or the hammerhead ribozyme. When the target gene was expressed from a chromosomal locus in wild-type E. coli, both antisense RNA and the hammerhead ribozyme showed some inhibitory activity, but the level of inhibition was significantly increased in the slow ribosome strain. This bacterial system offers a unique entry to the study of cellular factors which mediate the activity of ribozymes in vivo.

  6. The structure of a nucleolytic ribozyme that employs a catalytic metal ion.

    PubMed

    Liu, Yijin; Wilson, Timothy J; Lilley, David M J

    2017-03-06

    The TS ribozyme (originally called "twister sister") is a catalytic RNA. We present a crystal structure of the ribozyme in a pre-reactive conformation. Two co-axial helical stacks are organized by a three-way junction and two tertiary contacts. Five divalent metal ions are directly coordinated to RNA ligands, making important contributions to the RNA architecture. The scissile phosphate lies in a quasihelical loop region that is organized by a network of hydrogen bonding. A divalent metal ion is directly bound to the nucleobase 5' to the scissile phosphate, with an inner-sphere water molecule positioned to interact with the O2' nucleophile. The rate of ribozyme cleavage correlated in a log-linear manner with divalent metal ion pKa, consistent with proton transfer in the transition state, and we propose that the bound metal ion is a likely general base for the cleavage reaction. Our data indicate that the TS ribozyme functions predominantly as a metalloenzyme.

  7. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.

  8. Presence of a coordinated metal ion in a trans-acting antigenomic delta ribozyme.

    PubMed

    Lafontaine, D A; Ananvoranich, S; Perreault, J P

    1999-08-01

    We have investigated the cleavage induced by metal ions in an antigenomic form of a trans-acting delta ribozyme. A specific Mg(2+)-induced cleavage at position G(52)at the bottom of the P2 stem was observed to occur solely within catalytically active ribozyme-substrate complexes (i.e. those that performed the essential conformational transition step). Only the divalent cations which support catalytic activity permitted the detection of specific induced cleavages in this region. Using various mutant ribozymes and substrates, we demonstrated a correlation between enzymatic activity and the Mg(2+)-induced cleavage pattern. We show that the efficiency of the coordination of the magnesium to its binding site is related to the nature of the base pair in the middle of the P1 stem (i.e. Rz(23)-S(8)). Together with additional evidence from nuclease probing experiments that indicates the occurrence of a structural rearrangement involving the bottom of the P2 stem upon formation of the P1 helix, these results show that an intimate relationship exists between the folding and the catalytic activity of the delta ribozyme.

  9. The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine.

    PubMed

    Cottrell, Joseph W; Scott, Lincoln G; Fedor, Martha J

    2011-05-20

    Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.

  10. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.

    PubMed

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2012-03-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.

  11. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics.

    PubMed

    Bingaman, Jamie L; Messina, Kyle J; Bevilacqua, Philip C

    2017-03-14

    Reaction kinetics on the millisecond timescale pervade the protein and RNA fields. To study such reactions, investigators often perturb the system with abiological solution conditions or substrates in order to slow the rate to timescales accessible by hand mixing; however, such perturbations can change the rate-limiting step and obscure key folding and chemical steps that are found under biological conditions. Mechanical methods for collecting data on the millisecond timescale, which allow these perturbations to be avoided, have been developed over the last few decades. These methods are relatively simple and can be conducted on affordable and commercially available instruments. Here, we focus on using the rapid quench-flow technique to study the fast reaction kinetics of RNA enzymes, or ribozymes, which often react on the millisecond timescale under biological conditions. Rapid quench of ribozymes is completely parallel to the familiar hand-mixing approach, including the use of radiolabeled RNAs and fractionation of reactions on polyacrylamide gels. We provide tips on addressing and preventing common problems that can arise with the rapid-quench technique. Guidance is also offered on ensuring the ribozyme is properly folded and fast-reacting. We hope that this article will facilitate the broader use of rapid-quench instrumentation to study fast-reacting ribozymes under biological reaction conditions.

  12. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules

    PubMed Central

    Ishikawa, Junya; Matsumura, Shigeyoshi; Jaeger, Luc; Inoue, Tan; Furuta, Hiroyuki; Ikawa, Yoshiya

    2010-01-01

    The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions. PMID:19728985

  13. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes

    PubMed Central

    Herschlag, Daniel

    2016-01-01

    Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes. PMID:27501145

  14. A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage.

    PubMed Central

    Sekella, Phillip T; Rueda, David; Walter, Nils G

    2002-01-01

    Recently, Breaker and coworkers engineered hammerhead ribozymes that rearrange from a catalytically inactive to an active conformation upon allosteric binding of a specific ligand. To monitor cleavage activity in real time, we have coupled a donor-acceptor fluorophore pair to the termini of the substrate RNA of such a hammerhead ribozyme, modified to cleave in trans in the presence of the bronchodilator theophylline. In the intact substrate, the fluorophores interact by fluorescence resonance energy transfer (FRET). The specific FRET signal breaks down as the effector ligand binds, the substrate is cleaved, and the products dissociate, with a rate constant dependent on the concentration of the ligand. Our biosensor cleaves substrate at 0.46 min(-1) in 1 mM theophylline and 0.04 min(-1) without effector, and discriminates against caffeine, a structural relative of theophylline. We have measured the theophylline-dependence profile of this biosensor, showing that concentrations as low as 1 microM can be distinguished from background. To probe the mechanism of allosteric regulation, a single nucleotide in the communication domain between the catalytic and ligand-binding domains was mutated to destabilize the inactive conformation of the ribozyme. As predicted, this mutant shows the same activity (0.3 min(-1)) in the presence and absence of theophylline. Additionally, time-resolved FRET measurements on the biosensor ribozyme in complex with a noncleavable substrate analog reveal no significant changes in fluorophore distance distribution upon binding of effector. PMID:12403463

  15. Correlation between hammerhead ribozyme-mediated eggshell protein gene cleavage and reproduction inhibition of Schistosoma japonicum

    PubMed Central

    LIANG, YU; ZHOU, YUELAN; YIN, WEIGUO; LI, YINGJU; YANG, QIULIN; GAO, YUAN; ZHANG, YUKUAI; YANG, YAOFEI; PENG, LI; XIAO, JIANHUA

    2012-01-01

    Schistosoma japonicum (S. japonicum) is an extremely harmful pathogen, which infects humans and causes severe public health problems. To date, no effective therapeutic drugs for this pathogen are available. In this study, we designed and constructed three hammerhead ribozymes targeting the eggshell protein gene of S. japonicum (SjESG). The cleavage activities of these three ribozymes were determined using cleavage experiments. The in vitro cleavage results showed that among the three synthesized ribozymes (Rz1, Rz2 and Rz3), Rz1 and Rz3 cleaved their target RNAs effectively. However, Rz2 did not cleave its target RNA detectably. The putative therapeutic roles of these three ribozymes to inhibit the reproduction of S. japonicum in mice were studied in vivo. Compared with the negative controls, Rz1 and Rz3 treatments resulted in increased levels of IFN-γ but decreased levels of IL-4 in mice. Rz2 affected levels of IFN-γ and IL-4 to degrees similar with those caused by the vector controls. In addition, Rz1 and Rz3 reduced the amounts of adult worms and eggs in the livers of mice more extensively than Rz2 and the vector controls. Altogether, these results suggest a correlation between the in vitro cleavage abilities of Rz1 and Rz3 and their roles in reproduction inhibition of S. japonicum. PMID:22246067

  16. An efficient ligation reaction promoted by a Varkud Satellite ribozyme with extended 5'- and 3'-termini.

    PubMed

    Jones, F D; Ryder, S P; Strobel, S A

    2001-12-15

    The Neurospora Varkud Satellite (VS) RNA is capable of promoting a reversible self-cleavage reaction important for its replication pathway. In vivo the VS RNA performs a cis-cleavage reaction to generate monomeric length transcripts that are subsequently ligated to produce circular VS RNA. The predominant form of VS RNA observed in vivo is the closed circular form, though minimal VS ribozyme self-cleavage constructs lack detectable ligation activity. MFOLD analysis of the entire VS RNA sequence revealed an extended region 5' and 3' of the minimal self-cleaving region that could anneal to form a complementary helix, which we have termed helix 7. In full-length VS RNA, this helix appears to span over 40 bp of sequence and brings the 5'- and 3'-ends of the RNA into proximity for the ligation reaction. Here we report a variant of the VS ribozyme with an extended 5'- and 3'-terminus capable of forming a truncated helix 7 that promotes the ligation reaction in vitro. Through mutation and selection of this RNA we have identified a ribozyme containing two point mutations in the truncated helix 7 that ligates with >70% efficiency. These results show that an additional helical element absent in current VS ribozyme constructs is likely to be important for the ligation activity of VS RNA.

  17. The tolerance to exchanges of the Watson–Crick base pair in the hammerhead ribozyme core is determined by surrounding elements

    PubMed Central

    Przybilski, Rita; Hammann, Christian

    2007-01-01

    Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson–Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson–Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3–R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem–loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson–Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes. PMID:17666711

  18. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics.

    PubMed

    Menger, M; Eckstein, F; Porschke, D

    2000-11-15

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to approximately 200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A-->G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (tau approximately 200 ms). Addition of Mg(2+) ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg(2+) are very similar to those induced by Ca(2+). The relaxation data do not provide any evidence for formation of Mg(2+)-inner sphere complexes in hammerhead ribozymes, because a Mg(2+)-specific relaxation effect was not visible. However, a Mg(2+)-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2

  19. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere

  20. Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme.

    PubMed

    Klostermeier, D; Millar, D P

    2000-10-24

    Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin ribozyme tertiary structure [Walter, N. G., Burke, J. M., and Millar, D. P. (1999) Nat. Struct. Biol. 6, 544-549] and thus its catalytic activity. We used two-, three-, and four-way junction hairpin ribozymes as model systems to investigate the thermodynamic basis for the different tertiary structure stabilities. The equilibrium between docked and extended conformers was analyzed as a function of temperature using time-resolved fluorescence resonance energy transfer (trFRET). As the secondary and tertiary structure transitions overlap, information from UV melting curves and trFRET had to be combined to gain insight into the thermodynamics of both structural transitions. It turned out that the higher tertiary structure stability observed in the context of a four-way junction is the result of a lower entropic cost for the docking process. In the two- and three-way junction ribozymes, a high entropic cost counteracts the favorable enthalpic term, rendering the docked conformer only marginally stable. Thus, two- and three-way junction tertiary structures are more sensitive toward regulation by ligands, whereas four-way junctions provide a stable scaffold. Altogether, RNA folding and stability appear to be governed by principles similar to those for the folding of proteins.

  1. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  2. Promoter usage and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2005-06-01

    Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation.

  3. Topological constraints of structural elements in regulation of catalytic activity in HDV-like self-cleaving ribozymes

    PubMed Central

    Webb, Chiu-Ho T.; Nguyen, Dang; Myszka, Marie; Lupták, Andrej

    2016-01-01

    Self-cleaving ribozymes fold into intricate structures, which orient active site groups into catalytically competent conformations. Most ribozyme families have distinct catalytic cores stabilized by tertiary interactions between domains peripheral to those cores. We show that large hepatitis delta virus (HDV)-like ribozymes are activated by peripheral domains that bring two helical segments, P1 and P2, into proximity – a “pinch” that results in rate acceleration by almost three orders of magnitude. Kinetic analysis of ribozymes with systematically altered length and stability of the peripheral domain revealed that about one third of its free energy of formation is used to lower an activation energy barrier, likely related to a rate-limiting conformational change leading to the pre-catalytic state. These findings provide a quantitative view of enzyme regulation by peripheral domains and may shed light on the energetics of allosteric regulation. PMID:27302490

  4. A novel strategy for selection of allosteric ribozymes yields RiboReporter™ sensors for caffeine and aspartame

    PubMed Central

    Ferguson, Alicia; Boomer, Ryan M.; Kurz, Markus; Keene, Sara C.; Diener, John L.; Keefe, Anthony D.; Wilson, Charles; Cload, Sharon T.

    2004-01-01

    We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter™ sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids. PMID:15026535

  5. Biological Applications of Protein Splicing

    PubMed Central

    Vila-Perelló, Miquel; Muir, Tom W.

    2010-01-01

    Protein splicing is a naturally-occurring process in which a protein editor, called an intein, performs a molecular disappearing act by cutting itself out of a host protein in a traceless manner. In the two decades since its discovery, protein splicing has been harnessed for the development of several protein-engineering methods. Collectively, these technologies help bridge the fields of chemistry and biology, allowing hitherto impossible manipulations of protein covalent structure. These tools and their application are the subject of this Primer. PMID:20946979

  6. Development of a Functionally Minimized Mutant of the R3C Ligase Ribozyme Offers Insight into the Plausibility of the RNA World Hypothesis

    PubMed Central

    Kurihara, Eri; Uchida, Sayuri; Umehara, Takuya; Tamura, Koji

    2014-01-01

    The R3C ligase ribozyme is an artificial ligase ribozyme produced by modification of the ribozyme that lacks cytidine. Here, we attempted to modify the original R3C ribozyme (73 nucleotides) by reducing the number of nucleotides while maintaining the maximum possible catalytic efficiency. By partially deleting both the “grip” (P4 + P5) and “hammer” (P3) stem-loops, we found the critical border to retain activity comparable to that of full-length R3C. The three-way junction structure was necessary to maintain enzymatic function and the stability of the “grip” (P4 + P5) stem had a large influence on the catalytic activity of R3C. The final minimized ribozyme we obtained comprised ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Our findings suggest that the autocatalytic function in ribozymes is indeed possible to obtain using sequence lengths achievable with prebiotic synthesis. PMID:25256424

  7. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates.

    PubMed Central

    Walter, N G; Burke, J M

    1997-01-01

    Current methods for evaluating the kinetics of ribozyme-catalyzed reactions rely primarily on the use of radiolabeled RNA substrates, and so require tedious electrophoretic separation and quantitation of reaction products for each data point in any experiment. Here, we report the use of fluorescent substrates for real-time analysis of the time course of reactions of the hairpin ribozyme. Fluorescence of 3' fluorescein-labeled substrates was quenched upon binding to the hairpin ribozyme or its isolated substrate-binding strand (SBS), under conditions of ribozyme or SBS excess. This decrease was accompanied by an increase in anisotropy, and resulted from a base-specific quenching by a guanosine residue added to the 5' end of the SBS, close to fluorescein in the complex. Fluorescence quenching was used to determine rate constants for substrate binding (1.4 x 10(8) M(-1) min(-1)), cleavage (0.15 min(-1)), and substrate dissociation (0.010 min(-1)) by a structurally well-defined ribozyme at 25 degrees C in 50 mM Tris-HCI, pH 7.5, 12 mM MgCl2. These rates are in excellent agreement with those obtained using traditional radioisotopic methods. Measurements of dissociation rates provided physical support for interdomain interactions within the substrate-ribozyme complex. We estimate that 2.1 kcal/mol of additional substrate binding energy is provided by the B domain of the ribozyme. Part of this free energy apparently stems from coaxial stacking of helices in the hinge region between domains, and it is plausible that the remainder might be contributed by direct interactions with loop B. The fluorescence quenching and dequenching methods described here should be readily adaptable to studying a wide variety of RNA interactions and reactions using ribozymes and other model systems. PMID:9085846

  8. Structural and Chemical Basis for Glucosamine 6-Phosphate Binding and Activation of the glmS Ribozyme

    SciTech Connect

    Cochrane, J.; Lipchock, S; Smith, K; Strobel, S

    2009-01-01

    The glmS ribozyme is the first naturally occurring catalytic RNA that relies on an exogenous, nonnucleotide cofactor for reactivity. From a biochemical perspective, the glmS ribozyme derived from Bacillus anthracis is the best characterized. However, much of the structural work to date has been done on a variant glmS ribozyme, derived from Thermoanaerobacter tengcongensis. Here we present structures of the B. anthracis glmS ribozyme in states before the activating sugar, glucosamine 6-phosphate (GlcN6P), has bound and after the reaction has occurred. These structures show an active site preorganized to bind GlcN6P that retains some affinity for the sugar even after cleavage of the RNA backbone. A structure of an inactive glmS ribozyme with a mutation distal from the ligand-binding pocket highlights a nucleotide critical to the reaction that does not affect GlcN6P binding. Structures of the glmS ribozyme bound to a naturally occurring inhibitor, glucose 6-phosphate (Glc6P), and a nonnatural activating sugar, mannosamine 6-phosphate (MaN6P), reveal a binding mode similar to that of GlcN6P. Kinetic analyses show a pH dependence of ligand binding that is consistent with titration of the cofactor's phosphate group and support a model in which the major determinant of activity is the sugar amine independent of its stereochemical presentation.

  9. Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.

    PubMed Central

    Trang, P; Hsu, A W; Liu, F

    1999-01-01

    RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315

  10. A Simple Template-Dependent Ligase Ribozyme as the RNA Replicase Emerging First in the RNA World

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2010-05-01

    The "RNA world" hypothesis has offered a framework for both experimental and theoretical work in the field of the origin of life. An important concern about the hypothesis is how the RNA world could originate. It has long been speculated that a template-dependent RNA synthetase ribozyme, which catalyzed its own replication (thus, an "RNA replicase"), should have emerged first. However, experimental searches for such a replicase have so far been unsuccessful. This is primarily because of the large sequence length of candidate ribozymes, which mainly work in a polymerase-like way. Here, we propose that the replicase that emerged first would be a simple template-dependent ligase ribozyme, which loosely binds to template RNA and has a relatively low efficiency of catalyzing the formation of phosphodiester bonds between adjacently aligned nucleotides or oligonucleotides. We conducted a computer simulation to support this proposal and considered the factors that might affect the emergence of the ribozyme based on the parameter analysis in the simulation. We conclude that (1) a template-dependent ligase may be more likely than a template-dependent polymerase as an early replicase in the emergence of RNA-based replication; (2) such a ligase ribozyme could emerge and be stable against parasites under a broad range of parameters in our model; (3) the conditions shown to favor the initial appearance of a template-dependent ligase ribozyme do not favor its spread.

  11. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  12. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme

    PubMed Central

    de Silva, Chamaree; Walter, Nils G.

    2009-01-01

    Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer. PMID:19029309

  13. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA.

    PubMed

    Ferré-D'Amaré, Adrian R

    2010-11-01

    The glmS ribozyme is the first known example of a natural ribozyme that has evolved to require binding of an exogenous small molecule for activity. In Gram-positive bacteria, this RNA domain is part of the messenger RNA (mRNA) encoding the essential enzyme that synthesizes glucosamine-6-phosphate (GlcN6P). When present at physiologic concentration, this small molecule binds to the glmS ribozyme and uncovers a latent self-cleavage activity that ultimately leads to degradation of the mRNA. Biochemical and structural studies reveal that the RNA adopts a rigid fold stabilized by three pseudoknots and the packing of a peripheral domain against the ribozyme core. GlcN6P binding to this pre-organized RNA does not induce conformational changes; rather, the small molecule functions as a coenzyme, providing a catalytically essential amine group to the active site. The ribozyme is not a passive player, however. Active site functional groups are essential for catalysis, even in the presence of GlcN6P. In addition to being a superb experimental system with which to analyze how RNA catalysts can exploit small molecule coenzymes to broaden their chemical versatility, the presence of the glmS ribozyme in numerous pathogenic bacteria make this RNA an attractive target for the development of new antibiotics and antibacterial strategies.

  14. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA

    PubMed Central

    Ferré-D’Amaré, Adrian R.

    2012-01-01

    The glmS ribozyme is the first known example of a natural ribozyme that has evolved to require binding of an exogenous small molecule for activity. In Gram-positive bacteria, this RNA domain is part of the mRNA encoding the essential enzyme that synthesizes glucosamine-6-phosphate (GlcN6P). When present at physiologic concentration, this small molecule binds to the glmS ribozyme and uncovers a latent self-cleavage activity that ultimately leads to degradation of the mRNA. Biochemical and structural studies reveal that the RNA adopts a rigid fold stabilized by three pseudoknots and the packing of a peripheral domain against the ribozyme core. GlcN6P binding to this pre-organized RNA does not induce conformational changes; rather, the small molecule functions as a co-enzyme, providing a catalytically essential amine group to the active site. The ribozyme is not a passive player, however. Active site functional groups are essential for activity, even in the presence of GlcN6P. In addition to being a superb experimental system with which to analyze how RNA catalysts can exploit small molecule coenzymes to broaden their chemical versatility, the presence of the glmS ribozyme in numerous pathogenic bacteria make this RNA an attractive target for the development of new antibiotics and antibacterial strategies. PMID:20822574

  15. CoSpliceNet: a framework for co-splicing network inference from transcriptomics data.

    PubMed

    Aghamirzaie, Delasa; Collakova, Eva; Li, Song; Grene, Ruth

    2016-10-28

    Alternative splicing has been proposed to increase transcript diversity and protein plasticity in eukaryotic organisms, but the extent to which this is the case is currently unclear, especially with regard to the diversification of molecular function. Eukaryotic splicing involves complex interactions of splicing factors and their targets. Inference of co-splicing networks capturing these types of interactions is important for understanding this crucial, highly regulated post-transcriptional process at the systems level. First, several transcript and protein attributes, including coding potential of transcripts and differences in functional domains of proteins, were compared between splice variants and protein isoforms to assess transcript and protein diversity in a biological system. Alternative splicing was shown to increase transcript and function-related protein diversity in developing Arabidopsis embryos. Second, CoSpliceNet, which integrates co-expression and motif discovery at splicing regulatory regions to infer co-splicing networks, was developed. CoSpliceNet was applied to temporal RNA sequencing data to identify candidate regulators of splicing events and predict RNA-binding motifs, some of which are supported by prior experimental evidence. Analysis of inferred splicing factor targets revealed an unexpected role for the unfolded protein response in embryo development. The methods presented here can be used in any biological system to assess transcript diversity and protein plasticity and to predict candidate regulators, their targets, and RNA-binding motifs for splicing factors. CoSpliceNet is freely available at http://delasa.github.io/co-spliceNet/ .

  16. Ribozymes targeted to stearoyl-ACP delta9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves.

    PubMed Central

    Merlo, A O; Cowen, N; Delate, T; Edington, B; Folkerts, O; Hopkins, N; Lemeiux, C; Skokut, T; Smith, K; Woosley, A; Yang, Y; Young, S; Zwick, M

    1998-01-01

    Ribozymes are RNAs that can be designed to catalyze the specific cleavage or ligation of target RNAs. We have explored the possibility of using ribozymes in maize to downregulate the expression of the stearoyl-acyl carrier protein (Delta9) desaturase gene. Based on site accessibility and catalytic activity, several ribozyme constructs were designed and transformed into regenerable maize lines. One of these constructs, a multimer hammerhead ribozyme linked to a selectable marker gene, was shown to increase leaf stearate in two of 13 maize lines. There were concomitant decreases in Delta9 desaturase mRNA and protein. The plants with the altered stearate phenotype were shown to express ribozyme RNA. The ribozyme-mediated trait was heritable, as evidenced by stearate increases in the leaves of the R1 plants derived from a high-stearate line. The increase in stearate correlated with the presence of the ribozyme gene. A catalytically inactive version of this ribozyme did not produce any significant effect in transgenic maize. This is evidence that ribozymes can be used to modulate the expression of endogenous genes in maize. PMID:9761789

  17. A Carbohydrate-Derived Splice Modulator.

    PubMed

    Dhar, Sachin; La Clair, James J; León, Brian; Hammons, Justin C; Yu, Zhe; Kashyap, Manoj K; Castro, Januario E; Burkart, Michael D

    2016-04-20

    Small-molecule splice modulators have recently been recognized for their clinical potential for diverse cancers. This, combined with their use as tools to study the importance of splice-regulated events and their association with disease, continues to fuel the discovery of new splice modulators. One of the key challenges found in the current class of materials arises from their instability, where rapid metabolic degradation can lead to off-target responses. We now describe the preparation of bench-stable splice modulators by adapting carbohydrate motifs as a central scaffold to provide rapid access to potent splice modulators.

  18. Understanding alternative splicing: towards a cellular code.

    PubMed

    Matlin, Arianne J; Clark, Francis; Smith, Christopher W J

    2005-05-01

    In violation of the 'one gene, one polypeptide' rule, alternative splicing allows individual genes to produce multiple protein isoforms - thereby playing a central part in generating complex proteomes. Alternative splicing also has a largely hidden function in quantitative gene control, by targeting RNAs for nonsense-mediated decay. Traditional gene-by-gene investigations of alternative splicing mechanisms are now being complemented by global approaches. These promise to reveal details of the nature and operation of cellular codes that are constituted by combinations of regulatory elements in pre-mRNA substrates and by cellular complements of splicing regulators, which together determine regulated splicing pathways.

  19. Chromatin, DNA structure and alternative splicing.

    PubMed

    Nieto Moreno, Nicolás; Giono, Luciana E; Cambindo Botto, Adrián E; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-11-14

    Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.

  20. COMMUNICATION: Alternative splicing and genomic stability

    NASA Astrophysics Data System (ADS)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  1. Evolutionary conservation of alternative splicing in chicken

    PubMed Central

    Katyal, S.; Gao, Z.; Liu, R.-Z.; Godbout, R.

    2013-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals. PMID:17675855

  2. Alcoholism and alternative splicing of candidate genes.

    PubMed

    Sasabe, Toshikazu; Ishiura, Shoichi

    2010-04-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  3. Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo

    SciTech Connect

    Cizdziel, P.E.; De Mars, M.; Murphy, E.C. Jr.

    1988-04-01

    The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33/sup 0/C or lower than at 37 to 41/sup 0/C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41/sup 0/C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. The authors exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39/sup 0/C. However, after a short (about 30-min) lag following a shift to 33/sup 0/C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA.

  4. GC content around splice sites affects splicing through pre-mRNA secondary structures

    PubMed Central

    2011-01-01

    Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens), mice (Mus musculus), fruit flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans) to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures. PMID:21281513

  5. GC content around splice sites affects splicing through pre-mRNA secondary structures.

    PubMed

    Zhang, Jing; Kuo, C C Jay; Chen, Liang

    2011-01-31

    Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens), mice (Mus musculus), fruit flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans) to further investigate this phenomenon. We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  6. Regulation of alternative splicing within the supraspliceosome.

    PubMed

    Sebbag-Sznajder, Naama; Raitskin, Oleg; Angenitzki, Minna; Sato, Taka-Aki; Sperling, Joseph; Sperling, Ruth

    2012-01-01

    Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Regulation of alternative splicing within the supraspliceosome

    PubMed Central

    Sebbag-Sznajder, Naama; Raitskin, Oleg; Angenitzki, Minna; Sato, Taka-Aki; Sperling, Joseph; Sperling, Ruth

    2012-01-01

    Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine – the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing. PMID:22100336

  8. Conserved RNA secondary structures promote alternative splicing.

    PubMed

    Shepard, Peter J; Hertel, Klemens J

    2008-08-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

  9. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  10. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  11. Preparation of anti-mouse caspase-12 mRNA hammerhead ribozyme and identification of its activity in vitro

    PubMed Central

    Jiang, Shan; Xie, Qing; Zhang, Wei; Zhou, Xia-Qiu; Jin, You-Xin

    2005-01-01

    AIM: To prepare and identify specific anti-mouse caspase-12 hammerhead ribozymes in vitro, in order to select a more effective ribozyme against mouse caspase-12 as a potential tool to rescue cells from endoplasmic reticulum stress induced apoptosis. METHODS: Two hammerhead ribozymes directed separately against 138 and 218 site of nucleotide of mouse caspase-12 mRNA were designed by computer software, and their DNA sequences were synthesized. The synthesized ribozymes were cloned into an eukaryotic expression vector-neorpBSKU6 and embedded in U6 SnRNA context for further study. Mouse caspase-12 gene segment was cloned into PGEM-T vector under the control of T7 RNA polymerase promoter (containing gene sequence from positions nt 41 to nt 894) as target. In vitro transcription both the ribozymes and target utilize T7 promoter. The target was labeled with [α-32P]UTP, while ribozymes were not labeled. After gel purification the RNAs were dissolved in RNase free water. Ribozyme and target were incubated for 90 min at 37°C in reaction buffer (40 mmol/L Tris-HCL, pH 7.5, 10 mmol/L Mg2+). Molar ratio of ribozyme vs target was 30:1. Samples were analyzed on 6% PAGE (containing 8 mol/L urea). RESULTS: Both caspase-12 and ribozyme gene sequences were successfully cloned into expression vector confirmed by sequencing. Ribozymes and caspase-12 mRNA were obtained by in vitro transcription. Cleavage experiment showed that in a physiological similar condition (37°C, pH 7.5), Rz138 and Rz218 both cleaved targets at predicted sites, for Rz138 the cleavage efficiency was about 100%, for Rz218 the value was 36.66%. CONCLUSION: Rz138 prepared in vitro can site specific cleave mouse caspase-12 mRNA with an excellent efficiency. It shows a potential to suppress the expression of caspase-12 in vivo, thus provided a new way to protect cells from ER stress induced apoptosis. PMID:15996037

  12. A recombinant RNA bacteriophage system to identify functionally important nucleotides in a self-cleaving ribozyme

    PubMed Central

    2014-01-01

    Background RNA bacteriophages like Qbeta and MS2 are well known for their high mutation rate, short infection cycle and strong selection against foreign inserts. The hammerhead ribozyme (HHRz) is a small self-cleaving RNA molecule whose active residues have previously been identified by mutational analysis of each individual base. Here the functionally important bases of HHRz were determined in a single screening experiment by inserting the HHRz into the genome of MS2. Findings The minimal HHRz of satellite Tobacco ringspot virus was cloned into the genome of RNA bacteriophage MS2. Sequence analysis of the surviving phages revealed that the majority had acquired single base-substitutions that apparently inactivated the HHRz. The positions of these substitutions exactly matched that of the previously determined core residues of the HHRz. Conclusions Natural selection against a ribozyme in the genome of MS2 can be used to quickly identify nucleotides required for self-cleavage. PMID:24946926

  13. Activation of the glmS Ribozyme Confers Bacterial Growth Inhibition.

    PubMed

    Schüller, Anna; Matzner, Daniel; Lünse, Christina E; Wittmann, Valentin; Schumacher, Catherine; Unsleber, Sandra; Brötz-Oesterhelt, Heike; Mayer, Christoph; Bierbaum, Gabriele; Mayer, Günter

    2017-03-02

    The ever-growing number of pathogenic bacteria resistant to treatment with antibiotics call for the development of novel compounds with as-yet unexplored modes of action. Here, we demonstrate the in vivo antibacterial activity of carba-α-d-glucosamine (CGlcN). In this mode of action study, we provide evidence that CGlcN-mediated growth inhibition is due to glmS ribozyme activation, and we demonstrate that CGlcN hijacks an endogenous activation pathway, hence utilizing a prodrug mechanism. This is the first report describing antibacterial activity mediated by activating the self-cleaving properties of a ribozyme. Our results open the path towards a compound class with an entirely novel and distinct molecular mechanism.

  14. Identification of an imino group indispensable for cleavage by a small ribozyme.

    PubMed

    Spitale, Robert C; Volpini, Rosaria; Heller, Moriah G; Krucinska, Jolanta; Cristalli, Gloria; Wedekind, Joseph E

    2009-05-06

    The hairpin ribozyme is a small, noncoding RNA (ncRNA) that catalyzes a site-specific phosphodiester bond cleavage reaction. Prior biochemical and structural analyses pinpointed the amidine moiety of base Ade38 as a key functional group in catalysis, but base changes designed to probe function resulted in localized misfolding of the active site. To define the requirements for chemical activity using a conservative modification, we synthesized and incorporated N1-deazaadenosine into the full-length ribozyme construct. This single-atom variant severely impairs activity, although the active-site fold remains intact in the accompanying crystal structures. The results demonstrate the essentiality of the imino moiety as well as the importance of its interaction with the substrate in the precatalytic and transition-state conformations. This work demonstrates the efficacy of single-atom approaches in the analysis of ncRNA structure-function relationships.

  15. RNA as an RNA Polymerase: Net Elongation of an RNA Primer Catalyzed by the Tetrahymena Ribozyme

    NASA Astrophysics Data System (ADS)

    Been, Michael D.; Cech, Thomas R.

    1988-03-01

    A catalytic RNA (ribozyme) derived from an intervening sequence (IVS) RNA of Tetrahymena thermophila will catalyze an RNA polymerization reaction in which pentacytidylic acid (C5) is extended by the successive addition of mononucleotides derived from a guanylyl-(3', 5')-nucleotide (GpN). Cytidines or uridines are added to C5 to generate chain lengths of 10 to 11 nucleotides, with longer products being generated at greatly reduced efficiency. The reaction is analogous to that catalyzed by a replicase with C5 acting as the primer, GpNs as the nucleoside triphosphates, and a sequence in the ribozyme providing a template. The demonstration that an RNA enzyme can catalyze net elongation of an RNA primer supports theories of prebiotic RNA self-replication.

  16. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    PubMed Central

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks. PMID:24101931

  17. A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme.

    PubMed

    Bouchard, Patricia; Legault, Pascale

    2014-09-01

    Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem-loop I (SLI) substrate and stem-loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem-loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8-3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7-8 kcal/mol than predicted for a comparable duplex containing three Watson-Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6-7 Watson-Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2-3 Watson-Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.

  18. A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme

    PubMed Central

    Bouchard, Patricia; Legault, Pascale

    2014-01-01

    Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme. PMID:25051972

  19. Thio Effects and an Unconventional Metal Ion Rescue in the Genomic HDV Ribozyme§

    PubMed Central

    Thaplyal, Pallavi; Ganguly, Abir; Golden, Barbara L.; Hammes-Schiffer, Sharon; Bevilacqua, Philip C.

    2013-01-01

    Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg2+ ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies on the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn2+. Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd2+. Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg2+ or Cd2+, supporting that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold effect and the slow-reacting phase displaying a thio effect of ~1,000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd2+ of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd2+ inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments on the antigenomic HDV ribozyme. Experiments without divalent ions, with mutants that interfere with Mg2+ binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2’- hydroxyl, supporting the experimental findings. PMID:24001219

  20. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site.

    PubMed

    Szewczak, A A; Ortoleva-Donnelly, L; Zivarts, M V; Oyelere, A K; Kazantsev, A V; Strobel, S A

    1999-09-28

    Key to understanding the structural biology of catalytic RNA is determining the underlying networks of interactions that stabilize RNA folding, substrate binding, and catalysis. Here we demonstrate the existence and functional importance of a Hoogsteen base triple (U300.A97-U277), which anchors the substrate helix recognition surface within the Tetrahymena group I ribozyme active site. Nucleotide analog interference suppression analysis of the interacting functional groups shows that the U300.A97-U277 triple forms part of a network of hydrogen bonds that connect the P3 helix, the J8/7 strand, and the P1 substrate helix. Product binding and substrate cleavage kinetics experiments performed on mutant ribozymes that lack this base triple (C A-U, U G-C) or replace it with the isomorphous C(+).G-C triple show that the A97 Hoogsteen triple contributes to the stabilization of both substrate helix docking and the conformation of the ribozyme's active site. The U300. A97-U277 base triple is not formed in the recently reported crystallographic model of a portion of the group I intron, despite the presence of J8/7 and P3 in the RNA construct [Golden, B. L., Gooding, A. R., Podell, E. R. & Cech, T. R. (1998) Science 282, 259-264]. This, along with other biochemical evidence, suggests that the active site in the crystallized form of the ribozyme is not fully preorganized and that substantial rearrangement may be required for substrate helix docking and catalysis.

  1. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2007-01-01

    Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566

  2. Rearrangement of substrate secondary structure facilitates binding to the Neurospora VS ribozyme.

    PubMed

    Zamel, Ricardo; Collins, Richard A

    2002-12-13

    The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.

  3. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.

    PubMed

    Klauser, Benedikt; Atanasov, Janina; Siewert, Lena K; Hartig, Jörg S

    2015-05-15

    Systems for conditional gene expression are powerful tools in basic research as well as in biotechnology. For future applications, it is of great importance to engineer orthogonal genetic switches that function reliably in diverse contexts. RNA-based switches have the advantage that effector molecules interact immediately with regulatory modules inserted into the target RNAs, getting rid of the need of transcription factors usually mediating genetic control. Artificial riboswitches are characterized by their simplicity and small size accompanied by a high degree of modularity. We have recently reported a series of hammerhead ribozyme-based artificial riboswitches that allow for post-transcriptional regulation of gene expression via switching mRNA, tRNA, or rRNA functions. A more widespread application was so far hampered by moderate switching performances and a limited set of effector molecules available. Here, we report the re-engineering of hammerhead ribozymes in order to respond efficiently to aminoglycoside antibiotics. We first established an in vivo selection protocol in Saccharomyces cerevisiae that enabled us to search large sequence spaces for optimized switches. We then envisioned and characterized a novel strategy of attaching the aptamer to the ribozyme catalytic core, increasing the design options for rendering the ribozyme ligand-dependent. These innovations enabled the development of neomycin-dependent RNA modules that switch gene expression up to 25-fold. The presented aminoglycoside-responsive riboswitches belong to the best-performing RNA-based genetic regulators reported so far. The developed in vivo selection protocol should allow for sampling of large sequence spaces for engineering of further optimized riboswitches.

  4. Synthetic biology

    PubMed Central

    Bower, Adam G; McClintock, Maria K

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Building upon the existing framework established largely by the Registry of Standard Biological Parts, careful consideration of future goals may lead to integrated multi- scale approaches to biology. Here we describe some of the current challenges that need to be addressed or considered in detail to continue the development of synthetic biology. Specifically, discussion on the areas of elucidating biological principles, computational methods and experimental construction methodologies are presented. PMID:21326830

  5. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  6. Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme

    SciTech Connect

    Berezniak, Tomasz; Zahran, Mai; Imhof, Petra; Jaeschke, Andres; Smith, Jeremy C

    2010-10-01

    The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of approximately 5.5 kJ/mol and the closed state approximately 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration

  7. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  8. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  9. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  10. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate.

    PubMed

    Cernak, Paul; Sen, Dipankar

    2013-11-01

    Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.

  11. Structural Investigation of the GlmS Ribozyme Bound to Its Catalytic Cofactor

    SciTech Connect

    Cochrane,J.; Lipchock, S.; Strobel, S.

    2007-01-01

    The GlmS riboswitch is located in the 5'-untranslated region of the gene encoding glucosamine-6-phosphate (GlcN6P) synthetase. The GlmS riboswitch is a ribozyme with activity triggered by binding of the metabolite GlcN6P. Presented here is the structure of the GlmS ribozyme (2.5 {angstrom} resolution) with GlcN6P bound in the active site. The GlmS ribozyme adopts a compact double pseudoknot tertiary structure, with two closely packed helical stacks. Recognition of GlcN6P is achieved through coordination of the phosphate moiety by two hydrated magnesium ions as well as specific nucleobase contacts to the GlcN6P sugar ring. Comparison of this activator bound and the previously published apoenzyme complex supports a model in which GlcN6P does not induce a conformational change in the RNA, as is typical of other riboswitches, but instead functions as a catalytic cofactor for the reaction. This demonstrates that RNA, like protein enzymes, can employ the chemical diversity of small molecules to promote catalytic activity.

  12. Three critical hydrogen bonds determine the catalytic activity of the Diels–Alderase ribozyme

    PubMed Central

    Kraut, Stefanie; Bebenroth, Dirk; Nierth, Alexander; Kobitski, Andrei Y.; Nienhaus, G. Ulrich; Jäschke, Andres

    2012-01-01

    Compared to protein enzymes, our knowledge about how RNA accelerates chemical reactions is rather limited. The crystal structures of a ribozyme that catalyzes Diels–Alder reactions suggest a rich tertiary architecture responsible for catalysis. In this study, we systematically probe the relevance of crystallographically observed ground-state interactions for catalytic function using atomic mutagenesis in combination with various analytical techniques. The largest energetic contribution apparently arises from the precise shape complementarity between transition state and catalytic pocket: A single point mutant that folds correctly into the tertiary structure but lacks one H-bond that normally stabilizes the pocket is completely inactive. In the rate-limiting chemical step, the dienophile is furthermore activated by two weak H-bonds that contribute ∼7–8 kJ/mol to transition state stabilization, as indicated by the 25-fold slower reaction rates of deletion mutants. These H-bonds are also responsible for the tight binding of the Diels–Alder product by the ribozyme that causes product inhibition. For high catalytic activity, the ribozyme requires a fine-tuned balance between rigidity and flexibility that is determined by the combined action of one inter-strand H-bond and one magnesium ion. A sharp 360° turn reminiscent of the T-loop motif observed in tRNA is found to be important for catalytic function. PMID:21976731

  13. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme.

    PubMed

    Xie, Zheng; Srividya, Narayanan; Sosnick, Tobin R; Pan, Tao; Scherer, Norbert F

    2004-01-13

    The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-I(eq)-to-N, and focused on the I(eq)-to-N transition. The present study focuses on the U-to-I(eq) transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5' end and Cy3 at the 3' end show that modifications required for labeling do not interfere with folding and help to define the Mg(2+) concentration range for the U-to-I(eq) transition. Histogram analysis of the Mg(2+)-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg(2+) concentrations on the time scale of seconds. The trajectories at intermediate Mg(2+) concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of "nonsudden jump" FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many "local" conformational switches. A free energy contour is constructed to illustrate the complex folding surface.

  14. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate

    NASA Astrophysics Data System (ADS)

    Cernak, Paul; Sen, Dipankar

    2013-11-01

    Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.

  15. A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis.

    PubMed

    Liberman, Joseph A; Guo, Man; Jenkins, Jermaine L; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R; Wedekind, Joseph E

    2012-10-17

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.

  16. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    PubMed

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  18. Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury.

    PubMed

    Ando, Hideyuki; Fukuda, Noboru; Kotani, Motoko; Yokoyama, Shin ichiro; Kunimoto, Satoshi; Matsumoto, Koichi; Saito, Satoshi; Kanmatsuse, Katsuo; Mugishima, Hideo

    2004-01-12

    We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.

  19. Characterization of the trans Watson-Crick GU base pair located in the catalytic core of the antigenomic HDV ribozyme.

    PubMed

    Lévesque, Dominique; Reymond, Cédric; Perreault, Jean-Pierre

    2012-01-01

    The HDV ribozyme's folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U(23) and G(28) nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U(23) and G(28) can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction.

  20. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy.

    PubMed

    LaVail, M M; Yasumura, D; Matthes, M T; Drenser, K A; Flannery, J G; Lewin, A S; Hauswirth, W W

    2000-10-10

    Ribozyme-directed cleavage of mutant mRNAs appears to be a potentially effective therapeutic measure for dominantly inherited diseases. We previously demonstrated that two ribozymes targeted to the P23H mutation in rhodopsin slow photoreceptor degeneration in transgenic rats for up to 3 months of age when injected before significant degeneration at postnatal day (P) 15. We now have explored whether ribozyme rescue persists at older ages, and whether ribozymes are effective when injected later in the degeneration after significant photoreceptor cell loss. Recombinant adeno-associated virus (rAAV) vectors incorporating a proximal bovine rod opsin promoter were used to transfer either hairpin or hammerhead ribozyme genes to photoreceptors. For the study of long-term survival, rAAV was administered by subretinal injection at P15, and the rats were allowed to live up to 8 months of age. For the study of late-stage gene transfer, rAAV was administered at P30 or P45, when 40-45% of the photoreceptors already had degenerated. Eyes were examined functionally by the electroretinogram and structurally by morphometric analysis. When injected at P15, expression of either ribozyme markedly slowed the rate of photoreceptor degeneration for at least 8 months and resulted in significantly greater electroretinogram amplitudes at least up to P180. When injected at P30 or P45, virtually the same number of photoreceptors survived at P130 as when injected at P15. Ribozyme rescue appears to be a potentially effective, long-term therapy for autosomal dominant retinal degeneration and is highly effective even when the gene transfer is done after significant photoreceptor cell loss.

  1. Kinetic and Binding Analysis of the Catalytic Involvement of Ribose Moieties of a trans-Acting δ Ribozyme*

    PubMed Central

    Fiola, Karine; Perreault, Jean-Pierre

    2010-01-01

    We have identified ribose 2′-hydroxyl groups (2′-OHs) that are critical for the activity of a trans-cleaving δ ribozyme derived from the antigenomic strand of the hepatitis δ virus. Initially, an RNA-DNA mixed ribozyme composed of 26 deoxyribo- (specifically the nucleotides forming the P2 stem and the P4 stem-loop) and 31 ribonucleotides (those forming the catalytic center) was engineered. This mixed ribozyme catalyzed the cleavage of a small substrate with kinetic parameters virtually identical to those of the all-RNA ribozyme. The further substitution of deoxyribose for ribose residues permitted us to investigate the contribution of all 2′-OHs to catalysis. Determination of the kinetic parameters for the cleavage reaction of the resulting ribozymes revealed (i) 10 2′-OH groups appear to be important in supporting the formation of several hydrogen bonds within the catalytic core, (ii) none of the important 2′-OHs seem to coordinate a magnesium cation, and (iii) 1 of the tested RNA-DNA mixed polymers appeared to stabilize the ribozyme-substrate transition-state complex, resulting in an improvement over the all-RNA counterpart. The contribution of the 2′-OHs to the catalytic mechanism is discussed, and differences with the crystal structure of a genomic δ self-cleaved product are explained. Clearly, the 2′-OHs are essential components of the network of interactions involved in the formation of the catalytic center of the δ ribozyme. PMID:12015324

  2. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono

  3. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  4. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  5. Spliced leader RNA trans-splicing discovered in copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  6. Spliced leader RNA trans-splicing discovered in copepods.

    PubMed

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A; Sturm, Nancy R; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3'-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  7. Spliced leader RNA trans-splicing discovered in copepods

    PubMed Central

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-01-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods. PMID:26621068

  8. Hallmarks of alternative splicing in cancer.

    PubMed

    Oltean, S; Bates, D O

    2014-11-13

    The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors.

  9. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants.

    PubMed

    Verhage, Leonie; Severing, Edouard I; Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C G; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures.

  10. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  11. The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing.

    PubMed Central

    Murphy, Mark W; Olson, Brian L; Siliciano, Paul G

    2004-01-01

    To investigate the function of the essential U1 snRNP protein Prp40p, we performed a synthetic lethal screen in Saccharomyces cerevisiae. Using an allele of PRP40 that deletes 47 internal residues and causes only a slight growth defect, we identified aphenotypic mutations in three distinct complementation groups that conferred synthetic lethality. The synthetic phenotypes caused by these mutations were suppressed by wild-type copies of CRM1 (XPO1), YNL187w, and SME1, respectively. The strains whose synthetic phenotypes were suppressed by CRM1 contained no mutations in the CRM1 coding sequence or promoter. This indicates that overexpression of CRM1 confers dosage suppression of the synthetic lethality. Interestingly, PRP40 and YNL187w encode proteins with putative leucine-rich nuclear export signal (NES) sequences that fit the consensus sequence recognized by Crm1p. One of Prp40p's two NESs lies within the internal deletion. We demonstrate here that the NES sequences of Prp40p are functional for nuclear export in a leptomycin B-sensitive manner. Furthermore, mutation of these NES sequences confers temperature-sensitive growth and a pre-mRNA splicing defect. Although we do not expect that yeast snRNPs undergo compartmentalized biogenesis like their metazoan counterparts, our results suggest that Prp40p and Ynl187wp contain redundant NESs that aid in an important, Crm1p-mediated nuclear export event. PMID:15020406

  12. Safely splicing glass optical fibers

    NASA Technical Reports Server (NTRS)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  13. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules.

    PubMed

    Ferré-D'Amaré, Adrian R

    2011-10-27

    The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation.

  14. Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in intact cells.

    PubMed Central

    Beck, J; Nassal, M

    1995-01-01

    Hepatitis B virus (HBV), the causative agent of B-type hepatitis in man, is a small enveloped DNA virus that replicates through reverse transcription of an RNA intermediate, the terminally redundant RNA pregenome. An essential highly conserved cis-element present twice on this RNA is the encapsidation signal epsilon, a stem-loop structure that is critical for pregenome packaging and reverse transcription. Epsilon is hence an attractive target for antiviral therapy. Its structure, however, is a potential obstacle to antivirals whose action depends on hybridization, e.g. ribozymes. Here we demonstrate effective in vitro cleavage inside epsilon by hammerhead ribozymes containing flanking sequences complementary to an adjacent less structured region. Upon co-transfection with a HBV expression construct corresponding ribozymes embedded in a U6 snRNA context led to a significant, though modest, reduction in the steady-state level of HBV pregenomes. Inactive ribozyme mutants revealed that antisense effects contributed substantially to this reduction, however, efficient epsilon cleavage by the intracellularly expressed ribozymes was observed in Mg(2+)-supplemented cell lysates. Artificial HBV pregenomes carrying the ribozymes in cis and model RNAs lacking all HBV sequences except epsilon exhibited essentially the same behaviour. Hence, neither the absence of co-localization of ribozyme and target nor a viral component, but rather a cellular factor(s), is responsible for the strikingly different ribozyme activities inside cells and in cellular extracts. Images PMID:8559651

  15. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules

    PubMed Central

    Ferré-D'Amaré, Adrian R.

    2011-01-01

    The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation. PMID:21930586

  16. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  17. Rational engineering of the Neurospora VS ribozyme to allow substrate recognition via different kissing-loop interactions

    PubMed Central

    Lacroix-Labonté, Julie; Girard, Nicolas; Dagenais, Pierre; Legault, Pascale

    2016-01-01

    The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates. PMID:27166370

  18. Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today?

    PubMed Central

    Müller, Sabine; Appel, Bettina; Balke, Darko; Hieronymus, Robert; Nübel, Claudia

    2016-01-01

    Since the discovery of the first catalytic RNA in 1981, the field of ribozyme research has developed from the discovery of catalytic RNA motifs in nature and the elucidation of their structures and catalytic mechanisms, into a field of engineering and design towards application in diagnostics, molecular biology and medicine. Owing to the development of powerful protocols for selection of nucleic acid catalysts with a desired functionality from random libraries, the spectrum of nucleic acid supported reactions has greatly enlarged, and importantly, ribozymes have been accompanied by DNAzymes. Current areas of research are the engineering of allosteric ribozymes for artificial regulation of gene expression, the design of ribozymes and DNAzymes for medicinal and environmental diagnostics, and the demonstration of RNA world relevant ribozyme activities. In addition, new catalytic motifs or novel genomic locations of known motifs continue to be discovered in all branches of life by the help of high-throughput bioinformatic approaches. Understanding the biological role of the catalytic RNA motifs widely distributed in diverse genetic contexts belongs to the big challenges of future RNA research. PMID:27408700

  19. A novel RNA-binding protein from Triturus carnifex identified by RNA-ligand screening with the newt hammerhead ribozyme

    PubMed Central

    Denti, Michela A.; Alba, A. Emilio Martínez de; Sägesser, Rudolf; Tsagris, Mina; Tabler, Martin

    2000-01-01

    The newt hammerhead ribozyme is transcribed from Satellite 2 DNA, which consists of tandemly repeated units of 330 bp. However, different transcripts are synthesized in different tissues. In all somatic tissues and in testes, dimeric and multimeric RNA transcripts are generated which, to some extent, self-cleave into monomers at the hammerhead domain. In ovaries, primarily a distinct monomeric unit is formed by transcription, which retains an intact hammerhead self-cleavage site. The ovarian monomeric RNA associates to form a 12S complex with proteins that are poorly characterised so far. In this work we identified NORA, a protein that binds the ovarian form of the newt ribozyme. We show that the newt ribozyme binds to the Escherichia coli-expressed protein, as well as to a protein of identical size that is found exclusively in newt ovaries. Also NORA mRNA was detectable only in ovary, but in neither somatic tissues nor testes. The tissue-specific expression of NORA is analogous to the ovary-specific transcription of the newt ribozyme. Although NORA was identified by its ability to bind to the newt ribozyme in the presence of a vast excess of carrier RNA, it was able to interact with certain other RNA probes. This novel RNA-binding protein does not contain any motif characteristic for RNA-binding proteins or any other known protein domain, but it shares a striking similarity with a rat resiniferatoxin-binding protein. PMID:10666442

  20. Pharmacology of Modulators of Alternative Splicing

    PubMed Central

    Morris, Jonathan C.; Oltean, Sebastian; Donaldson, Lucy F.

    2017-01-01

    More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed. PMID:28034912

  1. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  2. Pharmacology of Modulators of Alternative Splicing.

    PubMed

    Bates, David O; Morris, Jonathan C; Oltean, Sebastian; Donaldson, Lucy F

    2017-01-01

    More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed. Copyright © 2016 by The Author(s).

  3. Cryptic splice sites and split genes.

    PubMed

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M; Tatusova, Tatiana; Dibb, Nick J

    2011-08-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.

  4. Cryptic splice sites and split genes

    PubMed Central

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M.; Tatusova, Tatiana; Dibb, Nick J.

    2011-01-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes. PMID:21470962

  5. Investigating alternative RNA splicing in Xenopus.

    PubMed

    Mereau, Agnès; Hardy, Serge

    2012-01-01

    Alternative splicing, the process by which distinct mature mRNAs can be produced from a single primary transcript, is a key mechanism to increase the organism complexity. The generation of alternative splicing pattern is a means to expand the proteome diversity and also to control gene expression through the regulation of mRNA abundance. Alternative splicing is therefore particularly prevalent during development and accordingly numerous splicing events are regulated in a tissue or temporal manner. To study the roles of alternative splicing during developmental processes and decipher the molecular mechanisms that underlie temporal and spatial regulation, it is important to develop in vivo whole animal studies. In this chapter, we present the advantages of using the amphibian Xenopus as a fully in vivo model to study alternative splicing and we describe the experimental procedures that can be used with Xenopus laevis embryos and oocytes to define the cis-regulatory elements and identify the associated trans-acting factors.

  6. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast

    PubMed Central

    Weigand, Julia E.; Suess, Beatrix

    2007-01-01

    Splicing of pre-mRNA is a critical step in mRNA maturation and disturbances cause several genetic disorders. We apply the synthetic tetracycline (tc)-binding riboswitch to establish a gene expression system for conditional tc-dependent control of pre-mRNA splicing in yeast. Efficient regulation is obtained when the aptamer is inserted close to the 5′splice site (SS) with the consensus sequence of the SS located within the aptamer stem. Structural probing indicates limited spontaneous cleavage within this stem in the absence of the ligand. Addition of tc leads to tightening of the stem and the whole aptamer structure which probably prevents recognition of the 5′SS. Combination of more then one aptamer-regulated intron increases the extent of regulation leading to highly efficient conditional gene expression systems. Our findings highlight the potential of direct RNA–ligand interaction for regulation of gene expression. PMID:17567606

  7. Folding of the hammerhead ribozyme: Pyrrolo-cytosine fluorescence separates core folding from global folding and reveals a pH-dependent conformational change

    PubMed Central

    Buskiewicz, Iwona A.; Burke, John M.

    2012-01-01

    The catalytic activity of the hammerhead ribozyme is limited by its ability to fold into the native tertiary structure. Analysis of folding has been hampered by a lack of assays that can independently monitor the environment of nucleobases throughout the ribozyme–substrate complex in real time. Here, we report the development and application of a new folding assay in which we use pyrrolo-cytosine (pyC) fluorescence to (1) probe active-site formation, (2) examine the ability of peripheral ribozyme domains to support native folding, (3) identify a pH-dependent conformational change within the ribozyme, and (4) explore its influence on the equilibrium between the folded and unfolded core of the hammerhead ribozyme. We conclude that the natural ribozyme folds in two distinct noncooperative steps and the pH-dependent correlation between core folding and activity is linked to formation of the G8-C3 base pair. PMID:22274955

  8. Splicing Machinery Facilitates Post-Transcriptional Regulation by FBFs and Other RNA-Binding Proteins in Caenorhabditis elegans Germline.

    PubMed

    Novak, Preston; Wang, Xiaobo; Ellenbecker, Mary; Feilzer, Sara; Voronina, Ekaterina

    2015-08-11

    Genetic interaction screens are an important approach for understanding complex regulatory networks governing development. We used a genetic interaction screen to identify cofactors of FBF-1 and FBF-2, RNA-binding proteins that regulate germline stem cell proliferation in Caenorhabditis elegans. We found that components of splicing machinery contribute to FBF activity as splicing factor knockdowns enhance sterility of fbf-1 and fbf-2 single mutants. This sterility phenocopied multiple aspects of loss of fbf function, suggesting that splicing factors contribute to stem cell maintenance. However, previous reports indicate that splicing factors instead promote the opposite cell fate, namely, differentiation. We explain this discrepancy by proposing that splicing factors facilitate overall RNA regulation in the germline. Indeed, we find that loss of splicing factors produces synthetic phenotypes with a mutation in another RNA regulator, FOG-1, but not with a mutation in a gene unrelated to posttranscriptional regulation (dhc-1). We conclude that inefficient pre-mRNA splicing may interfere with multiple posttranscriptional regulatory events, which has to be considered when interpreting results of genetic interaction screens.

  9. Recursive splicing in long vertebrate genes.

    PubMed

    Sibley, Christopher R; Emmett, Warren; Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-05-21

    It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons.

  10. Synthetic foldamers.

    PubMed

    Guichard, Gilles; Huc, Ivan

    2011-06-07

    Foldamers are artificial folded molecular architectures inspired by the structures and functions of biopolymers. This highlight focuses on important developments concerning foldamers produced by chemical synthesis and on the perspectives that these new self-organized molecular scaffolds offer. Progress in the field has led to synthetic objects that resemble small proteins in terms of size and complexity yet that may not contain any α-amino acids. Foldamers have introduced new tools and concepts to develop biologically active substances, synthetic receptors and novel materials.

  11. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.

  12. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible.

    PubMed

    Lareau, Liana F; Brenner, Steven E

    2015-04-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end. © The Author 2015. Published by Oxford University Press on behalf of the society for Molecular Biology and Evolution.

  13. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    PubMed Central

    Lareau, Liana F.; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end. PMID:25576366

  14. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein.

  15. Tailing cDNAs with terminal deoxynucleotidyl transferase in RT-PCR assays to identify ribozyme cleavage products.

    PubMed Central

    Albuquerque-Silva, J; Houard, S; Bollen, A

    1998-01-01

    Polytailing a cDNA with terminal deoxynucleotidyltransferase (TdT) results in the addition of a homopolymeric sequence at its 3'-end. Here we describe the use of tailing in competitive RT-PCR assays to evaluate cleavage efficiency of ribozymes. Using a system that perfectly mimics intracellular cleavage, we were able to detect as few as 1% of cleaved moieties. Furthermore, employing primers overlapping the junction between tails and the cleaved RNA moiety in non-competitive assays, the sensitivity of the method could be improved to <10 fg. Using the latter protocol and reactions employing a trans -acting hairpin ribozyme targeting the nucleocapsid mRNA of the mumps virus, we were able to demonstrate ribozyme-induced cleavage. PMID:9628937

  16. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis

    PubMed Central

    Ng, Ashley Shu Mei; Ingham, Philip W.

    2016-01-01

    CRISPR/Cas9 is now regularly used for targeted mutagenesis in a wide variety of systems. Here we report the use of ribozymes for the generation of gRNAs both in vitro and in zebrafish embryos. We show that incorporation of ribozymes increases the types of promoters and number of target sites available for mutagenesis without compromising mutagenesis efficiency. We have tested this by comparing the efficiency of mutagenesis of gRNA constructs with and without ribozymes and also generated a transgenic zebrafish expressing gRNA using a heat shock promoter (RNA polymerase II-dependent promoter) that was able to induce mutagenesis of its target. Our method provides a streamlined approach to test gRNA efficiency as well as increasing the versatility of conditional gene knock out in zebrafish. PMID:27832146

  17. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  18. Synthetic Glycolysis

    SciTech Connect

    Lobo, Raul F

    2010-09-20

    Recently, two groups separately reported what amounts to a synthetic version of glycolysis. The sum of these two reactions is equivalent to what is accomplished in living organisms by glycolysis in terms of the redistribution of oxidation states of the carbon, and is an important step in reproducing using chemical routes that living organisms accomplish daily.

  19. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  20. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  1. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

  2. Deletion of the P5abc Peripheral Element Accelerates Early and Late Folding Steps of the Tetrahymena Group I Ribozyme

    SciTech Connect

    Russell,R.; Tijerina, P.; Chadee, A.; Bhaskaran, H.

    2007-01-01

    The P5abc peripheral element stabilizes the Tetrahymena group I ribozyme and enhances its catalytic activity. Despite its beneficial effects on the native structure, prior studies have shown that early formation of P5abc structure during folding can slow later folding steps. Here we use a P5abc deletion variant (E{sup {Delta}P5abc}) to systematically probe the role of P5abc throughout tertiary folding. Time-resolved hydroxyl radical footprinting shows that E{sup {Delta}P5abc} forms its earliest stable tertiary structure on the millisecond time scale, {approx}5-fold faster than the wild-type ribozyme, and stable structure spreads throughout E{sup {Delta}P5abc} in seconds. Nevertheless, activity measurements show that the earliest detectable formation of native E{sup {Delta}P5abc} ribozyme is much slower ({approx}0.6 min{sup -1}), in a manner similar to that of the wild type. Also similar, only a small fraction of E{sup {Delta}P5abc} attains the native state on this time scale under standard conditions at 25 {sup o}C, whereas the remainder misfolds; footprinting experiments show that the misfolded conformer shares structural features with the long-lived misfolded conformer of the wild-type ribozyme. Thus, P5abc does not have a large overall effect on the rate-limiting step(s) along this pathway. However, once misfolded, E{sup {Delta}P5abc} refolds to the native state 80-fold faster than the wild-type ribozyme and is less accelerated by urea, indicating that P5abc stabilizes the misfolded structure relative to the less-ordered transition state for refolding. Together, the results suggest that, under these conditions, even the earliest tertiary folding intermediates of the wild-type ribozyme represent misfolded species and that P5abc is principally a liability during the tertiary folding process.

  3. Characterization of the Trans Watson-Crick GU Base Pair Located in the Catalytic Core of the Antigenomic HDV Ribozyme

    PubMed Central

    Lévesque, Dominique; Reymond, Cédric; Perreault, Jean-Pierre

    2012-01-01

    The HDV ribozyme’s folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U23 and G28 nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U23 and G28 can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction. PMID:22768274

  4. Chemical syntheses of inhibitory substrates of the RNA-RNA ligation reaction catalyzed by the hairpin ribozyme.

    PubMed

    Massey, Archna P; Sigurdsson, Snorri Th

    2004-01-01

    The chemical syntheses of RNA oligomers containing modifications on the 5'-carbon of the 5'-terminal nucleoside for crystallographic and mechanistic studies of the hairpin ribozyme are reported. Phosphoramidites 4 and 8 were prepared and used in solid phase syntheses of RNA oligomers containing the sequence 5'-N'UCCUCUCC, where N' indicates either 5'-chloro-5'-deoxyguanosine or 5'-amino-5'-deoxyguanosine, respectively. A ribozyme ligation assay with the 5'-chloro- and 5'-amino-modified RNA oligomers demonstrated their inhibition of the hairpin-catalyzed RNA-RNA ligation reaction.

  5. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.

    PubMed

    Wu, J Y; Maniatis, T

    1993-12-17

    Specific recognition and pairing of the 5' and 3' splice sites are critical steps in pre-mRNA splicing. We report that the splicing factors SC35 and SF2/ASF specifically interact with both the integral U1 small nuclear ribonucleoprotein (snRNP U1-70K) and with the 35 kd subunit of the splicing factor U2AF (U2AF35). Previous studies indicated that the U1 snRNP binds specifically to the 5' splice site, while U2AF35-U2AF65 heterodimer binds to the 3' splice site. Together, these observations suggest that SC35 and other members of the SR family of splicing factors may function in splice site selection by acting as a bridge between components bound to the 5' and 3' splice sites. Interestingly, SC35, SF2/ASF, and U2AF35 also interact with the Drosophila splicing regulators Transformer (Tra) and Transformer-2 (Tra2), suggesting that protein-protein interactions mediated by SR proteins may also play an important role in regulating alternative splicing.

  6. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  7. Multiple links between transcription and splicing.

    PubMed

    Kornblihtt, Alberto R; de la Mata, Manuel; Fededa, Juan Pablo; Munoz, Manuel J; Nogues, Guadalupe

    2004-10-01

    Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.

  8. The incredible complexity of RNA splicing.

    PubMed

    Robert, Christelle; Watson, Mick

    2016-12-30

    Alternative splice isoforms are common and important and have been shown to impact many human diseases. A new study by Nellore et al. offers a comprehensive study of splice junctions in humans by re-analyzing over 21,500 public human RNA sequencing datasets.

  9. Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme.

    PubMed

    Bouchard, Patricia; Lacroix-Labonté, Julie; Desjardins, Geneviève; Lampron, Philipe; Lisi, Véronique; Lemieux, Sébastien; Major, François; Legault, Pascale

    2008-04-01

    Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700 in SLI recognition. Here, we kinetically characterized VS ribozyme mutants to evaluate the contribution of U700 and other SLV loop residues to SLI recognition. To help interpret the kinetic data, we structurally characterized the SLV mutants by NMR spectroscopy and generated a three-dimensional model of the SLI/SLV complex by homology modeling with MC-Sym. We demonstrated that the mutation of U700 by A, C, or G does not significantly affect ribozyme activity, whereas deletion of U700 dramatically impairs this activity. The U700 backbone is likely important for SLI recognition, but does not appear to be required for either the structural integrity of the SLV loop or for direct interactions with SLI. Thus, deletion of U700 may affect other aspects of SLI recognition, such as magnesium ion binding and SLV loop dynamics. As part of our NMR studies, we developed a convenient assay based on detection of unusual (31)P and (15)N N7 chemical shifts to probe the formation of U-turn structures in RNAs. Our model of the SLI/SLV complex, which is compatible with biochemical data, leads us to propose novel interactions at the loop I/loop V interface.

  10. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures

    NASA Astrophysics Data System (ADS)

    El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio

    2012-09-01

    The "RNA world" hypothesis proposes that—early in the evolution of life—RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg2+, which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg2+ on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na+ or K+), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.

  11. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme

    PubMed Central

    Biesiada, Marcin; Boniecki, Michał J.; Chou, Fang-Chieh; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Dunin-Horkawicz, Stanisław; Geniesse, Caleb; Kappel, Kalli; Kladwang, Wipapat; Krokhotin, Andrey; Łach, Grzegorz E.; Major, François; Mann, Thomas H.; Pachulska-Wieczorek, Katarzyna; Patel, Dinshaw J.; Piccirilli, Joseph A.; Popenda, Mariusz; Purzycka, Katarzyna J.; Ren, Aiming; Rice, Greggory M.; Santalucia, John; Tandon, Arpit; Trausch, Jeremiah J.; Wang, Jian; Weeks, Kevin M.; Williams, Benfeard; Xiao, Yi; Zhang, Dong; Zok, Tomasz

    2017-01-01

    RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5′-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson–Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:28138060

  12. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.

    PubMed

    Miao, Zhichao; Adamiak, Ryszard W; Antczak, Maciej; Batey, Robert T; Becka, Alexander J; Biesiada, Marcin; Boniecki, Michał J; Bujnicki, Janusz M; Chen, Shi-Jie; Cheng, Clarence Yu; Chou, Fang-Chieh; Ferré-D'Amaré, Adrian R; Das, Rhiju; Dawson, Wayne K; Ding, Feng; Dokholyan, Nikolay V; Dunin-Horkawicz, Stanisław; Geniesse, Caleb; Kappel, Kalli; Kladwang, Wipapat; Krokhotin, Andrey; Łach, Grzegorz E; Major, François; Mann, Thomas H; Magnus, Marcin; Pachulska-Wieczorek, Katarzyna; Patel, Dinshaw J; Piccirilli, Joseph A; Popenda, Mariusz; Purzycka, Katarzyna J; Ren, Aiming; Rice, Greggory M; Santalucia, John; Sarzynska, Joanna; Szachniuk, Marta; Tandon, Arpit; Trausch, Jeremiah J; Tian, Siqi; Wang, Jian; Weeks, Kevin M; Williams, Benfeard; Xiao, Yi; Xu, Xiaojun; Zhang, Dong; Zok, Tomasz; Westhof, Eric

    2017-05-01

    RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/. © 2017 Miao et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Communication Between RNA Folding Domains Revealed by Folding of Circularly Permuted Ribozymes

    SciTech Connect

    Lease,R.; Adilakshmi, T.; Heilman-Miller, S.; Woodson, S.

    2007-01-01

    To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T1 digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.

  14. Identification of the Catalytic Mg2+ Ion in the HDV Ribozyme

    PubMed Central

    Chen, Ji; Ganguly, Abir; Miswan, Zulaika; Hammes-Schiffer, Sharon; Bevilacqua, Philip C.; Golden, Barbara L.

    2013-01-01

    The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pKa shifted towards neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the pre-cleavage ribozyme identified a Mg2+ ion that interacts through its partial hydration sphere with the G25•U20 reverse wobble. In addition, this Mg2+ ion is in position to directly coordinate the nucleophile, the 2’-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2’-hydroxyl. To test the role of the active site Mg2+ ion, we replaced the G25•U20 reverse wobble with an isosteric A25•C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg2+ binding could be adversely affected by the mutation. Kinetic analysis and molecular dynamics of the A25•C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant are inverted relative to the profiles for wild-type ribozyme, suggesting that the A25•C20 double mutant has lost the active site metal ion. Overall, these studies support a model wherein the partially hydrated Mg2+ positioned at the G25•U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile. PMID:23311293

  15. Selected classes of minimised hammerhead ribozyme have very high cleavage rates at low Mg2+ concentration.

    PubMed Central

    Conaty, J; Hendry, P; Lockett, T

    1999-01-01

    In vitro selection was used to enrich for highly efficient RNA phosphodiesterases within a size-constrained (18 nt) ribonucleotide domain. The starting population (g0) was directed in trans against an RNA oligonucleotide substrate immobilised to an avidin-magnetic phase. Four rounds of selection were conducted using 20 mM Mg2+to fractionate the population on the basis of divalent metal ion-dependent phosphodiesterase activity. The resulting generation 4 (g4) RNA was then directed through a further two rounds of selection using low concentrations of Mg2+. Generation 6 (g6) was composed of sets of active, trans cleaving minimised ribozymes, containing recognised hammerhead motifs in the conserved nucleotides, but with highly variable linker domains (loop II-L.1-L.4). Cleavage rate constants in the g6 population ranged from 0.004 to 1.3 min-1at 1 mM Mg2+(pH 8.0, 37 degrees C). Selection was further used to define conserved positions between G(10.1) and C(11.1) required for high cleavage activity at low Mg2+concentration. At 10 mM MgCl2the kinetic phenotype of these molecules was comparable to a hammerhead ribozyme with 4 bp in helix II. At low Mg2+concentration, the disparity in cleavage rate constants increases in favour of the minimised ribozymes. Favourable kinetic traits appeared to be a general property for specific selected linker sequences, as the high rates of catalysis were transferable to a different substrate system. PMID:10325431

  16. Communication between RNA folding domains revealed by folding of circularly permuted ribozymes.

    PubMed

    Lease, Richard A; Adilakshmi, Tadepalli; Heilman-Miller, Susan; Woodson, Sarah A

    2007-10-12

    To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.

  17. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  18. Structure-function relationships in the hammerhead ribozyme probed by base rescue.

    PubMed Central

    Peracchi, A; Matulic-Adamic, J; Wang, S; Beigelman, L; Herschlag, D

    1998-01-01

    We previously showed that the deleterious effects from introducing abasic nucleotides in the hammerhead ribozyme core can, in some instances, be relieved by exogenous addition of the ablated base and that the relative ability of different bases to rescue catalysis can be used to probe functional aspects of the ribozyme structure [Peracchi et al., Proc NatAcad Sci USA 93:11522]. Here we examine rescue at four additional positions, 3, 9, 12 and 13, to probe transition state interactions and to demonstrate the strengths and weaknesses of base rescue as a tool for structure-function studies. The results confirm functional roles for groups previously probed by mutagenesis, provide evidence that specific interactions observed in the ground-state X-ray structure are maintained in the transition state, and suggest formation in the transition state of other interactions that are absent in the ground state. In addition, the results suggest transition state roles for some groups that did not emerge as important in previous mutagenesis studies, presumably because base rescue has the ability to reveal interactions that are obscured by local structural redundancy in traditional mutagenesis. The base rescue results are complemented by comparing the effects of the abasic and phenyl nucleotide substitutions. The results together suggest that stacking of the bases at positions 9, 13 and 14 observed in the ground state is important for orienting other groups in the transition state. These findings add to our understanding of structure-function relationships in the hammerhead ribozyme and help delineate positions that may undergo rearrangements in the active hammerhead structure relative to the ground-state structure. Finally, the particularly efficient rescue by 2-methyladenine at position 13 relative to adenine and other bases suggests that natural base modifications may, in some instance, provide additional stability by taking advantage of hydrophobic interactions in folded RNAs

  19. Role of Mg2+ in Hammerhead Ribozyme Catalysis from Molecular Simulation

    PubMed Central

    Lee, Tai-Sung; López, Carlos Silva; Giambaºu, George M.; Martick, Monika; Scott, William G.; York, Darrin M.

    2008-01-01

    Molecular dynamics simulations have been performed to investigate the role of Mg2+ in the full-length hammerhead ribozyme cleavage reaction. In particular, the aim of this work is to characterize the binding mode and conformational events that give rise to catalytically active conformations and stabilization of the transition state. Toward this end, a series of eight 12 ns molecular dynamics simulations have been performed with different divalent metal binding occupations for the reactant, early and late transition state using recently developed force field parameters for metal ions and reactive intermediates in RNA catalysis. In addition, hybrid QM/MM calculations of the early and late transition state were performed to study the proton-transfer step in general acid catalysis that is facilitated by the catalytic Mg2+ ion. The simulations suggest that Mg2+ is profoundly involved in the hammerhead ribozyme mechanism both at structural and catalytic levels. Binding of Mg2+ in the active site plays a key structural role in the stabilization of stem I and II and to facilitate formation of near attack conformations and interactions between the nucleophile and G12, the implicated general base catalyst. In the transition state, Mg2+ binds in a bridging position where it stabilizes the accumulated charge of the leaving group while interacting with the 2′OH of G8, the implicated general acid catalyst. The QM/MM simulations provide support that, in the late transition state, the 2′OH of G8 can transfer a proton to the leaving group while directly coordinating the bridging Mg2+ ion. The present study provides evidence for the role of Mg2+ in hammerhead ribozyme catalysis. The proposed simulation model reconciles the interpretation of available experimental structural and biochemical data, and provides a starting point for more detailed investigation of the chemical reaction path with combined QM/MM methods. PMID:18271579

  20. Evolution of the R2 Retrotransposon Ribozyme and Its Self-Cleavage Site

    PubMed Central

    Eickbush, Danna G.; Burke, William D.; Eickbush, Thomas H.

    2013-01-01

    R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed. PMID:24066021

  1. Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world

    PubMed Central

    Vlassov, Alexander V.; Johnston, Brian H.; Landweber, Laura F.; Kazakov, Sergei A.

    2004-01-01

    A vexing difficulty of the RNA world hypothesis is how RNA molecules of significant complexity could ever have evolved given their susceptibility to degradation. One way degradation might have been reduced is through low temperature. Here we report that truncated and fragmented derivatives of the hairpin ribozyme can catalyze ligation of a wide variety of RNA molecules to a given sequence in frozen solution despite having little or no activity under standard solution conditions. These results suggest that complex RNAs could have evolved in freezing environments on the early earth and perhaps elsewhere. PMID:15161960

  2. Identifying Kinetic Barriers to Mechanical Unfolding of the T. thermophila Ribozyme

    NASA Astrophysics Data System (ADS)

    Onoa, Bibiana; Dumont, Sophie; Liphardt, Jan; Smith, Steven B.; Tinoco, Ignacio; Bustamante, Carlos

    2003-03-01

    Mechanical unfolding trajectories for single molecules of the Tetrahymena thermophila ribozyme display eight intermediates corresponding to discrete kinetic barriers that oppose mechanical unfolding with lifetimes of seconds and rupture forces between 10 and 30 piconewtons. Barriers are magnesium dependent and correspond to known intra- and interdomain interactions. Several barrier structures are ``brittle,'' breakage requiring high forces but small (1 to 3 nanometers) deformations. Barrier crossing is stochastic, leading to variable unfolding paths. The response of complex RNA structures to locally applied mechanical forces may be analogous to the responses of RNA during translation, messenger RNA export from the nucleus, and viral replication.

  3. Identifying Kinetic Barriers to Mechanical Unfolding of the T. thermophila Ribozyme

    PubMed Central

    Onoa, Bibiana; Dumont, Sophie; Liphardt, Jan; Smith, Steven B.; Tinoco, Ignacio; Bustamante, Carlos

    2006-01-01

    Mechanical unfolding trajectories for single molecules of the Tetrahymena thermophila ribozyme display eight intermediates corresponding to discrete kinetic barriers that oppose mechanical unfolding with lifetimes of seconds and rupture forces between 10 and 30 piconewtons. Barriers are magnesium dependent and correspond to known intra- and interdomain interactions. Several barrier structures are “brittle,” breakage requiring high forces but small (1 to 3 nanometers) deformations. Barrier crossing is stochastic, leading to variable unfolding paths. The response of complex RNA structures to locally applied mechanical forces may be analogous to the responses of RNA during translation, messenger RNA export from the nucleus, and viral replication. PMID:12649482

  4. The Characterizations of Different Splicing Systems

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Sarmin, Nor Haniza; Heng, Fong Wan

    The concept of splicing system was first introduced by Head in 1987 to model the biological process of DNA recombination mathematically. This model was made on the basis of formal language theory which is a branch of applied discrete mathematics and theoretical computer science. In fact, splicing system treats DNA molecule and the recombinant behavior by restriction enzymes and ligases in the form of words and splicing rules respectively. The notion of splicing systems was taken into account from different points of view by many mathematicians. Several modified definitions have been introduced by many researchers. In this paper, some properties of different kinds of splicing systems are presented and their relationships are investigated. Furthermore, these results are illustrated by some examples.

  5. Synthetic multicellularity.

    PubMed

    Maharbiz, Michel M

    2012-12-01

    The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tumor microenvironment–associated modifications of alternative splicing

    PubMed Central

    Brosseau, Jean-Philippe; Lucier, Jean-François; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

    2014-01-01

    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors. PMID:24335142

  7. Tumor microenvironment-associated modifications of alternative splicing.

    PubMed

    Brosseau, Jean-Philippe; Lucier, Jean-François; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

    2014-02-01

    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.

  8. The NMR structure of the II–III–VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure

    PubMed Central

    Bonneau, Eric; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2015-01-01

    As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III–IV–V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II–III–VI three-way junction and its adjoining stems. In addition, we localize Mg2+-binding sites within this structure using Mn2+-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg2+ ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge–bulge interaction and Mg2+ ions are critical for the stable folding of the II–III–VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II–III–VI junction that does not contain the II–VI bulge–bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme. PMID:26124200

  9. The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure.

    PubMed

    Bonneau, Eric; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2015-09-01

    As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme.

  10. An interspecific plant hybrid shows novel changes in parental splice forms of genes for splicing factors.

    PubMed

    Scascitelli, Moira; Cognet, Marie; Adams, Keith L

    2010-04-01

    Interspecific hybridization plays an important role in plant adaptive evolution and speciation, and the process often results in phenotypic novelty. Hybrids can show changes in genome structure and gene expression compared with their parents including chromosomal rearrangments, changes in cytosine methylation, up- and downregulation of gene expression, and gene silencing. Alternative splicing (AS) is a fundamental aspect of the expression of many genes. However alternative splicing patterns have not been examined in multiple genes in an interspecific plant hybrid compared with its parents. Here we studied alternative splicing patterns in an interspecific Populus hybrid and its parents by assaying 40 genes using reverse transcription PCR. Most of the genes showed identical alternative splicing patterns between the parents and the hybrid. We found new alternative splicing variants present in the hybrid in two SR genes involved in the regulation of splicing and alternative splicing. The novel alternative splicing patterns included changes in donor and acceptor sites to create a new exon in one allele of PtRSZ22 in the hybrid and retention of an intron in both alleles of PtSR34a.1 in the hybrid, with effects on the function of the corresponding truncated proteins, if present. Our results suggest that novel alternative splicing patterns are present in a small percentage of genes in hybrids, but they could make a considerable impact on the expression of some genes. Changes in alternative splicing are likely to be an important component of the genetic changes that occur upon interspecific hybridization.

  11. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift.

    PubMed

    Luz, Felipe Andrés Cordero; Brígido, Paula Cristina; Moraes, Alberto Silva; Silva, Marcelo José Barbosa

    2017-01-01

    Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program. © 2016 S. Karger AG, Basel.

  12. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site.

    PubMed Central

    Aroian, R V; Levy, A D; Koga, M; Ohshima, Y; Kramer, J M; Sternberg, P W

    1993-01-01

    The dinucleotide AG, found at the 3' end of virtually all eukaryotic pre-mRNA introns, is thought to be essential for splicing. Reduction-of-function mutations in two Caenorhabditis elegans genes, the receptor tyrosine kinase gene let-23 and the collagen gene dpy-10, both alter the AG at the end of a short (ca. 50-nucleotide) intron to AA. The in vivo effects of these mutations were studied by sequencing polymerase chain reaction-amplified reverse-transcribed RNA isolated from the two mutants. As expected, we find transcripts that splice to a cryptic AG, skip an exon, and retain an unspliced intron. However, we also find significant levels of splicing at the mutated 3' splice site (AA) and at nearby non-AG dinucleotides. Our results indicate that for short C. elegans introns an AG is not required for splicing at either the correct 3' splice site or incorrect sites. Analysis of a splice site mutant involving a longer, 316-nucleotide C. elegans intron indicates that an AG is also not required there for splicing. We hypothesize that elements besides the invariant AG, e.g., an A-U-rich region, a UUUC motif, and/or a potential branch point sequence, are directing the selection of the 3' splice site and that in wild-type genes these elements cooperate so that proper splicing occurs. Images PMID:8417357

  13. MAASE: An alternative splicing database designed for supporting splicing microarray applications

    PubMed Central

    ZHENG, CHRISTINA L.; KWON, YOUNG-SOO; LI, HAI-RI; ZHANG, KUI; COUTINHO-MANSFIELD, GABRIELA; YANG, CANZHU; NAIR, T. MURLIDHARAN; GRIBSKOV, MICHAEL; FU, XIANG-DONG

    2005-01-01

    Alternative splicing is a prominent feature of higher eukaryotes. Understanding of the function of mRNA isoforms and the regulation of alternative splicing is a major challenge in the post-genomic era. The development of mRNA isoform sensitive microarrays, which requires precise splice-junction sequence information, is a promising approach. Despite the availability of a large number of mRNAs an