Science.gov

Sample records for synuclein induced alterations

  1. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  2. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1.

    PubMed

    Desplats, Paula; Spencer, Brian; Crews, Leslie; Pathel, Pruthul; Morvinski-Friedmann, Dinorah; Kosberg, Kori; Roberts, Scott; Patrick, Christina; Winner, Beate; Winkler, Juergen; Masliah, Eliezer

    2012-09-14

    Parkinson disease is characterized by the loss of dopaminergic neurons mainly in the substantia nigra. Accumulation of α-synuclein and cell loss has been also reported in many other brain regions including the hippocampus, where it might impair adult neurogenesis, contributing to nonmotor symptoms. However, the molecular mechanisms of these alterations are still unknown. In this report we show that α-synuclein-accumulating adult rat hippocampus neural progenitors present aberrant neuronal differentiation, with reduction of Notch1 expression and downstream signaling targets. We characterized a Notch1 proximal promoter that contains p53 canonical response elements. In vivo binding of p53 represses the transcription of Notch1 in neurons. Moreover, we demonstrated that α-synuclein directly binds to the DNA at Notch1 promoter vicinity and also interacts with p53 protein, facilitating or increasing Notch1 signaling repression, which interferes with maturation and survival of neural progenitors cells. This study provides a molecular basis for α-synuclein-mediated disruption of adult neurogenesis in Parkinson disease.

  3. Unique copper-induced oligomers mediate alpha-synuclein toxicity.

    PubMed

    Wright, Josephine A; Wang, Xiaoyan; Brown, David R

    2009-08-01

    Parkinson's disease and a number of other neurodegenerative diseases have been linked to either genetic mutations in the alpha-synuclein gene or show evidence of aggregates of the alpha-synuclein protein, sometimes in the form of Lewy bodies. There currently is no clear evidence of a distinct neurotoxic species of alpha-synuclein to explain the death of neurons in these diseases. We undertook to assess the toxicity of alpha-synuclein via exogenous application in cell culture. Initially, we showed that only aggregated alpha-synuclein is neurotoxic and requires the presence copper but not iron. Other members of the synuclein family showed no toxicity in any form and inherited point mutations did not alter the effective toxic concentration of alpha-synuclein. Through protein fractionation techniques, we were able to isolate an oligomeric species responsible for the toxicity of alpha-synuclein. This oligomeric species has a unique stellate appearance under EM and again, requires association with copper to induce cell death. The results allow us to suggest that the toxic species of alpha-synuclein in vivo could possibly be these stellate oligomers and not fibrils. Our data provide a link between the recently noted association of copper and alpha-synuclein and a potential role for the combination in causing neurodegeneration.

  4. Increased lipolysis and altered lipid homeostasis protect y-synuclein null mutant mice from diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. In neurons a-synuclein promotes assembly of SNARE complexes required for fusion of synaptic vesicles with the plasma membrane during neurotransmitter release. Y-synuclein is highly expressed ...

  5. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  6. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration

    PubMed Central

    Scott, David A.; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-01-01

    Several neurodegenerative diseases are typified by intra-neuronal α-synuclein deposits, synaptic dysfunction and dementia. While even modest α-synuclein elevations can be pathologic, the precise cascade of events induced by excessive α-synuclein and eventually culminating in synaptotoxicity is unclear. Towards this, we developed a quantitative model-system to evaluate evolving α-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice over-expressing fluorescent-human-α-synuclein. Transgenic α-synuclein was pathologically altered over time and over-expressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal-models lacking critical presynaptic proteins. Indeed several endogenous presynaptic proteins involved in exo- and endo-cytosis were undetectable in a subset of transgenic boutons (‘vacant synapses’) with diminished levels in the remainder; suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic α-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits. PMID:20554859

  7. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration.

    PubMed

    Scott, David A; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-06-16

    Several neurodegenerative diseases are typified by intraneuronal alpha-synuclein deposits, synaptic dysfunction, and dementia. While even modest alpha-synuclein elevations can be pathologic, the precise cascade of events induced by excessive alpha-synuclein and eventually culminating in synaptotoxicity is unclear. To elucidate this, we developed a quantitative model system to evaluate evolving alpha-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice overexpressing fluorescent-human-alpha-synuclein. Transgenic alpha-synuclein was pathologically altered over time and overexpressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal models lacking critical presynaptic proteins. Indeed, several endogenous presynaptic proteins involved in exocytosis and endocytosis were undetectable in a subset of transgenic boutons ("vacant synapses") with diminished levels in the remainder, suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic alpha-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits.

  8. Iron Deposition Leads to Neuronal α-Synuclein Pathology by Inducing Autophagy Dysfunction

    PubMed Central

    Wan, Wenbin; Jin, Lirong; Wang, Zigao; Wang, Lingyan; Fei, Guoqiang; Ye, Fanlong; Pan, Xiaoli; Wang, Changpeng; Zhong, Chunjiu

    2017-01-01

    Growing evidence has indicated that iron deposition in the substantia nigra plays an important role in Parkinson’s disease (PD). However, the underlying mechanism is still elusive. Using primary dopaminergic neurons and SH-SY5Y cells cultured in vitro, we observed that iron loading increased α-synuclein and reactive oxygen species (ROS) levels in these cells but did not affect the intracellular α-synuclein mRNA levels. Furthermore, iron loading significantly downregulated Beclin-1 levels and decreased the ratio of microtubule-associated protein 1 light chain 3 isoforms (LC3 II/LC3 I). However, a significant change in the levels of autophagy-related gene 5 (Atg5) was not observed in either neurons or SH-SY5Y cells after iron treatment. After treatment with rapamycin, the iron loading-induced increase in the α-synuclein level was significantly reversed and ROS generation was alleviated in both cultured neurons and SH-SY5Y cells. These results indicate that the inhibition of autophagy is critical for the pathological alterations in α-synuclein induced by iron loading. Moreover, treatment with vitamin E did not affect the increase in the α-synuclein levels but significantly eliminated the iron-induced ROS production. Together, our study shows that autophagy dysfunction contributes to iron-induced α-synuclein pathology. PMID:28138322

  9. Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Perfeito, Rita; Ribeiro, Márcio; Rego, A Cristina

    2017-03-01

    Alpha-synuclein (α-syn) is a major component of Lewy bodies found in sporadic and inherited forms of Parkinson's disease (PD). Mutations in the gene encoding α-syn and duplications and triplications of wild-type (WT) α-syn have been associated with PD. Several mechanisms have been implicated in the degeneration of dopaminergic neurons in PD, including oxidative stress and mitochondrial dysfunction. Here we defined the occurrence of oxidative stress in SH-SY5Y cells overexpressing WT α-syn in a doxycycline (Dox) regulated manner, before and after exposure to iron (500 µM), and determined the changes in proteins involved in the intracellular antioxidant defense system. Data evidenced an increase in caspase-3 activation and diminished reducing capacity of -Dox cells, associated with decreased activity of mitochondria complex I and reduced mitochondrial transcription factor A (TFAM) levels in these cells. Furthermore, total and mitochondrial reactive oxygen species levels were higher under basal conditions in cells overexpressing α-syn (-Dox) and this increase was apparently correlated with diminished levels and activities of SOD1 and SOD2 in -Dox cells. Moreover, both reduced and oxidized glutathione levels were diminished in -Dox cells under basal conditions, concomitantly with decreased activity of GCL and reduced protein levels of GCLc. The effects caused by iron (500 µM) were mostly independent of α-syn expression and triggered different antioxidant responses to possibly counterbalance higher levels of free radicals. Overall, data suggest that overexpression of α-syn modifies the antioxidant capacity of SH-SY5Y cells due to altered activity and protein levels of SOD1 and SOD2, and decreased glutathione pool.

  10. α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity

    PubMed Central

    Fecchio, Chiara; De Franceschi, Giorgia; Relini, Annalisa; Greggio, Elisa; Dalla Serra, Mauro; Bubacco, Luigi; Polverino de Laureto, Patrizia

    2013-01-01

    A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability. PMID:24312431

  11. Binding Interactions of Agents That Alter α-Synuclein Aggregation

    PubMed Central

    Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.

    2015-01-01

    Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374

  12. Binding Interactions of Agents That Alter α-Synuclein Aggregation.

    PubMed

    Sivanesam, K; Byrne, A; Bisaglia, M; Bubacco, L; Andersen, N

    Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. (15)N HSQC spectra of α-synuclein provided new mechanistic details. The time course of (15)N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in (15)N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.

  13. Ca2+ is a key factor in α-synuclein-induced neurotoxicity

    PubMed Central

    Angelova, Plamena R.; Ludtmann, Marthe H. R.; Horrocks, Mathew H.; Negoda, Alexander; Cremades, Nunilo; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.; Pavlov, Evgeny V.; Gandhi, Sonia

    2016-01-01

    ABSTRACT Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. PMID:26989132

  14. Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein.

    PubMed

    Jinsmaa, Yunden; Sullivan, Patricia; Gross, Daniel; Cooney, Adele; Sharabi, Yehonatan; Goldstein, David S

    2014-05-21

    Parkinson disease (PD) features profound striatal dopamine depletion and Lewy bodies containing abundant precipitated alpha-synuclein. Mechanisms linking alpha-synucleinopathy with the death of dopamine neurons remain incompletely understood. One such link may be 3,4-dihydroxyphenylacetaldehyde (DOPAL). All of the intra-neuronal metabolism of dopamine passes through DOPAL, which is toxic. DOPAL also potently oligomerizes alpha-synuclein and alpha-synuclein oligomers are thought to be pathogenic in PD. Another implicated factor in PD pathogenesis is metal ions, and alpha-synuclein contains binding sites for these ions. In this study we tested whether divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein in cell-free system and in PC12 cells conditionally over-expressing alpha-synuclein. Incubation with divalent metal ions augmented DOPAL-induced oligomerization of alpha-synuclein (Cu(2+)>Fe(2+)>Mn(2+)), whereas monovalent Cu(1+) and trivalent Fe(3+) were without effect. Other dopamine metabolites, dopamine itself, and metal ions alone or in combination with dopamine, also had no effect. Antioxidant treatment with ascorbic acid and divalent cation chelation with EDTA attenuated the augmentation by Cu(2+) of DOPAL-induced alpha-synuclein oligomerization. Incubation of PC12 cells with L-DOPA markedly increased intracellular DOPAL content and promoted alpha-synuclein dimerization. Co-incubation with Cu(2+) amplified (p=0.01), while monoamine oxidase inhibition prevented, L-DOPA-related dimerization of alpha-synuclein (p=0.01). We conclude that divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein. Drugs that interfere with this interaction might constitute a novel approach for future treatment or prevention approaches.

  15. Divalent Metal Ions Enhance DOPAL-induced Oligomerization of Alpha-Synuclein

    PubMed Central

    Jinsmaa, Yunden; Sullivan, Patricia; Gross, Daniel; Cooney, Adele; Sharabi, Yehonatan; Goldstein, David S.

    2014-01-01

    Parkinson disease (PD) features profound striatal dopamine depletion and Lewy bodies containing abundant precipitated alpha-synuclein. Mechanisms linking alpha-synucleinopathy with the death of dopamine neurons remain incompletely understood. One such link may be 3,4-dihydroxyphenylacetaldehyde (DOPAL). All of the intra-neuronal metabolism of dopamine passes through DOPAL, which is toxic. DOPAL also potently oligomerizes alpha-synuclein and alpha-synuclein oligomers are thought to be pathogenic in PD. Another implicated factor in PD pathogenesis is metal ions, and alpha-synuclein contains binding sites for these ions. In this study we tested whether divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein in cell-free system and in PC12 cells conditionally over-expressing alpha-synuclein. Incubation with divalent metal ions augmented DOPAL-induced oligomerization of alpha-synuclein (Cu2+>Fe2+>Mn2+), whereas monovalent Cu1+ and trivalent Fe3+ were without effect. Other dopamine metabolites, dopamine itself, and metal ions alone or in combination with dopamine, also had no effect. Antioxidant treatment with ascorbic acid and divalent cation chelation with EDTA attenuated the augmentation by Cu2+ of DOPAL-induced alpha-synuclein oligomerization. Incubation of PC12 cells with L-DOPA markedly increased intracellular DOPAL content and promoted alpha-synuclein dimerization. Co-incubation with Cu2+ amplified (p=0.01), while monoamine oxidase inhibition prevented, L-DOPA-related dimerization of alpha-synuclein (p=0.01). We conclude that divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein. Drugs that interfere with this interaction might constitute a novel approach for future treatment or prevention approaches. PMID:24670480

  16. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology.

    PubMed

    Danzer, Karin M; Krebs, Simon K; Wolff, Michael; Birk, Gerald; Hengerer, Bastian

    2009-10-01

    Lewy bodies, alpha-synuclein (alpha-syn) immunopositive intracellular deposits, are the pathological hallmark of Parkinson's disease (PD). Interestingly, Lewybody-like structures have been identified in fetal tissue grafts about one decade after transplantation into the striatum of PD patients. One possible explanation for the accelerated deposition of alpha-syn in the graft is that the aggregation of alpha-syn from the host tissue to the graft is spread by a prion disease-like mechanism. We discuss here an in vitro model which might recapitulate some aspects of disease propagation in PD. We found here that in vitro-generated alpha-syn oligomers induce transmembrane seeding of alpha-syn aggregation in a dose- and time-dependent manner. This effect was observed in primary neuronal cultures as well as in neuronal cell lines. The seeding oligomers were characterized by a distinctive lithium dodecyl sulfate-stable oligomer pattern and could be generated in a dynamic process out of pore-forming oligomers. We propose that alpha-syn oligomers form as a dynamic mixture of oligomer types with different properties and that alpha-syn oligomers can be converted into different types depending on the brain milieu conditions. Our data indicate that extracellular alpha-syn oligomers can induce intracellular alpha-syn aggregation, therefore we hypothesize that a similar mechanism might lead to alpha-syn pathology propagation.

  17. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.

    PubMed

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M; Zavala-Flores, Laura; Reyes-Reyes, Elsa M; Seravalli, Javier; Stanciu, Lia A; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2015-09-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.

  18. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways

    PubMed Central

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M.; Zavala-Flores, Laura; Reyes-Reyes, Elsa M.; Seravalli, Javier; Stanciu, Lia A.; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2014-01-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson’s disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of WT or A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic cells and yeast in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways. PMID:25497688

  19. Bcl-2 homologue Debcl enhances α-synuclein-induced phenotypes in Drosophila

    PubMed Central

    2016-01-01

    Background Parkinson disease (PD) is a debilitating movement disorder that afflicts 1–2% of the population over 50 years of age. The common hallmark for both sporadic and familial forms of PD is mitochondrial dysfunction. Mammals have at least twenty proapoptotic and antiapoptotic Bcl-2 family members, in contrast, only two Bcl-2 family genes have been identified in Drosophila melanogaster, the proapoptotic mitochondrial localized Debcl and the antiapoptotic Buffy. The expression of the human transgene α-synuclein, a gene that is strongly associated with inherited forms of PD, in dopaminergic neurons (DA) of Drosophila, results in loss of neurons and locomotor dysfunction to model PD in flies. The altered expression of Debcl in the DA neurons and neuron-rich eye and along with the expression of α-synuclein offers an opportunity to highlight the role of Debcl in mitochondrial-dependent neuronal degeneration and death. Results The directed overexpression of Debcl using the Ddc-Gal4 transgene in the DA of Drosophila resulted in flies with severely decreased survival and a premature age-dependent loss in climbing ability. The inhibition of Debcl resulted in enhanced survival and improved climbing ability whereas the overexpression of Debcl in the α-synuclein-induced Drosophila model of PD resulted in more severe phenotypes. In addition, the co-expression of Debcl along with Buffy partially counteracts the Debcl-induced phenotypes, to improve the lifespan and the associated loss of locomotor ability observed. In complementary experiments, the overexpression of Debcl along with the expression of α-synuclein in the eye, enhanced the eye ablation that results from the overexpression of Debcl. The co-expression of Buffy along with Debcl overexpression results in the rescue of the moderate developmental eye defects. The co-expression of Buffy along with inhibition of Debcl partially restores the eye to a roughened eye phenotype. Discussion The overexpression of Debcl

  20. Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells

    PubMed Central

    Plotegher, N.; Gratton, E.; Bubacco, L.

    2014-01-01

    Background Alpha-synuclein oligomerization is associated to Parkinson's disease etiopathogenesis. The study of alpha-synuclein oligomerization properties in live cell and the definition of their effects on cellular viability are among fields expected to provide the knowledge required to unravel the mechanism(s) of toxicity that lead to the disease. Methods We used Number and Brightness method, which is a method based on fluorescence fluctuation analysis, to monitor alpha-synuclein tagged with EGFP aggregation in living SH-SY5Y cells. The presence of alpha-synuclein oligomers detected with this method was associated with intracellular structure conditions, evaluated by fluorescence confocal imaging. Results Cells overexpressing alpha-synuclein-EGFP present a heterogeneous ensemble of oligomers constituted by less than 10 monomers, when the protein approaches a threshold concentration value of about 90 nM in the cell cytoplasm. We show that the oligomeric species are partially sequestered by lysosomes and that the mitochondria morphology is altered in cells presenting oligomers, suggesting that these mitochondria may be dysfunctional. Conclusions We showed that alpha-synuclein overexpression in SH-SY5Y causes the formation of alpha-synuclein oligomeric species, whose presence is associated with mitochondrial fragmentation and autophagic-lysosomal pathway activation in live cells. General significance The unique capability provided by the Number and Brightness analysis to study alpha-synuclein oligomers distribution and properties, and the study their association to intracellular components in single live cells is important to forward our understanding of the molecular mechanisms Parkinson’s disease and it may be of general significance when applied to the study of other aggregating proteins in cellular models. PMID:24561157

  1. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation

    PubMed Central

    Kumar, Roshan; Jangir, Deepak K.; Verma, Garima; Shekhar, Shashi; Hanpude, Pranita; Kumar, Sanjay; Kumari, Raniki; Singh, Nirpendra; Sarovar Bhavesh, Neel; Ranjan Jana, Nihar; Kanti Maiti, Tushar

    2017-01-01

    Ubiquitin C-terminal Hydrolase-1 (UCHL1) is a deubiquitinating enzyme, which plays a key role in Parkinson’s disease (PD). It is one of the most important proteins, which constitute Lewy body in PD patient. However, how this well folded highly soluble protein presents in this proteinaceous aggregate is still unclear. We report here that UCHL1 undergoes S-nitrosylation in vitro and rotenone induced PD mouse model. The preferential nitrosylation in the Cys 90, Cys 152 and Cys 220 has been observed which alters the catalytic activity and structural stability. We show here that nitrosylation induces structural instability and produces amorphous aggregate, which provides a nucleation to the native α-synuclein for faster aggregation. Our findings provide a new link between UCHL1-nitrosylation and PD pathology. PMID:28300150

  2. Phosphorylation induces distinct alpha-synuclein strain formation

    PubMed Central

    Ma, Meng-Rong; Hu, Zhi-Wen; Zhao, Yu-Fen; Chen, Yong-Xiang; Li, Yan-Mei

    2016-01-01

    Synucleinopathies are a group of neurodegenerative diseases associated with alpha-synuclein (α-Syn) aggregation. Recently, increasing evidence has demonstrated the existence of different structural characteristics or ‘strains’ of α-Syn, supporting the concept that synucleinopathies share several common features with prion diseases and possibly explaining how a single protein results in different clinical phenotypes within synucleinopathies. In earlier studies, the different strains were generated through the regulation of solution conditions, temperature, or repetitive seeded fibrillization in vitro. Here, we synthesize homogeneous α-Syn phosphorylated at serine 129 (pS129 α-Syn), which is highly associated with the pathological changes, and demonstrate that phosphorylation at Ser129 induces α-Syn to form a distinct strain with different structures, propagation properties, and higher cytotoxicity compared with the wild-type α-Syn. The results are the first demonstration that post-translational modification of α-Syn can induce different strain formation, offering a new mechanism for strain formation. PMID:27853185

  3. Nascent histamine induces α-synuclein and caspase-3 on human cells

    SciTech Connect

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  4. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  5. Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes.

    PubMed

    Cai, Yixiao; Lendel, Christofer; Österlund, Lars; Kasrayan, Alex; Lannfelt, Lars; Ingelsson, Martin; Nikolajeff, Fredrik; Karlsson, Mikael; Bergström, Joakim

    2015-08-14

    The oxidative stress-related reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown to promote formation of α-synuclein oligomers in vitro. However, the changes in secondary structure of α-synuclein and the kinetics of the oligomerization process are not known and were the focus of this study. Size exclusion chromatography showed that after 1 h of incubation, HNE induced the formation of an oligomeric α-synuclein peak with a molecular weight of about ∼2000 kDa, which coincided with a decreasing ∼50 kDa monomeric peak. With prolonged incubation (up to 24 h) the oligomeric peak became the dominating molecular species. In contrast, in the presence of ONE, a ∼2000 oligomeric peak was exclusively observed after 15 min of incubation and this peak remained constant with prolonged incubation. Western blot analysis of HNE-induced α-synuclein oligomers showed the presence of monomers (15 kDa), SDS-resistant low molecular (30-160 kDa) and high molecular weight oligomers (≥260 kDa), indicating that the oligomers consisted of both covalent and non-covalent protein. In contrast, ONE-induced α-synuclein oligomers only migrated as covalent cross-linked high molecular-weight material (≥300 kDa). Both circular dichroism (CD) and Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the formation of HNE- and ONE-induced oligomers coincided with a spectral change from random coil to β-sheet. However, ONE-induced α-synuclein oligomers exhibited a slightly higher degree of β-sheet. Taken together, our results indicate that both HNE and ONE induce a change from random coil to β-sheet structure that coincides with the formation of α-synuclein oligomers; albeit through different kinetic pathways depending on the degree of cross-linking.

  6. α-Synuclein potentiates interleukin-1β-induced CXCL10 expression in human A172 astrocytoma cells.

    PubMed

    Tousi, Neda Saffarian; Buck, Daniel J; Curtis, J Thomas; Davis, Randall L

    2012-01-24

    Neuroinflammation and neuronal degeneration observed in Parkinson's disease (PD) has been attributed in part to glial-mediated events. Increased expression of proinflammatory cytokines and abnormal accumulation of the neuronal protein, α-synuclein in the brain are also characteristic of PD. While increasing evidence suggests that astrocytes contribute to neuroinflammation and dopaminergic neuronal degeneration associated with PD, there remains much to learn about these astroglial-mediated events. Therefore, we investigated the in vitro effects of interleukin-1β (IL-1β) and α-synuclein on astroglial expression of interferon-γ inducible protein-10 (CXCL10), a proinflammatory and neurotoxic chemokine. IL-1β-induced CXCL10 protein expression was potentiated by co-exposure to α-synuclein. α-Synuclein did not significantly affect IL-1β-induced CXCL10 mRNA expression, but did mediate increased CXCL10 mRNA stability, which may explain, in part, the increased levels of secreted CXCL10 protein. Future investigations are warranted to more fully define the mechanism by which α-synuclein enhances IL-1β-induced astroglial CXCL10 expression. These findings highlight the importance of α-synuclein in modulating inflammatory events in astroglia. These events may be particularly relevant to the pathology of CNS disorders involving α-synuclein accumulation, including PD and HIV-1 associated dementia.

  7. Non-motor parkinsonian pathology in aging A53T α-Synuclein mice is associated with progressive synucleinopathy and altered enzymatic function

    PubMed Central

    Farrell, Kaitlin F; Krishnamachari, Sesha; Villanueva, Ernesto; Lou, Haiyan; Alerte, Tshianda N M; Peet, Eloise; Drolet, Robert E; Perez, Ruth G

    2014-01-01

    Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α–synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α–synuclein for behavior and α–synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α–synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD. PMID:24117685

  8. Non-motor parkinsonian pathology in aging A53T α-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function.

    PubMed

    Farrell, Kaitlin F; Krishnamachari, Sesha; Villanueva, Ernesto; Lou, Haiyan; Alerte, Tshianda N M; Peet, Eloise; Drolet, Robert E; Perez, Ruth G

    2014-02-01

    Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α-synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α-synuclein for behavior and α-synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α-synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD.

  9. The NACP/synuclein gene: Chromosomal assignment and screening for alterations in Alzheimer disease

    SciTech Connect

    Campion, D.; Martin, C.; Charbonnier, F.

    1995-03-20

    The major component of the vascular and plaque amyloid deposits in Alzheimer disease is the amyloid {beta} peptide (A{beta}). A second intrinsic component of amyloid, the NAC (non-A{beta} component of amyloid) peptide, has recently been identified, and its precursor protein was named NACP. A computer homology search allowed us to establish that the human NACP gene was homologous to the rat synuclein gene. We mapped the NACP/synuclein gene to chromosome 4 and cloned three alternatively spliced transcripts in lymphocytes derived from a normal subject. We analyzed by RT-PCR and direct sequencing the entire coding region of the NACP/synuclein gene in a group of patients with familial early onset Alzheimer disease. No mutation was found in 26 unrelated patients. Further studies are required to investigate the implication of the NACP/synuclein gene in Alzheimer disease. 21 refs., 3 tabs.

  10. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  11. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  12. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family

    PubMed Central

    Anwar, Sabina; Peters, Owen; Millership, Steven; Ninkina, Natalia; Doig, Natalie; Connor-Robson, Natalie; Threlfell, Sarah; Kooner, Gurdeep; Deacon, Robert M.; Bannerman, David M.; Bolam, J. Paul; Chandra, Sreeganga S.; Cragg, Stephanie J.; Wade-Martins, Richard; Buchman, Vladimir L.

    2011-01-01

    The synucleins (α, β and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signalling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4-14 month old) animals using a combination of behavioural, biochemical, histological and electrochemical techniques. Adult triple synuclein null (TKO) mice displayed no overt phenotype, and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms which differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinson’s disease (PD) may ultimately inform on the selectivity of the disease process. PMID:21593311

  13. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons.

    PubMed

    Ortega, Richard; Carmona, Asuncion; Roudeau, Stéphane; Perrin, Laura; Dučić, Tanja; Carboni, Eleonora; Bohic, Sylvain; Cloetens, Peter; Lingor, Paul

    2016-04-01

    Parkinson's disease is the most common α-synucleinopathy, and increased levels of iron are found in the substantia nigra of Parkinson's disease patients, but the potential interlink between both molecular changes has not been fully understood. Metal to protein binding assays have shown that α-synuclein can bind iron in vitro; therefore, we hypothesized that iron content and iron distribution could be modified in cellulo, in cells over-expressing α-synuclein. Owing to particle-induced X-ray emission and synchrotron X-ray fluorescence chemical nano-imaging, we were able to quantify and describe the iron distribution at the subcellular level. We show that, in neurons exposed to excess iron, the mere over-expression of human α-synuclein results in increased levels of intracellular iron and in iron redistribution from the cytoplasm to the perinuclear region within α-synuclein-rich inclusions. Reproducible results were obtained in two distinct recombinant expression systems, in primary rat midbrain neurons and in a rat neuroblastic cell line (PC12), both infected with viral vectors expressing human α-synuclein. Our results link two characteristic molecular features found in Parkinson's disease, the accumulation of α-synuclein and the increased levels of iron in the substantia nigra.

  14. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein

    PubMed Central

    Brown, James W. P.; Ouberai, Myriam M.; Flagmeier, Patrick; Vendruscolo, Michele; Buell, Alexander K.; Sparr, Emma; Dobson, Christopher M.

    2016-01-01

    Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson’s disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein’s native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein. PMID:27298346

  15. The H50Q Mutation Induces a 10-fold Decrease in the Solubility of α-Synuclein*

    PubMed Central

    Porcari, Riccardo; Proukakis, Christos; Waudby, Christopher A.; Bolognesi, Benedetta; Mangione, P. Patrizia; Paton, Jack F. S.; Mullin, Stephen; Cabrita, Lisa D.; Penco, Amanda; Relini, Annalisa; Verona, Guglielmo; Vendruscolo, Michele; Stoppini, Monica; Tartaglia, Gian Gaetano; Camilloni, Carlo; Christodoulou, John; Schapira, Anthony H. V.; Bellotti, Vittorio

    2015-01-01

    The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-β aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a newly identified pathogenic mutation of α-synuclein, H50Q, aggregates faster than the wild-type. We investigate here its aggregation propensity by using a sequence-based prediction algorithm, NMR chemical shift analysis of secondary structure populations in the monomeric state, and determination of thermodynamic stability of the fibrils. Our data show that the H50Q mutation induces only a small increment in polyproline II structure around the site of the mutation and a slight increase in the overall aggregation propensity. We also find, however, that the H50Q mutation strongly stabilizes α-synuclein fibrils by 5.0 ± 1.0 kJ mol−1, thus increasing the supersaturation of monomeric α-synuclein within the cell, and strongly favors its aggregation process. We further show that wild-type α-synuclein can decelerate the aggregation kinetics of the H50Q variant in a dose-dependent manner when coaggregating with it. These last findings suggest that the precise balance of α-synuclein synthesized from the wild-type and mutant alleles may influence the natural history and heterogeneous clinical phenotype of Parkinson disease. PMID:25505181

  16. Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration.

    PubMed

    Daher, João P L; Abdelmotilib, Hisham A; Hu, Xianzhen; Volpicelli-Daley, Laura A; Moehle, Mark S; Fraser, Kyle B; Needle, Elie; Chen, Yi; Steyn, Stefanus J; Galatsis, Paul; Hirst, Warren D; West, Andrew B

    2015-08-07

    Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression.

  17. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions.

    PubMed

    Calì, Tito; Ottolini, Denis; Negro, Alessandro; Brini, Marisa

    2012-05-25

    α-Synuclein has a central role in Parkinson disease, but its physiological function and the mechanism leading to neuronal degeneration remain unknown. Because recent studies have highlighted a role for α-synuclein in regulating mitochondrial morphology and autophagic clearance, we investigated the effect of α-synuclein in HeLa cells on mitochondrial signaling properties focusing on Ca(2+) homeostasis, which controls essential bioenergetic functions. By using organelle-targeted Ca(2+)-sensitive aequorin probes, we demonstrated that α-synuclein positively affects Ca(2+) transfer from the endoplasmic reticulum to the mitochondria, augmenting the mitochondrial Ca(2+) transients elicited by agonists that induce endoplasmic reticulum Ca(2+) release. This effect is not dependent on the intrinsic Ca(2+) uptake capacity of mitochondria, as measured in permeabilized cells, but correlates with an increase in the number of endoplasmic reticulum-mitochondria interactions. This action specifically requires the presence of the C-terminal α-synuclein domain. Conversely, α-synuclein siRNA silencing markedly reduces mitochondrial Ca(2+) uptake, causing profound alterations in organelle morphology. The enhanced accumulation of α-synuclein into the cells causes the redistribution of α-synuclein to localized foci and, similarly to the silencing of α-synuclein, reduces the ability of mitochondria to accumulate Ca(2+). The absence of efficient Ca(2+) transfer from endoplasmic reticulum to mitochondria results in augmented autophagy that, in the long range, could compromise cellular bioenergetics. Overall, these findings demonstrate a key role for α-synuclein in the regulation of mitochondrial homeostasis in physiological conditions. Elevated α-synuclein expression and/or eventually alteration of the aggregation properties cause the redistribution of the protein within the cell and the loss of modulation on mitochondrial function.

  18. α-Synuclein is involved in manganese-induced ER stress via PERK signal pathway in organotypic brain slice cultures.

    PubMed

    Xu, Bin; Wang, Fei; Wu, Sheng-Wen; Deng, Yu; Liu, Wei; Feng, Shu; Yang, Tian-Yao; Xu, Zhao-Fa

    2014-02-01

    Overexposure to manganese (Mn) has been known to induce neuronal damage involving endoplasmic reticulum (ER) stress. However, the exact mechanism of Mn-induced ER stress is unclear. Increasing evidence suggested that the overexpression of alpha-synuclein played a critical role in Mn-induced neurotoxicity. To explore whether the occurrence of ER stress was associated with alpha-synuclein overexpression, we made the rat brain slices model of silencing alpha-synuclein using short-interference RNA. After non-silencing alpha-synuclein slices were treated with Mn (0-400 μM) for 24 h, there was a dose-dependent increase in apoptotic rates of cells and levels of lactate dehydrogenase in the culture medium. Moreover, there was a dose-dependent increase in the protein expression of 78, 94-kDa glucose-regulated protein (GRP78/94), C/EBP homologous protein (CHOP), and caspase-12. Moreover, PKR-like ER kinase (PERK) phosphorylation, PERK-mediated phosphorylation of eIF2a, and ATF4 expression also increased. Inositol-requiring enzyme 1 (IRE1) activation and X-box-binding protein-1 (Xbp1) mRNA splicing increased. Activating transcription factor 6 p90 levels did not change. However, after silencing alpha-synuclein slices were treated with 400 μM Mn for 24 h, there was a significant decrease in the expression of GRP78/94, CHOP, and caspase-12 compared with 400 μM Mn-treated non-silencing alpha-synuclein slices. Furthermore, PERK phosphorylation, PERK-mediated phosphorylation of eIF2a, and ATF4 mRNA expression also decreased. However, IRE1 phosphorylation and Xbp1 mRNA splicing did not change. The findings revealed that Mn induced ER stress via activation of PERK and IRE1 signaling pathways and subsequent apoptosis in cultured slices. Moreover, alpha-synuclein protein was associated with Mn-induced activation of PERK signaling pathway.

  19. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation.

    PubMed

    Shaikh, Shamim; Nicholson, Louise F B

    2008-07-01

    Cross-linking of alpha-synuclein and Lewy body formation have been implicated in the dopaminergic neuronal cell death observed in Parkinson's disease (PD); the mechanisms responsible, however, are not clear. Reactive oxygen species and advanced glycation end products (AGEs) have been found in the intracellular, alpha-synuclein-positive Lewy bodies in the brains of both PD as well as incidental Lewy body disease patients, suggesting a role for AGEs in alpha-synuclein cross-linking and Lewy body formation. The aims of the present study were to determine 1) whether AGEs can induce cross-linking of alpha-synuclein peptides, 2) the progressive and time-dependent intracellular accumulation of AGEs and inclusion body formation, and 3) the effects of extracellular or exogenous AGEs on intracellular inclusion formation. We first investigated the time-dependent cross-linking of recombinant human alpha-synuclein in the presence of AGEs in vitro, then used a cell culture model based on chronic rotenone treatment of human dopaminergic neuroblastoma cells (SH-SY5Y) over a period of 1-4 weeks, in the presence of different doses of AGEs. Cells (grown on coverslips) and cell lysates, collected at the end of every week, were analyzed for the presence of intracellular reactive oxygen species, AGEs, alpha-synuclein proteins, and intracellular alpha-synuclein- and AGE-positive inclusion bodies by using immunocytochemical, biochemical, and Western blot techniques. Our results show that AGEs promote in vitro cross-linking of alpha-synuclein, that intracellular accumulation of AGEs precedes alpha-synuclein-positive inclusion body formation, and that extracellular AGEs accelerate the process of intracellular alpha-synuclein-positive inclusion body formation.

  20. TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson’s Disease

    PubMed Central

    Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O.; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson’s disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  1. α-Synuclein expression is induced by depolarization and cyclic AMP in enteric neurons.

    PubMed

    Paillusson, Sébastien; Tasselli, Maddalena; Lebouvier, Thibaud; Mahé, Maxime Michaël; Chevalier, Julien; Biraud, Mandy; Cario-Toumaniantz, Chystelle; Neunlist, Michel; Derkinderen, Pascal

    2010-11-01

    Accumulated evidence emphasizes the importance of α-synuclein expression levels in Parkinson's disease (PD) pathogenesis. PD is a multicentric disorder that affects the enteric nervous system (ENS), whose involvement may herald the degenerative process in the CNS. We therefore undertook the present study to investigate the mechanisms involved in the regulation of expression of α-synuclein in the ENS. The regulation of α-synuclein expression was assessed by qPCR and western blot analysis in rat primary culture of ENS treated with KCl and forskolin. A pharmacological approach was used to decipher the signaling pathways involved. Intraperitoneal injections of Bay K-8644 and forskolin were performed in mice, whose proximal colons were further analyzed for α-synuclein expression. Depolarization and forskolin increased α-synuclein mRNA and protein expression in primary cultures of ENS, although L-type calcium channel and protein kinase A, respectively. Both stimuli increased α-synuclein expression through a Ras/extracellular signal-regulated kinases pathway. An increase in α-synuclein expression was also observed in vivo in the ENS of mice injected with Bay K-8644 or forskolin. In conclusion, we have identified stimuli leading to α-synuclein over-expression in the ENS, which could be critical in the initiation of the pathological process in PD.

  2. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-04

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains.

  3. Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates.

    PubMed

    Verina, Tatyana; Schneider, Jay S; Guilarte, Tomás R

    2013-03-13

    Aggregation of α-synuclein (α-syn) in the brain is a defining pathological feature of neurodegenerative disorders classified as synucleinopathies. They include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Occupational and environmental exposure to manganese (Mn) is associated with a neurological syndrome consisting of psychiatric symptoms, cognitive impairment and parkinsonism. In this study, we examined α-syn immunoreactivity in the frontal cortex of Cynomolgus macaques as part of a multidisciplinary assessment of the neurological effects produced by exposure to moderate levels of Mn. We found increased α-syn-positive cells in the gray matter of Mn-exposed animals, typically observed in pyramidal and medium-sized neurons in deep cortical layers. Some of these neurons displayed loss of Nissl staining with α-syn-positive spherical aggregates. In the white matter we also observed α-syn-positive glial cells and in some cases α-syn-positive neurites. These findings suggest that Mn exposure promotes α-syn aggregation in neuronal and glial cells that may ultimately lead to degeneration in the frontal cortex gray and white matter. To our knowledge, this is the first report of Mn-induced neuronal and glial cell α-syn accumulation and aggregation in the frontal cortex of non-human primates.

  4. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    SciTech Connect

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J. . E-mail: touteiro@partners.org

    2006-12-22

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.

  5. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice

    PubMed Central

    Sacino, Amanda N.; Brooks, Mieu; Thomas, Michael A.; McKinney, Alex B.; Lee, Sooyeon; Regenhardt, Robert W.; McGarvey, Nicholas H.; Ayers, Jacob I.; Notterpek, Lucia; Borchelt, David R.; Golde, Todd E.; Giasson, Benoit I.

    2014-01-01

    It has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models. Within 2–3 mo after IM injection in αS homozygous M83 Tg mice and 3–4 mo for hemizygous M83 Tg mice, these animals developed a rapid, synchronized, and predictable induction of widespread CNS αS inclusion pathology, accompanied by astrogliosis, microgliosis, and debilitating motor impairments. In M20 Tg mice, starting at 4 mo after IM injection, we observed αS inclusion pathology in the spinal cord, but motor function remained intact. Transection of the sciatic nerve in the M83 Tg mice significantly delayed the appearance of CNS pathology and motor symptoms, demonstrating the involvement of retrograde transport in inducing αS CNS inclusion pathology. Outside of scrapie-mediated prion disease, to our knowledge, this findiing is the first evidence that an entire neurodegenerative proteinopathy associated with a robust, lethal motor phenotype can be initiated by peripheral inoculation with a pathogenic protein. Furthermore, this facile, synchronized rapid-onset model of α-synucleinopathy will be highly valuable in testing disease-modifying therapies and dissecting the mechanism(s) that drive αS-induced neurodegeneration. PMID:25002524

  6. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice.

    PubMed

    Sacino, Amanda N; Brooks, Mieu; Thomas, Michael A; McKinney, Alex B; Lee, Sooyeon; Regenhardt, Robert W; McGarvey, Nicholas H; Ayers, Jacob I; Notterpek, Lucia; Borchelt, David R; Golde, Todd E; Giasson, Benoit I

    2014-07-22

    It has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models. Within 2-3 mo after IM injection in αS homozygous M83 Tg mice and 3-4 mo for hemizygous M83 Tg mice, these animals developed a rapid, synchronized, and predictable induction of widespread CNS αS inclusion pathology, accompanied by astrogliosis, microgliosis, and debilitating motor impairments. In M20 Tg mice, starting at 4 mo after IM injection, we observed αS inclusion pathology in the spinal cord, but motor function remained intact. Transection of the sciatic nerve in the M83 Tg mice significantly delayed the appearance of CNS pathology and motor symptoms, demonstrating the involvement of retrograde transport in inducing αS CNS inclusion pathology. Outside of scrapie-mediated prion disease, to our knowledge, this findiing is the first evidence that an entire neurodegenerative proteinopathy associated with a robust, lethal motor phenotype can be initiated by peripheral inoculation with a pathogenic protein. Furthermore, this facile, synchronized rapid-onset model of α-synucleinopathy will be highly valuable in testing disease-modifying therapies and dissecting the mechanism(s) that drive αS-induced neurodegeneration.

  7. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties.

    PubMed

    Planchard, Matthew S; Exley, Sarah E; Morgan, Sarah E; Rangachari, Vijayaraghavan

    2014-10-01

    Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson's disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer's disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients.

  8. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties

    PubMed Central

    Planchard, Matthew S; Exley, Sarah E; Morgan, Sarah E; Rangachari, Vijayaraghavan

    2014-01-01

    Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson’s disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer’s disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients. PMID:25044276

  9. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease.

    PubMed

    Thome, Aaron D; Harms, Ashley S; Volpicelli-Daley, Laura A; Standaert, David G

    2016-02-24

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.

  10. Brain-Permeable Small-Molecule Inhibitors of Hsp90 Prevent α-Synuclein Oligomer Formation and Rescue α-Synuclein-Induced Toxicity

    PubMed Central

    Putcha, Preeti; Danzer, Karin M.; Kranich, Lisa R.; Scott, Anisa; Silinski, Melanie; Mabbett, Sarah; Hicks, Carol D.; Veal, James M.; Steed, Paul M.; Hyman, Bradley T.

    2010-01-01

    Aggregation of α-synuclein (αsyn) is a hallmark of sporadic and familial Parkinson's disease (PD) and dementia with Lewy bodies. Lewy bodies contain αsyn and several heat shock proteins (Hsp), a family of molecular chaperones up-regulated by the cell under stress. We have previously shown that direct expression of Hsp70 and pharmacological up-regulation of Hsp70 by geldanamycin, an Hsp90 inhibitor, are protective against αsyn-induced toxicity and prevent aggregation in culture. Here, we use a novel protein complementation assay to screen a series of small-molecule Hsp90 inhibitors for their ability to prevent αsyn oligomerization and rescue toxicity. By use of this assay, we found that several compounds prevented αsyn oligomerization as measured by decreased luciferase activity, led to a reduction in high-molecular-mass oligomeric αsyn, and protected against αsyn cytotoxicity. A lead compound, SNX-0723 (2-fluoro-6-[(3S)-tetrahydrofuran-3-ylamino]-4-(3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indol-1-yl)benzamide) was determined to have an EC50 for inhibition of αsyn oligomerization of approximately 48 nM and was able to rescue αsyn-induced toxicity. In vivo assessment of SNX-0723 showed significant brain concentrations along with induction of brain Hsp70. With a low EC50, brain permeability, and oral availability, these novel inhibitors represent an exciting new therapeutic strategy for PD. PMID:19934398

  11. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces

    NASA Astrophysics Data System (ADS)

    Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline

    2016-11-01

    α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.

  12. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces

    PubMed Central

    Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline

    2016-01-01

    α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates. PMID:27808107

  13. Chronic Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine Levels but Not α-Synuclein-Induced Neuronal Cell Loss

    PubMed Central

    Kibuuka, Laura; Ebrahimi-Fakhari, Darius; Desjardins, Cody A.; Danzer, Karin M.; Danzer, Michael; Fan, Zhanyun; Schwarzschild, Michael A.; Hirst, Warren; McLean, Pamela J.

    2014-01-01

    Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6–10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study. PMID:24465863

  14. Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopamine levels but not α-synuclein-induced neuronal cell loss.

    PubMed

    McFarland, Nikolaus R; Dimant, Hemi; Kibuuka, Laura; Ebrahimi-Fakhari, Darius; Desjardins, Cody A; Danzer, Karin M; Danzer, Michael; Fan, Zhanyun; Schwarzschild, Michael A; Hirst, Warren; McLean, Pamela J

    2014-01-01

    Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6-10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.

  15. Lewy Bodies Contain Altered α-Synuclein in Brains of Many Familial Alzheimer’s Disease Patients with Mutations in Presenilin and Amyloid Precursor Protein Genes

    PubMed Central

    Lippa, Carol F.; Fujiwara, Hideo; Mann, David M.A.; Giasson, Benoit; Baba, Minami; Schmidt, Marie L.; Nee, Linda E.; O’Connell, Brendan; Pollen, Dan A.; St. George-Hyslop, Peter; Ghetti, Bernardino; Nochlin, David; Bird, Thomas D.; Cairns, Nigel J.; Lee, Virginia M.-Y.; Iwatsubo, Takeshi; Trojanowski, John Q.

    1998-01-01

    Missense mutations in the α-synuclein gene cause familial Parkinson’s disease (PD), and α-synuclein is a major component of Lewy bodies (LBs) in sporadic PD, dementia with LBs (DLB), and the LB variant of Alzheimer’s disease (AD). To determine whether α-synuclein is a component of LBs in familial AD (FAD) patients with known mutations in presenilin (n = 65) or amyloid precursor protein (n = 9) genes, studies were conducted with antibodies to α-, β-, and γ-synuclein. LBs were detected with α- but not β- or γ-synuclein antibodies in 22% of FAD brains, and α-synuclein-positive LBs were most numerous in amygdala where some LBs co-localized with tau-positive neurofibrillary tangles. As 12 (63%) of 19 FAD amygdala samples contained α-synuclein-positive LBs, these inclusions may be more common in FAD brains than previously reported. Furthermore, α-synuclein antibodies decorated LB filaments by immunoelectron microscopy, and Western blots revealed that the solubility of α-synuclein was reduced compared with control brains. The presence of α-synuclein-positive LBs was not associated with any specific FAD mutation. These studies suggest that insoluble α-synuclein aggregates into filaments that form LBs in many FAD patients, and we speculate that these inclusions may compromise the function and/or viability of affected neurons in the FAD brain. PMID:9811326

  16. γ-Synuclein: seeding of α-synuclein aggregation and transmission between cells.

    PubMed

    Surgucheva, Irina; Sharov, Victor S; Surguchov, Andrei

    2012-06-12

    Protein misfolding and aggregation is a ubiquitous phenomenon associated with a wide range of diseases. The synuclein family comprises three small naturally unfolded proteins implicated in neurodegenerative diseases and some forms of cancer. α-Synuclein is a soluble protein that forms toxic inclusions associated with Parkinson's disease and several other synucleinopathies. However, the triggers inducing its conversion into noxious species are elusive. Here we show that another member of the family, γ-synuclein, can be easily oxidized and form annular oligomers that accumulate in cells in the form of deposits. Importantly, oxidized γ-synuclein can initiate α-synuclein aggregation. Two amino acid residues in γ-synuclein, methionine and tyrosine located in neighboring positions (Met(38) and Tyr(39)), are most easily oxidized. Their oxidation plays a key role in the ability of γ-synuclein to aggregate and seed the aggregation of α-synuclein. γ-Synuclein secreted from neuronal cells into conditioned medium in the form of exosomes can be transmitted to glial cells and cause the aggregation of intracellular proteins. Our data suggest that post-translationally modified γ-synuclein possesses prion-like properties and may induce a cascade of events leading to synucleinopathies.

  17. Dissecting the Mechanisms of Tissue Transglutaminase-induced Cross-linking of α-Synuclein

    PubMed Central

    Schmid, Adrien W.; Chiappe, Diego; Pignat, Vérène; Grimminger, Valerie; Hang, Ivan; Moniatte, Marc; Lashuel, Hilal A.

    2009-01-01

    Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of α-synuclein (α-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type α-syn and α-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric α-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric α-syn composed of either wild-type or Gln → Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of α-syn. These studies demonstrate for the first time that Gln79 and Gln109 serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of α-syn and tTG-induced inhibition of α-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln79 and Gln109. This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on α-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of α-syn. PMID:19164286

  18. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of α-synuclein in C. elegans

    PubMed Central

    Bornhorst, Julia; Chakraborty, Sudipta; Meyer, Sören; Lohren, Hanna; Brinkhaus, Sigrid Groβe; Knight, Adam L.; Caldwell, Kim A.; Caldwell, Guy A.; Karst, Uwe; Schwerdtle, Tanja; Bowman, Aaron

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative brain disorder characterized by selective dopaminergic (DAergic) cell loss that results in overt motor and cognitive deficits. Current treatment options exist to combat PD symptomatology, but are unable to directly target its pathogenesis due to a lack of knowledge concerning its etiology. Several genes have been linked to PD, including three genes associated with an early-onset familial form: parkin, pink1 and dj1. All three genes are implicated in regulating oxidative stress pathways. Another hallmark of PD pathophysiology is Lewy body deposition, associated with the gain-of-function genetic risk factor α-synuclein. The function of α-synuclein is poorly understood, as it shows both neurotoxic and neuroprotective activities in PD. Using the genetically tractable invertebrate Caenorhabditis elegans (C. elegans) model system, the neurotoxic or neuroprotective role of α-synuclein upon acute Mn exposure in the background of mutated pdr1, pink1 or djr1.1 was examined. The pdr1 and djr1.1 mutants showed enhanced Mn accumulation and oxidative stress that was rescued by α-synuclein. Moreover, DAergic neurodegeneration, while unchanged with Mn exposure, returned to wild-type (WT) levels for pdr1, but not djr1.1 mutants expressing α-synuclein. Taken together, this study uncovers a novel, neuroprotective role for WT human α-synuclein in attenuating Mn-induced toxicity in the background of PD-associated genes, and further supports the role of extracellular dopamine in exacerbating Mn neurotoxicity. PMID:24452053

  19. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation.

    PubMed

    Su, Ling-Yan; Li, Hao; Lv, Li; Feng, Yue-Mei; Li, Guo-Dong; Luo, Rongcan; Zhou, He-Jiang; Lei, Xiao-Guang; Ma, Liang; Li, Jia-Li; Xu, Lin; Hu, Xin-Tian; Yao, Yong-Gang

    2015-01-01

    Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD.

  20. alpha-synuclein and LRRK2: partners in crime.

    PubMed

    Tong, Youren; Shen, Jie

    2009-12-24

    In this issue of Neuron, Lin et al. report that LRRK2 modulates age-related neurodegeneration caused by overexpression of alpha-synuclein in the forebrain of transgenic mice. Overexpression of LRRK2 accelerates the progression of alpha-synuclein-mediated neuropathological changes, whereas deletion of LRRK2 alleviates these alterations. The results reveal an interesting interaction between alpha-synuclein and LRRK2, two gene products linked to dominantly inherited Parkinson's disease.

  1. Impairment of PDGF-induced chemotaxis by extracellular α-synuclein through selective inhibition of Rac1 activation

    PubMed Central

    Okada, Taro; Hirai, Chihoko; Badawy, Shaymaa Mohamed Mohamed; Zhang, Lifang; Kajimoto, Taketoshi; Nakamura, Shun-ichi

    2016-01-01

    Parkinson’s disease (PD) is characterized by α-synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies. Although it is known that extracellular α-Syn is detected in the plasma and cerebrospinal fluid, its physiological significance remains unclear. Here, we show that extracellular α-Syn suppresses platelet-derived growth factor (PDGF)-induced chemotaxis in human neuroblastoma SH-SY5Y cells. The inhibitory effect was stronger in the mutant α-Syn(A53T), found in hereditary PD, and the degree of inhibition was time-dependent, presumably because of the oligomerization of α-Syn. PDGF-induced activation of Akt or Erk was not influenced by α-Syn(A53T). Further studies revealed that α-Syn(A53T) inhibited PDGF-induced Rac1 activation, whereas Cdc42 activation remained unaffected, resulting in unbalanced actin filament remodeling. These results shed light on the understanding of pathological as well as physiological functions of extracellular α-Syn in neuronal cells. PMID:27886249

  2. MHCII Is Required for α-Synuclein-Induced Activation of Microglia, CD4 T Cell Proliferation, and Dopaminergic Neurodegeneration

    PubMed Central

    Harms, Ashley S.; Cao, Shuwen; Rowse, Amber L.; Thome, Aaron D.; Li, Xinru; Mangieri, Leandra R.; Cron, Randy Q.; Shacka, John J.; Raman, Chander

    2013-01-01

    Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease. PMID:23739956

  3. Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-Synuclein in the pathogenesis of Parkinson's Disease and related disorders.

    PubMed

    Lu, Yu; Prudent, Michel; Fauvet, Bruno; Lashuel, Hilal A; Girault, Hubert H

    2011-11-16

    α-Synuclein (α-syn) is a 140-amino acid protein that plays a central role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies. However, the molecular determinants that are responsible for triggering and/or propagating α-syn aggregation and toxicity remain poorly understood. Several studies have suggested that there are direct interactions between different metals and α-syn, but the role of metal ions and α-syn in the pathogenesis of PD is not firmly established. Interestingly, the majority of disease-associated post-translational modifications (PTMs) (e.g., truncation, phosphorylation, and nitration) of α-syn occur at residues within the C-terminal region (Y125, S129, Y133, and Y136) and in very close proximity to the putative metal binding sites. Therefore, we hypothesized that phosphorylation within this domain could influence the α-syn-metal interactions. In this paper, we sought to map the interactions between the di- and trivalent cations, Cu(II), Pb(II), Fe(II), and Fe(III), and the C-terminal region of α-syn encompassing residues 107-140 and to determine how phosphorylation at S129 or Y125 alters the specificity and binding affinity of metals using electrospray ionization-mass spectrometry (ESI-MS) and fluorescence spectroscopy. We demonstrate that D115-M116 and P128-S129 act as additional Cu(II) binding sites and show for the first time that the residues P128-S129 and D119 are also involved in Pb(II) and Fe(II) coordination, although D119 is not essential for binding to Fe(II) and Pb(II). Furthermore, we demonstrate that phosphorylation at either Y125 or S129 increases the binding affinity of Cu(II), Pb(II), and Fe(II), but not Fe(III). Additionally, we also show that phosphorylations at these residues lead to a shift in the binding sites of metal ions from the N-terminus to the C-teminus. Together, our findings provide critical insight into and expand our understanding of the molecular and structural bases underlying the

  4. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson's disease.

    PubMed

    Bir, Aritri; Sen, Oishimaya; Anand, Shruti; Khemka, Vineet Kumar; Banerjee, Priyanjalee; Cappai, Roberto; Sahoo, Arghyadip; Chakrabarti, Sasanka

    2014-12-01

    This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway.

  5. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast

    PubMed Central

    Liu, Xianpeng; Lee, Yong Joo; Liou, Liang-Chun; Ren, Qun; Zhang, Zhaojie; Wang, Shaoxiao; Witt, Stephan N.

    2011-01-01

    Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2–7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2–10 or 96–140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein. PMID:21642386

  6. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  7. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease.

    PubMed

    Allen Reish, Heather E; Standaert, David G

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses.

  8. Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death

    PubMed Central

    Volpicelli-Daley, Laura A.; Luk, Kelvin C.; Patel, Tapan P.; Tanik, Selcuk A.; Riddle, Dawn M.; Stieber, Anna; Meany, David F.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2011-01-01

    Summary Inclusions comprised of α-synuclein (α-syn), i.e. Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson’s Disease (PD) and dementia with Lewy Bodies (DLB). Here, we demonstrate that pre-formed fibrils generated from full length and truncated recombinant α-syn enter primary neurons, likely by adsorptive-mediated endocytosis and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions, their impact on neuronal functions, and provide a model for discovering therapeutics targeting pathologic α-syn- mediated neurodegeneration. PMID:21982369

  9. Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics

    NASA Astrophysics Data System (ADS)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Marvian, Amir Tayaranian; Pedersen, Jannik Nedergaard; Klausen, Lasse Hyldgaard; Christiansen, Gunna; Pedersen, Jan Skov; Dong, Mingdong; Morshedi, Dina; Otzen, Daniel E.

    2015-11-01

    The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different levels of interactions had different effects on αSN aggregation. While the weakly interacting HSA NPs did not alter the aggregation kinetic parameters of αSN, the rate of primary nucleation increased in the presence of PEI-HSA NPs. The aggregation rate changed in a PEI-HSA NP-concentration dependent and size independent manner and led to fibrils which were covered with small aggregates. Furthermore, PEI-HSA NPs reduced the level of membrane-perturbing oligomers and reduced oligomer toxicity in cell assays, highlighting a potential role for NPs in reducing αSN pathogenicity in vivo. Collectively, our results highlight the fact that a simple modification of NPs can strongly modulate interactions with target proteins, which may have important and positive implications in NP safety.The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different

  10. Prefoldin prevents aggregation of α-synuclein.

    PubMed

    Takano, Mariko; Tashiro, Erika; Kitamura, Akira; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Kinjo, Masataka; Ariga, Hiroyoshi

    2013-10-25

    Protein aggregation is observed in various neurodegeneration diseases, including Parkinson's disease (PD). Alpha-synuclein, a causative gene product of familial PD, is a major component of large aggregates (inclusion bodies) in PD. Prefoldin, a molecular chaperone comprised of six subunits, PFD1~6, prevents misfolding of newly synthesized nascent polypeptides and also prevents aggregation of protein such as a pathogenic form of Huntingtin, a causative gene product of Huntington disease. In this study, we first found that aggregation of TagRFP-tagged wild-type α-synuclein and its pathogenic mutants, but not that of GFP-tagged α-synuclein, occurred in transfected Neuro-2a cells. The fluorescence of GFP is weakened under the condition of pH 4.5-5.0, and TagRFP is a stable red fluorescence protein under an acidic condition. Aggregated TagRFP-wild-type α-synuclein and its pathogenic mutants in Neuro-2a cells were ubiquitinated and were colocalized with the prefoldin complex in the lysosome under this condition. Furthermore, knockdown of PFD2 and PFD5 disrupted prefoldin formation in α-synuclein-expressing cells, resulting in accumulation of aggregates of wild-type and pathogenic α-synuclein and in induction of cell death. The levels of aggregation and cell death in pathogenic α-synuclein-transfected cells tended to be higher than those in wild-type α-synuclein-transfected cells. These results suggest that prefoldin works as a protective factor in aggregated α-synuclein-induced cell death.

  11. Alpha-synuclein nitration and autophagy response are induced in peripheral blood cells from patients with Parkinson disease.

    PubMed

    Prigione, Alessandro; Piazza, Fabrizio; Brighina, Laura; Begni, Barbara; Galbussera, Alessio; Difrancesco, Jacopo C; Andreoni, Simona; Piolti, Roberto; Ferrarese, Carlo

    2010-06-14

    Several lines of evidence implicate a central role for alpha-synuclein (aSN) in the pathogenesis of Parkinson's disease (PD). Besides rare genetic mutations, post-translational mechanisms, such as oxidative stress-related nitration, may alter the protein properties in terms of propensity to aggregate or be degraded. Our group previously described increased reactive oxygen species (ROS) production within easily accessible peripheral blood mononuclear cells (PBMCs) in PD patients compared to healthy elderly subjects. In the present work, we demonstrated a significant induction of nitrotyrosine (NT)-modifications of aSN within PBMCs derived from individuals with idiopathic PD compared to controls, while aSN protein appeared similarly expressed in the two populations. The amount of NT-modified aSN within PBMCs was positively correlated with intracellular ROS concentration and inversely related to daily dosage of levodopa, making its measurement potentially relevant for disease-intervention studies. Neither aSN expression nor its NT-modifications showed any correlation to specific REP1 genotypes, polymorphic variants within aSN gene promoter whose association to PD susceptibility may occur through the modulation of aSN protein expression. Moreover, although NT-modified aSN has been linked to enhanced propensity to aggregate, we failed to detect an increased presence of insoluble aSN aggregates in PBMCs from PD subjects relative to controls, despite a lack of changes in the ubiquitin-proteasome expression or activity. Nonetheless, a significant activation of the autophagy response was identified within PBMCs from PD individuals, which could represent a protective mechanism against abnormal protein accumulation and may explain the lack of aSN aggregation. We discuss the relevance of these findings with respect to PD pathogenesis and biomarker development.

  12. Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity.

    PubMed

    Xiang, Wei; Schlachetzki, Johannes C M; Helling, Stefan; Bussmann, Julia C; Berlinghof, Marvin; Schäffer, Tilman E; Marcus, Katrin; Winkler, Jürgen; Klucken, Jochen; Becker, Cord-Michael

    2013-05-01

    Aggregation and neurotoxicity of misfolded alpha-synuclein (αSyn) are crucial mechanisms for progressive dopaminergic neurodegeneration associated with Parkinson's disease (PD). Posttranslational modifications (PTMs) of αSyn caused by oxidative stress, including modification by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), have been implicated to promote oligomerization of αSyn. However, it is yet unclear if these PTMs lead to different types of oligomeric intermediates. Moreover, little is known about which PTM-derived αSyn species exerts toxicity to dopaminergic cells. In this study, we directly compared aggregation characteristics of HNE-αSyn, n-αSyn, and o-αSyn. Generally, all of them promoted αSyn oligomerization. Particularly, HNE-αSyn and n-αSyn were more prone to forming oligomers than unmodified αSyn. Moreover, these PTMs prevented the formation of amyloid-like fibrils, although HNE-αSyn and o-αSyn were able to generate protofibrillar structures. The cellular effects associated with distinct PTMs were studied by exposing modified αSyn to dopaminergic Lund human mesencephalic (LUHMES) neurons. The cellular toxicity of HNE-αSyn was significantly higher than other PTM species. Furthermore, we tested the toxicity of HNE-αSyn in dopaminergic LUHMES cells and other cell types with low tyrosine hydroxylase (TH) expression, and additionally analyzed the loss of TH-immunoreactive cells in HNE-αSyn-treated LUHMES cells. We observed a selective toxicity of HNE-αSyn to neurons with higher TH expression. Further mechanistic studies showed that HNE-modification apparently increased the interaction of extracellular αSyn with neurons. Moreover, exposure of differentiated LUHMES cells to HNE-αSyn triggered the production of intracellular reactive oxygen species, preceding neuronal cell death. Antioxidant treatment effectively protected cells from the damage triggered by HNE-αSyn. Our findings suggest a specific

  13. α-Synuclein is a Novel Microtubule Dynamase.

    PubMed

    Cartelli, Daniele; Aliverti, Alessandro; Barbiroli, Alberto; Santambrogio, Carlo; Ragg, Enzio M; Casagrande, Francesca V M; Cantele, Francesca; Beltramone, Silvia; Marangon, Jacopo; De Gregorio, Carmelita; Pandini, Vittorio; Emanuele, Marco; Chieregatti, Evelina; Pieraccini, Stefano; Holmqvist, Staffan; Bubacco, Luigi; Roybon, Laurent; Pezzoli, Gianni; Grandori, Rita; Arnal, Isabelle; Cappelletti, Graziella

    2016-09-15

    α-Synuclein is a presynaptic protein associated to Parkinson's disease, which is unstructured when free in the cytoplasm and adopts α helical conformation when bound to vesicles. After decades of intense studies, α-Synuclein physiology is still difficult to clear up due to its interaction with multiple partners and its involvement in a pletora of neuronal functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and microtubules, which potentially impacts on synaptic functionality. In order to identify the mechanisms underlying these actions, we investigated the interaction between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to microtubules and tubulin α2β2 tetramer; the latter interaction inducing the formation of helical segment(s) in the α-Synuclein polypeptide. This structural change seems to enable α-Synuclein to promote microtubule nucleation and to enhance microtubule growth rate and catastrophe frequency, both in vitro and in cell. We also showed that Parkinson's disease-linked α-Synuclein variants do not undergo tubulin-induced folding and cause tubulin aggregation rather than polymerization. Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-dynamase, which influences microtubule organisation through its binding to tubulin and its regulating effects on microtubule nucleation and dynamics.

  14. α-Synuclein is a Novel Microtubule Dynamase

    PubMed Central

    Cartelli, Daniele; Aliverti, Alessandro; Barbiroli, Alberto; Santambrogio, Carlo; Ragg, Enzio M.; Casagrande, Francesca V.M.; Cantele, Francesca; Beltramone, Silvia; Marangon, Jacopo; De Gregorio, Carmelita; Pandini, Vittorio; Emanuele, Marco; Chieregatti, Evelina; Pieraccini, Stefano; Holmqvist, Staffan; Bubacco, Luigi; Roybon, Laurent; Pezzoli, Gianni; Grandori, Rita; Arnal, Isabelle; Cappelletti, Graziella

    2016-01-01

    α-Synuclein is a presynaptic protein associated to Parkinson’s disease, which is unstructured when free in the cytoplasm and adopts α helical conformation when bound to vesicles. After decades of intense studies, α-Synuclein physiology is still difficult to clear up due to its interaction with multiple partners and its involvement in a pletora of neuronal functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and microtubules, which potentially impacts on synaptic functionality. In order to identify the mechanisms underlying these actions, we investigated the interaction between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to microtubules and tubulin α2β2 tetramer; the latter interaction inducing the formation of helical segment(s) in the α-Synuclein polypeptide. This structural change seems to enable α-Synuclein to promote microtubule nucleation and to enhance microtubule growth rate and catastrophe frequency, both in vitro and in cell. We also showed that Parkinson’s disease-linked α-Synuclein variants do not undergo tubulin-induced folding and cause tubulin aggregation rather than polymerization. Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-dynamase, which influences microtubule organisation through its binding to tubulin and its regulating effects on microtubule nucleation and dynamics. PMID:27628239

  15. Prion-like spreading of pathological α-synuclein in brain.

    PubMed

    Masuda-Suzukake, Masami; Nonaka, Takashi; Hosokawa, Masato; Oikawa, Takayuki; Arai, Tetsuaki; Akiyama, Haruhiko; Mann, David M A; Hasegawa, Masato

    2013-04-01

    α-Synuclein is the major component of filamentous inclusions that constitute the defining characteristic of neurodegenerative α-synucleinopathies. However, the molecular mechanisms underlying α-synuclein accumulation and spread are unclear. Here we show that intracerebral injections of sarkosyl-insoluble α-synuclein from brains of patients with dementia with Lewy bodies induced hyperphosphorylated α-synuclein pathology in wild-type mice. Furthermore, injection of fibrils of recombinant human and mouse α-synuclein efficiently induced similar α-synuclein pathologies in wild-type mice. C57BL/6J mice injected with α-synuclein fibrils developed abundant Lewy body/Lewy neurite-like pathology, whereas mice injected with soluble α-synuclein did not. Immunoblot analysis demonstrated that endogenous mouse α-synuclein started to accumulate 3 months after inoculation, while injected human α-synuclein fibrils disappeared in about a week. These results indicate that α-synuclein fibrils have prion-like properties and inoculation into wild-type brain induces α-synuclein pathology in vivo. This is a new mouse model of sporadic α-synucleinopathy and should be useful for elucidating progression mechanisms and evaluating disease-modifying therapy.

  16. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    PubMed

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  17. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    PubMed Central

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  18. Neuroinvasion of α-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation

    PubMed Central

    Breid, Sara; Bernis, Maria E.; Babila, Julius T.; Garza, Maria C.

    2016-01-01

    ABSTRACT α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83+/−:Gfap-luc+/−) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvade the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease. IMPORTANCE Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein causes

  19. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  20. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  1. Differences in the binding of copper(I) to α- and β-synuclein.

    PubMed

    De Ricco, Riccardo; Valensin, Daniela; Dell'Acqua, Simone; Casella, Luigi; Gaggelli, Elena; Valensin, Gianni; Bubacco, Luigi; Mangani, Stefano

    2015-01-05

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the presence of abnormal α-synuclein (αS) deposits in the brain. Alterations in homeostasis and metal-induced oxidative stress may play a crucial role in the progression of αS amyloid assembly and pathogenesis of PD. Contrary to αS, β-synuclein (βS) is not involved in the PD etiology. However, it has been suggested that the βS/αS ratio is altered in PD, indicating that a correct balance of these two proteins is implicated in the inhibition of αS aggregation. αS and βS share similar abilities to coordinate Cu(II). In this study, we investigated and compared the interaction of Cu(I) with the N-terminal portion of βS and αS by means of NMR, circular dichroism, and X-ray absorption spectroscopies. Our data show the importance of M10K mutation, which induces different Cu(I) chemical environments. Coordination modes 3S1O and 2S2O were identified for βS and αS, respectively. These new insights into the bioinorganic chemistry of copper and synuclein proteins are a basis to understand the molecular mechanism by which βS might inhibit αS aggregation.

  2. A53T Human α-Synuclein Overexpression in Transgenic Mice Induces Pervasive Mitochondria Macroautophagy Defects Preceding Dopamine Neuron Degeneration

    PubMed Central

    Xie, Zhiguo; Turkson, Susie

    2015-01-01

    In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human α-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of α-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies. PMID:25609609

  3. Targeted overexpression of human alpha-synuclein in oligodendroglia induces lesions linked to MSA-like progressive autonomic failure.

    PubMed

    Stemberger, Sylvia; Poewe, Werner; Wenning, Gregor K; Stefanova, Nadia

    2010-08-01

    Multiple system atrophy (MSA) is a rare neurodegenerative disease of undetermined cause manifesting with progressive autonomic failure (AF), cerebellar ataxia and parkinsonism due to neuronal loss in multiple brain areas associated with (oligodendro)glial cytoplasmic alpha-synuclein (alpha SYN) inclusions (GCIs). Using proteolipid protein (PLP)-alpha-synuclein (alpha SYN) transgenic mice we have previously reported parkinsonian motor deficits triggered by MSA-like alpha SYN inclusions. We now extend these observations by demonstrating degeneration of brain areas that are closely linked to progressive AF and other non-motor symptoms in MSA, in (PLP)-alpha SYN transgenic mice as compared to age-matched non-transgenic controls. We show delayed loss of cholinergic neurons in nucleus ambiguus at 12 months of age as well as early neuronal loss in laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus and Onuf's nucleus at 2 months of age associated with alpha SYN oligodendroglial overexpression. We also report that neuronal loss triggered by MSA-like alpha SYN inclusions is absent up to 12 months of age in the thoracic intermediolateral cell column suggesting a differential dynamic modulation of alpha SYN toxicity within the murine autonomic nervous system. Although the spatial and temporal evolution of central autonomic pathology in MSA is unknown our findings corroborate the utility of the (PLP)-alpha SYN transgenic mouse model as a testbed for the study of oligodendroglial alpha SYN mediated neurodegeneration replicating both motor and non-motor aspects of MSA.

  4. Structural and Dynamical Insights into the Membrane-Bound α-Synuclein

    PubMed Central

    Mukhopadhyay, Samrat

    2013-01-01

    Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson’s disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES), which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å) layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could potentially be

  5. Direct detection of alpha synuclein oligomers in vivo

    PubMed Central

    2013-01-01

    Background Rat models of Parkinson’s disease are widely used to elucidate the mechanisms underlying disease etiology or to investigate therapeutic approaches. Models were developed using toxins such as MPTP or 6-OHDA to specifically target dopaminergic neurons resulting in acute neuronal loss in the substantia nigra or by using viral vectors to induce the specific and gradual expression of alpha synuclein in the substantia nigra. The detection of alpha- synuclein oligomers, the presumed toxic species, in these models and others has been possible using only indirect biochemical approaches to date. Here we coinjected AAVs encoding alpha-synuclein fused to the N- or C-terminal half of VenusYFP in rat substantia nigra pars compacta and describe for the first time a novel viral vector rodent model with the unique ability to directly detect and track alpha synuclein oligomers ex vivo and in vivo. Results Viral coinjection resulted in widespread VenusYFP signal within the nigrostriatal pathway, including cell bodies in the substantia nigra and synaptic accumulation in striatal terminals, suggestive of in vivo alpha-synuclein oligomers formation. Transduced rats showed alpha-synuclein induced dopaminergic neuron loss in the substantia nigra, the appearance of dystrophic neurites, and gliosis in the striatum. Moreover, we have applied in vivo imaging techniques in the living mouse to directly image alpha-synuclein oligomers in the cortex. Conclusion We have developed a unique animal model that provides a tool for the Parkinson’s disease research community with which to directly detect alpha- synuclein oligomers in vivo and screen therapeutic approaches targeting alpha-synuclein oligomers. PMID:24252244

  6. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease.

    PubMed

    Alexopoulou, Zoi; Lang, Johannes; Perrett, Rebecca M; Elschami, Myriam; Hurry, Madeleine E D; Kim, Hyoung Tae; Mazaraki, Dimitra; Szabo, Aron; Kessler, Benedikt M; Goldberg, Alfred Lewis; Ansorge, Olaf; Fulga, Tudor A; Tofaris, George K

    2016-08-09

    In Parkinson's disease, misfolded α-synuclein accumulates, often in a ubiquitinated form, in neuronal inclusions termed Lewy bodies. An important outstanding question is whether ubiquitination in Lewy bodies is directly relevant to α-synuclein trafficking or turnover and Parkinson's pathogenesis. By comparative analysis in human postmortem brains, we found that ubiquitin immunoreactivity in Lewy bodies is largely due to K63-linked ubiquitin chains and markedly reduced in the substantia nigra compared with the neocortex. The ubiquitin staining in cells with Lewy bodies inversely correlated with the content and pathological localization of the deubiquitinase Usp8. Usp8 interacted and partly colocalized with α-synuclein in endosomal membranes and, both in cells and after purification, it deubiquitinated K63-linked chains on α-synuclein. Knockdown of Usp8 in the Drosophila eye reduced α-synuclein levels and α-synuclein-induced eye toxicity. Accordingly, in human cells, Usp8 knockdown increased the lysosomal degradation of α-synuclein. In the dopaminergic neurons of the Drosophila model, unlike knockdown of other deubiquitinases, Usp8 protected from α-synuclein-induced locomotor deficits and cell loss. These findings strongly suggest that removal of K63-linked ubiquitin chains on α-synuclein by Usp8 is a critical mechanism that reduces its lysosomal degradation in dopaminergic neurons and may contribute to α-synuclein accumulation in Lewy body disease.

  7. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro.

    PubMed

    Czapski, Grzegorz A; Gąssowska, Magdalena; Wilkaniec, Anna; Cieślik, Magdalena; Adamczyk, Agata

    2013-09-17

    Extracellular alpha-synuclein (ASN) could be involved in the pathomechanism of Parkinson's disease (PD) via disturbances of calcium homeostasis, activation of nitric oxide synthase and oxidative/nitrosative stress. In this study we analyzed the role of cyclin-dependent kinase 5 (Cdk5) in the molecular mechanism(s) of ASN toxicity. We found that exposure of PC12 cells to ASN increases Cdk5 activity via calpain-dependent p25 formation and by enhancement of Cdk5 phosphorylation at Tyr15. Cdk5 and calpain inhibitors prevented ASN-evoked cell death. Our findings, indicating the participation of Cdk5 in ASN toxicity, provide new insight into how extracellular ASN may trigger dopaminergic cell dysfunction in PD.

  8. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation

    PubMed Central

    Gonzalez-Rey, Elena; Lachaud, Christian C.; Guilliams, Tim; Fernandez-Montesinos, Rafael; Benitez-Rondan, Alicia; Robledo, Gema; Hmadcha, Abdelkrim; Delgado, Mario; Dobson, Christopher M.; Pozo, David

    2013-01-01

    In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated neuroinflammation, which accompanies the development of Parkinson’s disease and other related disorders, such as Dementia with Lewy Bodies and Alzheimer’s disease. Nevertheless, the cellular and molecular mechanisms underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood. Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10 secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3 (TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of sporadic α-synuclein-related neuropathologies. PMID:24236103

  9. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  10. Triptolide Promotes the Clearance of α-Synuclein by Enhancing Autophagy in Neuronal Cells.

    PubMed

    Hu, Guanzheng; Gong, Xiaoli; Wang, Le; Liu, Mengru; Liu, Yang; Fu, Xia; Wang, Wei; Zhang, Ting; Wang, Xiaomin

    2016-03-09

    Parkinson's disease (PD) is an aging-associated neurodegenerative disease with a characteristic feature of α-synuclein accumulation. Point mutations (A53T, A30P) that increase the aggregation propensity of α-synuclein result in familial early onset PD. The abnormal metabolism of α-synuclein results in aberrant level changes of α-synuclein in PD. In pathological conditions, α-synuclein is degraded mainly by the autophagy-lysosome pathway. Triptolide (T10) is a monomeric compound isolated from a traditional Chinese herb. Our group demonstrated for the first time that T10 possesses potent neuroprotective properties both in vitro and in vivo PD models. In the present study, we reported T10 as a potent autophagy inducer in neuronal cells, which helped to promote the clearance of various forms of α-synuclein in neuronal cells. We transfected neuronal cells with A53T mutant (A53T) or wild-type (WT) α-synuclein plasmids and found T10 attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. We observed that T10 significantly reduced both A53T and WT α-synuclein level in neuronal cell line, as well as in primary cultured cortical neurons. Excluding the changes of syntheses, secretion, and aggregation of α-synuclein, we further added autophagy inhibitor or proteasome inhibitor with T10, and we noticed that T10 promoted the clearance of α-synuclein mainly by the autophagic pathway. Lastly, we observed increased autophagy marker LC3-II expression and autophagosomes by GFP-LC3-II accumulation and ultrastructural characterization. However, the lysosome activity and cell viability were not modulated by T10. Our study revealed that T10 could induce autophagy and promote the clearance of both WT and A53T α-synuclein in neurons. These results provide evidence of T10 as a promising mean to treat PD and other neurodegenerative diseases by reducing pathogenic proteins in neurons.

  11. Peculiarities of copper binding to alpha-synuclein.

    PubMed

    Ahmad, Atta; Burns, Colin S; Fink, Anthony L; Uversky, Vladimir N

    2012-01-01

    Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of a-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of alpha-synuclein aggregation enhancers. In this study, we have systematically characterized the a-synuclein-Cu21 binding sites and analyzed the possible role of metal binding in a-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that a-synuclein possesses at least two binding sites for Cu21. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and Beta-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu21 binding.

  12. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  13. Guanidine hydrochloride denaturation of dopamine-induced α-synuclein oligomers: a small-angle X-ray scattering study.

    PubMed

    Pham, Chi L L; Kirby, Nigel; Wood, Kathleen; Ryan, Timothy; Roberts, Blaine; Sokolova, Anna; Barnham, Kevin J; Masters, Colin L; Knott, Robert B; Cappai, Roberto; Curtain, Cyril C; Rekas, Agata

    2014-01-01

    Alpha-synuclein (α-syn) forms the amyloid-containing Lewy bodies found in the brain in Parkinson's disease. The neurotransmitter dopamine (DA) reacts with α-syn to form SDS-resistant soluble, non-amyloid, and melanin-containing oligomers. Their toxicity is debated, as is the nature of their structure and their relation to amyloid-forming conformers of α-syn. The small-angle X-ray scattering technique in combination with modeling by the ensemble optimization method showed that the un-reacted native protein populated three broad classes of conformer, while reaction with DA gave a restricted ensemble range suggesting that the rigid melanin molecule played an important part in their structure. We found that 6 M guanidine hydrochloride did not dissociate α-syn DA-reacted dimers and trimers, suggesting covalent linkages. The pathological significance of covalent association is that if they are non-toxic, the oligomers would act as a sink for toxic excess DA and α-syn; if toxic, their stability could enhance their toxicity. We argue it is essential, therefore, to resolve the question of whether they are toxic or not.

  14. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine.

    PubMed

    Jiang, Wenda; Li, Ji; Zhang, Zhuang; Wang, Hongxin; Wang, Zhejian

    2014-12-15

    Abuse of methamphetamine (METH) increases the risk of occurrence of Parkinson׳s disease (PD) in the individuals. Increased expression of synaptic protein α-synuclein (encoded by gene Snca) is remarkably associated with the neuronal loss and motor dysfunction in the patients with PD. The present study aimed to explore the epigenetic mechanism underlying the altered expression of α-synuclein in substantia nigra in the rats previously exposed to METH. Exposure to METH induced significant behavioral impairments in the rotarod test and open field test, as well as the upregulation of cytokine synthesis in the substantia nigra. Significantly increased expression of α-synuclein was also observed in the substantia nigra in the rats exposed to METH. Further chromatin immunoprecipitation and bisulfite sequencing studies revealed a significantly decreased cytosine methylation in the Snca promoter region in the rats exposed to METH. It was found that the occupancy of methyl CpG binding protein 2 and DNA methyltransferase 1 in Snca promoter region was also significantly decreased in the substantia nigra in the modeled rats. These results advanced our understanding on the mechanism of the increased incidence of PD in the individuals with history use of METH, and shed novel lights on the development of therapeutic approaches for the patients conflicted with this neurological disorder.

  15. Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila.

    PubMed

    Zhu, Zhou-Jing; Wu, Ka-Chun; Yung, Wing-Ho; Qian, Zhong-Ming; Ke, Ya

    2016-04-01

    Alpha-synuclein aggregation is the central hallmark of both sporadic and familial Parkinson's disease (PD). Patients with different PD-causing genetic defects of alpha-synuclein usually show distinctive clinical features that are atypical to sporadic PD. Iron accumulation is invariably found in PD. Recent studies showed that mutant and wild-type alpha-synuclein may have differential interaction with iron and mutant alpha-synuclein toxicity could be preferentially exacerbated by iron. We hence hypothesized that iron overload could selectively influence mutant alpha-synuclein toxicity and disease phenotypes. To test the hypothesis, we investigated if Drosophila melanogaster over-expressing A53T, A30P, and wild-type (WT) alpha-synuclein have different responses to iron treatment. We showed that iron treatment induced similar reduction of survival rate in all flies but induced a more severe motor decline in A53T and A30P mutant alpha-synuclein expressing flies, suggesting interaction between mutant alpha-synuclein and iron. Although no significant difference in total head iron content was found among these flies, we demonstrated that iron treatment induced selective DA neuron loss in motor-related PPM3 cluster only in the flies that express A53T and A30P mutant alpha-synuclein. We provided the first in vivo evidence that iron overload could induce distinctive neuropathology and disease phenotypes in mutant but not WT alpha-synuclein expressing flies, providing insights to the cause of clinical features selectively exhibited by mutant alpha-synuclein carriers.

  16. shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model

    PubMed Central

    Zharikov, Alevtina D.; Cannon, Jason R.; Tapias, Victor; Bai, Qing; Horowitz, Max P.; Shah, Vipul; El Ayadi, Amina; Hastings, Teresa G.; Greenamyre, J. Timothy; Burton, Edward A.

    2015-01-01

    Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson’s disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus–mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD. PMID:26075822

  17. Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology

    PubMed Central

    Grima, Jonathan C.; Chen, Guanxing; Swing, Debbie; Tessarollo, Lino

    2017-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson’s disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing wild-type or mutant LRRK2 have been described with varying degrees of LRRK2-related abnormalities and modest pathologies. None of these studies directly addressed the role of the kinase domain in the changes observed and none of the mice present with robust features of the human disease. In an attempt to address these issues, we created a conditional LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2 G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was conditionally controlled using the tet-off system in which the presence of tetracycline-transactivator protein (tTA) with a CAMKIIα promoter (CAMKIIα-tTA) induced expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain. Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and α-synuclein pathology in a kinase-dependent manner. Similar to other genetically engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons. These mice provide an important new tool to study neurobiological changes associated with the increased kinase activity from the LRRK2 G2019S mutation, which may ultimately lead to a better understanding of not only the physiologic actions of LRRK2, but also potential pathologic actions that underlie LRRK2 GS-associated PD. PMID:28321439

  18. Xylosylated-proteoglycan-induced Golgi alterations.

    PubMed Central

    Kanwar, Y S; Rosenzweig, L J; Jakubowski, M L

    1986-01-01

    The effect of p-nitrophenyl beta-D-xylopyranoside on the Golgi apparatus and proteoglycans (PG) of the renal glomerulus was investigated in an isolated kidney organ perfusion system and monitored by utilizing [35S]sulfate as the PG precursor. By electron microscopy, a selective intracytoplasmic vesiculization of Golgi apparatus of visceral epithelium was observed in the beta-xyloside-treated kidneys. Electron microscopic autoradiography revealed most grains localized to the intracytoplasmic Golgi-derived vesicles, while very few grains were associated with the extracellular matrix membranes. Biochemically, a 2.3-fold increase in cellular matrix and a reduction by a factor of 1.7 in extracellular matrix of [35S]sulfate incorporation was observed. Besides a larger macromolecular form (Kavg = 0.25; Mr = 130,000), lower molecular weight PGs were recovered in the cellular (Kavg = 0.46, Mr = 30,000) and matrical (Kavg = 0.42, Mr = 45,000) compartments after xyloside treatment. The xyloside treatment increased the incorporated radioactivity, mostly included in free glycosaminoglycans and small PGs, in the media fraction by 3.8-fold. These data indicate that xyloside induces a dramatic imbalance in the de novo-synthesized PGs of cellular and extracellular compartments and that cellular accumulation of xylosylated (sulfated) PGs selectively alters the Golgi apparatus of the glomerular epithelial cell, the cell that actively synthesizes PGs. Images PMID:3462708

  19. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease

    PubMed Central

    Alexopoulou, Zoi; Lang, Johannes; Perrett, Rebecca M.; Elschami, Myriam; Hurry, Madeleine E. D.; Kim, Hyoung Tae; Mazaraki, Dimitra; Szabo, Aron; Kessler, Benedikt M.; Goldberg, Alfred Lewis; Ansorge, Olaf; Fulga, Tudor A.; Tofaris, George K.

    2016-01-01

    In Parkinson’s disease, misfolded α-synuclein accumulates, often in a ubiquitinated form, in neuronal inclusions termed Lewy bodies. An important outstanding question is whether ubiquitination in Lewy bodies is directly relevant to α-synuclein trafficking or turnover and Parkinson’s pathogenesis. By comparative analysis in human postmortem brains, we found that ubiquitin immunoreactivity in Lewy bodies is largely due to K63-linked ubiquitin chains and markedly reduced in the substantia nigra compared with the neocortex. The ubiquitin staining in cells with Lewy bodies inversely correlated with the content and pathological localization of the deubiquitinase Usp8. Usp8 interacted and partly colocalized with α-synuclein in endosomal membranes and, both in cells and after purification, it deubiquitinated K63-linked chains on α-synuclein. Knockdown of Usp8 in the Drosophila eye reduced α-synuclein levels and α-synuclein–induced eye toxicity. Accordingly, in human cells, Usp8 knockdown increased the lysosomal degradation of α-synuclein. In the dopaminergic neurons of the Drosophila model, unlike knockdown of other deubiquitinases, Usp8 protected from α-synuclein–induced locomotor deficits and cell loss. These findings strongly suggest that removal of K63-linked ubiquitin chains on α-synuclein by Usp8 is a critical mechanism that reduces its lysosomal degradation in dopaminergic neurons and may contribute to α-synuclein accumulation in Lewy body disease. PMID:27444016

  20. Localization of synucleins in the mammalian cochlea.

    PubMed

    Akil, O; Weber, C M; Park, S N; Ninkina, N; Buchman, V; Lustig, L R

    2008-12-01

    Synucleins are widely expressed synaptic proteins within the central nervous system that have been implicated in such neurodegenerative disorders as Parkinson's disease. In this study, an initial characterization of all three synucleins, alpha-, beta-, and gamma-synuclein, within the cochlea was undertaken. Reverse transcriptase-polymerase chain reaction (PCR) demonstrated all three synuclein mRNA species within microdissected cochlear tissue. Quantitative PCR suggests that beta-synuclein is the most abundantly expressed form, followed by gamma- and then alpha-synuclein. Western blot analysis similarly demonstrates all three synuclein proteins within microdissected cochlear tissue. Immunofluorescence localizes the three synucleins predominantly to the efferent neuronal system at the efferent outer hair cell synapse, with some additional localization within the efferent tunnel-crossing fibers (alpha- and gamma-synuclein), spiral ganglion (beta-synuclein), inner spiral bundle (gamma-synuclein), and stria vascularis (alpha- > beta-synuclein). Developmentally, gamma-synuclein can be seen in the region of the outer hair cells by E19, while alpha- and beta-synuclein do not clearly appear there until approximately P10. Additional studies in a null-mutant gamma-synuclein mouse show no histological changes in the organ of Corti with normal hair cell and spiral ganglion cell counts, and normal ABR and DPOAE thresholds in wild-type vs mutant littermates. Together, these results localize synucleins to the efferent cholinergic neuronal auditory system, pointing to a role in normal auditory function, and raising the potential implications for their role in auditory neurodegenerative disorders. However, gamma-synuclein alone is not required for the development and maintenance of normal hearing through P21. Whether overlapping roles of the other synucleins help compensate for the loss of gamma-synuclein remains to be determined.

  1. Extracellular α-synuclein induces sphingosine 1-phosphate receptor subtype 1 uncoupled from inhibitory G-protein leaving β-arrestin signal intact

    PubMed Central

    Zhang, Lifang; Okada, Taro; Badawy, Shaymaa Mohamed Mohamed; Hirai, Chihoko; Kajimoto, Taketoshi; Nakamura, Shun-ichi

    2017-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The presence of α-synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, is the cytopathological hallmark of PD. Increasing bodies of evidence suggest that cell-to-cell transmission of α-Syn plays a role in the progression of PD. Although extracellular α-Syn is known to cause abnormal cell motility, the precise mechanism remains elusive. Here we show that impairment of platelet-derived growth factor-induced cell motility caused by extracellular α-Syn is mainly attributed to selective inhibition of sphingosine 1-phosphate (S1P) signalling. Treatment of human neuroblastoma cells with recombinant α-Syn caused S1P type 1 (S1P1) receptor-selective uncoupling from inhibitory G-protein (Gi) as determined by both functional and fluorescence resonance energy transfer (FRET)-based structural analyses. By contrast, α-Syn caused little or no effect on S1P2 receptor-mediated signalling. Both wild-type and α-Syn(A53T), a mutant found in familiar PD, caused uncoupling of S1P1 receptor, although α-Syn(A53T) showed stronger potency in uncoupling. Moreover, S1P1 receptor-mediated β-arrestin signal was unaltered by α-Syn(A53T). These results suggest that exogenous α-Syn modulates S1P1 receptor-mediated signalling from both Gi and β-arrestin signals into β-arrestin-biased signal. These findings uncovered a novel function of exogenous α-Syn in the cells. PMID:28300069

  2. α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity*♦

    PubMed Central

    Chen, Robert H. C.; Wislet-Gendebien, Sabine; Samuel, Filsy; Visanji, Naomi P.; Zhang, Gang; Marsilio, Diana; Langman, Tammy; Fraser, Paul E.; Tandon, Anurag

    2013-01-01

    α-Synuclein is an abundant presynaptic protein and a primary component of Lewy bodies in Parkinson disease. Although its pathogenic role remains unclear, in healthy nerve terminals α-synuclein undergoes a cycle of membrane binding and dissociation. An α-synuclein binding assay was used to screen for vesicle proteins involved in α-synuclein membrane interactions and showed that antibodies directed to the Ras-related GTPase Rab3a and its chaperone RabGDI abrogated α-synuclein membrane binding. Biochemical analyses, including density gradient sedimentation and co-immunoprecipitation, suggested that α-synuclein interacts with membrane-associated GTP-bound Rab3a but not to cytosolic GDP-Rab3a. Accumulation of membrane-bound α-synuclein was induced by the expression of a GTPase-deficient Rab3a mutant, by a dominant-negative GDP dissociation inhibitor mutant unable to recycle Rab3a off membranes, and by Hsp90 inhibitors, radicicol and geldanamycin, which are known to inhibit Rab3a dissociation from membranes. Thus, all treatments that inhibited Rab3a recycling also increased α-synuclein sequestration on intracellular membranes. Our results suggest that membrane-bound GTP-Rab3a stabilizes α-synuclein on synaptic vesicles and that the GDP dissociation inhibitor·Hsp90 complex that controls Rab3a membrane dissociation also regulates α-synuclein dissociation during synaptic activity. PMID:23344955

  3. α-Synuclein and anti-α-synuclein antibodies in Parkinson's disease, atypical Parkinson syndromes, REM sleep behavior disorder, and healthy controls.

    PubMed

    Smith, Lynnae M; Schiess, Mya C; Coffey, Mary P; Klaver, Andrea C; Loeffler, David A

    2012-01-01

    α-synuclein is thought to play a key role in Parkinson's disease (PD) because it is the major protein in Lewy bodies, and because its gene mutations, duplication, and triplication are associated with early-onset PD. There are conflicting reports as to whether serum and plasma concentrations of α-synuclein and anti-α-synuclein antibodies differ between PD and control subjects. The objectives of this study were to compare the levels of α-synuclein and its antibodies between individuals with typical PD (n=14), atypical Parkinson syndromes (n=11), idiopathic rapid eye movement sleep behavior disorder (n=10), and healthy controls (n=9), to assess the strength of association between these serum proteins, and to determine group sizes needed for a high probability (80% power) of detecting statistical significance for 25% or 50% differences between typical PD and control subjects for these measurements. Analysis of log-transformed data found no statistically significant differences between groups for either α-synuclein or its antibodies. The concentrations of these proteins were weakly correlated (Spearman rho=0.16). In subjects with typical PD and atypical Parkinson syndromes, anti-α-synuclein antibody levels above 1.5 µg/ml were detected only in subjects with no more than four years of clinical disease. Power analysis indicated that 236 and 73 samples per group would be required for an 80% probability that 25% and 50% differences, respectively, in mean α-synuclein levels between typical PD and control subjects would be statistically significant; for anti-α-synuclein antibodies, 283 and 87 samples per group would be required. Our findings are consistent with those previous studies which suggested that serum concentrations of α-synuclein and its antibodies are not significantly altered in PD.

  4. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP

    PubMed Central

    Roberts, Hazel L.; Schneider, Bernard L.; Brown, David R.

    2017-01-01

    α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also measured. We show that α-synuclein expression induces β-amyloid secretion and amyloidogenic processing of APP in neuronal cell lines. Certain mutations of α-synuclein potentiate APP amyloidogenic processing. γ-Secretase activity was not enhanced by wildtype α-synuclein expression, however β-secretase protein levels were induced. Furthermore, a correlation between α-synuclein and β-secretase protein was seen in rat brain striata. Iron chelation abolishes the effect of α-synuclein on neuronal cell β-amyloid secretion, whereas overexpression of the ferrireductase enzyme Steap3 is robustly pro-amyloidogenic. We propose that α-synuclein promotes β-amyloid formation by modulating β-cleavage of APP, and that this is potentially mediated by the levels of reduced iron and oxidative stress. PMID:28187176

  5. DESIPRAMINE INDUCED CHANGES IN THE NOREPINEPRHINE TRANSPORTER, α- AND γ-SYNUCLEIN IN THE HIPPOCAMPUS, AMYGDALA AND STRIATUM

    PubMed Central

    Jeannotte, Alexis M.; McCarthy, John G.; Sidhu, Anita

    2009-01-01

    The high incidence of depression in Parkinson’s Disease (PD) has been well-documented in the clinic; however, the underlying molecular mechanisms of these overlapping pathologies remain elusive. Using a rodent model of depression, the Wistar-Kyoto (WKY) rat, we previously demonstrated that in the frontal cortex the altered expression and protein interactions of alpha- and gamma-synculein (α-Syn, γ-Syn) were associated with dysregulated trafficking of the norepinephrine transporter (NET). Chronic treatment with Desipramine (DMI), a NET-selective antidepressant, caused a disappearance of depressive-like behavior that was accompanied by a change in α-Syn and γ-Syn expression and their trafficking of NET. Using this same model, we examined the expression of NET, α-Syn and γ-Syn in the hippocampus, amygdale, brainstem, and striatum, all regions implicated in the development or maintenance of depression or PD pathology. Following chronic treatment with DMI, we observed a significant decrease in NET in the hippocampus, amygdala, and brainstem; decrease in γ-Syn in the hippocampus and amygdala; and, increase in α-Syn in the hippocampus and amygdala. Unexpectedly, we observed a significant decrease in α-Syn expression in the striatum of the WKY following chronic DMI treatment. The altered expression of NET, α-Syn and γ-Syn in different brain suggest that DMI’s ability to improve depressive-like behavior in a rodent is associated with region-specific changes in the regulation of NET by α- and γ-Syn. PMID:19818834

  6. Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson's disease

    PubMed Central

    Davies, Sian E.; Hallett, Penelope J.; Moens, Thomas; Smith, Gaynor; Mangano, Emily; Kim, Hyoung Tae; Goldberg, Alfred L.; Liu, Ji-Long; Isacson, Ole; Tofaris, George K.

    2014-01-01

    Parkinson's disease is a neurodegenerative disorder, characterized by accumulation and misfolding of α-synuclein. Although the level of α-synuclein in neurons is fundamentally linked to the onset of neurodegeneration, multiple pathways have been implicated in its degradation, and it remains unclear which are the critical ubiquitination enzymes that protect against α-synuclein accumulation in vivo. The ubiquitin ligase Nedd4 targets α-synuclein to the endosomal–lysosomal pathway in cultured cells. Here we asked whether Nedd4-mediated degradation protects against α-synuclein-induced toxicity in the Drosophila and rodent models of Parkinson's disease. We show that overexpression of Nedd4 can rescue the degenerative phenotype from ectopic expression of α-synuclein in the Drosophila eye. Overexpressed Nedd4 in the Drosophila brain prevented the α-synuclein-induced locomotor defect whereas reduction in endogenous Nedd4 by RNAi led to worsening motor function and increased loss of dopaminergic neurons. Accordingly, AAV-mediated expression of wild-type but not the catalytically inactive Nedd4 decreased the α-synuclein-induced dopaminergic cell loss in the rat substantia nigra and reduced α-synuclein accumulation. Collectively, our data in two evolutionarily distant model organisms strongly suggest that Nedd4 is a modifier of α-synuclein pathobiology and thus a potential target for neuroprotective therapies. PMID:24388974

  7. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease

    PubMed Central

    Myöhänen, TT; Hannula, MJ; Van Elzen, R; Gerard, M; Van Der Veken, P; García-Horsman, JA; Baekelandt, V; Männistö, PT; Lambeir, AM

    2012-01-01

    BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes. PMID:22233220

  8. Mechanistic study of the inhibitory activity of Geum urbanum extract against α-Synuclein fibrillation.

    PubMed

    Lobbens, Eva S; Breydo, Leonid; Skamris, Thomas; Vestergaard, Bente; Jäger, Anna K; Jorgensen, Lene; Uversky, Vladimir; van de Weert, Marco

    2016-09-01

    The presence of Lewy bodies and Lewy neurites is a major pathological hallmark of Parkinson's disease and is hypothesized to be linked to disease development, although this is not yet conclusive. Lewy bodies and Lewy neurites primarily consist of fibrillated α-Synuclein; yet, there is no treatment available targeting stabilization of α-Synuclein in its native state. The aim of the present study was to investigate the inhibitory activity of an ethanolic extract of Geum urbanum against α-Synuclein fibrillation and examine the structural changes of α-Synuclein in the presence of the extract. The anti-fibrillation and anti-aggregation activities of the plant extract were monitored by thioflavin T fibrillation assays and size exclusion chromatography, while structural changes were followed by circular dichroism, Fourier transform infrared spectroscopy, intrinsic fluorescence, small angle X-ray scattering and electron microscopy. Since the extract is a complex mixture, structure-function relationships could not be determined. Under the experimental conditions investigated, Geum urbanum was found to inhibit α-Synuclein fibrillation in a concentration dependent way, and to partly disintegrate preformed α-Synuclein fibrils. Based on the structural changes of α-Synuclein in the presence of extract, we propose that Geum urbanum delays α-Synuclein fibrillation either by reducing the fibrillation ability of one or more of the aggregation prone intermediates or by directing α-Synuclein aggregation towards a non-fibrillar state. However, whether these alterations of the fibrillation pathway lead to less pathogenic species is yet to be determined.

  9. Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.

    PubMed

    Daher, João Paulo Lima

    2017-01-01

    Parkinson's disease (PD) is a progressively debilitating neurodegenerative syndrome. It is best described as a movement disorder characterized by motor dysfunctions, progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta, and abnormal intraneuronal protein aggregates, named Lewy bodies and Lewy neurites. Nevertheless, knowledge of the molecular events leading to this pathophysiology is incomplete. To date, only mutations in the α-synuclein and LRRK2-encoding genes have been associated with typical findings of clinical and pathologic PD. LRRK2 appears to have a central role in the pathogenesis of PD as it is associated with α-synuclein pathology and other proteins implicated in neurodegeneration. Thus, LRRK2 dysfunction may influence the accumulation of α-synuclein and its pathology through diverse pathomechanisms altering cellular functions and signaling pathways, including immune system, autophagy, vesicle trafficking, and retromer complex modulation. Consequently, development of novel LRRK2 inhibitors can be justified to treat the neurodegeneration associated with abnormal α-synuclein accumulation.

  10. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease.

    PubMed

    Lehri-Boufala, Sonia; Ouidja, Mohand-Ouidir; Barbier-Chassefière, Véronique; Hénault, Emilie; Raisman-Vozari, Rita; Garrigue-Antar, Laure; Papy-Garcia, Dulce; Morin, Christophe

    2015-01-01

    The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

  11. New Roles of Glycosaminoglycans in α-Synuclein Aggregation in a Cellular Model of Parkinson Disease

    PubMed Central

    Lehri-Boufala, Sonia; Ouidja, Mohand-Ouidir; Barbier-Chassefière, Véronique; Hénault, Emilie; Raisman-Vozari, Rita; Garrigue-Antar, Laure; Papy-Garcia, Dulce; Morin, Christophe

    2015-01-01

    The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology. PMID:25617759

  12. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2.

    PubMed

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer; Lee, Seung-Jae

    2016-06-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target.

  13. Efavirenz Induces Neuronal Autophagy and Mitochondrial Alterations

    PubMed Central

    Purnell, Phillip R.

    2014-01-01

    Efavirenz (EFV) is a non-nucleoside reverse-transcriptase inhibitor in wide use for the treatment of human immunodeficiency virus infection. Although EFV is generally well tolerated, neuropsychiatric toxicity has been well documented. The toxic effects of EFV in hepatocytes and keratinocytes have been linked to mitochondrial perturbations and changes in autophagy. Here, we studied the effect of EFV on mitochondria and autophagy in neuronal cell lines and primary neurons. In SH-SY5Y cells, EFV induced a drop in ATP production, which coincided with increased autophagy, mitochondrial fragmentation, and mitochondrial depolarization. EFV-induced mitophagy was also detected by colocalization of mitochondria and autophagosomes and use of an outer mitochondrial membrane tandem fluorescent vector. Pharmacologic inhibition of autophagy with 3-methyladenine increased the cytotoxic effect of EFV, suggesting that autophagy promotes cell survival. EFV also reduces ATP production in primary neurons, induces autophagy, and changes mitochondrial morphology. Overall, EFV is able to acutely induce autophagy and mitochondrial changes in neurons. These changes may be involved in the mechanism leading to central nervous system toxicity observed in clinical EFV use. PMID:25161171

  14. G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons

    PubMed Central

    Abdelmotilib, Hisham; Liu, Zhiyong; Stoyka, Lindsay; Daher, João Paulo Lima; Milnerwood, Austen J.; Unni, Vivek K.; Hirst, Warren D.; Yue, Zhenyu; Zhao, Hien T.; Fraser, Kyle; Kennedy, Richard E.; West, Andrew B.

    2016-01-01

    Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for

  15. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function.

    PubMed

    Oaks, Adam W; Frankfurt, Maya; Finkelstein, David I; Sidhu, Anita

    2013-01-01

    Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8-12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.

  16. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    PubMed Central

    Matrone, Carmela; Dzamko, Nicolas; Madsen, Peder; Nyegaard, Mette; Pohlmann, Regina; Søndergaard, Rikke V.; Lassen, Louise B.; Andresen, Thomas L.; Halliday, Glenda M.; Jensen, Poul Henning

    2016-01-01

    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD. PMID:27509067

  17. Laser-induced alteration of contaminated papers

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Ligterink, F. J.; Pedersoli, J. L., Jr.; Scholten, H.; Schipper, D.; Havermans, J. B. G. A.; Aziz, H. A.; Quillet, V.; Kraan, M.; van Beek, B.; Corr, S.; Hua-Ströfer, H.-Y.; Stokmans, J.; Dalen, P. van; Kautek, W.

    Cleaning of paper objects represents one of the most complex cases of laser ablation, since low volumes of dispersed material phases are evaporated while a sensitive and fragile fibrous organic matrix has to be preserved. Conventional chemical and mechanical cleaning methods suffer from the common phenomenon that the foreign matter is diluted into the substrate rather than removed. The application of a laser beam allows highly localized and optically specific interaction. However, the occurrence of extreme temperatures and light intensities may cause irreversible alteration of the paper matrix. Further, incomplete removal and/or chemical conversion of contaminations may result in insufficient cleaning or affect the ageing behaviour. Laser treatments were performed by Q-switched Nd:YAG lasers at three wavelengths (355 nm, 532 nm, and 1064 nm). Papers contaminated with inks and adhesive-tape remnants served as model samples. Multispectral imaging and colorimetric results served to quantify and systematize the results.

  18. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies

    PubMed Central

    Stuendl, Anne; Kunadt, Marcel; Kruse, Niels; Bartels, Claudia; Moebius, Wiebke; Danzer, Karin M.; Mollenhauer, Brit

    2016-01-01

    Extracellular α-synuclein has been proposed as a crucial mechanism for induction of pathological aggregate formation in previously healthy cells. In vitro, extracellular α-synuclein is partially associated with exosomal vesicles. Recently, we have provided evidence that exosomal α-synuclein is present in the central nervous system in vivo. We hypothesized that exosomal α-synuclein species from patients with α-synuclein related neurodegeneration serve as carriers for interneuronal disease transmission. We isolated exosomes from cerebrospinal fluid from patients with Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy as a non-α-synuclein related disorder that clinically overlaps with Parkinson’s disease, and neurological controls. Cerebrospinal fluid exosome numbers, α-synuclein protein content of cerebrospinal fluid exosomes and their potential to induce oligomerization of α-synuclein were analysed. The quantification of cerebrospinal fluid exosomal α-synuclein showed distinct differences between patients with Parkinson’s disease and dementia with Lewy bodies. In addition, exosomal α-synuclein levels correlated with the severity of cognitive impairment in cross-sectional samples from patients with dementia with Lewy bodies. Importantly, cerebrospinal fluid exosomes derived from Parkinson’s disease and dementia with Lewy bodies induce oligomerization of α-synuclein in a reporter cell line in a dose-dependent manner. Our data suggest that cerebrospinal fluid exosomes from patients with Parkinson’s disease and dementia with Lewy bodies contain a pathogenic species of α-synuclein, which could initiate oligomerization of soluble α-synuclein in target cells and confer disease pathology. PMID:26647156

  19. Fish Synucleins: An Update

    PubMed Central

    Toni, Mattia; Cioni, Carla

    2015-01-01

    Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins. PMID:26528989

  20. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides.

    PubMed

    Chiariotti, Lorenzo; Coretti, Lorena; Pero, Raffaela; Lembo, Francesca

    2016-01-01

    Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types.

  1. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification

    PubMed Central

    Cole, Nelson B.; DiEuliis, Diane; Leo, Paul; Mitchell, Drake C.; Nussbaum, Robert L.

    2008-01-01

    Mitochondrial dysfunction plays a central role in the selective vulnerability of dopaminergic neurons in Parkinson’s disease (PD) and is influenced by both environmental and genetic factors. Expression of the PD protein α-synuclein or its familial mutants often sensitizes neurons to oxidative stress and to damage by mitochondrial toxins. This effect is thought to be indirect, since little evidence physically linking α-synuclein to mitochondria has been reported. Here, we show that the distribution of α-synuclein within neuronal and non-neuronal cells is dependent on intracellular pH. Cytosolic acidification induces translocation of α-synuclein from the cytosol onto the surface of mitochondria. Translocation occurs rapidly under artificially-induced low pH conditions and as a result of pH changes during oxidative or metabolic stress. Binding is likely facilitated by low pH-induced exposure of the mitochondria-specific lipid cardiolipin. These results imply a direct role for α-synuclein in mitochondrial physiology, especially under pathological conditions, and in principle, link α-synuclein to other PD genes in regulating mitochondrial homeostasis. PMID:18440504

  2. Spermidine protects against α-synuclein neurotoxicity

    PubMed Central

    Büttner, Sabrina; Broeskamp, Filomena; Sommer, Cornelia; Markaki, Maria; Habernig, Lukas; Alavian-Ghavanini, Ali; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Michael, Eva; Kroemer, Guido; Tavernarakis, Nektarios; Sigrist, Stephan J; Madeo, Frank

    2014-01-01

    As our society ages, neurodegenerative disorders like Parkinson`s disease (PD) are increasing in pandemic proportions. While mechanistic understanding of PD is advancing, a treatment with well tolerable drugs is still elusive. Here, we show that administration of the naturally occurring polyamine spermidine, which declines continuously during aging in various species, alleviates a series of PD-related degenerative processes in the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, two established model systems for PD pathology. In the fruit fly, simple feeding with spermidine inhibited loss of climbing activity and early organismal death upon heterologous expression of human α-synuclein, which is thought to be the principal toxic trigger of PD. In this line, administration of spermidine rescued α-synuclein-induced loss of dopaminergic neurons, a hallmark of PD, in nematodes. Alleviation of PD-related neurodegeneration by spermidine was accompanied by induction of autophagy, suggesting that this cytoprotective process may be responsible for the beneficial effects of spermidine administration. PMID:25483063

  3. Tolerance development to cadmium-induced alteration of drug action.

    PubMed

    Roberts, S A; Miya, T S; Schnell, R C

    1976-05-01

    Cadmium administration potentiates the duration of hexobarbital-induced hypnosis and inhibits the rate of hepatic microsomal metabolism of this drug in the male rat. The threshold dose of cadmium required to produce these alterations in drug action is 0.84 mg Ck/kg. If subthreshold doses of cadmium (0.21 or 0.42 mg Cd/kg) are administered prior to the 0.84 mg Cd/kg dose, the cadmium-induced alterations in drug action are no longer observed.

  4. α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation.

    PubMed

    Kang, Seong Su; Zhang, Zhentao; Liu, Xia; Manfredsson, Fredric P; He, Li; Iuvone, P Michael; Cao, Xuebing; Sun, Yi E; Jin, Lingjing; Ye, Keqiang

    2017-01-31

    The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP(+)), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.

  5. Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons.

    PubMed

    Ulusoy, Ayse; Björklund, Tomas; Buck, Kerstin; Kirik, Deniz

    2012-09-01

    Impairments in the capacity of dopaminergic neurons to handle cytoplasmic dopamine may be a critical factor underlying the selective vulnerability of midbrain dopamine neurons in Parkinson's disease. Furthermore, toxicity of α-synuclein in dopaminergic neurons has been suggested to be mediated by direct interaction between dopamine and α-synuclein through formation of abnormal α-synuclein species, although direct in vivo evidence to support this hypothesis is lacking. Here, we investigated the role of dopamine availability on α-synuclein mediated neurodegeneration in vivo. We found that overexpression of α-synuclein in nigral dopamine neurons in mice with deficient vesicular storage of dopamine led to a significant increase in dopaminergic neurodegeneration. Importantly, silencing the tyrosine hydroxylase enzyme - thereby reducing dopamine content in the nigral neurons - reversed the increased vulnerability back to the baseline level observed in wild-type littermates, but failed to eliminate it completely. Importantly, TH knockdown was not effective in altering the toxicity in the wild-type animals. Taken together, our data suggest that under normal circumstances, in healthy dopamine neurons, cytoplasmic dopamine is tightly controlled such that it does not contribute significantly to α-synuclein mediated toxicity. Dysregulation of the dopamine machinery in the substantia nigra, on the other hand, could act as a trigger for induction of increased toxicity in these neurons and could explain how these neurons become more vulnerable and die in the disease process.

  6. Cerebrospinal Fluid α-Synuclein Predicts Cognitive Decline in Parkinson Disease Progression in the DATATOP Cohort

    PubMed Central

    Stewart, Tessandra; Liu, Changqin; Ginghina, Carmen; Cain, Kevin C.; Auinger, Peggy; Cholerton, Brenna; Shi, Min; Zhang, Jing

    2015-01-01

    Most patients with Parkinson disease (PD) develop both cognitive and motor impairment, and biomarkers for progression are urgently needed. Although α-synuclein is altered in cerebrospinal fluid of patients with PD, it is not known whether it predicts motor or cognitive deterioration. We examined clinical data and α-synuclein in >300 unmedicated patients with PD who participated in the deprenyl and tocopherol antioxidative therapy of parkinsonism (DATATOP) study, with up to 8 years of follow-up. Longitudinal measures of motor and cognitive function were studied before (phase 1) and during (phase 2) levodopa therapy; cerebrospinal fluid was collected at the beginning of each phase. Correlations and linear mixed models were used to assess α-synuclein association with disease severity and prediction of progression in the subsequent follow-up period. Despite decreasing α-synuclein (phase 1 to phase 2 change of −0.05 ± 0.21 log-transformed values, P < 0.001), no correlations were observed between α-synuclein and motor symptoms. Longitudinally, lower α-synuclein predicted better preservation of cognitive function by several measures [Selective Reminding Test total recall α-synuclein × time interaction effect coefficient, −0.12 (P = 0.037); delayed recall, −0.05 (P = 0.002); New Dot Test, −0.03 (P = 0.002)]. Thus, α-synuclein, although not clinically useful for motor progression, might predict cognitive decline, and future longitudinal studies should include this outcome for further validation. PMID:24625392

  7. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    PubMed Central

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  8. Virus Innexins induce alterations in insect cell and tissue function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  9. Characterization of a Disordered Protein During Micellation: Interactions of α-Synuclein with Sodium Dodecyl Sulfate

    PubMed Central

    Tian, Jianhui; Sethi, Anurag; Anunciado, Divina; Vu, Dung M.

    2012-01-01

    To better understand the interaction of α-Synuclein (αSyn) with lipid membranes, we carried out self-assembly molecular dynamics simulations of αSyn with monomeric and micellar sodium dodecyl sulfate (SDS), a widely used membrane mimic. We find that both electrostatic and hydrophobic forces contribute to the interactions of αSyn with SDS. In the presence of αSyn, our simulations suggest that SDS aggregates along the protein chain and forms small size micelles at very early times. Aggregation is followed by formation of a collapsed protein-SDS micelle complex, which is consistent with experimental results. Finally, interaction of αSyn with preformed micelles induces alterations in the shape of the micelle, and the N-terminal helix (residues 3 through 37) tends to associate with micelles. Overall, our simulations provide an atomistic description of the early timescale αSyn-SDS interaction during the self-assembly of SDS into micelles. PMID:22439820

  10. Depot risperidone-induced adverse metabolic alterations in female rats.

    PubMed

    Horska, Katerina; Ruda-Kucerova, Jana; Karpisek, Michal; Suchy, Pavel; Opatrilova, Radka; Kotolova, Hana

    2017-04-01

    Atypical antipsychotics are associated with adverse metabolic effects including weight gain, increased adiposity, dyslipidaemia, alterations in glucose metabolism and insulin resistance. Increasing evidence suggests that metabolic dysregulation precedes weight gain development. The aim of this study was to evaluate alterations in adipokines, hormones and basic serum biochemical parameters induced by chronic treatment with depot risperidone at two doses (20 and 40 mg/kg) in female Sprague-Dawley rats. Dose-dependent metabolic alterations induced by risperidone after 6 weeks of treatment were revealed. Concomitant to weight gain and increased liver weight, an adverse lipid profile with an elevated triglyceride level was observed in the high exposure group, administered a 40 mg/kg dose repeatedly, while the low dose exposure group, administered a 20 mg/kg dose, developed weight gain without alterations in the lipid profile and adipokine levels. An initial peak in leptin serum level after the higher dose was observed in the absence of weight gain. This finding may indicate that the metabolic alterations observed in this study are not consequent to body weight gain. Taken together, these data may support the primary effects of atypical antipsychotics on peripheral tissues.

  11. Role of Matrix Metalloproteinase 3-mediated α-Synuclein Cleavage in Dopaminergic Cell Death*

    PubMed Central

    Choi, Dong-Hee; Kim, Youn-Jung; Kim, Young-Gun; Joh, Tong H.; Beal, M. Flint; Kim, Yoon-Seong

    2011-01-01

    Evidence suggests that the C-terminal truncation of α-synuclein is equally important as aggregation of α-synuclein in Parkinson disease (PD). Our previous results showed that an endopeptidase, matrix metalloproteinase-3 (MMP3), was induced and activated in dopaminergic (DA) cells upon stress conditions. Here, we report that MMP3 cleaved α-synuclein in vitro and in vivo and that α-synuclein and MMP3 were co-localized in Lewy bodies (LB) in the postmortem brains of PD patients. Incubation of α-synuclein with the catalytic domain of MMP3 (cMMP3) resulted in generation of several peptides, and the peptide profiles of WT α-synuclein (WTsyn) and A53T mutant (A53Tsyn) were different. Combined analysis using mass spectrometry and N-terminal determination revealed that MMP3 generated C-terminally truncated peptides of amino acids 1–78, 1–91, and 1–93 and that A53Tsyn produced significantly higher quantities of these peptides. Similar sizes of peptides were detected in N27 DA cells under oxidative stress and RNA interference to knock down MMP3-attenuated peptide generation. Co-overexpression of cMMP3 with either WTsyn or A53Tsyn led to a reduction in Triton X-100-insoluble aggregates and an increase in protofibril-like small aggregates. In addition, overexpression of the 1–93-amino acid peptide in the substantia nigra led to DA neuronal loss without LB-like aggregate formation. The results strongly indicate that MMP3 digestion of α-synuclein in DA neurons plays a pivotal role in the progression of PD through modulation of α-synuclein in aggregation, LB formation, and neurotoxicity. PMID:21330369

  12. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism

    PubMed Central

    Prusiner, Stanley B.; Woerman, Amanda L.; Mordes, Daniel A.; Watts, Joel C.; Rampersaud, Ryan; Berry, David B.; Patel, Smita; Oehler, Abby; Lowe, Jennifer K.; Kravitz, Stephanie N.; Geschwind, Daniel H.; Glidden, David V.; Halliday, Glenda M.; Middleton, Lefkos T.; Gentleman, Steve M.; Grinberg, Lea T.; Giles, Kurt

    2015-01-01

    Prions are proteins that adopt alternative conformations that become self-propagating; the PrPSc prion causes the rare human disorder Creutzfeldt–Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T–YFP) and TgM83+/− mice expressing α-synuclein (A53T). The TgM83+/− mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83+/+ mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83+/− mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T–YFP in cultured cells, whereas none of six Parkinson’s disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83+/+ mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible. PMID:26324905

  13. Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex.

    PubMed

    Blumenstock, Sonja; Rodrigues, Eva F; Peters, Finn; Blazquez-Llorca, Lidia; Schmidt, Felix; Giese, Armin; Herms, Jochen

    2017-03-28

    Although misfolded and aggregated α-synuclein (α-syn) is recognized in the disease progression of synucleinopathies, its role in the impairment of cortical circuitries and synaptic plasticity remains incompletely understood. We investigated how α-synuclein accumulation affects synaptic plasticity in the mouse somatosensory cortex using two distinct approaches. Long-term in vivo imaging of apical dendrites was performed in mice overexpressing wild-type human α-synuclein. Additionally, intracranial injection of preformed α-synuclein fibrils was performed to induce cortical α-syn pathology. We find that α-synuclein overexpressing mice show decreased spine density and abnormalities in spine dynamics in an age-dependent manner. We also provide evidence for the detrimental effects of seeded α-synuclein aggregates on dendritic architecture. We observed spine loss as well as dystrophic deformation of dendritic shafts in layer V pyramidal neurons. Our results provide a link to the pathophysiology underlying dementia associated with synucleinopathies and may enable the evaluation of potential drug candidates on dendritic spine pathology in vivo.

  14. Untangling the Manganese-α-Synuclein Web

    PubMed Central

    Peres, Tanara Vieira; Parmalee, Nancy L.; Martinez-Finley, Ebany J.; Aschner, Michael

    2016-01-01

    Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process. PMID:27540354

  15. Arsenic-induced Histological Alterations in Various Organs of Mice

    PubMed Central

    Noman, Abu Shadat Mohammod; Dilruba, Sayada; Mohanto, Nayan Chandra; Rahman, Lutfur; Khatun, Zohora; Riad, Wahiduzzaman; Al Mamun, Abdullah; Alam, Shahnur; Aktar, Sharmin; Chowdhury, Srikanta; Saud, Zahangir Alam; Rahman, Zillur; Hossain, Khaled; Haque, Azizul

    2015-01-01

    Deposition of arsenic in mice through groundwater is well documented but little is known about the histological changes of organs by the metalloid. Present study was designed to evaluate arsenic-induced histological alterations in kidney, liver, thoracic artery and brain of mice which are not well documented yet. Swiss albino male mice were divided into 2 groups and treated as follows: Group 1: control, 2: arsenic (sodium arsenite at 10 mg/kg b.w. orally for 8 wks). Group 2 showed marked degenerative changes in kidney, liver, thoracic artery, and brain whereas Group 1 did not reveal any abnormalities on histopathology. We therefore concluded that arsenic induces histological alterations in the tested organs. PMID:26740907

  16. α-Synuclein and mitochondria: partners in crime?

    PubMed

    Nakamura, Ken

    2013-07-01

    Increased α-synuclein levels and mutations in mitochondria-associated proteins both cause familial Parkinson's disease (PD), and synuclein and mitochondria also play central, but poorly understood, roles in the pathogenesis of idiopathic PD. A fraction of synuclein interacts with mitochondria, and synuclein can produce mitochondrial fragmentation and impair mitochondrial complex I activity. However, the consequences of these mitochondrial changes for bioenergetic and other mitochondrial functions remain poorly defined, as does the role of synuclein-mitochondria interactions in the normal and pathologic effects of synuclein. Understanding the functional consequences of synuclein's interactions with mitochondria is likely to provide important insights into disease pathophysiology, and may also reveal therapeutic strategies.

  17. Synucleins regulate the kinetics of synaptic vesicle endocytosis.

    PubMed

    Vargas, Karina J; Makani, Sachin; Davis, Taylor; Westphal, Christopher H; Castillo, Pablo E; Chandra, Sreeganga S

    2014-07-09

    Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with β- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, β-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD.

  18. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death.

    PubMed

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S; Gaviglio, Emilia A; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-03-03

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.

  19. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    PubMed Central

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  20. Effect of 4-Hydroxy-2-Nonenal Modification on Alpha-Synuclein Aggregation

    SciTech Connect

    Qin, Z.; Hu, D.; Han, S.; Reaney, S.H.; Monte, D.A.Di; Fink, A.L.

    2007-07-12

    Several observations have implicated oxidative stress and aggregation of the presynaptic protein alpha-synuclein in the pathogenesis of PD. alpha-Synuclein has been shown to have affinity for unsaturated fatty acids and membranes enriched in PUFAs, which are especially sensitive to oxidation under conditions of oxidative stress. One of the most important products of lipid oxidation is 4-hydroxynonenal (HNE), which has been implicated in the pathogenesis of Parkinson's disease. Consequently we investigated the effects of the interaction of HNE with alpha-synuclein. Incubation of HNE with alpha-synuclein at pH 7.4, 37oC resulted in covalent modification of the protein, with up to six HNE molecules incorporated as Michael addition products. FTIR and CD spectra indicated that HNE modification of alpha-synuclein resulted in a major conformational change involving increased beta-sheet. HNE modification of alpha-synuclein led to inhibition of fibrillation in an HNE-concentration-dependent manner. This inhibition of fibrillation was shown to be due to the formation of soluble oligomers based on SEC HPLC and AFM data. Small-angle X-ray scattering analysis indicated that the HNE-induced oligomers are compact and tightly packed. Treatment with guanidinium chloride (GuHCl) demonstrated that the HNE-induced oligomers were very stable with an extremely slow rate of dissociation. Addition of 5 uM HNE-modified oligomers to primary mesencephalic cultures caused marked neurotoxicity, since the integrity of dopaminergic and GABAergic neurons was reduced by 95% and 85%, respectively. Our observations indicate that HNE-modification of alpha-synuclein prevents fibrillation but may result in toxic oligomers which could therefore contribute to the demise of neurons subjected to oxidative damage.

  1. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  2. Tea tree oil-induced transcriptional alterations in Staphylococcus aureus.

    PubMed

    Cuaron, Jesus A; Dulal, Santosh; Song, Yang; Singh, Atul K; Montelongo, Cesar E; Yu, Wanqin; Nagarajan, Vijayaraj; Jayaswal, Radheshyam K; Wilkinson, Brian J; Gustafson, John E

    2013-03-01

    Tea tree oil (TTO) is a steam distillate of Melaleuca alternifolia that demonstrates broad-spectrum antibacterial activity. This study was designed to document how TTO challenge influences the Staphylococcus aureus transcriptome. Overall, bioinformatic analyses (S. aureus microarray meta-database) revealed that both ethanol and TTO induce related transcriptional alterations. TTO challenge led to the down-regulation of genes involved with energy-intensive transcription and translation, and altered the regulation of genes involved with heat shock (e.g. clpC, clpL, ctsR, dnaK, groES, groEL, grpE and hrcA) and cell wall metabolism (e.g. cwrA, isaA, sle1, vraSR and vraX). Inactivation of the heat shock gene dnaK or vraSR which encodes a two-component regulatory system that responds to peptidoglycan biosynthesis inhibition led to an increase in TTO susceptibility which demonstrates a protective role for these genes in the S. aureus TTO response. A gene (mmpL) encoding a putative resistance, nodulation and cell division efflux pump was also highly induced by TTO. The principal antimicrobial TTO terpene, terpinen-4-ol, altered ten genes in a transcriptional direction analogous to TTO. Collectively, this study provides additional insight into the response of a bacterial pathogen to the antimicrobial terpene mixture TTO.

  3. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-09

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

  4. The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy

    PubMed Central

    Faustini, Gaia; Missale, Cristina; Pizzi, Marina; Spano, PierFranco

    2017-01-01

    Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration. PMID:28133550

  5. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  6. Gut Feelings About α‐Synuclein in Gastrointestinal Biopsies: Biomarker in the Making?

    PubMed Central

    Ruffmann, Claudio

    2016-01-01

    ABSTRACT In recent years, several studies have investigated the potential of immunohistochemical detection of α‐synuclein in the gastrointestinal tract to diagnose Parkinson's disease (PD). Although methodological heterogeneity has hindered comparability between studies, it has become increasingly apparent that the high sensitivity and specificity reported in preliminary studies has not been sustained in subsequent large‐scale studies. What constitutes pathological α‐synuclein in the alimentary canal that could distinguish between PD patients and controls and how this can be reliably detected represent key outstanding questions in the field. In this review, we will comment on and compare the variable technical aspects from previous studies, and by highlighting some advantages and shortcomings we hope to delineate a standardized approach to facilitate the consensus criteria urgently needed in the field. Furthermore, we will describe alternative detection techniques to conventional immunohistochemistry that have recently emerged and may facilitate ease of interpretation and reliability of gastrointestinal α‐synuclein detection. Such techniques have the potential to detect the presence of pathological α‐synuclein and include the paraffin‐embedded tissue blot, the proximity ligation assay, the protein misfolding cyclic amplification technique, and the real‐time quaking‐induced conversion assay. Finally, we will review 2 nonsynonymous theories that have driven enteric α‐synuclein research, namely, (1) that α‐synuclein propagates in a prion‐like fashion from the peripheral nervous system to the brain via vagal connections and (2) that gastrointestinal α‐synuclein deposition may be used as a clinically useful biomarker in PD. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:26799450

  7. α-Synuclein in cutaneous autonomic nerves

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Lafo, Jacob

    2013-01-01

    Objective: To develop a cutaneous biomarker for Parkinson disease (PD). Methods: Twenty patients with PD and 14 age- and sex-matched control subjects underwent examinations, autonomic testing, and skin biopsies at the distal leg, distal thigh, and proximal thigh. α-Synuclein deposition and the density of intraepidermal, sudomotor, and pilomotor nerve fibers were measured. α-Synuclein deposition was normalized to nerve fiber density (the α-synuclein ratio). Results were compared with examination scores and autonomic function testing. Results: Patients with PD had a distal sensory and autonomic neuropathy characterized by loss of intraepidermal and pilomotor fibers (p < 0.05 vs controls, all sites) and morphologic changes to sudomotor nerve fibers. Patients with PD had greater α-synuclein deposition and higher α-synuclein ratios compared with controls within pilomotor nerves and sudomotor nerves (p < 0.01, all sites) but not sensory nerves. Higher α-synuclein ratios correlated with Hoehn and Yahr scores (r = 0.58–0.71, p < 0.01), with sympathetic adrenergic function (r = −0.40 to −0.66, p < 0.01), and with parasympathetic function (r = −0.66 to −0.77, p > 0.01). Conclusions: We conclude that α-synuclein deposition is increased in cutaneous sympathetic adrenergic and sympathetic cholinergic fibers but not sensory fibers of patients with PD. Higher α-synuclein deposition is associated with greater autonomic dysfunction and more advanced PD. These data suggest that measures of α-synuclein deposition in cutaneous autonomic nerves may be a useful biomarker in patients with PD. PMID:24089386

  8. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  9. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  10. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein.

    PubMed

    Jinsmaa, Yunden; Cooney, Adele; Sullivan, Patricia; Sharabi, Yehonatan; Goldstein, David S

    2015-03-17

    In Parkinson's disease (PD) alpha-synuclein oligomers are thought to be pathogenic, and 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate aldehyde intermediate in neuronal dopamine metabolism, potently oligomerizes alpha-synuclein. PD involves alpha-synuclein deposition in brainstem raphe nuclei; however, whether 5-hydroxyindoleacetaldehyde (5-HIAL), the aldehyde of serotonin, oligomerizes alpha-synuclein has been unknown. In this study we tested whether 5-HIAL oligomerizes alpha-synuclein in vitro and in PC12 cells conditionally over-expressing alpha-synuclein. Alpha-synuclein oligomers were quantified by western blotting after incubation of alpha-synuclein with serotonin and monoamine oxidase-A (MAO-A) to generate 5-HIAL or dopamine to generate DOPAL. Oligomerization of alpha-synuclein in PC12 cells over-expressing the protein was compared between vehicle-treated cells and cells incubated with levodopa to generate DOPAL or 5-hydroxytryptophan to generate 5-HIAL. Monoamine aldehyde mediation of the oligomerization was assessed using the MAO inhibitor, pargyline. Dopamine and serotonin incubated with MAO-A both strongly oligomerized alpha-synuclein (more than 10 times control); pargyline blocked the oligomerization. In synuclein overexpressing PC12 cells, levodopa and 5-hydroxytryptophan elicited pargyline-sensitive alpha-synuclein oligomerization. 5-HIAL oligomerizes alpha-synuclein both in vitro and in synuclein-overexpressing PC12 cells, in a manner similar to DOPAL. The findings may help explain loss of serotonergic neurons in PD.

  11. Rasagiline Ameliorates Olfactory Deficits in an Alpha-Synuclein Mouse Model of Parkinson's Disease

    PubMed Central

    Petit, Géraldine H.; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik

    2013-01-01

    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease. PMID:23573275

  12. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus

    PubMed Central

    Craciunescu, Corneliu N.; Wu, Renan; Zeisel, Steven H.

    2006-01-01

    Diethanolamine (DEA) is present in many consumer products such as shampoo. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline, and we previously reported that dietary choline deficiency during pregnancy reduces neurogenesis and increases apoptosis in the hippocampus of fetal rats and mice. Therefore, DEA could also alter brain development. Timed-pregnant C57BL/6 mice were dosed dermally from gestation day 7 through 17 with DEA at 0, 20, 80, 160, 320, and 640 mg/kg body/day. At doses of DEA > 80 mg/kg body/day, we observed decreased litter size. In fetuses (embryonic day 17) collected from dams treated dermally with 80 mg/kg body/day DEA, we observed decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone of the hippocampus [to 56±14% (SE) histone 3 (H3) phosphorylation as compared to controls; P < 0.01]. We also observed increased apoptosis in fetal hippocampus (to 170±10% of control measured using TUNEL and to 178±7% of control measured using activated caspase 3; P < 0.01). Thus, maternal exposure to DEA reduces the number of neural progenitor cells in hippocampus by two mechanisms, and this could permanently alter memory function in offspring of mothers exposed to this common ingredient of shampoos and soaps.—Craciunescu, C. N., Wu, R., Zeisel, S. H. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. PMID:16873886

  13. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge.

  14. Hydrogen peroxide-induced structural alterations of RNAse A.

    PubMed

    Lasch, P; Petras, T; Ullrich, O; Backmann, J; Naumann, D; Grune, T

    2001-03-23

    Proteins exposed to oxidative stress are degraded via proteolytic pathways. In the present study, we undertook a series of in vitro experiments to establish a correlation between the structural changes induced by mild oxidation of the model protein RNase A and the proteolytic rate found upon exposure of the modified protein toward the isolated 20 S proteasome. Fourier transform infrared spectroscopy was used as a structure-sensitive probe. We report here strong experimental evidence for oxidation-induced conformational rearrangements of the model protein RNase A and, at the same time, for covalent modifications of amino acid side chains. Oxidation-related conformational changes, induced by H(2)O(2) exposure of the protein may be monitored in the amide I region, which is sensitive to changes in protein secondary structure. A comparison of the time- and H(2)O(2) concentration-dependent changes in the amide I region demonstrates a high degree of similarity to spectral alterations typical for temperature-induced unfolding of RNase A. In addition, spectral parameters of amino acid side chain marker bands (Tyr, Asp) revealed evidence for covalent modifications. Proteasome digestion measurements on oxidized RNase A revealed a specific time and H(2)O(2) concentration dependence; at low initial concentration of the oxidant, the RNase A turnover rate increases with incubation time and concentration. Based on these experimental findings, a correlation between structural alterations detected upon RNase A oxidation and proteolytic rates of RNase A is established, and possible mechanisms of the proteasome recognition process of oxidatively damaged proteins are discussed.

  15. Fibrinogen Induces Alterations of Endothelial Cell Tight Junction Proteins

    PubMed Central

    PATIBANDLA, PHANI K.; TYAGI, NEETU; DEAN, WILLIAM L.; TYAGI, SURESH C.; ROBERTS, ANDREW M.; LOMINADZE, DAVID

    2009-01-01

    We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin-associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell-substrate impedance system, 8-well chambered, or in 12-well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen-activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti-ICAM-1 antibody or BQ788 (endothelin type B receptor blocker), endothelin-1, endothelin-1 with BQ788, or medium alone for 24 h. Fg induced a dose-dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT-PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden-1 (ZO-1), and zona occluden-2 (ZO-2) in ECs. Fg-induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti-ICAM-1 antibody. While BQ788 inhibited endothelin-1-induced decrease in TEER, it did not affect Fg-induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO-1, and ZO-2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM-1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. PMID:19507189

  16. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain

    PubMed Central

    Beatman, Erica L.; Massey, Aaron; Shives, Katherine D.; Burrack, Kristina S.; Chamanian, Mastooreh; Morrison, Thomas E.

    2015-01-01

    ABSTRACT We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 104.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal

  17. Alpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant

    PubMed Central

    Hoenen, Claire; Gustin, Audrey; Birck, Cindy; Kirchmeyer, Mélanie; Beaume, Nicolas; Felten, Paul; Grandbarbe, Luc; Heuschling, Paul; Heurtaux, Tony

    2016-01-01

    Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases. PMID:27622765

  18. Mechanism of Anti-α-Synuclein Immunotherapy

    PubMed Central

    Lee, Jun Sung; Lee, Seung-Jae

    2016-01-01

    Immunization therapy targeting α-synuclein has emerged as a promising approach for Parkinson’s disease and perhaps for other synucleinopathies. Several antibodies have shown therapeutic effects in mouse models of synucleinopathies and have alleviated the pathological and behavioral phenotypes of these mice. The mechanisms through which the immunization therapy works were initially puzzling, especially given that α-synuclein is a typical cytosolic protein. Recent studies, however, suggested that extracellular α-synuclein is an important pathogenic entity, and hence, a target for immunotherapy. Here, we review the literature describing immunization therapy for synucleinopathies in mouse models and provide current thoughts on the potential mechanisms underlying the therapeutic effects of α-synuclein immunotherapy. PMID:26828212

  19. Modulating the Amyloidogenesis of α-Synuclein

    PubMed Central

    Sivanesam, Kalkena; Andersen, Niels H.

    2016-01-01

    Alphα-synuclein is found in the neuronal cells but its native function is not well known. While α-synuclein is an intrinsically disordered protein that adopts a helical conformation upon membrane binding, numerous studies have shown that oligomeric b-forms of this protein are cytotoxic. This response to misfolded species contributes to Parkinson’s Disease etiology and symptoms. The resulting amyloid fibrils are an established diagnostic in Parkinson’s Disease. In this review, we focus on strategies that have been used to inhibit the amyloidogenesis of α-synuclein either by stabilizing the native state, or by redirecting the pathway to less toxic aggregates. Small molecules such as polyphenols, peptides as well as large proteins have proven effective at protecting cells against the cytotoxicity of α-synuclein. These strategies may lead to the development of therapeutic agents that could prove useful in combating this disease. PMID:26517049

  20. Microcirculation alterations in experimentally induced gingivitis in dogs.

    PubMed

    Matsuo, Masato; Okudera, Toshimitsu; Takahashi, Shun-Suke; Wada-Takahashi, Satoko; Maeda, Shingo; Iimura, Akira

    2017-01-01

    The present study aimed to morphologically examine the gingival microvascular network using a microvascular resin cast (MRC) technique, and to investigate how inflammatory disease functionally affects gingival microcirculation using laser Doppler flowmetry (LDF). We used four beagle dogs with healthy periodontal tissue as experimental animals. To cause periodontal inflammation, dental floss was placed around the cervical neck portions of the right premolars. The unmanipulated left premolars served as controls, and received plaque control every 7 days. After 90 days, gingivitis was induced in the experimental side, while the control side maintained healthy gingiva. To perform morphological examinations, we used an MRC method involving the injection of low-viscosity synthetic resin into the blood vessels, leading to peripheral soft-tissue dissolution and permitting observation of the bone, teeth, and vascular cast. Gingival blood flow was estimated using an LDF meter. The control gingival vasculature showed hairpin-loop-like networks along the tooth surface. The blood vessels had diameters of 20-40 μm and were regularly arranged around the cervical portion. On the other hand, the vasculature in the experimental group was twisted and gathered into spiral forms, with blood vessels that had uneven surfaces and smaller diameters of 8-10 μm. LDF revealed reduced gingival blood flow in the group with experimentally induced gingivitis compared to controls. The actual measurements of gingival blood flow by LDF were in agreement with the alterations that would be expected based on the gingivitis-induced morphological alterations observed with the MRC technique.

  1. Structural transitions in the intrinsically disordered Parkinson's protein alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Eliezer, David

    2013-03-01

    The protein alpha-synuclein is genetically and histopathologically associated with familial and sporadic Parkinson's disease. Although considered to belong to the category of intrinsically disordered proteins for well over a decade, recent reports have suggested that synuclein may actually exist predominantly in a native, well-structured, tetrameric form. Experiments using in-cell NMR, which bypass potential structural perturbations caused by purification protocols, conclusively demonstrate that recombinant synuclein is in fact highly disordered and monomeric. In the presence of membranes, however, the protein undergoes a coil-to-helix transition to adopt several highly helical conformations, which are proposed to mediate both its normal function and its membrane-induced aggregation into amyloid fibrils. Supported by NIH grant R37AG019391

  2. Formation of covalent di-tyrosine dimers in recombinant α-synuclein

    PubMed Central

    van Maarschalkerweerd, A; Pedersen, MN; Peterson, H; Nilsson, M; Nguyen, TTT; Skamris, T; Rand, K; Vetri, V; Langkilde, AE; Vestergaard, B

    2015-01-01

    Parkinson's disease is associated with fibril deposition in the diseased brain. Misfolding events of the intrinsically disordered synaptic protein α-synuclein are suggested to lead to the formation of transient oligomeric and cytotoxic species. The etiology of Parkinson's disease is further associated with mitochondrial dysfunction and formation of reactive oxygen species. Oxidative stress causes chemical modification of native α-synuclein, plausibly further influencing misfolding events. Here, we present evidence for the spontaneous formation of covalent di-tyrosine α-synuclein dimers in standard recombinant protein preparations, induced without extrinsic oxidative or nitrative agents. The dimers exhibit no secondary structure but advanced SAXS studies reveal an increased structural definition, resulting in a more hydrophobic micro-environment than the highly disordered monomer. Accordingly, monomers and dimers follow distinct fibrillation pathways. PMID:28232892

  3. Cyclodextrins 3-Functionalized with 8-Hydroxyquinolines: Copper-Binding Ability and Inhibition of Synuclein Aggregation.

    PubMed

    Oliveri, Valentina; Sgarlata, Carmelo; Vecchio, Graziella

    2016-09-06

    Neurodegenerative diseases such as Parkinson's and Alzheimer's diseases are multifactorial disorders related to protein aggregation, metal dyshomeostasis, and oxidative stress. To advance understanding in this area and to contribute to therapeutic development, many efforts have been directed at devising suitable agents that can target metal ions associated with relevant biomolecules such as α-synuclein. This paper presents a new cyclodextrin-8-hydroxyquinoline conjugate and discusses the properties of four cyclodextrins 3-functionalized with 8-hydroxyquinoline as copper(II) chelators and inhibitors of copper-induced synuclein aggregation. The encouraging results establish the potential of cyclodextrin-8-hydroxyquinoline conjugates as chelators for the control of copper toxicity.

  4. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity.

    PubMed

    Wang, Xiaoyan; Moualla, Dima; Wright, Josephine A; Brown, David R

    2010-05-01

    Alpha-synuclein is a natively unfolded protein that aggregates and forms inclusions that are associated with a range of diseases that include Parkinson's Disease and Dementia with Lewy Bodies. The mechanism behind the formation of these inclusions and their possible role in disease remains unclear. Alpha-synuclein has also been shown to bind metals including copper and iron. We used a cell culture model of alpha-synuclein aggregation to examine the relationship between metals and formation of aggregates of the protein. While the levels of iron appear to have no role in aggregate formation or localisation of the protein in cells, copper appears to be important for both aggregation and cellular localisation of alpha-synuclein. Reduction in cellular copper resulted in a great decrease in aggregate formation both in terms of large aggregates visible in cells and oligomers observed in western blot analysis of cell extracts. Reduction in copper also resulted in a change in localisation of the protein which became more intensely localised to the plasma membrane in medium with low copper. These changes were reversed when copper was restored to the cells. Mutants of the copper binding domains altered the response to copper. Deletion of either the N- or C-termini resulted in a loss of aggregation while deletion of the C-termini also resulted in a loss of membrane association. Increased expression of alpha-synuclein also increased cell sensitivity to the toxicity of copper. These results suggest that the potential pathological role of alpha-synuclein aggregates is dependent upon the copper binding capacity of the protein.

  5. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    PubMed Central

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  6. Epigenetic Alterations Induced by Ambient Particulate Matter in Mouse Macrophages

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cécile G.; Aykin-Burns, Nükhet; Wang, Xiaoying; Basnakian, Alexei; Kavouras, Ilias G.; Koturbash, Igor

    2014-01-01

    Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10–200 μg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases. PMID:24535919

  7. Thermally-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  8. Acute systemic rapamycin induces neurobehavioral alterations in rats.

    PubMed

    Hadamitzky, Martin; Herring, Arne; Keyvani, Kathy; Doenlen, Raphael; Krügel, Ute; Bösche, Katharina; Orlowski, Kathrin; Engler, Harald; Schedlowski, Manfred

    2014-10-15

    Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression. However, whether these symptoms are attributed to the action of the distinct compounds remains rather elusive. The present study investigated in rats neurobehavioral consequences of acute rapamycin treatment. Systemic administration of a single low dose rapamycin (3mg/kg) led to enhanced neuronal activity in the amygdala analyzed by intracerebral electroencephalography and FOS protein expression 90min after drug injection. Moreover, behavioral investigations revealed a rapamycin-induced increase in anxiety-related behaviors in the elevated plus-maze and in the open-field. The behavioral alterations correlated to enhanced amygdaloid expression of KLK8 and FKBP51, proteins that have been implicated in the development of anxiety and depression. Together, these results demonstrate that acute blockade of mTOR signaling by acute rapamycin administration not only causes changes in neuronal activity, but also leads to elevated protein expression in protein kinase pathways others than mTOR, contributing to the development of anxiety-like behavior. Given the pivotal role of the amygdala in mood regulation, associative learning, and modulation of cognitive functions, our findings raise the question whether therapy with rapamycin may induce alterations in patients neuropsychological functioning.

  9. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments.

  10. Fracture-aperture alteration induced by calcite precipitation

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  11. Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity.

    PubMed

    Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Sant'Anna, Ricardo; Szegö, Éva Mónika; Fonseca-Ornelas, Luis; Pinho, Raquel; Carija, Anita; Gerhardt, Ellen; Masaracchia, Caterina; Abad Gonzalez, Enrique; Rossetti, Giulia; Carloni, Paolo; Fernández, Claudio O; Foguel, Debora; Milosevic, Ira; Zweckstetter, Markus; Ventura, Salvador; Outeiro, Tiago Fleming

    2016-10-18

    Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.

  12. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function

    PubMed Central

    Plotegher, N.; Berti, G.; Ferrari, E.; Tessari, I.; Zanetti, M.; Lunelli, L.; Greggio, E.; Bisaglia, M.; Veronesi, M.; Girotto, S.; Dalla Serra, M.; Perego, C.; Casella, L.; Bubacco, L.

    2017-01-01

    Parkinson’s disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration. PMID:28084443

  13. Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism.

    PubMed

    Rcom-H'cheo-Gauthier, Alexandre N; Meedeniya, Adrian C B; Pountney, Dean L

    2017-04-01

    Many neurodegenerative diseases are characterized by the formation of microscopically visible intracellular protein aggregates. α-Synuclein is the key aggregating protein in Parkinson's disease which is characterized by neuronal cytoplasmic Lewy body inclusions. Previous studies have shown relative sparing of neurons in Parkinson's disease and dementia with Lewy bodies that are positive for the vitamin D-dependent calcium-buffering protein, calbindin-D28k, and that α-synuclein aggregates are excluded from calbindin-D28k-positive neurons. Recent cell culture studies have shown that α-synuclein aggregation can be induced by raised intracellular-free Ca(II) and demonstrated that raised intracellular calcium and oxidative stress can act synergistically to promote α-synuclein aggregation. We hypothesized that calcipotriol, a potent vitamin D analogue used pharmaceutically, may be able to suppress calcium-dependent α-synuclein aggregation by inducing calbindin-D28k expression. Immunofluorescence and western blot analysis showed that calcipotriol potently induced calbindin-D28k in a dose-dependent manner in SH-SY5Y human neuroblastoma cells. Calcipotriol significantly decreased the frequency of α-synuclein aggregate positive cells subjected to treatments that cause raised intracellular-free Ca(II) (potassium depolarization, KCl/H2 O2 combined treatment, and rotenone) in a dose-dependent manner and increased viability. Suppression of calbindin-D28k expression in calcipotriol-treated cells using calbindin-D28k-specific siRNA showed significantly higher α-synuclein aggregation levels, indicating that calcipotriol-mediated blocking of calcium-dependent α-synuclein aggregation was dependent on the induction of calbindin-D28k expression. These data indicate that targeting raised intraneuronal-free Ca(II) in the brain by promoting the expression of calbindin-D28k at the transcriptional level using calcipotriol could prevent α-synuclein aggregate formation and ameliorate

  14. Spontaneously Hypertensive Rats (SHR) Are Resistant to a Reserpine-Induced Progressive Model of Parkinson’s Disease: Differences in Motor Behavior, Tyrosine Hydroxylase and α-Synuclein Expression

    PubMed Central

    Leão, Anderson H. F. F.; Meurer, Ywlliane S. R.; da Silva, Anatildes F.; Medeiros, André M.; Campêlo, Clarissa L. C.; Abílio, Vanessa C.; Engelberth, Rovena C. G. K.; Cavalcante, Jeferson S.; Izídio, Geison S.; Ribeiro, Alessandra M.; Silva, Regina H.

    2017-01-01

    Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson’s disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in

  15. Analysis of chromosomal alterations induced by asbestos and ceramic fibers.

    PubMed

    Dopp, E; Schiffmann, D

    1998-08-01

    increase of chromosomal breakage in the pericentric heterochromatin regions of chromosomes 1 and 9 in AFC after exposure to asbestos and ceramic fibers. The number of hyperdiploid cells was also significantly increased. These results show that asbestos as well as ceramic fibers are inducers of structural and numerical chromosomal alterations.

  16. Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein

    SciTech Connect

    Hong, D.-P.; Fink, A.L.; Uversky, V.N.

    2009-05-18

    The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-ray scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.

  17. Is the NACP/Synuclein gene involved in early-onset Alheimer`s disease?

    SciTech Connect

    Champion, D.; Clerget-Darpoux, F.; Frebourg, T.

    1994-09-01

    The major component of senile plaques (SP), the most specific histologic lesion of Alzheimer`s disease (AD) is the A4 peptide, derived from a large precursor protein (APP). Recently, a second major component of SP has been isolated. This 35 AA peptide was named non-A4 component amyloid (NAC) and its precursor - a 140 AA protein - was named NACP. Computer homology search has allowed us to establish that the NACP gene is homologous to the rat synuclein gene which is expressed in neurons. Since APP mutations have been shown to cause early-onset Alzheimer`s disease (EOAD) in several families, we investigated whether the NACP/synuclein gene was also involved in familial early-onset Alzheimer`s disease (FEOAD). RT-PCR and direct sequencing of the entire NACP open reading frame did not reveal any alteration of the NACP coding sequence in lymphocytes of 26 unrelated FEOAD patients. We showed that the NACP/synuclein gene was alternatively spliced and that the different transcripts potentially encoded for distinct proteins all containing the NAC peptide. Accumulation of NAC in SP might result from a dysregulation of NACP/synuclein expression.

  18. α-Synuclein and DJ-1 as potential biological fluid biomarkers for Parkinson's Disease.

    PubMed

    Waragai, Masaaki; Sekiyama, Kazunari; Sekigawa, Akio; Takamatsu, Yoshiki; Fujita, Masayo; Hashimoto, Makoto

    2010-10-29

    Parkinson's disease (PD) is the most common form of movement disorder and affects approximately 4% of the population aged over 80 years old. Currently, PD cannot be prevented or cured, and no single diagnostic biomarkers are available. Notably, recent studies suggest that two familial PD-linked molecules, α-synuclein and DJ-1, are present in cerebrospinal fluid (CSF) and that their levels may be altered during the progression of PD. In this regard, sensitive and accurate methods for evaluation of α-synuclein and DJ-1 levels in the CSF and blood have been developed, and the results suggest that the levels of both molecules are significantly decreased in the CSF in patients with PD compared with age-matched controls. Furthermore, specific detection and quantification of neurotoxic oligometric forms of α-synuclein in the blood using enzyme-linked immunosorbent assays might be expected as potential peripheral biomarkers for PD, although further validation is required. Currently, neither α-synuclein nor DJ-1 is satisfactory as a single biomarker for PD, but combinatory evaluation of these biological fluid molecules with other biomarkers and imaging techniques may provide reliable information for diagnosis of PD.

  19. Alpha-synuclein propagation: New insights from animal models.

    PubMed

    Dehay, Benjamin; Vila, Miquel; Bezard, Erwan; Brundin, Patrik; Kordower, Jeffrey H

    2016-02-01

    Aggregation of alpha-synuclein is implicated in several neurodegenerative diseases collectively termed synucleinopathies. Emerging evidence strongly implicates cell-to-cell transmission of misfolded alpha-synuclein as a common pathogenetic mechanism in synucleinopathies. The impact of alpha-synuclein pathology on neuronal dysfunction and behavioral impairments is being explored in animal models. This review provides an update on how research in animal models supports the concept that misfolded alpha-synuclein spreads from cell to cell and describes how findings in animal models might relate to the disease process in humans. Finally, we discuss the current underlying molecular and cellular mechanisms and future therapeutic strategies targeting alpha-synuclein propagation.

  20. Drought induces alterations in the stomatal development program in Populus.

    PubMed

    Hamanishi, Erin T; Thomas, Barb R; Campbell, Malcolm M

    2012-08-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.

  1. Hydrological Alterations Due to Climate-Induced Regional Vegetation Change

    NASA Astrophysics Data System (ADS)

    White, A. B.; Vivoni, E. R.; Springer, E. P.

    2010-12-01

    An extended, severe drought in the southwestern U.S. from 2000 to 2003 was accompanied by increased temperatures and bark beetle infestations, inducing the large-scale mortality of woody overstory (Pinus edulis). The consequential redistribution of water, radiation, and nutrient availability modified the ecosystem phenology, species composition, and forced the ecosystem to transition into a new state. We hypothesize that the hydrological processes in the ecosystem were also altered due to the mortality. Thus, our objective is to investigate changes in the soil-vegetation-atmosphere continuum at the watershed scale. The Rio Ojo Caliente Basin is a subbasin of the Upper Rio Grande, located mostly in New Mexico, and is approximately 1,000 km2. Examining a remotely-sensed vegetation index (1-km AVHRR NDVI from 1990 to 2006), there is an increasing trend in the NDVI from 1989 to 1999 (pre-mortality period), a decreasing trend from 2000 to 2003 (mortality period), and a dramatic increasing trend from 2004 to 2006 (post-mortality period) in which the NDVI rebounds to nearly pre-mortality magnitudes. This pattern exists across varying spatial scales (plot to watershed to region) and signifies a profound alteration in the ecosystem, for while the vegetation composition was altered to a great degree, the system rapidly returned to a homeostatic state balancing resource supply and use during the post-mortality period. To investigate hydrological changes due to the mortality, we employ a physically-based, distributed hydrologic model, tRIBS (TIN-based Real-Time Integrated Basin Simulator) for the Rio Ojo Caliente Basin. STATSGO 1-km soils data, 10-meter National Elevation Dataset DEMs, Carson National Forest vegetation species data, and MM5-downscaled NCEP/NCAR Reanalysis-I meteorologic data are used as model inputs. A combination of MODIS and AVHRR remote-sensing data, values from the literature, and field data from a long-term, pi {n}on-juniper (PJ) observation site in Los

  2. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  3. Chaperone-like activities of {alpha}-synuclein: {alpha}-Synuclein assists enzyme activities of esterases

    SciTech Connect

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo . E-mail: ywryu@ajou.ac.kr; Doohun Kim, T. . E-mail: doohunkim@ajou.ac.kr

    2006-08-11

    {alpha}-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of {alpha}-synuclein has not yet been known. Here we have shown that {alpha}-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of {alpha}-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with {alpha}-synuclein. Our results indicate that {alpha}-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo.

  4. Copper Binding and Subsequent Aggregation of α-Synuclein Are Modulated by N-Terminal Acetylation and Ablated by the H50Q Missense Mutation.

    PubMed

    Mason, Rebecca J; Paskins, Aimee R; Dalton, Caroline F; Smith, David P

    2016-08-30

    The Parkinson's disease-associated protein α-synuclein exhibits significant conformational heterogeneity. Bacterially expressed α-synuclein is known to bind to copper, resulting in the formation of aggregation-prone compact conformations. However, in vivo, α-synuclein undergoes acetylation at its N-terminus. Here the effect of this modification and the pathological H50Q mutation on copper binding and subsequent conformational transitions were investigated by electrospray ionization-ion mobility spectrometry-mass spectrometry. We demonstrate that acetylation perturbs the ability of α-synuclein to bind copper and that the H50Q missense mutation in the presence of N-terminal acetylation prevents copper binding. These modifications and mutations prevent the formation of the most compact conformations and inhibit copper-induced aggregation.

  5. Soluble α-synuclein is a novel modulator of Alzheimer’s disease pathophysiology

    PubMed Central

    Larson, Megan E.; Sherman, Mathew A.; Greimel, Susan; Kuskowski, Michael; Schneider, Julie A.; Bennett, David A.; Lesné, Sylvain E.

    2012-01-01

    Recent evidence has emphasized soluble species of amyloid-β (Aβ) and tau as pathogenic effectors in AD. Despite the fact that Aβ, tau and α-synuclein (αSyn) can promote each other’s aggregation, the potential contribution of soluble αSyn to Alzheimer’s disease (AD) pathogenesis is unknown. Here, we found a ~2-fold increase over controls in soluble αSyn levels in AD brains in the absence of LB cytopathology. Importantly, soluble αSyn levels were a quantitatively stronger correlate of cognitive impairment than soluble Aβ and tau levels. To examine a putative role for αSyn in modulating cognitive function, we used the Barnes circular maze to assess spatial reference memory in transgenic mice overexpressing human wild-type αSyn. The results revealed that a ~3-fold elevation of αSyn in vivo induced memory deficits similar to those observed in AD mouse models. The neurobiological changes associated with this elevation of soluble αSyn included decreases in selected synaptic vesicle proteins and an alteration of the protein composition of synaptic vesicles. Finally, a synergism between Aβ/APP and human tau appears to be responsible for the abnormal elevation of soluble αSyn in transgenic mice. Altogether, our data reveal an unexpected role for soluble, intraneuronal αSyn in AD pathophysiology. PMID:22836259

  6. Low alpha-synuclein levels in the blood are associated with insulin resistance

    PubMed Central

    Rodriguez-Araujo, Gerardo; Nakagami, Hironori; Takami, Yoichi; Katsuya, Tomohiro; Akasaka, Hiroshi; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Morishita, Ryuichi; Rakugi, Hiromi; Kaneda, Yasufumi

    2015-01-01

    Mutations in the protein alpha-synuclein (SNCA) have been linked to Parkinson’s disease. We recently reported that non-mutated SNCA enhanced glucose uptake through the Gab1-PI3 kinase-Akt pathway and elucidated its effects on glucose regulation. Here, we examined the association of SNCA with insulin resistance (IR), a condition that is characterized by decreased tissue glucose uptake. Our observations include those from a population study as well as a SNCA-deficient mouse model, which had not previously been characterized in an IR scenario. In 1,152 patients, we found that serum SNCA levels were inversely correlated with IR indicators—body mass index, homeostatic model assessment for IR (HOMA-IR) and immunoreactive insulin (IRI)—and, to a lesser extent, with blood pressure and age. Additionally, SNCA-deficient mice displayed alterations in glucose and insulin responses during diet-induced IR. Moreover, during euglycemic clamp assessments, SNCA knock-out mice fed a high-fat diet (HFD) showed severe IR in adipose tissues and skeletal muscle. These findings provide new insights into IR and diabetes and point to SNCA as a potential candidate for further research. PMID:26159928

  7. Proteomic Studies of Nitrated Alpha-Synuclein Microglia Regulation by CD4+CD25+ T Cells

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory responses affect Parkinson's disease (PD) associated nigrostriatal degeneration. This is triggered, in measure, by misfolded, nitrated alpha-synuclein (N-α-syn) contained within Lewy bodies that are released from dying or dead dopaminergic neurons into the extravascular space. N-α-syn-stimulated microglial immunity is regulated by CD4+ T cells. Indeed, CD4+CD25+regulatory T cells (Treg) induce neuroprotective immune responses. This is seen in rodent models of stroke, amyotrophic lateral sclerosis, human immunodeficiency virus associated dementia, and PD. To elucidate the mechanism for Treg-mediated microglial responses, we used a proteomic platform integrating difference gel electrophoresis and tandem mass spectrometry peptide sequencing. These tests served to determine the consequences of Treg on the N-α-syn stimulated microglia. The data demonstrated that Treg substantially alter the microglial proteome in response to N-α-syn. This is seen through Treg's abilities to suppress microglial neurotoxic proteins linked to cell metabolism, migration, protein transport and degradation, redox biology, cytoskeletal, and bioenergetic activities. We conclude that Treg modulate the N-α-syn microglial proteome and, in this way, can slow the tempo and course of PD. PMID:19432400

  8. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice.

    PubMed

    Lindström, Veronica; Fagerqvist, Therese; Nordström, Eva; Eriksson, Fredrik; Lord, Anna; Tucker, Stina; Andersson, Jessica; Johannesson, Malin; Schell, Heinrich; Kahle, Philipp J; Möller, Christer; Gellerfors, Pär; Bergström, Joakim; Lannfelt, Lars; Ingelsson, Martin

    2014-09-01

    Several lines of evidence suggest that accumulation of aggregated alpha-synuclein (α-synuclein) in the central nervous system (CNS) is an early pathogenic event in Parkinson's disease and other Lewy body disorders. In recent years, animal studies have indicated immunotherapy with antibodies directed against α-synuclein as a promising novel treatment strategy. Since large α-synuclein oligomers, or protofibrils, have been demonstrated to possess pronounced cytotoxic properties, such species should be particularly attractive as therapeutic targets. In support of this, (Thy-1)-h[A30P] α-synuclein transgenic mice with motor dysfunction symptoms were found to display increased levels of α-synuclein protofibrils in the CNS. An α-synuclein protofibril-selective monoclonal antibody (mAb47) was evaluated in this α-synuclein transgenic mouse model. As measured by ELISA, 14month old mice treated for 14weeks with weekly intraperitoneal injections of mAb47 displayed significantly lower levels of both soluble and membrane-associated protofibrils in the spinal cord. Besides the lower levels of pathogenic α-synuclein demonstrated, a reduction of motor dysfunction in transgenic mice upon peripheral administration of mAb47 was indicated. Thus, immunotherapy with antibodies targeting toxic α-synuclein species holds promise as a future disease-modifying treatment in Parkinson's disease and related disorders.

  9. Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson's disease.

    PubMed

    Coune, P G; Bensadoun, J C; Aebischer, P; Schneider, B L

    2011-01-01

    Although the overabundance of human alpha-synuclein in nigral dopaminergic neurons is considered to play a pathogenic role in Parkinson's disease (PD), it remains unclear how alpha-synuclein leads to neuronal degeneration and motor symptoms. Here, we explored the effect of human alpha-synuclein in the rat substantia nigra following AAV-mediated gene delivery inducing a moderate loss of dopaminergic neurons together with motor impairments. A significant fraction of the surviving nigral neurons were found to express human αSyn and displayed a pathological fragmentation of the Golgi apparatus. This observation prompted further investigation on the role of the secretory pathway, in particular at the ER/Golgi level, in alpha-synuclein toxicity. To address this question, we co-expressed human alpha-synuclein with Rab1A, a regulator of ER-to-Golgi vesicular trafficking, and found a significant reduction of Golgi fragmentation. Rab1A did not protect the dopaminergic neurons from the alpha-synuclein-induced degeneration that occurred within several months following vector injection. However, we observed in animals co-expressing Rab1A an improvement of motor behavior that correlates with the rescue of normal Golgi morphology in alpha-synuclein-expressing dopaminergic neurons. The non-prenylable mutant Rab1A-DeltaCC did not produce any of the effects observed with the wild-type form of Rab1A, linking the protective role of Rab1A with its activity in ER-to-Golgi vesicular trafficking. In conclusion, Rab1A can rescue the Golgi fragmentation caused by the overabundance of alpha-synuclein in nigral dopaminergic neurons, improving the ability of the surviving neurons to control motor function in hemiparkinsonian animals.

  10. Chronic Methamphetamine Increases Alpha-Synuclein Protein Levels in the Striatum and Hippocampus but not in the Cortex of Juvenile Mice

    PubMed Central

    Butler, B.; Gamble-George, J.; Prins, P.; North, A.; Clarke, J.T; Khoshbouei, H.

    2015-01-01

    Methamphetamine is the second most widely used illicit drug worldwide. More than 290 tons of methamphetamine was synthesized in the year 2005 alone, corresponding to approximately ~3 billion 100 mg doses of methamphetamine. Drug addicts abuse high concentrations of methamphetamine for months and even years. Current reports in the literature are consistent with the interpretation that methamphetamine-induced neuronal injury may render methamphetamine users more susceptible to neurodegenerative pathologies. Specifically, chronic exposure to psychostimulants is associated with increases in striatal alpha-synuclein expression, a synaptic protein implicated in the pathogenesis of neurodegenerative diseases. This raises the question whether methamphetamine exposure affects alpha-synuclein levels in the brain. In this short report, we examined alpha-synuclein protein and mRNA levels in the striatum, hippocampus and cortex of adolescent male mice following a neurotoxic regimen of methamphetamine (24mg/kg/daily/14days). We found that methamphetamine exposure resulted in a decrease in the monomeric form of alpha-synuclein (molecular species <19 kDa), while increasing higher molecular weight alpha-synuclein species (>19 kDa) in the striatum and hippocampus, but not in the cortex. Despite the elevation of high molecular weight alpha-synuclein species (>19 kDa), there was no change in the alpha-synuclein mRNA levels in the striatum, hippocampus and cortex of mice exposed to methamphetamine. The methamphetamine-induced increase in high molecular weight alpha-synuclein protein levels might be one of the causal mechanisms or one of the compensatory consequences of methamphetamine-mediated neurotoxicity. PMID:25621291

  11. Immunotherapy in Parkinson's Disease: Micromanaging Alpha-Synuclein Aggregation.

    PubMed

    George, Sonia; Brundin, Patrik

    2015-01-01

    Currently, several α-synuclein immunotherapies are being tested in experimental Parkinson's disease models and in clinical trials. Recent research has revealed that α-synuclein is not just an intracellular synaptic protein but also exists extracellularly. Moreover, the transfer of misfolded α-synuclein between cells might be a crucial step in the process leading to a progressive increase in deposition of α-synuclein aggregates throughout the Parkinson's disease brain. The revelation that α-synuclein is present outside cells has increased the interest in antibody-based therapies and opens up for the notion that microglia might play a key role in retarding Parkinson's disease progression. The objectives of this review are to describe and contrast the use of active and passive immunotherapy in treating α-synucleinopathies and highlight the likely important role of microglia in clearing misfolded α-synuclein from the extracellular space.

  12. Ultraviolet Irradiation-Induced Volume Alteration of Corneal Epithelial Cells

    PubMed Central

    Wang, Ling; Lu, Luo

    2016-01-01

    Purpose The purpose of the study is to understand how extracellular stresses, such as ultraviolet (UV) irradiation, affect corneal epithelial cells. Cell volume changes, damage to corneal epithelial integrity, and cellular responses were assessed after exposure to UVC stresses. Methods Primary human and rabbit corneal epithelial cells were exposed to UVC light in culture conditions. Ultraviolet C irradiation–induced changes in cell size and volume were measured by real-time microscopy and self-quenching of the fluorescent dye calcein, respectively. The effects of UVC irradiation on Src and focal adhesion kinase (FAK) phosphorylation and FAK-dependent integrin signaling were detected by ELISA, immunoblotting, and immunostaining. Results Ultraviolet C irradiation induced both size and volume shifts in human and rabbit corneal epithelial cells. Ultraviolet C irradiation-induced decrease of cell volume elicited activation of Src and FAK, characterized by increased phosphorylations of SrcY416, FAKY397, and FAKY925. In addition, immunostaining studies showed UVC irradiation–induced increases in phosphorylation of FAK and formation of integrin β5 clustering. Application of Kv channel blockers, including 4-aminopyridine (4-AP), α-DTX, and depressing substance-1 (BDS-1), effectively suppressed UVC irradiation–induced cell volume changes, and subsequently inhibited UVC irradiation–induced phosphorylation of Src/FAK, and formation of integrin β5 clustering, suggesting UVC irradiation–induced volume changes and Src/FAK activation. Hyperosmotic pressure–induced volume decreases were measured in comparison with effects of UVC irradiation on volume and Src/FAK activation. However, Kv channel blocker, 4-AP, had no effect on hyperosmotic pressure–induced responses. Conclusions The present study demonstrates that UVC irradiation–induced decreases in cell volume lead to Src/FAK activation due to a rapid loss of K ions through membrane Kv channels. PMID:27978555

  13. Uranium-induced sensory alterations in the zebrafish Danio rerio.

    PubMed

    Faucher, K; Floriani, M; Gilbin, R; Adam-Guillermin, C

    2012-11-15

    The effect of chronic exposure to uranium ions (UO(2)(2+)) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 μg l(-1) for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes>olfactory bulbs>skin>muscles>brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  14. Radiation-induced alterations of fracture healing biomechanics

    SciTech Connect

    Pelker, R.R.; Friedlaender, G.E.; Panjabi, M.M.; Kapp, D.; Doganis, A.

    1984-01-01

    The effects of irradiation on the normal temporal progression of the physical properties of healing fractures were studied in a rat model. Fractures were surgically produced in the femur, stabilized with an intramedullary pin, and irradiated. One group of rats was exposed to 2,500 rads in divided doses over 2 weeks, beginning 3 days after fracture, and compared to a control group with fractures which were not irradiated. Animals were sacrificed at periodic intervals and the bones were tested to failure in torsion. The torque, stiffness, and energy increased and the angle decreased for the nonirradiated specimens in the expected fashion. This progression was deleteriously altered in the irradiated femurs.

  15. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  16. Nickel-induced heritable alterations in retroviral transforming gene expression.

    PubMed Central

    Biggart, N W; Gallick, G E; Murphy, E C

    1987-01-01

    Determination of the mutagenic effects of carcinogenic nickel compounds has been difficult because, like many metals, nickel is poorly or nonmutagenic in procaryotic mutagenicity assays. We attempted to characterize nickel-induced genetic lesions by assessing the effect of nickel chloride on the conditionally defective expression of the v-mos transforming gene in normal rat kidney cells infected with the Murine sarcoma virus mutant ts110 (MuSVts110) retrovirus. MuSVts110 contains an out-of-frame gag gene-mos gene junction that prevents the expression of the v-mos gene at the nonpermissive temperature (39 degrees C). In MuSVts110-infected cells (6m2 cells) grown at 33 degrees C, however, this defect can be suppressed by a splicing event that restores the mos reading frame, allowing the expression of a gag-mos fusion protein which induces the transformed phenotype. The capacity to splice the viral transcript at 33 degrees C, but not at 39 degrees C, is an intrinsic property of the viral RNA. This property allowed us to target the MuSVts110 genome using a positive selection scheme whereby nickel was used to induce genetic changes which resulted in expression of the transformed phenotype at 39 degrees C. We treated 6m2 cells with NiCl2 and isolated foci consisting of cells which had reverted to the transformed phenotype at 39 degrees C. We found that brief nickel treatment increased the reversion frequency of 6m2 cells grown at 39 degrees C sevenfold over the spontaneous reversion frequency. The nickel-induced revertants displayed the following heritable characteristics: They stably maintained the transformed phenotype at 39 degrees C; unlike the MuSVts110 RNA in 6m2 cells, the nickel-induced revertant viral RNA could be spliced efficiently at 39 degrees C; as a consequence of the enhanced accumulation of spliced viral RNA, the nickel-induced revertants produced substantial amounts of the transforming v-mos protein P85gag-mos at 39 degrees C; the nickel-induced

  17. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Spitzer, J.J.

    1986-03-05

    Pentobarbital is a common anesthetic agent used in animal research that is known to alter sympathetic function and may also affect carbohydrate metabolism. The in vivo effects of iv pentobarbital on glucose homeostasis were studied in chronically catheterized fasted rats. Whole body glucose kinetics, assessed by the constant iv infusion of (6-/sup 3/H)- and (U-/sup 14/C)-glucose, were determined in all rats in the conscious state. Thereafter, glucose metabolism was followed over the next 4 hr in 3 subgroups of rats; conscious, anesthetized with body temperature maintained, and anesthetized with body temperature not maintained. Hypothermia (a 5/sup 0/C decrease) developed spontaneously in anesthetized rats kept at ambient temperature (22/sup 0/C). No differences were seen in MABP and heart rate between conscious and normothermic anesthetized rats; however, hypothermic anesthetized rats showed a decrease in MABP (20%) and heart rate (35%). Likewise, plasma glucose and lactate concentrations, the rate of glucose appearance (Ra), recycling and metabolic clearance (MCR) did not differ between conscious and normothermic anesthetized animals. In contrast, hypothermic anesthetized rats showed a 50% reduction in plasma lactate, a 40% drop in glucose Ra, and a 30-40% decrease in glucose recycling and MCR. Thus, pentobarbital does not appear to alter in vivo glucose kinetics, compared to unanesthetized controls, provided that body temperature is maintained.

  18. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  19. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-05

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.

  20. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  1. Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1.

    PubMed

    Miners, J Scott; Renfrew, Ruth; Swirski, Marta; Love, Seth

    2014-12-05

    Kallikrein-6 and calpain-1 are amongst a small group of proteases that degrade α-synuclein. We have explored the possibility that reduction in the level or activity of these enzymes contributes to the accumulation of α-synuclein in Lewy body diseases. We measured calpain-1 activity by fluorogenic activity assay, kallikrein-6 level by sandwich ELISA, and levels of α-synuclein and α-synuclein phosphorylated at serine 129 (α-synuclein-P129), in post-mortem brain tissue in pure dementia with Lewy bodies (DLB, n=12), Alzheimer's disease (AD, n=20) and age-matched controls (n=19). Calpain-1 activity was significantly reduced in DLB within the cingulate and parahippocampal cortex, regions with highest α-synuclein and α-synuclein-P129 load, and correlated inversely with the levels of α-synuclein and α-synuclein-P129. Calpain-1 was unaltered in the thalamus and frontal cortex, regions with less α-synuclein pathology. Kallikrein-6 level was reduced in the cingulate cortex in the DLB cohort, and correlated inversely with α-synuclein and α-synuclein-P129. Kallikrein-6 was also reduced in DLB in the thalamus but not in relation to α-synuclein or α-synuclein-P129 load and was unaltered in the frontal and parahippocampal cortex. In SH-SY5Y cells overexpressing wild-type α-synuclein there was partial co-localisation of kallikrein-6 and calpain-1 with α-synuclein, and siRNA-mediated knock-down of kallikrein-6 and calpain-1 increased the amount of α-synuclein in cell lysates. Our results indicate that reductions in kallikrein-6 and calpain-1 may contribute to the accumulation of α-synuclein in DLB.

  2. Low molecular weight heparin restores antithrombin III activity from hyperglycemia induced alterations.

    PubMed

    Ceriello, A; Marchi, E; Palazzni, E; Quatraro, A; Giugliano, D

    1990-01-01

    Alteration of antithrombin III (ATIII) activity, glycemia level dependent, exists in diabetes mellitus. In this study the ability of a low molecular weight heparin (LMWH) (Fluxum, Alfa-Wassermann S.p.A., Bologna, Italy), as well as unfractioned héparin, to preserve ATIII activity from glucose-induced alterations, both in vitro and in vivo, is reported. The subcutaneous and intravenous LMWH and heparin administration increases basal depressed ATIII activity in diabetic patients. Heparin shows an equivalent effect on both anti-IIa and anti-Xa activity of ATIII, while LMWH is more effective in preserving the anti-Xa activity. Similarity, heparin preserves ATIII activity from hyperglycemia-induced alterations, during hyperglycemic clamp, and LMWH infusion is able to preserve a significant amount of anti-Xa activity from glucose-induced alterations. Since diabetic patients show a high incidence of thrombotic accidents, LMWH appears to be a promising innovation for the prevention of diabetic thrombophylia.

  3. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    DTIC Science & Technology

    2014-06-01

    Kirik D. Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons. Neurobiol Dis. Sep;47(3):367-77, (2012) Lee HJ...Baek SM, Ho DH, Suk JE, Cho ED, Lee SJ. Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Exp Mol Med 43:216-22

  4. Adsorption of alpha-synuclein on lipid bilayers: modulating the structure and stability of protein assemblies.

    PubMed

    Haque, Farzin; Pandey, Anjan P; Cambrea, Lee R; Rochet, Jean-Christophe; Hovis, Jennifer S

    2010-03-25

    The interaction of alpha-synuclein with phospholipid membranes has been examined using supported lipid bilayers and epi-fluorescence microscopy. The membranes contained phosphatidylcholine (PC) and phosphatidic acid (PA), which mix at physiological pH. Upon protein adsorption, the lipids undergo fluid-fluid phase separation into PC-rich and PA-rich regions. The protein preferentially adsorbs to the PA-rich regions. The adsorption and subsequent aggregation of alpha-synuclein was probed by tuning several parameters: the charge on the lipids, the charge on the protein, and the screening environment. Conditions which promoted the greatest extent of adsorption resulted in structurally heterogeneous aggregates, while comparatively homogeneous aggregates were observed under conditions whereby adsorption did not occur as readily. Our observation that different alterations to the system lead to different degrees of aggregation and different aggregate structures poses a challenge for drug discovery. Namely, therapies aimed at neutralizing alpha-synuclein must target a broad range of potentially toxic, membrane-bound assemblies.

  5. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC.

  6. Alcohol-induced alterations in dopamine modulation of prefrontal activity

    PubMed Central

    Trantham-Davidson, Heather; Chandler, L. Judson

    2015-01-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  7. The alteration of copper homeostasis in inflammation induced by lipopolysaccharides.

    PubMed

    Han, Ming; Lin, Zhexuan; Zhang, Yuan

    2013-08-01

    Significant changes of copper homeostasis were triggered by lipopolysaccharides, which result in systemic inflammatory response and contribute to hepatic injury. Administration of lipopolysaccharides resulted in the increase of plasma "free" copper and total copper concentrations, whereas, the decrease of "free" copper and total copper contents in liver tissue. Copper-associated proteins were detected and showed a down-regulation of X-linked inhibitor of apoptosis protein, and up-regulation of copper metabolism domain containing 1 and copper transporter 1. The alteration of these proteins would lower the apoptotic threshold. Meanwhile, the increasing of circulation copper might cause oxidative injury through Fenton reaction and contribute to tissue injury. Our findings underscored the possibility that these changes in systemic copper homeostasis might provide a novel insight of the characteristic of the acute phase of inflammatory response and the underlying influence on tissue injury.

  8. Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma

    PubMed Central

    Setshedi, Mashiko; Hairwadzi, Henry N.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy. PMID:28105421

  9. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.

  10. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology.

    PubMed

    Tartarin, Pauline; Guibert, Edith; Touré, Aminata; Ouiste, Claire; Leclerc, Jocelyne; Sanz, Nieves; Brière, Sylvain; Dacheux, Jean-Louis; Delaleu, Bernadette; McNeilly, Judith R; McNeilly, Alan S; Brillard, Jean-Pierre; Dupont, Joëlle; Foretz, Marc; Viollet, Benoit; Froment, Pascal

    2012-07-01

    AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, is present in metabolic tissues (muscle and liver) and has been identified as a modulator of the female reproductive functions. However, its function in the testis has not yet been clearly defined. We have investigated the potential role of AMPK in male reproduction by using transgenic mice lacking the activity of AMPK catalytic subunit α1 gene [α1AMPK knockout (KO)]. In the testis, the α1AMPK subunit is expressed in germ cells and also in somatic cells (Sertoli and Leydig cells). α1AMPK KO male mice show a decrease in fertility, despite no clear alteration in the testis morphology or sperm production. However, in α1AMPK(-/-) mice, we demonstrate that spermatozoa have structural abnormalities and are less motile than in control mice. These spermatozoa alterations are associated with a 50% decrease in mitochondrial activity, a 60% decrease in basal oxygen consumption, and morphological defects. The α1AMPK KO male mice had high androgen levels associated with a 5- and 3-fold increase in intratesticular cholesterol and testosterone concentrations, respectively. High concentrations of proteins involved in steroid production (3β-hydroxysteroid dehydrogenase, cytochrome steroid 17 alpha-hydroxylase/17,20 lysate, and steroidogenic acute regulatory protein) were also detected in α1AMPK(-/-) testes. In the pituitary, the LH and FSH concentrations tended to be lower in α1AMPK(-/-) male mice, probably due to the negative feedback of the high testosterone levels. These results suggest that total α1AMPK deficiency in male mice affects androgen production and quality of spermatozoa, leading to a decrease in fertility.

  11. Altered brain network modules induce helplessness in major depressive disorder

    PubMed Central

    Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang

    2017-01-01

    Objective The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Methods Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Results Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. Limitation The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. Conclusions The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. PMID:25033474

  12. Vanadium exposure-induced neurobehavioral alterations among Chinese workers.

    PubMed

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2013-05-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the simple reaction time, digit span, benton visual retention and pursuit aiming were also poorer among exposed workers as compared to unexposed control workers (p<0.05). Some of these poor performances in tests were also significantly related to workers' exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium.

  13. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril

    PubMed Central

    Kim, Changyoun; Lv, Guohua; Lee, Jun Sung; Jung, Byung Chul; Masuda-Suzukake, Masami; Hong, Chul-Suk; Valera, Elvira; Lee, He-Jin; Paik, Seung R.; Hasegawa, Masato; Masliah, Eliezer; Eliezer, David; Lee, Seung-Jae

    2016-01-01

    A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate “strains” with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies. PMID:27488222

  14. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links.

    PubMed

    Moors, Tim; Paciotti, Silvia; Chiasserini, Davide; Calabresi, Paolo; Parnetti, Lucilla; Beccari, Tommaso; van de Berg, Wilma D J

    2016-06-01

    Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society.

  15. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.

  16. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  17. Alteration of fibroblast phenotype by asbestos-induced autoantibodies.

    PubMed

    Pfau, Jean C; Li, Sheng'ai; Holland, Sara; Sentissi, Jami J

    2011-06-01

    Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate

  18. Potential Modes of Intercellular α-Synuclein Transmission

    PubMed Central

    Valdinocci, Dario; Radford, Rowan A. W.; Siow, Sue Maye; Chung, Roger S.; Pountney, Dean L.

    2017-01-01

    Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease. PMID:28241427

  19. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  20. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  1. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    PubMed

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-01-16

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation.

  2. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  3. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  4. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  5. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy

    PubMed Central

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-01-01

    Abstract The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale. The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores. Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA. The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  6. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment.

  7. Cyclooxygenase inhibition does not alter methacholine-induced sweating.

    PubMed

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M; Meade, Robert D; Kenny, Glen P

    2014-11-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min(-1)·cm(-2)) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1-2,000 mM methacholine.

  8. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants

    NASA Astrophysics Data System (ADS)

    Tosatto, Laura; Horrocks, Mathew H.; Dear, Alexander J.; Knowles, Tuomas P. J.; Dalla Serra, Mauro; Cremades, Nunilo; Dobson, Christopher M.; Klenerman, David

    2015-11-01

    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson’s disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.

  9. Induced defences alter the strength and direction of natural selection on reproductive traits in common milkweed.

    PubMed

    Thompson, K A; Cory, K A; Johnson, M T J

    2017-01-30

    Evolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defences can alter natural selection on reproductive traits, but it is unclear whether induced defences will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca L., we induced plant defences using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), whereas control plants only experienced a trend towards selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defences can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defences may promote the evolution of plant reproductive diversity.

  10. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice

    PubMed Central

    de Souza, Carlos AT; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  11. Reactivity of copper-α-synuclein peptide complexes relevant to Parkinson's disease.

    PubMed

    Dell'Acqua, Simone; Pirota, Valentina; Anzani, Cecilia; Rocco, Michela M; Nicolis, Stefania; Valensin, Daniela; Monzani, Enrico; Casella, Luigi

    2015-07-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the presence of abnormal α-synuclein (αSyn) deposits in the brain. Alterations in metal homeostasis and metal-induced oxidative stress may play a crucial role in the aggregation of αSyn and, consequently, in the pathogenesis of PD. We have therefore investigated the capability of copper-αSyn6 and copper-αSyn15 peptide complexes, with the 1-6 and 1-15 terminal fragments of the protein, to promote redox reactions that can be harmful to other cellular components. The pseudo-tyrosinase activity of copper-αSyn complexes against catecholic (di-tert-butylcatechol (DTBCH2), 4-methylcatechol (4-MC)) and phenolic (phenol) substrates is lower compared to that of free copper(II). In particular, the rates (kcat) of DTBCH2 catalytic oxidation are 0.030 s(-1) and 0.009 s(-1) for the reaction promoted by free copper(II) and [Cu(2+)-αSyn15], respectively. On the other hand, HPLC/ESI-MS analysis of solutions of αSyn15 incubated with copper(II) and 4-MC showed that αSyn is competitively oxidized with remarkable formation of sulfoxide at Met1 and Met5 residues. Moreover, the sulfoxidation of methionine residues, which is related to the aggregation of αSyn, also occurs on peptides not directly bound to copper, indicating that external αSyn can also be oxidized by copper. Therefore, this study strengthens the hypothesis that copper plays an important role in oxidative damage of αSyn which is proposed to be strongly related to the etiology of PD.

  12. Analysis of expression pathways alterations of Arabidopsis thaliana induced by a Necrosis- and Ethylene-inducing protein

    NASA Astrophysics Data System (ADS)

    Sinigaglia, Marialva; Castro, Mauro A. A.; Echeverrigaray, Sérgio; Pereira, Gonçalo A. G.; Mombach, José C. M.

    2009-10-01

    A major goal in post-genomic biology is the description of physiological functions in terms of gene pathway behavior. In this work, we present the first investigation of expression alterations in ninety-three pathways representing physiological functions of the plant A. thaliana induced by a P. parasitica elicitor (NLPpp) using microarray data publicly available at the AtGenExpress database. Using a novel statistical analysis developed to detect pathway alterations, we identified the gene pathways, hereby called groups of functionally associated genes (defined according to the TAIR/Gene Ontology and other databases), that are significantly altered in response to the elicitor. Instead of looking at individual gene responses, our analysis allowed a detailed characterization of the time ordering of pathways alterations in response to the NLPpp, their physiological implications and specificity. We also observed the activation of genes associated with vesicle trafficking and ROS production implying the initiation of the senescence of the wounded plant tissue.

  13. Vulnerability of conditional NCAM-deficient mice to develop stress-induced behavioral alterations.

    PubMed

    Bisaz, Reto; Sandi, Carmen

    2012-03-01

    Previous studies in rodents showed that chronic stress induces structural and functional alterations in several brain regions, including shrinkage of the hippocampus and the prefrontal cortex, which are accompanied by cognitive and emotional disturbances. Reduced expression of the neural cell adhesion molecule (NCAM) following chronic stress has been proposed to be crucially involved in neuronal retraction and behavioral alterations. Since NCAM gene polymorphisms and altered expression of alternatively spliced NCAM isoforms have been associated with bipolar depression and schizophrenia in humans, we hypothesized that reduced expression of NCAM renders individuals more vulnerable to the deleterious effects of stress on behavior. Here, we specifically questioned whether mice in which the NCAM gene is inactivated in the forebrain by cre-recombinase under the control of the calcium-calmodulin-dependent kinase II promoter (conditional NCAM-deficient mice), display increased vulnerability to stress. We assessed the evolving of depressive-like behaviors and spatial learning and memory impairments following a subchronic stress protocol (2 weeks) that does not result in behavioral dysfunction, nor in altered NCAM expression, in wild-type mice. Indeed, while no behavioral alterations were detected in wild-type littermates after subchronic stress, conditional NCAM-deficient mice showed increased immobility in the tail suspension test and deficits in reversal spatial learning in the water maze. These findings indicate that diminished NCAM expression might be a critical vulnerability factor for the development of behavioral alterations by stress and further support a functional involvement of NCAM in stress-induced cognitive and emotional disturbances.

  14. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination.

    PubMed

    Skinner, Michael K; Bhandari, Ramji K; Haque, M Muksitul; Nilsson, Eric E

    2015-12-01

    A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.

  15. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  16. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  17. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    PubMed Central

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  18. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  19. Utility of Dexrazoxane for the Attenuation of Epirubicin-Induced Genetic Alterations in Mouse Germ Cells

    PubMed Central

    Ahmad, Sheikh F.; Ansaria, Mushtaq A.; Nadeem, Ahmed; Al-Shabanah, Othman A.; Al-Harbi, Mohammed M.; Bakheet, Saleh A.

    2016-01-01

    Dexrazoxane has been approved to treat anthracycline-induced cardiomyopathy and extravasation. However, the effect of dexrazoxane on epirubicin-induced genetic alterations in germ cells has not yet been reported. Thus, the aim of this study was to determine whether dexrazoxane modulates epirubicin-induced genetic damage in the germ cells of male mice. Our results show that dexrazoxane was not genotoxic at the tested doses. Furthermore, it protected mouse germ cells against epirubicin-induced genetic alterations as detected by the reduction in disomic and diploid sperm, spermatogonial chromosomal aberrations, and abnormal sperm heads. The attenuating effect of dexrazoxane was greater at higher dose, indicating a dose-dependent effect. Moreover, sperm motility and count were ameliorated by dexrazoxane pretreatment. Epirubicin induced marked biochemical changes characteristic of oxidative DNA damage including elevated 8-hydroxy-2ʹ-deoxyguanosine levels and reduction in reduced glutathione. Pretreatment of mice with dexrazoxane before epirubicin challenge restored these altered endpoints. We conclude that dexrazoxane may efficiently mitigate the epirubicin insult in male germ cells, and prevent the enhanced risk of abnormal reproductive outcomes and associated health risks. Thus, pretreating patients with dexrazoxane prior to epirubicin may efficiently preserve not only sperm quality but also prevent the transmission of genetic damage to future generations. PMID:27690233

  20. Mechanisms of alpha-Synuclein Aggregation and Toxicity

    DTIC Science & Technology

    2006-09-01

    University) and Brian Shoichet (Northwestern) and thank Matthew Farrer and John Hardy (Mayo Clinic) for providing the -synuclein cDNA. REFERENCES 1. Hoehn...for providing cDNA encoding mutant -synuclein (Y125F), and Dr. John H. Exton for helpful com- ments in the preparation of this manuscript. REFERENCES...FL, USA cDepartment of Neurology and Neuroscience, Johns Hopkins Medical Center, Baltimore, MD, USA dDepartment of Microbiology and Immunology

  1. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  2. Transmission of Soluble and Insoluble α-Synuclein to Mice

    PubMed Central

    Jones, Daryl R.; Delenclos, Marion; Baine, AnnMarie T.; DeTure, Michael; Murray, Melissa E.; Dickson, Dennis W.; McLean, Pamela J.

    2015-01-01

    The neurodegenerative synucleinopathies, which include Parkinson disease, multiple system atrophy, and Lewy body disease, are characterized by the presence of abundant neuronal inclusions called Lewy bodies and Lewy neurites. These disorders remain incurable and a greater understanding of the pathologic processes is needed for effective treatment strategies to be developed. Recent data suggest that pathogenic misfolding of the presynaptic protein, α-synuclein (α-syn), and subsequent aggregation and accumulation is fundamental to the disease process. It is hypothesized that the misfolded isoform is able to induce misfolding of normal endogenous α-syn, much like what occurs in the prion diseases. Recent work highlighting the seeding effect of pathogenic α-syn has largely focused on the detergent-insoluble species of the protein. In this study we performed intracerebral inoculations of the sarkosyl-insoluble or sarkosyl-soluble fractions of human Lewy body disease brain homogenate and show that both fractions induce CNS pathology in mice at 4 months post-injection. Disease-associated deposits accumulated both near and distal to the site of the injection suggesting a cell-to-cell spread via recruitment of α-syn. These results provide further insight into the prion-like mechanisms of α-syn and suggest that disease-associated α-syn is not homogenous within a single patient but might exist in both soluble and insoluble isoforms. PMID:26574670

  3. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins.

    PubMed

    Ostrerova, N; Petrucelli, L; Farrer, M; Mehta, N; Choi, P; Hardy, J; Wolozin, B

    1999-07-15

    alpha-Synuclein has been implicated in the pathophysiology of many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. Mutations in alpha-synuclein cause some cases of familial PD (Polymeropoulos et al., 1997; Kruger et al., 1998). In addition, many neurodegenerative diseases show accumulation of alpha-synuclein in dystrophic neurites and in Lewy bodies (Spillantini et al., 1998). Here, we show that alpha-synuclein shares physical and functional homology with 14-3-3 proteins, which are a family of ubiquitous cytoplasmic chaperones. Regions of alpha-synuclein and 14-3-3 proteins share over 40% homology. In addition, alpha-synuclein binds to 14-3-3 proteins, as well as some proteins known to associate with 14-3-3, including protein kinase C, BAD, and extracellular regulated kinase, but not Raf-1. We also show that overexpression of alpha-synuclein inhibits protein kinase C activity. The association of alpha-synuclein with BAD and inhibition of protein kinase C suggests that increased expression of alpha-synuclein could be harmful. Consistent with this hypothesis, we observed that overexpression of wild-type alpha-synuclein is toxic, and overexpression of alpha-synuclein containing the A53T or A30P mutations exhibits even greater toxicity. The activity and binding profile of alpha-synuclein suggests that it might act as a protein chaperone and that accumulation of alpha-synuclein could contribute to cell death in neurodegenerative diseases.

  4. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation

    PubMed Central

    Breydo, Leonid; Newland, Ben; Zhang, Hong; Rosser, Anne; Werner, Carsten; Uversky, Vladimir N.; Wang, Wenxin

    2016-01-01

    Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity. PMID:26707645

  5. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation.

    PubMed

    Breydo, Leonid; Newland, Ben; Zhang, Hong; Rosser, Anne; Werner, Carsten; Uversky, Vladimir N; Wang, Wenxin

    2016-01-22

    Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.

  6. Temperature-Dependent Structural Changes of Parkinson's Alpha-Synuclein Reveal the Role of Pre-Existing Oligomers in Alpha-Synuclein Fibrillization

    PubMed Central

    Ariesandi, Winny; Chang, Chi-Fon; Chen, Tseng-Erh; Chen, Yun-Ru

    2013-01-01

    Amyloid fibrils of α-synuclein are the main constituent of Lewy bodies deposited in substantial nigra of Parkinson's disease brains. α-Synuclein is an intrinsically disordered protein lacking compact secondary and tertiary structures. To enhance the understanding of its structure and function relationship, we utilized temperature treatment to study α-synuclein conformational changes and the subsequent effects. We found that after 1 hr of high temperature pretreatment, >80°C, α-synuclein fibrillization was significantly inhibited. However, the temperature melting coupled with circular dichroism spectra showed that α-synuclein was fully reversible and the NMR studies showed no observable structural changes of α-synuclein after 95°C treatment. By using cross-linking and analytical ultracentrifugation, rare amount of pre-existing α-synuclein oligomers were found to decrease after the high temperature treatment. In addition, a small portion of C-terminal truncation of α-synuclein also occurred. The reduction of pre-existing oligomers of α-synuclein may contribute to less seeding effect that retards the kinetics of amyloid fibrillization. Overall, our results showed that the pre-existing oligomeric species is a key factor contributing to α-synuclein fibrillization. Our results facilitate the understanding of α-synuclein fibrillization. PMID:23349712

  7. RNA Interference of Human α-Synuclein in Mouse

    PubMed Central

    Kim, Young-Cho; Miller, Adam; Lins, Livia C. R. F.; Han, Sang-Woo; Keiser, Megan S.; Boudreau, Ryan L.; Davidson, Beverly L.; Narayanan, Nandakumar S.

    2017-01-01

    α-Synuclein is postulated to play a key role in the pathogenesis of Parkinson’s disease (PD). Aggregates of α-synuclein contribute to neurodegeneration and cell death in humans and in mouse models of PD. Here, we use virally mediated RNA interference to knockdown human α-synuclein in mice. We used an siRNA design algorithm to identify eight siRNA sequences with minimal off-targeting potential. One RNA-interference sequence (miSyn4) showed maximal protein knockdown potential in vitro. We then designed AAV vectors expressing miSyn4 and injected them into the mouse substantia nigra. miSyn4 was robustly expressed and did not detectably change dopamine neurons, glial proliferation, or mouse behavior. We then injected AAV2-miSyn4 into Thy1-hSNCA mice over expressing α-synuclein and found decreased human α-synuclein (hSNCA) in both midbrain and cortex. In separate mice, co-injection of AAV2-hSNCA and AAV2-miSyn4 demonstrated decreased hSNCA expression and rescue of hSNCA-mediated behavioral deficits. These data suggest that virally mediated RNA interference can knockdown hSNCA in vivo, which could be helpful for future therapies targeting human α-synuclein. PMID:28197125

  8. Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies.

    PubMed

    Vicente Miranda, Hugo; Szego, Éva M; Oliveira, Luís M A; Breda, Carlo; Darendelioglu, Ekrem; de Oliveira, Rita M; Ferreira, Diana G; Gomes, Marcos A; Rott, Ruth; Oliveira, Márcia; Munari, Francesca; Enguita, Francisco J; Simões, Tânia; Rodrigues, Eva F; Heinrich, Michael; Martins, Ivo C; Zamolo, Irina; Riess, Olaf; Cordeiro, Carlos; Ponces-Freire, Ana; Lashuel, Hilal A; Santos, Nuno C; Lopes, Luisa V; Xiang, Wei; Jovin, Thomas M; Penque, Deborah; Engelender, Simone; Zweckstetter, Markus; Klucken, Jochen; Giorgini, Flaviano; Quintas, Alexandre; Outeiro, Tiago F

    2017-04-10

    α-Synuclein misfolding and aggregation is a hallmark in Parkinson's disease and in several other neurodegenerative diseases known as synucleinopathies. The toxic properties of α-synuclein are conserved from yeast to man, but the precise underpinnings of the cellular pathologies associated are still elusive, complicating the development of effective therapeutic strategies. Combining molecular genetics with target-based approaches, we established that glycation, an unavoidable age-associated post-translational modification, enhanced α-synuclein toxicity in vitro and in vivo, in Drosophila and in mice. Glycation affected primarily the N-terminal region of α-synuclein, reducing membrane binding, impaired the clearance of α-synuclein, and promoted the accumulation of toxic oligomers that impaired neuronal synaptic transmission. Strikingly, using glycation inhibitors, we demonstrated that normal clearance of α-synuclein was re-established, aggregation was reduced, and motor phenotypes in Drosophila were alleviated. Altogether, our study demonstrates glycation constitutes a novel drug target that can be explored in synucleinopathies as well as in other neurodegenerative conditions.

  9. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor

    PubMed Central

    Agrawal, Varkha; Jaiswal, Mukesh K.; Mallers, Timothy; Katara, Gajendra K.; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL. PMID:25797357

  10. A single transient episode of hyperammonemia induces long-lasting alterations in protein kinase A.

    PubMed

    Montoliu, Carmina; Piedrafita, Blanca; Serra, Miguel A; del Olmo, Juan A; Rodrigo, José M; Felipo, Vicente

    2007-01-01

    Hepatic encephalopathy in patients with liver disease is associated with poor prognosis. This could be due to the induction by the transient episode of hepatic encephalopathy of long-lasting alterations making patients more susceptible. We show that a single transient episode of hyperammonemia induces long-lasting alterations in signal transduction. The content of the regulatory subunit of the protein kinase dependent on cAMP (PKA-RI) is increased in erythrocytes from cirrhotic patients. This increase is reproduced in rats with portacaval anastomosis and in rats with hyperammonemia without liver failure, suggesting that hyperammonemia is responsible for increased PKA-RI in patients. We analyzed whether there is a correlation between ammonia levels and PKA-RI content in patients. All cirrhotic patients had increased content of PKA-RI. Some of them showed normal ammonia levels but had suffered previous hyperammonemia episodes. This suggested that a single transient episode of hyperammonemia could induce the long-lasting increase in PKA-RI. To assess this, we injected normal rats with ammonia and blood was taken at different times. Ammonia returned to basal levels at 2 h. However, PKA-RI was significantly increased in blood cells from rats injected with ammonia 3 wk after injection. In conclusion, it is shown that a single transient episode of hyperammonemia induces long-lasting alterations in signal transduction both in blood and brain. These alterations may contribute to the poor prognosis of patients suffering hepatic encephalopathy.

  11. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis.

    PubMed

    Su, C; Su, L; Li, Y; Long, S R; Chang, J; Zhang, W; Walker, W A; Xavier, R J; Cherayil, B J; Shi, H N

    2017-03-29

    Infection with the intestinal helminth parasite Heligmosomoides polygyrus exacerbates the colitis caused by the bacterial enteropathogen Citrobacter rodentium. To clarify the underlying mechanism, we analyzed fecal microbiota composition of control and helminth-infected mice and evaluated the functional role of compositional differences by microbiota transplantation experiments. Our results showed that infection of Balb/c mice with H. polygyrus resulted in significant changes in the composition of the gut microbiota, characterized by a marked increase in the abundance of Bacteroidetes and decreases in Firmicutes and Lactobacillales. Recipients of the gut microbiota from helminth-infected wide-type, but not STAT6-deficient, Balb/c donors had increased fecal pathogen shedding and significant worsening of Citrobacter-induced colitis compared to recipients of microbiota from control donors. Recipients of helminth-altered microbiota also displayed increased regulatory T cells and IL-10 expression. Depletion of CD4(+)CD25(+) T cells and neutralization of IL-10 in recipients of helminth-altered microbiota led to reduced stool C. rodentium numbers and attenuated colitis. These results indicate that alteration of the gut microbiota is a significant contributor to the H. polygyrus-induced exacerbation of C. rodentium colitis. The helminth-induced alteration of the microbiota is Th2-dependent and acts by promoting regulatory T cells that suppress protective responses to bacterial enteropathogens.Mucosal Immunology advance online publication 29 March 2017 doi:10.1038/mi.2017.20.

  12. Pathogenic mechanisms involved in the hematological alterations of arenavirus-induced hemorrhagic fevers.

    PubMed

    Schattner, Mirta; Rivadeneyra, Leonardo; Pozner, Roberto G; Gómez, Ricardo M

    2013-01-21

    Viral hemorrhagic fevers (VHFs) caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  13. DNA damage response induces structural alterations in histone H3–H4

    PubMed Central

    Izumi, Yudai; Fujii, Kentaro; Yamamoto, Satoshi; Matsuo, Koichi; Namatame, Hirofumi; Taniguchi, Masaki; Yokoya, Akinari

    2017-01-01

    Synchrotron-radiation circular-dichroism spectroscopy was used to reveal that the DNA damage response induces a decrement of α-helix and an increment of β-strand contents of histone H3–H4 extracted from X-ray–irradiated human HeLa cells. The trend of the structural alteration was qualitatively opposite to that of our previously reported results for histone H2A–H2B. These results strongly suggest that histones share roles in DNA damage responses, particularly in DNA repair processes and chromatin remodeling, via a specific structural alteration of each histone. PMID:27672100

  14. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    PubMed Central

    Schattner, Mirta; Rivadeneyra, Leonardo; Pozner, Roberto G.; Gómez, Ricardo M.

    2013-01-01

    Viral hemorrhagic fevers (VHFs) caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms. PMID:23337384

  15. Crowding-Induced Structural Alterations of Random-Loop Chromosome Model

    NASA Astrophysics Data System (ADS)

    Kim, Jun Soo; Backman, Vadim; Szleifer, Igal

    2011-04-01

    We investigate structural alterations of random-loop polymers due to changes in the crowding condition, as a model to study environmental effects on the structure of chromosome subcompartments. The polymer structure is changed in a nonmonotonic fashion with an increasing density of crowders: condensed at small volume fractions; decondensed at high crowding volume fractions. The nonmonotonic behavior is a manifestation of the nontrivial distance dependence of the depletion interactions. We also show that crowding-induced structural alterations affect the access of binding proteins to the surface of polymer segments and are distinguished from structural changes due to the increased number of specific polymer loops.

  16. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity.

    PubMed

    Xiong, Rui; Zhou, Wenbo; Siegel, David; Kitson, Russell R A; Freed, Curt R; Moody, Christopher J; Ross, David

    2015-12-01

    A potential cause of neurodegenerative diseases, including Parkinson's disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein.

  17. Alteration of liver glycopatterns during cirrhosis and tumor progression induced by HBV.

    PubMed

    Qin, Yannan; Zhong, Yaogang; Ma, Tianran; Wu, Fei; Wu, Haoxiang; Yu, Hanjie; Huang, Chen; Li, Zheng

    2016-04-01

    The incidence of hepatocellular carcinoma (HCC) is closely correlated with hepatitis B virus (HBV)-induced liver cirrhosis. Structural changes in the glycans of serum and tissue proteins are reliable indicators of liver damage. However, little is known about the alteration of liver glycopatterns during cirrhosis and tumor progression induced by HBV infection. This study compared the differential expression of liver glycopatterns in 7 sets of normal pericarcinomatous tissues (PCTs), cirrhotic, and tumor tissues from patients with liver cirrhosis and HCC induced by HBV using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were further utilized to validate and assess the expression and distribution of certain glycans in 9 sets of corresponding liver tissue sections. Eight lectins (e.g., Jacalin and AAL) revealed significant difference in cirrhotic tissues versus PCTs. Eleven lectins (e.g., EEL and SJA) showed significant alteration during cirrhotic and tumor progression. The expression of Galα1-3(Fucα1-2)Gal (EEL) and fucosyltransferase 1 was mainly increasing in the cytoplasm of hepatocytes during PCTs-cirrhotic-tumor tissues progression, while the expression of T antigen (ACA and PNA) was decreased sharply in cytoplasm of tumor hepatocytes. Understanding the precision alteration of liver glycopatterns related to the development of hepatitis, cirrhosis, and tumor induced by HBV infection may help elucidate the molecular mechanisms underlying the progression of chronic liver diseases and develop new antineoplastic therapeutic strategies.

  18. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    PubMed

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  19. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    SciTech Connect

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  20. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations.

    PubMed

    Boullu-Ciocca, S; Tassistro, V; Dutour, A; Grino, M

    2015-12-01

    Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.

  1. Alpha-synuclein structure, functions, and interactions

    PubMed Central

    Emamzadeh, Fatemeh Nouri

    2016-01-01

    At present, when a clinical diagnosis of Parkinson's disease (PD) is made, serious damage has already been done to nerve cells of the substantia nigra pars compacta. The diagnosis of PD in its earlier stages, before this irreversible damage, would be of enormous benefit for future treatment strategies designed to slow or halt the progression of this disease that possibly prevents accumulation of toxic aggregates. As a molecular biomarker for the detection of PD in its earlier stages, alpha-synuclein (α-syn), which is a key component of Lewy bodies, in which it is found in an aggregated and fibrillar form, has attracted considerable attention. Here, α-syn is reviewed in details. PMID:27904575

  2. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism.

    PubMed

    Negrette-Guzmán, Mario; García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Huerta-Yepez, Sara; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Aparicio-Trejo, Omar Emiliano; Madero, Magdalena; Pedraza-Chaverri, José

    2015-01-01

    It has been shown that curcumin (CUR), a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

  3. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    PubMed Central

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  4. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    PubMed Central

    Negrette-Guzmán, Mario; García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Huerta-Yepez, Sara; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Aparicio-Trejo, Omar Emiliano; Madero, Magdalena; Pedraza-Chaverri, José

    2015-01-01

    It has been shown that curcumin (CUR), a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2. PMID:26345660

  5. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  6. Molecular ageing of alpha- and Beta-synucleins: protein damage and repair mechanisms.

    PubMed

    Vigneswara, Vasanthy; Cass, Simon; Wayne, Declan; Bolt, Edward L; Ray, David E; Carter, Wayne G

    2013-01-01

    Abnormal α-synuclein aggregates are hallmarks of a number of neurodegenerative diseases. Alpha synuclein and β-synucleins are susceptible to post-translational modification as isoaspartate protein damage, which is regulated in vivo by the action of the repair enzyme protein L-isoaspartyl O-methyltransferase (PIMT). We aged in vitro native α-synuclein, the α-synuclein familial mutants A30P and A53T that give rise to Parkinsonian phenotypes, and β-synuclein, at physiological pH and temperature for a time course of up to 20 days. Resolution of native α-synuclein and β-synuclein by two dimensional techniques showed the accumulation of a number of post-translationally modified forms of both proteins. The levels of isoaspartate formed over the 20 day time course were quantified by exogenous methylation with PIMT using S-Adenosyl-L-[(3)H-methyl]methionine as a methyl donor, and liquid scintillation counting of liberated (3)H-methanol. All α-synuclein proteins accumulated isoaspartate at ∼1% of molecules/day, ∼20 times faster than for β-synuclein. This disparity between rates of isoaspartate was confirmed by exogenous methylation of synucleins by PIMT, protein resolution by one-dimensional denaturing gel electrophoresis, and visualisation of (3)H-methyl esters by autoradiography. Protein silver staining and autoradiography also revealed that α-synucleins accumulated stable oligomers that were resistant to denaturing conditions, and which also contained isoaspartate. Co-incubation of approximately equimolar β-synuclein with α-synuclein resulted in a significant reduction of isoaspartate formed in all α-synucleins after 20 days of ageing. Co-incubated α- and β-synucleins, or α, or β synucleins alone, were resolved by non-denaturing size exclusion chromatography and all formed oligomers of ∼57.5 kDa; consistent with tetramerization. Direct association of α-synuclein with β-synuclein in column fractions or from in vitro ageing co-incubations was

  7. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease

    PubMed Central

    Sato, Emiko; Mori, Takefumi; Mishima, Eikan; Suzuki, Arisa; Sugawara, Sanae; Kurasawa, Naho; Saigusa, Daisuke; Miura, Daisuke; Morikawa-Ichinose, Tomomi; Saito, Ritsumi; Oba-Yabana, Ikuko; Oe, Yuji; Kisu, Kiyomi; Naganuma, Eri; Koizumi, Kenji; Mokudai, Takayuki; Niwano, Yoshimi; Kudo, Tai; Suzuki, Chitose; Takahashi, Nobuyuki; Sato, Hiroshi; Abe, Takaaki; Niwa, Toshimitsu; Ito, Sadayoshi

    2016-01-01

    Sarcopenia is associated with increased morbidity and mortality in chronic kidney disease (CKD). Pathogenic mechanism of skeletal muscle loss in CKD, which is defined as uremic sarcopenia, remains unclear. We found that causative pathological mechanism of uremic sarcopenia is metabolic alterations by uremic toxin indoxyl sulfate. Imaging mass spectrometry revealed indoxyl sulfate accumulated in muscle tissue of a mouse model of CKD. Comprehensive metabolomics revealed that indoxyl sulfate induces metabolic alterations such as upregulation of glycolysis, including pentose phosphate pathway acceleration as antioxidative stress response, via nuclear factor (erythroid-2-related factor)-2. The altered metabolic flow to excess antioxidative response resulted in downregulation of TCA cycle and its effected mitochondrial dysfunction and ATP shortage in muscle cells. In clinical research, a significant inverse association between plasma indoxyl sulfate and skeletal muscle mass in CKD patients was observed. Our results indicate that indoxyl sulfate is a pathogenic factor for sarcopenia in CKD. PMID:27830716

  8. DNA demethylation caused by 5-Aza-2′-deoxycytidine induces mitotic alterations and aneuploidy

    PubMed Central

    Lentini, Laura; Cilluffo, Danilo; Di Leonardo, Aldo

    2016-01-01

    Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects. Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore. PMID:26771138

  9. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  10. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations.

    PubMed

    Park, Hyun-Jung; Shim, Hyun-Soo; An, Kyungeh; Starkweather, Angela; Kim, Kyung Soo; Shim, Insop

    2015-01-01

    It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH) mRNA and activating serotonin transporter (SERT) in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH) mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study.

  11. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations

    PubMed Central

    Park, Hyun-Jung; Shim, Hyun-Soo; An, Kyungeh; Starkweather, Angela; Kim, Kyung Soo; Shim, Insop

    2015-01-01

    It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH) mRNA and activating serotonin transporter (SERT) in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH) mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study. PMID:26417153

  12. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  13. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish

    PubMed Central

    Franssen, Nathan R

    2011-01-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a native stream fish in reservoir habitats and streams from seven reservoir basins in the Central Plains of the USA. Body shape significantly and consistently diverged in reservoirs compared with stream habitats within reservoir basins; individuals from reservoir populations were deeper-bodied and had smaller heads compared with stream populations. Individuals from reservoir habitats also exhibited lower overall shape variation compared with stream individuals. I assessed the contribution of genotypic divergence and predator-induced phenotypic plasticity on body shape variation by rearing offspring from a reservoir and a stream population with or without a piscivorous fish. Significant population-level differences in body shape persisted in offspring, and both populations demonstrated similar predator-induced phenotypic plasticity. My results suggest that, although components of body shape are plastic, anthropogenic habitat modification may drive trait divergence in native fish populations in reservoir-altered habitats. PMID:25568023

  14. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol‐dependent cytolysins

    PubMed Central

    Malet, Julien Karim

    2016-01-01

    Abstract Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins. PMID:27739224

  15. Structural and functional properties of prefibrillar α-synuclein oligomers.

    PubMed

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  16. Structural and functional properties of prefibrillar α-synuclein oligomers

    PubMed Central

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-01-01

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity. PMID:27075649

  17. Calcium: Alpha-Synuclein Interactions in Alpha-Synucleinopathies

    PubMed Central

    Rcom-H'cheo-Gauthier, Alexandre N.; Osborne, Samantha L.; Meedeniya, Adrian C. B.; Pountney, Dean L.

    2016-01-01

    Aggregation of the pre-synaptic protein, α-synuclein (α-syn), is the key etiological factor in Parkinson's disease (PD) and other alpha-synucleinopathies, such as multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB). Various triggers for pathological α-syn aggregation have been elucidated, including post-translational modifications, oxidative stress, and binding of metal ions, such as calcium. Raised neuronal calcium levels in PD may occur due to mitochondrial dysfunction and/or may relate to calcium channel dysregulation or the reduced expression of the neuronal calcium buffering protein, calbindin-D28k. Recent results on human tissue and a mouse oxidative stress model show that neuronal calbindin-D28k expression excludes α-syn inclusion bodies. Previously, cell culture model studies have shown that transient increases of intracellular free Ca(II), such as by opening of the voltage-gated plasma calcium channels, could induce cytoplasmic aggregates of α-syn. Raised intracellular free calcium and oxidative stress also act cooperatively to promote α-syn aggregation. The association between raised neuronal calcium, α-syn aggregation, oxidative stress, and neurotoxicity is reviewed in the context of neurodegenerative α-syn disease and potential mechanism-based therapies. PMID:28066161

  18. An Overview on the Role of α -Synuclein in Experimental Models of Parkinson's Disease from Pathogenesis to Therapeutics.

    PubMed

    Javed, Hayate; Kamal, Mohammad Amjad; Ojha, Shreesh

    2016-01-01

    Parkinson's disease (PD) is a devastating and progressive movement disorder characterized by symptoms of muscles rigidity, tremor, postural instability and slow physical movements. Biochemically, PD is characterized by lack of dopamine production and its action due to loss of dopaminergic neurons and neuropathologically by the presence of intracytoplasmic inclusions known as Lewy bodies, which mainly consist of presynaptic neuronal protein, α-synuclein (α-syn). It is believed that alteration in α-syn homeostasis leads to increased accumulation and aggregation of α-syn in Lewy body. Based on the important role of α-syn from pathogenesis to therapeutics, the recent researches are mainly focused on deciphering the critical role of α-syn at advanced level. Being a major protein in Lewy body that has a key role in pathogenesis of PD, several model systems including immortalized cell lines (SH-SY5Y), primary neuronal cultures, yeast (saccharomyces cerevisiae), drosophila (fruit flies), nematodes (Caenorhabditis elegans) and rodents are being employed to understand the PD pathogenesis and treatment. In order to study the etiopathogensis and develop novel therapeutic target for α -syn aggregation, majority of investigators rely on toxin (rotenone, 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine, 6-hydroxydopamine, paraquat)-induced animal models of PD as a tool for basic research. Whereas, cell and tissue based models are mostly utilized to elucidate the mechanistic and molecular pathways underlying the α -syn induced toxicity and therapeutic approaches in PD. Gene modified mouse models based on α-syn expression are fascinating for modeling familial PD and toxin induced models provide a suitable approach for sporadic PD. The purpose of this review is to provide a summary and a critical review of the involvement of α-syn in various in vitro and in vivo models of PD based on use of neurotoxins as well as genetic modifications.

  19. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  20. Exercise-induced hemostatic alterations are detectable by rotation thrombelastography (ROTEM): A marathon study.

    PubMed

    Sucker, Christoph; Zotz, Rainer B; Senft, Beate; Scharf, Rudiger E; Kröger, Knut; Erbel, Raimund; Möhlenkamp, Stefan

    2010-10-01

    Rotation thrombelastography (ROTEM) provides a whole blood assay that allows the assessment of plasmic- and platelet-related hemostasis in a single-step procedure. In our current study, we focused on the capability of the method to detect hemostatic alterations induced by physical exercise, enrolling 33 healthy participants of the Dusseldorf Marathon 2006. Venous blood drawn immediately before and after finishing the marathon was analyzed by a rotational thrombelastograph (Pentapharm, Munich, Germany). On initiation of blood coagulation by recalcification, standard ROTEM parameters were determined. Comparison of the results obtained before and after the physical exercise was performed using the Student t test for paired samples. As a result, the mean clotting time (CT) determined from blood samples obtained immediately after the marathon was significantly shorter (662.9 + or - 67.8 seconds vs 505.6 + or - 97.3 seconds, P = .002) and the mean maximal clot firmness was significantly broader (48.4 +/- 6.6 mm vs 51.5 +/- 4.5 mm, P = .0004) when compared to results obtained before the physical exercise. Differences between mean clot formation times (CFTs; 280.6 + 96 seconds vs 270.4 + or - 73.8 seconds) and mean alpha angles (45.9 degrees + or - 8 degrees vs 47.8 degrees + or - 5.8 degrees ) before and after the marathon were not statistically significant. Remarkably, some participants showed opposed results, particularly prolongation of CT and narrowing of maximum clot firmness (MCF). Our study demonstrates that ROTEM is sensitive to exercise-induced hemostatic alterations. The method appears to be capable of detecting even distinct changes in hemostasis in a single-step procedure. Further analyses are needed to clarify which hemostasis parameters influence ROTEM results and which ROTEM results are independent predictors of exercise-induced alterations of plasmic and platelet function. This might help to explain interindividual differences in exercise-induced

  1. α-Synuclein as CSF and Blood Biomarker of Dementia with Lewy Bodies

    PubMed Central

    Kasuga, Kensaku; Nishizawa, Masatoyo; Ikeuchi, Takeshi

    2012-01-01

    Dementia with Lewy bodies (DLB) is a common subtype of dementia in the elderly. DLB is neuropathologically characterized by the presence of Lewy bodies and Lewy neurites, both of which are composed of α-synuclein. Although α-synuclein was initially considered to be an exclusively intracellular protein, it has been found to be secreted into biological fluids. α-Synuclein in biological fluids such as cerebrospinal fluid (CSF) and blood has been discussed as a potential biomarker of DLB and α-synuclein-related disorders, because α-synuclein is characteristically accumulated in the brain of patients with these disorders. The α-synuclein level in CSF has been examined by several investigators, and the majority of studies have shown a reduction in CSF α-synuclein level in DLB and α-synuclein-related disorders. Discrepant findings of studies of plasma α-synuclein level in patients with DLB have been reported. Because the level of α-synuclein stored in red blood cells is considerably high, blood contamination and haemolysis during sample collection and processing should be considered as a confounding factor for quantification of α-synuclein. Here, the recent progress in the studies of α-synuclein as a biomarker of DLB and their potential clinical applications are reviewed. PMID:23056991

  2. Altered Gastric Emptying and Prevention of Radiation-Induced Vomiting in Dogs

    DTIC Science & Technology

    1984-03-01

    nausea and vomiting is common10ily oh- of 10 dog$ pt’etrtolted wvith domperidone (p) < 0.01). served. These symptoms can occur after total body Gastric...Gastroenterol of radiotherapy-induced nausea and vomiting . Postgrad Med 1981;16(Suppl 67):33-6. 1979;55(Suppl 1):50-4. V.a, ...00_© 000 ’-- Altered gastric emptying and prevention of radiation-induced vomiting in dogs A. Dubois cc I J. P. Jacobus M. P. Grissom R.R. Eng J. J

  3. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  4. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling.

    PubMed

    Rojas, M; García, L F; Nigou, J; Puzo, G; Olivier, M

    2000-07-01

    Mycobacterium tuberculosis-induced macrophage apoptosis can be inhibited by mannosylated lipoarabinomannan (ManLAM), although it induces tumor necrosis factor (TNF)-alpha and NO production, which participate in apoptosis induction. ManLAM also modulates Ca(+2)-dependent intracellular events, and Ca(+2) participates in apoptosis in different systems. Ca(+2) was assessed for involvement in M. tuberculosis-induced macrophage apoptosis and for modulation by ManLAM. The role of Ca(+2) was supported by the blockade of apoptosis by cAMP inhibitors and the Ca(+2) chelator, BAPTA/AM. These agents also inhibited caspase-1 activation and cAMP-responsive element-binding protein translocation without affecting TNF-alpha production. Infection of macrophages with M. tuberculosis induced an influx of Ca(+2) that was prevented by ManLAM. Similarly, M. tuberculosis infection-altered mitochondrial permeability transition was prevented by ManLAM and BAPTA/AM. Finally, ManLAM and BAPTA/AM reversed the effects of M. tuberculosis on p53 and Bcl-2 expression. ManLAM counteracts the alterations of calcium-dependent intracellular events that occur during M. tuberculosis-induced macrophage apoptosis.

  5. Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles.

    PubMed

    Partridge, S C; Kurland, B F; Liu, C-L; Ho, R J Y; Ruddell, A

    2015-10-26

    Contrast-enhanced MRI lymphography shows potential to identify alterations in lymph drainage through lymph nodes (LNs) in cancer and other diseases. MRI studies have typically used low molecular weight gadolinium contrast agents, however larger gadolinium-loaded nanoparticles possess characteristics that could improve the specificity and sensitivity of lymphography. The performance of three gadolinium contrast agents with different sizes and properties was compared by 3T MRI after subcutaneous injection. Mice bearing B16-F10 melanoma footpad tumors were imaged to assess tumor-induced alterations in lymph drainage through tumor-draining popliteal and inguinal LNs versus contralateral uninvolved drainage. Gadolinium lipid nanoparticles were able to identify tumor-induced alterations in contrast agent drainage into the popliteal LN, while lower molecular weight or albumin-binding gadolinium agents were less effective. All of the contrast agents distributed in foci around the cortex and medulla of tumor-draining popliteal LNs, while they were restricted to the cortex of non-draining LNs. Surprisingly, second-tier tumor-draining inguinal LNs exhibited reduced uptake, indicating that tumors can also divert LN drainage. These characteristics of tumor-induced lymph drainage could be useful for diagnosis of LN pathology in cancer and other diseases. The preferential uptake of nanoparticle contrasts into tumor-draining LNs could also allow selective targeting of therapies to tumor-draining LNs.

  6. Proteinase K-resistant alpha-synuclein is deposited in presynapses in human Lewy body disease and A53T alpha-synuclein transgenic mice.

    PubMed

    Tanji, Kunikazu; Mori, Fumiaki; Mimura, Junsei; Itoh, Ken; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2010-08-01

    Abnormally modified alpha-synuclein is a pathological hallmark of Parkinson's disease and the other alpha-synucleinopathies. Since proteinase K (PK) treatment is known to enhance the immunoreactivity of abnormal alpha-synuclein, we immunohistochemically examined the brain of transgenic (Tg) mice expressing human mutant A53T alpha-synuclein using this retrieval method. PK treatment abolished the immunoreactivity of alpha-synuclein in abnormal inclusions as well as of endogenous alpha-synuclein in Tg mice, whereas PK-resistant alpha-synuclein was found in the presynaptic nerve terminals, especially in the hippocampus and temporal cortex. In human Lewy body disease, PK-resistant alpha-synuclein was deposited in Lewy bodies and Lewy neurites, as well as in the presynapses in distinct brain regions, including the hippocampus, temporal cortex and substantia nigra. Biochemical analysis revealed that PK-resistant alpha-synuclein was detected in the presynaptic fraction in Tg mice and human Lewy body disease. Although PK-resistant alpha-synuclein was found in the presynapse in Tg mice even at 1 week of age, it was not phosphorylated until at least 8 months of age. Moreover, PK-resistant alpha-synuclein in the presynapse was not phosphorylated in human Lewy body disease. These findings suggest that phosphorylation is not necessary to cause the conversion of soluble form to PK-resistant alpha-synuclein. Considering that native alpha-synuclein is a soluble protein localized to the presynaptic terminals, our findings suggest that PK-resistant alpha-synuclein may disturb the neurotransmission in alpha-synucleinopathies.

  7. Binding of Abeta to alpha- and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind Abeta and NAC.

    PubMed Central

    Jensen, P H; Hojrup, P; Hager, H; Nielsen, M S; Jacobsen, L; Olesen, O F; Gliemann, J; Jakes, R

    1997-01-01

    NAC, a 35-residue peptide derived from the neuronal protein alpha-synuclein/NAC precursor, is tightly associated with Abeta fibrils in Alzheimer's disease amyloid, and alpha-synuclein has recently been shown to bind Abeta in vitro. We have studied the interaction between Abeta and synucleins, aiming at determining segments in alpha-synuclein that can account for the binding, as well as identifying a possible interaction between Abeta and the beta-type synuclein. We report that Abeta binds to native and recombinant alpha-synuclein, and to beta-synuclein in an SDS-sensitive interaction (IC50 approx. 20 microM), as determined by chemical cross-linking and solid-phase binding assays. alpha-Synuclein and beta-synuclein were found to stimulate Abeta-aggregation in vitro to the same extent. The synucleins also displayed Abeta-inhibitable binding of NAC and they were capable of forming dimers. Using proteolytic fragmentation of alpha-synuclein and cross-linking to 125I-Abeta, we identified two consecutive binding domains (residues 1-56 and 57-97) by Edman degradation and mass spectrometric analysis, and a synthetic peptide comprising residues 32-57 possessed Abeta-binding activity. To test further the possible significance in pathology, alpha-synuclein was biotinylated and shown to bind specifically to amyloid plaques in a brain with Alzheimer's disease. It is proposed that the multiple Abeta-binding sites in alpha-synuclein are involved in the development of amyloid plaques. PMID:9163350

  8. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  9. Alcohol induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation

    PubMed Central

    Veazey, Kylee J.; Carnahan, Mindy N.; Muller, Daria; Miranda, Rajesh C.; Golding, Michael C.

    2013-01-01

    Background From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate ethanol has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations of the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are two of the most prominent post-translational histone modifications regulating stem cell maintenance and neural differentiation. Methods Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with ethanol for five days. Control and ethanol treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. Results We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed ethanol induced alterations in transcription. Unexpectedly, the majority of chromatin modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2l, Wdr5, and Kdm1b exhibited significant differences. Conclusions Our results indicate primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the

  10. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    PubMed Central

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 infection induces the maturation of DCs. In addition, the antigen capture capacity of DCs was found to decrease following infection with HHV-6. In contrast to up-regulation of mature-DC-associated surface molecules on HHV-6-infected DCs, their capacity for presentation of alloantigens and exogenous virus antigens to T lymphocytes decreased significantly from that of uninfected DCs. In contrast, there appeared to be no reduction in the capacity for presentation of an HLA class II-binding peptide to the peptide-specific CD4+ T lymphocytes. These data indicate that HHV-6 infection induces phenotypic alterations and impairs the antigen presentation capacity of DCs. The present data also suggest that the dysfunction of HHV-6-infected DCs is attributable mainly to impairment of the antigen capture and intracellular antigen-processing pathways. PMID:12239310

  11. Molecular Dynamics Simulations of the Fluctuating Conformational Dynamics of the Intrinsically Disordered Proteins α-Synuclein and τ

    NASA Astrophysics Data System (ADS)

    Smith, W.; Schreck, Carl; Nath, Abhinav; Rhoades, Elizabeth; O'Hern, Corey

    2013-03-01

    Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop united-atom and coarse-grained Langevin dynamics simulations for the IDPs α-synuclein and τ that include geometric,attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that these IDPs have conformational statistics that are intermediate between random walk and collapsed globule behavior and demonstrate close resemblance to the known experimental data, with both electrostatics and hydrophobicity strongly influencing the dynamics. We investigate the propensity of α-synuclein to aggregate and form oligomers, and present preliminary results for the aggregation of τ and interactions between these IDPs and small molecules such as heparin and spermine which are known to induce aggregation.

  12. Acceleration of α-Synuclein Aggregation by Exosomes*

    PubMed Central

    Grey, Marie; Dunning, Christopher J.; Gaspar, Ricardo; Grey, Carl; Brundin, Patrik; Sparr, Emma; Linse, Sara

    2015-01-01

    Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets. PMID:25425650

  13. Alpha-synuclein in cutaneous small nerve fibers

    PubMed Central

    Siepmann, Timo; Illigens, Ben Min-Woo; Barlinn, Kristian

    2016-01-01

    Despite progression in the development of pharmacological therapy, treatment of alpha synucleinopathies, such as Parkinson’s disease (PD) and some atypical parkinsonism syndromes, is still challenging. To date, our knowledge of the mechanisms whereby the pathological form of alpha-synuclein causes structural and functional damage to the nervous system is limited and, consequently, there is a lack of specific diagnostic tools to evaluate pathology in these patients and differentiate PD from other neurodegenerative proteinopathies. Recent studies indicated that alpha-synuclein deposition in cutaneous small nerve fibers assessed by skin biopsies might be a valid disease marker of PD and facilitate early differentiation of PD from atypical parkinsonism syndromes. This observation is relevant since early diagnosis may enable timely treatment and improve quality of life. However, challenges include the necessity of standardizing immunohistochemical analysis techniques and the identification of potential distinct patterns of intraneural alpha-synuclein deposition among synucleinopathies. In this perspective, we explore the scientific and clinical opportunities arising from alpha-synuclein assessment using skin biopsies. These include elucidation of the peripheral nervous system pathology of PD and other synucleinopathies, identification of novel targets to study response to neuroprotective treatment, and improvement of clinical management. Furthermore, we discuss future challenges in exploring the diagnostic value of skin biopsy assessment for alpha-synuclein deposition and implementing the technique in clinical practice. PMID:27822045

  14. Neuropathology of α-synuclein propagation and braak hypothesis.

    PubMed

    McCann, Heather; Cartwright, Heidi; Halliday, Glenda M

    2016-02-01

    Parkinson's disease is a progressive neurodegenerative disorder with multiple factors contributing to increasing severity of pathology in specific brain regions. The Braak hypothesis of Lewy pathology progression in Parkinson's disease proposes a systematic spread of α-synuclein that can be staged, with the later stages correlating with clinical aspects of the disease. The spread of pathology through the different stages suggests progression, a theory that has proven correct from evidence of pathology in healthy neurons grafted into the brains of patients with Parkinson's disease. Progression of pathology occurs on a number of levels, within a cell, between nearby cells, and then over longer distances throughout the brain, and evidence using prion proteins suggests two dissociable mechanisms-intracellular toxicity versus a nontoxic infectious mechanism for propagation. In Parkinson's disease, intracellular changes associated with mitochondria and lysosome dysfunction appear important for α-synuclein propagation, with high stress conditions favoring mitochondrial cell death mechanisms. Functional neurons appear necessary for propagation. Unconventional exocytosis releases α-synuclein under stress conditions, and endocytic uptake occurs in nearby cells. This cell-to-cell transmission of α-synuclein has been recapitulated in both cell culture and animal models, but the timeframe of transmission is considerably shorter than that observed in transplanted neurons. The time course of Lewy pathology formation in patients is consistent with the long time course observed in grafted neurons, and the restricted neuronal loss in Parkinson's disease is potentially important for the propagation of α-synuclein through relatively intact circuits.

  15. Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson's disease

    PubMed Central

    Kohl, Zacharias; Abdallah, Nada Ben; Vogelgsang, Jonathan; Tischer, Lucas; Deusser, Janina; Amato, Davide; Anderson, Scott; Müller, Christian P.; Riess, Olaf; Masliah, Eliezer; Nuber, Silke; Winkler, Jürgen

    2016-01-01

    Parkinson's disease (PD) is a multisystem disorder, involving several monoaminergic neurotransmitter systems resulting in a broad range of motor and non-motor symptoms. Pathological hallmarks of PD are the loss of dopaminergic neurons and the accumulation of alpha-synuclein, however also being present in the serotonergic raphe nuclei early in the disease course. The dysfunction of the serotonergic system projecting to the hippocampus might contribute to early non-motor symptoms such as anxiety and depression. The adult hippocampal dentate gyrus (DG), a unique niche of the forebrain continuously generating new neurons, may particularly present enhanced susceptibility towards accumulating alpha-synuclein levels. The underlying molecular mechanisms in the context of neuronal maturation and survival of new-born neurons are yet not well understood. To characterize the effects of overexpression of human full-length alpha-synuclein on hippocampal cellular and synaptic plasticity, we used a recently generated BAC alpha-synuclein transgenic rat model showing important features of PD such as widespread and progressive alpha-synuclein aggregation pathology, dopamine loss and age-dependent motor decline. At the age of four months, thus prior to the occurrence of the motor phenotype, we observed a profoundly impaired dendritogenesis of neuroblasts in the hippocampal DG resulting in severely reduced survival of adult new-born neurons. Diminished neurogenesis concurred with a serotonergic deficit in the hippocampus as defined by reduced levels of serotonin (5-HT) 1B receptor, decreased 5-HT neurotransmitter levels, and a loss of serotonergic nerve terminals innervating the DG/CA3 subfield, while the number of serotonergic neurons in the raphe nuclei remained unchanged. Moreover, alpha-synuclein overexpression reduced proteins involved in vesicle release, in particular synapsin-1 and Rab3 interacting molecule (RIM3), in conjunction with an altered ultrastructural architecture of

  16. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies.

    PubMed

    Skibinski, Gaia; Nakamura, Ken; Cookson, Mark R; Finkbeiner, Steven

    2014-01-08

    By combining experimental neuron models and mathematical tools, we developed a "systems" approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration.

  17. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    PubMed Central

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  18. Cross-Species Analysis of Nicotine-Induced Proteomic Alterations in Pancreatic Cells

    PubMed Central

    Paulo, Joao A.; Urrutia, Raul; Kadiyala, Vivek; Banks, Peter

    2014-01-01

    Background Toxic compounds in tobacco, such as nicotine, may have adversely affect pancreatic function. We aim to determine nicotine-induced protein alterations in pancreatic cells, which may reveal a link between nicotine exposure and pancreatic disease. Methods We compared the proteomic alterations induced by nicotine treatment in cultured pancreatic cells (mouse, rat and human stellate cells and human duct cells) using mass spectrometry-based techniques, specifically GeLC-MS/MS and spectral counting. Results We identified thousands of proteins in pancreatic cells, hundreds of which were identified exclusively or in higher abundance in either nicotine-treated or untreated cells. Inter-species comparisons of stellate cell proteins revealed several differentially-abundant proteins (in nicotine treated versus untreated cells) common among the 3 species. Proteins appearing in all nicotine-treated stellate cells include amyloid beta (A4), procollagen type VI alpha 1, integral membrane protein 2B,and Toll interacting protein. Conclusions Proteins which were differentially expressed upon nicotine treatment across cell lines, were enriched in certain pathways, including nAChR, cytokine, and integrin signaling. At this analytical depth, we conclude that similar pathways are affected by nicotine, but alterations at the protein level among stellate cells of different species vary. Further interrogation of such pathways will lead to insights into the potential effect of nicotine on pancreatic cells at the biomolecular level and the extension of this concept to the effect of nicotine on pancreatic disease. PMID:23456891

  19. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  20. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  1. Neuroplastic reactivity of fish induced by altered gravity conditions: a review of recent results

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Anken, R. H.

    A review is being presented concerning behavioural, biochemical, histochemical and electronmicroscopical data on the influence of altered gravitational forces on the swimming performance and on the neuronal differentiation of the brain of cichlid fish larvae and adult swordtail fish that had been exposed to hyper-gravity (3g in laboratory centrifuges), hypo-gravity (>10^-2g in a fast-rotating clinostat) and to near weightlessness (10^-4g aboard the spacelab D-2 mission). After long-term alterations of gravity (and parallel light deprivation), initial disturbances in the swimming behaviour followed by a stepwise regain of normal swimming modes are induced. Parallely, neuroplastic reactivities on different levels of investigation were found, such as adaptive alterations of activities of various enzymes in whole brain as well as in specific neuronal integration centers and an intraneuronal reactivity on ultrastructural level in individual brain parts and in the sensory epithelia of the inner ear. Taken together, these data reveal distinct adaptive neuroplastic reactions of fish to altered gravity conditions.

  2. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  3. Accumulation of α-Synuclein in Cerebellar Purkinje Cells of Diabetic Rats and Its Potential Relationship with Inflammation and Oxidative Stress Markers

    PubMed Central

    Solmaz, Volkan; Eroglu, Hüseyin Avni; Aktuğ, Hüseyin; Erbaş, Oytun

    2017-01-01

    Objective. The present study was conducted to evaluate the relationship between plasma oxidative stress markers such as malondialdehyde (MDA) and glutathione (GSH), inflammatory marker pentraxin-3 (PTX3), and cerebellar accumulation of α-synuclein in streptozotocin- (STZ-) induced diabetes model in rats. Methods. Twelve rats were included in the study. Diabetes (n = 6) was induced with a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg). Diabetes was verified after 48 h by measuring blood glucose levels. Six rats served as controls. Following 8 weeks, rats were sacrificed for biochemical and immunohistochemical evaluation. Results. Plasma MDA levels were significantly higher in diabetic rats when compared with the control rats (p < 0.01), while plasma GSH levels were lower in the diabetic group than in the control group (p < 0.01). Also, plasma pentraxin-3 levels were statistically higher in diabetic rats than in the control rats (p < 0.01). The analysis of cerebellar α-synuclein immunohistochemistry showed a significant increase in α-synuclein immunoexpression in the diabetic group compared to the control group (p < 0.01). Conclusion. Due to increased inflammation and oxidative stress in the chronic period of hyperglycemia linked to diabetes, there may be α-synuclein accumulation in the cerebellum and the plasma PTX3 levels may be assessed as an important biomarker of this situation. PMID:28133547

  4. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent mechanistic investigations on its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole i...

  5. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent investigations into its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole in mice; 2...

  6. Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    PubMed Central

    Mukherjee, Saptarshi; Thomas, N. Lowri; Williams, Alan J.

    2016-01-01

    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating. PMID:27703263

  7. Structural and functional characterization of two alpha-synuclein strains

    NASA Astrophysics Data System (ADS)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  8. Carbosilane dendrimers affect the fibrillation of α-synuclein

    NASA Astrophysics Data System (ADS)

    Milowska, Katarzyna; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Gabryelak, Teresa; Bryszewska, Maria

    2015-12-01

    Participation of α-synuclein (ASN) in the pathogenesis of Parkinson's disease is undeniable. This protein is important for functioning of neurons. Conformational changes in ASN and its aggregation result in neurodegeneration. Therefore, the factors preventing aggregation need to be identified. The search for the potential agents preventing fibrillation of proteins in neurodegenerative diseases has also involved polymers such as dendrimers. The aim of this study was to examine the role of carbosilane dendrimers (CBS) in α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with carbosilane dendrimers were examined by measuring the zeta potential. The fibrillation and structural changes were examined using CD spectroscopy. The results obtained in this study suggest that carbosilane dendrimers can be potential inhibitors of ASN fibril formation. The fact that dendrimers can prevent ASN fibrillation in suspension is important for further research because it may lead to the design of effective pharmacological strategies.

  9. α-Synuclein Protects Against Manganese Neurotoxic Insult During the Early Stages of Exposure in a Dopaminergic Cell Model of Parkinson’s Disease

    PubMed Central

    Harischandra, Dilshan S.; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2015-01-01

    The pathological role of α-synuclein (α-Syn) aggregation in neurodegeneration is well recognized, but the physiological function of normal α-Syn remains unknown. As α-Syn protein contains multiple divalent metal binding sites, herein we conducted a comprehensive characterization of the role of α-Syn in manganese-induced dopaminergic neurotoxicity. We established transgenic N27 dopaminergic neuronal cells by stably expressing human wild-type α-Syn at normal physiological levels. α-Syn-expressing dopaminergic cells significantly attenuated Mn-induced neurotoxicity for 24-h exposures relative to vector control cells. To further explore cellular mechanisms, we studied the mitochondria-dependent apoptotic pathway. Analysis of a key mitochondrial apoptotic initiator, cytochrome c, revealed that α-Syn significantly reduces the Mn-induced cytochrome c release into cytosol. The downstream caspase cascade, involving caspase-9 and caspase-3 activation, during Mn exposure was also largely attenuated in Mn-treated α-Syn cells in a time-dependent manner. α-Syn cells also showed a dramatic reduction in the Mn-induced proteolytic activation of the pro-apoptotic kinase PKCδ. The generation of Mn-induced reactive oxygen species (ROS) did not differ between α-Syn and vector control cells, indicating that α-Syn exerts its protective effect independent of altering ROS generation. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed no significant differences in intracellular Mn levels between treated vector and α-Syn cells. Notably, the expression of wild-type α-Syn in primary mesencephalic cells also rescued cells from Mn-induced neurotoxicity. However, prolonged exposure to Mn promoted protein aggregation in α-Syn-expressing cells. Collectively, these results demonstrate that wild-type α-Syn exhibits neuroprotective effects against Mn-induced neurotoxicity during the early stages of exposure in a dopaminergic neuronal model of PD. PMID:25416158

  10. Interference of TRPV1 function altered the susceptibility of PTZ-induced seizures.

    PubMed

    Jia, Yun-Fang; Li, Ying-Chao; Tang, Yan-Ping; Cao, Jun; Wang, Li-Ping; Yang, Yue-Xiong; Xu, Lin; Mao, Rong-Rong

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is widely distributed in the central nervous system (CNS) including hippocampus, and regulates the balance of excitation and inhibition in CNS, which imply its important role in epilepsy. We used both pharmacological manipulations and transgenic mice to disturb the function of TRPV1 and then studied the effects of these alterations on the susceptibility of pentylenetetrazol (PTZ)-induced seizures. Our results showed that systemic administration of TRPV1 agonist capsaicin (CAP, 40 mg/kg) directly induced tonic-clonic seizures (TCS) without PTZ induction. The severity of seizure was increased in lower doses of CAP groups (5 and 10 mg/kg), although the latency to TCS was delayed. On the other hand, systemic administration of TRPV1 antagonist capsazepine (CPZ, 0.05 and 0.5 mg/kg) and TRPV1 knockout mice exhibited delayed latency to TCS and reduced mortality. Furthermore, hippocampal administration of CPZ (10 and 33 nmol/μL/side) was firstly reported to increase the latency to TCS, decrease the maximal grade of seizure and mortality. It is worth noting that decreased susceptibility of PTZ-induced seizures was observed in hippocampal TRPV1 overexpression mice and hippocampal CAP administration (33 nmol/μL/side), which is opposite from results of systemic agonist CAP. Our findings suggest that the systemic administration of TRPV1 antagonist may be a novel therapeutic target for epilepsy, and alteration of hippocampal TRPV1 function exerts a critical role in seizure susceptibility.

  11. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin.

  12. GLUCOCORTICOID-INDUCED ALTERATION OF THE SURFACE MEMBRANE OF CULTURED HEPATOMA CELLS

    PubMed Central

    Ballard, Philip L.; Tomkins, Gordon M.

    1970-01-01

    Glucocorticoids induce an alteration of the surface of hepatoma tissue culture (HTC) cells as expressed by changes in cell electrophoretic, antigenic, and adhesive properties. The alteration is assayed by the increased adhesiveness of induced cells for a glass surface. The induction process has a lag period of about 3 hr and attains a plateau level after 24–30 hr when 50–80% of the steroid-treated cells are firmly adhered. Less than 10% of untreated cells adhere under the same conditions. Induction is inhibited by actinomycin D and cycloheximide, demonstrates both pH and temperature dependence, and responds to changes in steroid concentration and structure. By contrast, the attachment per se of preinduced cells is not affected by inhibitors of RNA and protein synthesis, fluctuations of temperature and pH, and the presence or absence of the hormone. When the induction process is reversed by removal of steroid or addition of actinomycin D, preinduced adhesiveness is lost with a half-life of 13–24 hr, but in the presence of cycloheximide the loss is accelerated (t1/2 3–5.5 hr). These results suggest that glucocorticoids induce the biosynthesis of a protein which either modifies the cell surface (an enzyme) or is incorporated into surface structures (structural protein). PMID:4327515

  13. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  14. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  15. A large-scale perspective on stress-induced alterations in resting-state networks

    NASA Astrophysics Data System (ADS)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  16. Alpha-synuclein spreading in Parkinson's disease.

    PubMed

    Recasens, Ariadna; Dehay, Benjamin

    2014-01-01

    Formation and accumulation of misfolded protein aggregates are a central hallmark of several neurodegenerative diseases. In Parkinson's disease (PD), the aggregation-prone protein alpha-synuclein (α-syn) is the culprit. In the past few years, another piece of the puzzle has been added with data suggesting that α-syn may self-propagate, thereby contributing to the progression and extension of PD. Of particular importance, it was the seminal observation of Lewy bodies (LB), a histopathological signature of PD, in grafted fetal dopaminergic neurons in the striatum of PD patients. Consequently, these findings were a conceptual breakthrough, generating the "host to graft transmission" hypothesis, also called the "prion-like hypothesis." Several in vitro and in vivo studies suggest that α-syn can undergo a toxic templated conformational change, spread from cell to cell and from region to region, and initiate the formation of "LB-like aggregates," contributing to the PD pathogenesis. Here, we will review and discuss the current knowledge for such a putative mechanism on the prion-like nature of α-syn, and discuss about the proper use of the term prion-like.

  17. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    PubMed

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI.

  18. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  19. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  20. Chloroethylmethanesulfonate-induced effects on the epididymis seem unrelated to altered Leydig cell function.

    PubMed

    Klinefelter, G R; Laskey, J W; Kelce, W R; Ferrell, J; Roberts, N L; Suarez, J D; Slott, V

    1994-07-01

    Decades ago it was reported that when male rats were exposed to chloroethylmethanesulfonate (CEMS) for 5 days prior to weekly matings with untreated females, the second mating resulted in reduced litter size. Since fertility was not assessed at earlier time points, it was not possible to determine whether CEMS exerted any effects on sperm in the epididymis. In this study, we used a 4-day exposure and assessed multiple reproductive endpoints on Day 5 to characterize effects of CEMS exposure (6.25-25 mg/kg) on Leydig cells and the epididymis. Exposure to CEMS caused a dose-related decline in serum testosterone (T) levels. This occurred at a dose lower than that required to decrease T production in vitro by testicular parenchyma. The in vitro decline was not attributed to a decrease in maximal hCG-stimulated T production, but to a decrease in unstimulated T production. CEMS was 5-fold less sensitive than ethane dimethanesulfonate (EDS) in reducing maximal hCG-stimulated T production. To control for alterations in the epididymis resulting from decreased serum T alone, T was implanted in CEMS-treated animals to maintain serum T at a concentration similar to that found in normal rats. This exogenous T failed to prevent the CEMS-induced decrease in the weight of the caput/corpus epididymidis but did prevent the CEMS-induced decrease in seminal vesicle weight. Implantation of T failed to prevent the CEMS-induced reduction in sperm reserves in the cauda epididymidis, and it failed to prevent the CEMS-induced alterations in the histology of both the corpus and proximal cauda epididymidis. The height of the epithelium in both of these regions was increased, and clear cells disappeared from the proximal cauda epididymidis. These results demonstrate that CEMS might alter the ability of the Leydig cell to respond to LH stimulation in vivo, and that alterations in the structure and function of the epididymis occur even when the serum concentration of T is maintained.

  1. Schisandra fructus extract ameliorates doxorubicin-induce cytotoxicity in cardiomyocytes: altered gene expression for detoxification enzymes.

    PubMed

    Choi, Eun Hye; Lee, Nari; Kim, Hyun Jung; Kim, Mi Kyung; Chi, Sung-Gil; Kwon, Dae Young; Chun, Hyang Sook

    2008-02-01

    The effect of Schisandra fructus extract (SFE) on doxorubicin (Dox)-induced cardiotoxicity was investigated in H9c2 cardiomyocytes. Dox, which is an antineoplastic drug known to induce cardiomyopathy possibly through production of reactive oxygen species, induced significant cytotoxicity, intracellular reactive oxygen species (ROS), and lipid peroxidation. SFE treatment significantly increased cell survival up to 25%, inhibited intracellular ROS production in a time- and dose-dependent manner, and inhibited lipid peroxidation induced by Dox. In addition, SFE treatment induced expression of cellular glutathione S-transferases (GSTs), which function in the detoxification of xenobiotics, and endogenous toxicants including lipid peoxides. Analyses of 31,100 genes using Affymetrix cDNA microarrays showed that SFE treatment up-regulated expression of genes involved in glutathione metabolism and detoxification [GST theta 1, mu 1, and alpha type 2, heme oxygenase 1 (HO-1), and microsomal epoxide hydrolase (mEH)] and energy metabolism [carnitine palmitoyltransferase-1 (CPT-1), transaldolase, and transketolase]. These data indicated that SFE might increase the resistance to cardiac cell injury by Dox, at least partly, together with altering gene expression, especially induction of phase II detoxification enzymes.

  2. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    PubMed

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  3. Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein

    PubMed Central

    Tuttle, Marcus D.; Comellas, Gemma; Nieuwkoop, Andrew J.; Covell, Dustin J.; Berthold, Deborah A.; Kloepper, Kathryn D.; Courtney, Joseph M.; Kim, Jae K.; Barclay, Alexander M.; Kendall, Amy; Wan, William; Stubbs, Gerald; Schwieters, Charles D.; Lee, Virginia M. Y.; George, Julia M.; Rienstra, Chad M.

    2016-01-01

    Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD. PMID:27018801

  4. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    PubMed

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  5. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.

    PubMed

    Kreisel, T; Frank, M G; Licht, T; Reshef, R; Ben-Menachem-Zidon, O; Baratta, M V; Maier, S F; Yirmiya, R

    2014-06-01

    The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.

  6. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning.

    PubMed

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-22

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl(-) flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.

  7. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning

    PubMed Central

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-01

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl− flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible. PMID:24285203

  8. Alterations in the Rat Serum Proteome Induced by Prepubertal Exposure to Bisphenol A and Genistein

    PubMed Central

    2015-01-01

    Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis. PMID:24552547

  9. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  10. Different quantitative EEG alterations induced by TBI among patients with different APOE genotypes.

    PubMed

    Jiang, Li; Yin, Xiaohong; Yin, Cheng; Zhou, Shuai; Dan, Wei; Sun, Xiaochuan

    2011-11-14

    Although several studies have revealed the EEG alterations in AD and TBI patients, the influence of APOE (apolipoprotein E) genotype in EEG at the early stage of TBI has not been reported yet. We have previously studied EEG alterations caused by TBI among different APOE genotype carriers. In this study, we firstly investigated the relationship between APOE polymorphisms and quantitative EEG (QEEG) changes after TBI. A total of 118 consecutive TBI patients with a Glasgow Coma Scale (GCS) of 9 or higher were recruited, and 40 normal adults were also included as a control group. APOE genotype was determined by PCR-RFLP for each subject, and QEEG recordings were performed in rest, relaxed, awake and with eyes closed in normal subjects and TBI patients during 1-3 days after TBI. In the normal control group, both APOEɛ4 carriers and non-carriers had normal EEG, and no significant difference of QEEG data was found between APOEɛ4 carriers and non-carriers. But in the TBI group, APOEɛ4 carriers had more focal or global irregular slow wave activities than APOEɛ4 non-carriers. APOE gene did not influence brain electrical activity under normal conditions, but TBI can induce different alterations among different APOE gene carriers, and APOEɛ4 allele enhances the EEG abnormalities at the early stage of TBI.

  11. The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

    PubMed Central

    Pan, Li; Zhao, Yuan; Yuan, Zhijie; Farouk, Mohammed Hamdy; Zhang, Shiyao; Bao, Nan; Qin, Guixin

    2017-01-01

    Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins α2, α3, α6, β1, and β4 in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin α2, α6, and β1 were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism. PMID:28222496

  12. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice.

    PubMed

    Massa, Federico; Mancini, Giacomo; Schmidt, Helmut; Steindel, Frauke; Mackie, Ken; Angioni, Carlo; Oliet, Stéphane H R; Geisslinger, Gerd; Lutz, Beat

    2010-05-05

    The endocannabinoid (eCB) system plays central roles in the regulation of food intake and energy expenditure. Its alteration in activity contributes to the development and maintenance of obesity. Stimulation of the cannabinoid receptor type 1 (CB(1) receptor) increases feeding, enhances reward aspects of eating, and promotes lipogenesis, whereas its blockade decreases appetite, sustains weight loss, increases insulin sensitivity, and alleviates dysregulation of lipid metabolism. The hypothesis has been put forward that the eCB system is overactive in obesity. Hippocampal circuits are not directly involved in the neuronal control of food intake and appetite, but they play important roles in hedonic aspects of eating. We investigated the possibility whether or not diet-induced obesity (DIO) alters the functioning of the hippocampal eCB system. We found that levels of the two eCBs, 2-arachidonoyl glycerol (2-AG) and anandamide, were increased in the hippocampus from DIO mice, with a concomitant increase of the 2-AG synthesizing enzyme diacylglycerol lipase-alpha and increased CB(1) receptor immunoreactivity in CA1 and CA3 regions, whereas CB(1) receptor agonist-induced [(35)S]GTPgammaS binding was unchanged. eCB-mediated synaptic plasticity was changed in the CA1 region, as depolarization-induced suppression of inhibition and long-term depression of inhibitory synapses were enhanced. Functionality of CB(1) receptors in GABAergic neurons was furthermore revealed, as mice specifically lacking CB(1) receptors on this neuronal population were partly resistant to DIO. Our results show that DIO-induced changes in the eCB system affect not only tissues directly involved in the metabolic regulation but also brain regions mediating hedonic aspects of eating and influencing cognitive processes.

  13. Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain formation.

    PubMed

    Chakraborty, Aishik; Mucci, Nicolas J; Tan, Ming Li; Steckley, Ashleigh; Zhang, Ti; Forrest, M Laird; Dhar, Prajnaparamita

    2015-05-12

    The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.

  14. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats

    PubMed Central

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Background: Hydrogen peroxide (H2O2) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H2O2-induced oxidative stress in male rats. Methods: After randomization, male Wistar rats were divided into four groups (n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H2O2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Results: Administration of H2O2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H2O2, geraniol, and geraniol+H2O2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H2O2-treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H2O2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H2O2 and control groups. Conclusions: H2O2-induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H2O2-induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H2O2-induced alterations. PMID:28163957

  15. Altered Sporulation and Respiratory Patterns in Mutants of Bacillus subtilis Induced by Acridine Orange

    PubMed Central

    Bott, K. F.; Davidoff-Abelson, R.

    1966-01-01

    Bott, K. F. (The University of Chicago, Chicago, Ill.), and R. Davidoff-Abelson. Altered sporulation and respiratory patterns in mutants of Bacillus subtilis induced by acridine orange. J. Bacteriol. 92:229–240. 1966.—The addition of acridine orange to vegetative cultures of Bacillus subtilis induces the formation of sporulation mutants at a frequency of 20% or greater. These mutants are grouped into seven categories which reflect their different morphological properties. They are altered in their vegetative metabolism, as indicated by abnormal growth on synthetic media. Sporulation of these mutants is impaired at several levels, all of which are stable upon repeated subculturing. The initial stages of sporulation which require no increased metabolic activity (proteolytic enzyme activity and antibiotic production) are functional in all strains, but glucose dehydrogenase activity, an enzyme associated with early synthetic functions in spore synthesis, is significantly reduced. Reduced nicotinamide adenine dinucleotide oxidase is slightly depressed. It is suggested that acridine orange interacts with a cellular constituent controlling respiration and consequently prevents an increased metabolic activity that may be associated with normal spore synthesis. Images PMID:4957434

  16. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  17. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    PubMed

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction.

  18. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  19. Chicoric acid regulates behavioral and biochemical alterations induced by chronic stress in experimental Swiss albino mice.

    PubMed

    Kour, Kiranjeet; Bani, Sarang

    2011-09-01

    The present study was taken up to see the effect of chicoric acid (CA) on behavioral and biochemical alterations induced by chronic restraint stress in experimental Swiss albino mice. CA at 1mg/kg dose level exhibited considerable antidepressant activity as shown by significant decrease in immobility period in the Porsolt's swim stress-induced behavioral despair test and escape failures in Learned "helplessness test". The antidepressant activity shown by CA can be attributed to its modulating effect on nor-adrenaline (NA), dopamine (DA) and 5- hydroxy tryptamine (5-HT) as shown by their quantification in CA treated chronically stressed mice. Further, a significant antioxidant effect was exhibited by CA as shown by estimation of lipid peroxidation, glutathione (GSH) and glycogen in liver of chronically stressed mice. It also normalized altered values of serum glucose, triglycerides, aspartate aminotransferase (AST) alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in a dose dependent manner. The stress busting potential of CA was further confirmed by its regulating effect on raised plasma corticosterone levels and significant attenuation of the depleted ascorbic acid, cholesterol and corticosterone levels in adrenal glands. Thus, our results suggest that CA possesses considerable stress busting potential, and that anti-oxidation may be one of the mechanisms underlying its antistress action.

  20. Chronic GABAergic blockade in the spinal cord in vivo induces motor alterations and neurodegeneration.

    PubMed

    Ramírez-Jarquín, Uri Nimrod; Tapia, Ricardo

    2017-05-01

    Inhibitory GABAergic and glycinergic neurotransmission in the spinal cord play a central role in the regulation of neuronal excitability, by maintaining a balance with the glutamate-mediated excitatory transmission. Glutamatergic agonists infusion in the spinal cord induce motor neuron death by excitotoxicity, leading to motor deficits and paralysis, but little is known on the effect of the blockade of inhibitory transmission. In this work we studied the effects of GABAergic and glycinergic blockade, by means of microdialysis perfusion (acute administration) and osmotic minipumps infusion (chronic administration) of GABA and glycine receptors antagonists directly in the lumbar spinal cord. We show that acute glycinergic blockade with strychnine or GABAergic blockade with bicuculline had no significant effects on motor activity and on motor neuron survival. However, chronic bicuculline infusion, but not strychnine, induced ipsilateral gait alterations, phalange flaccidity and significant motor neuron loss, and these effects were prevented by AMPA receptor blockade with CNQX but not by NMDA receptor blockade with MK801. In addition, we demonstrate that the chronic infusion of bicuculline enhanced the excitotoxic effect of AMPA, causing faster bilateral paralysis and increasing motor neuron loss. These findings indicate a relevant role of GABAergic inhibitory circuits in the regulation of motor neuron excitability and suggest that their alterations may be involved in the neurodegeneration processes characteristic of motor neuron diseases such as amyotrophic lateral sclerosis.

  1. Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcγ Receptors.

    PubMed

    Gustafsson, Gabriel; Eriksson, Fredrik; Möller, Christer; da Fonseca, Tomás Lopes; Outeiro, Tiago F; Lannfelt, Lars; Bergström, Joakim; Ingelsson, Martin

    2017-01-01

    Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson's disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen-antibody complexes.

  2. Glomerular lesions induced in the rabbit by physicochemically altered homologous IgG.

    PubMed Central

    Cavalot, F.; Miyata, M.; Vladutiu, A.; Terranova, V.; Dubiski, S.; Burlingame, R.; Tan, E.; Brentjens, J.; Milgrom, F.; Andres, G.

    1992-01-01

    Immunization of rabbits with physicochemically altered homologous or even autologous IgG induces formation of antibodies combining with IgG of rabbit and of foreign species. Cardiac but not renal lesions were reported in such animals. This study examined the nephritogenic potential of the immune response to cationized or heat-aggregated homologous IgG of b9 or b4 allotype in rabbits of the b4 allotype. Rabbits injected with either b9 or b4 cationized IgG produced antibodies reactive with rabbit and human IgG and with histones; they also developed abnormal glomerular deposits of IgG b4 and C3 corresponding to alterations of the glomerular basement membranes (GBM). Rabbits injected with either b9 or b4 aggregated IgG developed antibodies reactive with rabbit and human IgG and abnormal glomerular deposits of IgG b4 and C3 in the GBM and in the mesangium with subendothelial and mesangial electron-dense deposits. Some rabbits in both groups had proliferative and exudative glomerulonephritis and proteinuria. The results showed that immunization of rabbits with physicochemically altered homologous IgG induces an immune response to rabbit and human IgG and to histones as well as glomerular deposits of autologous IgG and C3 and other glomerular lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 PMID:1546743

  3. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    PubMed Central

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  4. Dibutyltin-induced alterations of interleukin 1beta secretion from human immune cells.

    PubMed

    Brown, Shyretha; Tehrani, Shahin; Whalen, Margaret M

    2017-02-01

    Dibutyltin (DBT) is used to stabilize polyvinyl chloride plastics (including pipes that distribute drinking water) and as a de-worming agent in poultry. DBT is found in human blood, and DBT exposures alter the secretion of tumor necrosis factor alpha and interferon gamma from lymphocytes. Interleukin (IL)-1β is a proinflammatory cytokine that regulates cellular growth, tissue restoration and immune response regulation. IL-1β plays a role in increasing invasiveness of certain tumors. This study reveals that exposures to DBT (24 h, 48 h and 6 days) modify the secretion of IL-1β from increasingly reconstituted preparations of human immune cells (highly enriched human natural killer cells, monocyte-depleted [MD] peripheral blood mononuclear cells [PBMCs], PBMCs, granulocytes and a preparation combining both PBMCs and granulocytes). DBT altered IL-1β secretion from all cell preparations. Higher concentrations of DBT (5 and 2.5 μm) decreased the secretion of IL-1β, while lower concentrations of DBT (0.1 and 0.05 μm) increased the secretion of IL-1β. Selected signaling pathways were examined in MD-PBMCs to determine if they play a role in DBT-induced elevations of IL-1β secretion. Pathways examined were IL-1β converting enzyme (caspase 1), mitogen-activated protein kinases and nuclear factor kappa B. Caspase 1 and mitogen-activated protein kinase pathways appear to be utilized by DBT in increasing IL-1β secretion. These results indicate that DBT alters IL-1β secretion from human immune cells in an ex. vivo system utilizing several IL-1β regulating signaling pathways. Thus, DBT may have the potential to alter IL-1β secretion in an in vivo system. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.

    PubMed

    Chappell, Grace; Pogribny, Igor P; Guyton, Kathryn Z; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.

  6. Thyrostimulin deficiency does not alter peripheral responses to acute inflammation-induced nonthyroidal illness.

    PubMed

    van Zeijl, Clementine J J; Surovtseva, Olga V; Kwakkel, Joan; van Beeren, Hermina C; Bassett, J H Duncan; Duncan Bassett, J H; Williams, Graham R; Wiersinga, Wilmar M; Fliers, Eric; Boelen, Anita

    2014-09-15

    Thyrostimulin, a putative glycoprotein hormone, comprises the subunits GPA2 and GPB5 and activates the TSH receptor (TSHR). The observation that proinflammatory cytokines stimulate GPB5 transcription suggested a role for thyrostimulin in the pathogenesis of nonthyroidal illness syndrome (NTIS). In the present study, we induced acute inflammation by LPS administration to GPB5(-/-) and WT mice to evaluate the role of thyrostimulin in peripheral thyroid hormone metabolism during NTIS. In addition to serum thyroid hormone concentrations, we studied mRNA expression and activity of deiodinase types I, II, and III (D1, D2, and D3) in peripheral T3 target tissues, including liver, muscle, and white and brown adipose tissue (WAT and BAT), of which the latter three express the TSHR. LPS decreased serum free (f)T4 and fT3 indexes to a similar extent in GPB5(-/-) and WT mice. Serum reverse (r)T3 did not change following LPS administration. LPS also induced significant alterations in tissue D1, D2, and D3 mRNA and activity levels, but only the LPS-induced increase in WAT D2 mRNA expression differed between GPB5(-/-) and WT mice. In conclusion, lacking GPB5 during acute illness does not affect the LPS-induced decrease of serum thyroid hormones while resulting in subtle changes in tissue D2 expression that are unlikely to be mediated via the TSHR.

  7. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans.

    PubMed

    Kuwahara, Tomoki; Koyama, Akihiko; Gengyo-Ando, Keiko; Masuda, Mayumi; Kowa, Hisatomo; Tsunoda, Makoto; Mitani, Shohei; Iwatsubo, Takeshi

    2006-01-06

    Mutations in alpha-synuclein gene cause familial form of Parkinson disease, and deposition of wild-type alpha-synuclein as Lewy bodies occurs as a hallmark lesion of sporadic Parkinson disease and dementia with Lewy bodies, implicating alpha-synuclein in the pathogenesis of Parkinson disease and related neurodegenerative diseases. Dopamine neurons in substantia nigra are the major site of neurodegeneration associated with alpha-synuclein deposition in Parkinson disease. Here we establish transgenic Caenorhabditis elegans (TG worms) that overexpresses wild-type or familial Parkinson mutant human alpha-synuclein in dopamine neurons. The TG worms exhibit accumulation of alpha-synuclein in the cell bodies and neurites of dopamine neurons, and EGFP labeling of dendrites is often diminished in TG worms expressing familial Parkinson disease-linked A30P or A53T mutant alpha-synuclein, without overt loss of neuronal cell bodies. Notably, TG worms expressing A30P or A53T mutant alpha-synuclein show failure in modulation of locomotory rate in response to food, which has been attributed to the function of dopamine neurons. This behavioral abnormality was accompanied by a reduction in neuronal dopamine content and was treatable by administration of dopamine. These phenotypes were not seen upon expression of beta-synuclein. The present TG worms exhibit dopamine neuron-specific dysfunction caused by accumulation of alpha-synuclein, which would be relevant to the genetic and compound screenings aiming at the elucidation of pathological cascade and therapeutic strategies for Parkinson disease.

  8. CSF alpha-synuclein levels in dementia with Lewy bodies and Alzheimer's disease.

    PubMed

    Noguchi-Shinohara, Moeko; Tokuda, Takahiko; Yoshita, Mitsuhiro; Kasai, Takashi; Ono, Kenjiro; Nakagawa, Masanori; El-Agnaf, Omar M A; Yamada, Masahito

    2009-01-28

    Dementia with Lewy bodies (DLB) is characterized by widespread depositions of alpha-synuclein, which are described as Lewy bodies. Recently, it was shown that neuronal cells in culture constitutively release alpha-synuclein into the culture medium and that alpha-synuclein is normally present in human cerebrospinal fluid (CSF). The aim of the present study was to evaluate the diagnostic value of CSF alpha-synuclein levels in discriminating DLB from Alzheimer's disease (AD). Alpha-synuclein was measured in CSF from 16 patients with DLB and 21 patients with AD. Iodine-123 metaiodobenzylguanidine cardiac scintigraphy was also performed to assess Lewy body pathology. CSF alpha-synuclein levels did not differ significantly between DLB and AD patients. However, the duration of illness was associated with lower alpha-synuclein levels (p<0.05) in DLB, while no such association was found in AD. The present data show CSF alpha-synuclein levels are not sensitive diagnostic markers to discriminate DLB from AD. However, the lower alpha-synuclein levels in DLB patients with longer duration suggest a reduction in CSF alpha-synuclein in association with increased severity of alpha-synucleinopathy in the brain.

  9. Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats.

    PubMed

    Daher, João P L; Volpicelli-Daley, Laura A; Blackburn, Jonathan P; Moehle, Mark S; West, Andrew B

    2014-06-24

    Missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene can cause late-onset Parkinson disease. Past studies have provided conflicting evidence for the protective effects of LRRK2 knockdown in models of Parkinson disease as well as other disorders. These discrepancies may be caused by uncertainty in the pathobiological mechanisms of LRRK2 action. Previously, we found that LRRK2 knockdown inhibited proinflammatory responses from cultured microglia cells. Here, we report LRRK2 knockout rats as resistant to dopaminergic neurodegeneration elicited by intracranial administration of LPS. Such resistance to dopaminergic neurodegeneration correlated with reduced proinflammatory myeloid cells recruited in the brain. Additionally, adeno-associated virus-mediated transduction of human α-synuclein also resulted in dopaminergic neurodegeneration in wild-type rats. In contrast, LRRK2 knockout animals had no significant loss of neurons and had reduced numbers of activated myeloid cells in the substantia nigra. Although LRRK2 expression in the wild-type rat midbrain remained undetected under nonpathological conditions, LRRK2 became highly expressed in inducible nitric oxide synthase (iNOS)-positive myeloid cells in the substantia nigra in response to α-synuclein overexpression or LPS exposures. Our data suggest that knocking down LRRK2 may protect from overt cell loss by inhibiting the recruitment of chronically activated proinflammatory myeloid cells. These results may provide value in the translation of LRRK2-targeting therapeutics to conditions where neuroinflammation may underlie aspects of neuronal dysfunction and degeneration.

  10. α-Synuclein oligomers and clinical implications for Parkinson disease.

    PubMed

    Kalia, Lorraine V; Kalia, Suneil K; McLean, Pamela J; Lozano, Andres M; Lang, Anthony E

    2013-02-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications.

  11. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D.

  12. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    SciTech Connect

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  13. Alteration of transcriptional profile in human bronchial epithelial cells induced by cigarette smoke condensate.

    PubMed

    Hu, Ying-Chun; Yang, Zhi-Hua; Zhong, Ke-Jun; Niu, Li-Jing; Pan, Xiu-Jie; Wu, De-Chang; Sun, Xian-Jun; Zhou, Ping-Kun; Zhu, Mao-Xiang; Huo, Yan-Ying

    2009-10-08

    Despite the significance of cigarette smoke for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of human cancers are not well-understood. In our present study, the oncogenic transforming effects of cigarette smoke condensate (CSC) were examined using papillomavirus-immortalized human bronchial epithelial cells (BEP2D). Growth kinetics, saturation density, resistance to serum-induced terminal differentiation, anchorage-independent growth and tumorigenicity in nude mice were used to investigate the various stages of transformation in BEP2D cells. Illumina microarray platforms were used to explore the CSC-induced alteration of global mRNA expression profiles of the earlier period and the advanced stage of CSC-treated BEP2D cells. We showed here that a series of sequential steps arose among CSC-treated immortalized human bronchial epithelial cells, including altered growth kinetics, resistance to serum-induced terminal differentiation, and anchorage-independence growth. In the earlier period of CSC treatment, 265 genes were down-regulated and 63 genes were up-regulated, respectively, and in the advanced stage of CSC treatment, 313 genes were down-regulated and 145 genes were up-regulated, respectively. Notably, among those genes, the expression of some of imprinted genes such as IGF2, NDN, H19 and MEG3 were all silenced or down-regulated in CSC-treated cells. These genes reactivated after 5 microM 5-aza-2-deoxycytidine (5-aza-dC) treatment. These results demonstrated that long-term treatment of human bronchial epithelial cells with CSC may adversely affect their genetic and epigenetic integrity and lead to further transformation.

  14. Exposure to nicotine during periadolescence or early adulthood alters aversive and physiological effects induced by ethanol.

    PubMed

    Rinker, Jennifer A; Hutchison, Mary Anne; Chen, Scott A; Thorsell, Annika; Heilig, Markus; Riley, Anthony L

    2011-07-01

    The majority of smokers begin their habit during adolescence, which often precedes experimentation with alcohol. Interestingly, very little preclinical work has been done examining how exposure to nicotine during periadolescence impacts the affective properties of alcohol in adulthood. Understanding how periadolescent nicotine exposure influences the aversive effects of alcohol might help to explain why it becomes more acceptable to this preexposed population. Thus, Experiment 1 exposed male Sprague Dawley rats to either saline or nicotine (0.4mg/kg, IP) from postnatal days 34 to 43 (periadolescence) and then examined changes in the aversive effects of alcohol (0, 0.56, 1.0 and 1.8g/kg, IP) in adulthood using the conditioned taste aversion (CTA) design. Changes in blood alcohol concentration (BAC) as well as alcohol-induced hypothermia and locomotor suppression were also assessed. To determine if changes seen were specific to nicotine exposure during periadolescence, the procedures were replicated in adults (Experiment 2). Preexposure to nicotine during periadolescence attenuated the acquisition of the alcohol-induced CTAs (at 1.0g/kg) and the hypothermic effects of alcohol (1.0g/kg). Adult nicotine preexposure produced similar attenuation in alcohol's aversive (at 1.8g/kg) and hypothermic (1.8g/kg) effects. Neither adolescent nor adult nicotine preexposure altered BACs or alcohol-induced locomotor suppression. These results suggest that nicotine may alter the aversive and physiological effects of alcohol, regardless of the age at which exposure occurs, possibly increasing its overall reinforcing value and making it more likely to be consumed.

  15. Neoplastic alterations induced in mammalian skin following mancozeb exposure using in vivo and in vitro models.

    PubMed

    Tyagi, Shilpa; George, Jasmine; Singh, Richa; Bhui, Kulpreet; Shukla, Yogeshwer

    2011-03-01

    Mancozeb, ethylene(bis)dithiocarbamate fungicides, has been well documented in the literature as a multipotent carcinogen, but the underlying mechanism remains unrevealed. Thus, mancozeb has been selected in this study with the objective to decipher the molecular mechanism that culminates in carcinogenesis. We employed two-dimensional gel electrophoresis and mass spectrometry to generate a comparative proteome profile of control and mancozeb (200 mg/kg body weight) exposed mouse skin. Although many differentially expressed proteins were found, among them, two significantly upregulated proteins, namely, S100A6 (Calcyclin) and S100A9 (Calgranulin-B), are known markers of keratinocyte differentiation and proliferation, which suggested their role in mancozeb-induced neoplastic alterations. Therefore, we verified these alterations in the human system by using HaCaT cells as an in vitro model for human skin keratinocyte carcinogenesis. Upregulation of these two proteins upon mancozeb (0.5 μg/mL) exposure in HaCaT cells indicated its neoplastic potential in human skin also. This potential was confirmed by increase in number of colonies in colony formation and anchorage-independent growth assays. Modulation of S100A6/S100A9 targets, elevated phosphorylation of extracellular signal regulated kinase (ERK1/2), Elk1, nuclear factor- kappa B and cell division cycle 25 C phosphatase, and cyclin D1 and cyclooxygenase-2 upregulation was seen. In addition, PD98059 (ERK1/2 inhibitor) reduced cell proliferation induced by mancozeb, confirming the involvement of ERK1/2 signaling. Conclusively, we herein present the first report asserting that the mechanism involving S100A6 and S100A9 regulated ERK1/2 signaling underlies the mancozeb-induced neoplastic potential in human skin.

  16. Moderate Hyperbilirubinemia Alters Neonatal Cardiorespiratory Control and Induces Inflammation in the Nucleus Tractus Solitarius

    PubMed Central

    Specq, Marie-Laure; Bourgoin-Heck, Mélisande; Samson, Nathalie; Corbin, François; Gestreau, Christian; Richer, Maxime; Kadhim, Hazim; Praud, Jean-Paul

    2016-01-01

    Hyperbilirubinemia (HB) occurs in 90% of preterm newborns. Moderate HB can induce acute neurological disorders while severe HB has been linked to a higher incidence of apneas of prematurity. The present study aimed to test the hypothesis that even moderate HB disrupts cardiorespiratory control in preterm lambs. Two groups of preterm lambs (born 14 days prior to term), namely control (n = 6) and HB (n = 5), were studied. At day 5 of life, moderate HB (150–250 μmol/L) was induced during 17 h in the HB group after which cardiorespiratory control as well as laryngeal and pulmonary chemoreflexes were assessed during baseline recordings and during hypoxia. Recordings were repeated 72 h after HB induction, just before euthanasia. In addition, neuropathological studies were performed to investigate for cerebral bilirubin deposition as well as for signs of glial reactivity in brainstem structures involved in cardiorespiratory control. Results revealed that sustained and moderate HB: (i) decreased baseline respiratory rate and increased the time spent in apnea; (ii) blunted the cardiorespiratory inhibition normally observed during both laryngeal and pulmonary chemoreflexes; and (iii) increased heart rate in response to acute hypoxia. These acute physiological changes were concurrent with an activation of Alzheimer type II astrocytes throughout the brain, including the brainstem. Concomitantly, bilirubin deposits were observed in the leptomeninges, but not in brain parenchyma. While most cardiorespiratory alterations returned to normal 72 h after HB normalization, the expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) was still increased within the nucleus tractus solitarius. In conclusion, moderate and sustained HB in preterm lambs induced cardiorespiratory alterations, the latter of which were associated with neurohistopathological changes. These changes are indicative of an inflammatory response in the brainstem

  17. Remote Detection and Geochemical Studies for Finding and Understanding Hydrocarbon-induced Rock Alterations

    NASA Astrophysics Data System (ADS)

    Petrovic, Ana

    The main objective of this work was to determine if there are characteristic mineral assemblages and chemical changes in areas affected by hydrocarbon microseepages. For this purpose remote sensing was utilized for mapping surficial rock alterations, and geochemical tools were used to understand the alteration processes. The key area chosen for this type of work were altered and unaltered Wingate Sandstone outcrops in Lisbon Valley, Utah. The Spectral Angle Mapper method was applied on HyMap hyperspectral images to classify the extent of altered and unaltered outcrops, as well as to map the changes in mineral content within the outcrops. The Spectral Feature Fitting and Band Ratio methods were used to identify lithological changes in the area. The commonly used band ratios for identification of calcite and kaolinite were modified for future use with multispectral data. Reflectance spectroscopy, thin section studies, major, minor, and trace element analyses, and stable carbon and oxygen studies on both bleached (altered) and unbleached (unaltered) samples were successfully used to delineate areas of similar rock composition and relate changes due to hydrocarbons leaking from underlying petroleum reservoirs. Unbleached Wingate Sandstone samples had higher hematite and feldspar content than bleached Wingate samples, which were characterized by larger amounts of clay, calcite, and pyrite. Some bleached samples also had higher concentrations of elements (U, Mo) characteristic of hydrocarbon-related reducing environments, and were depleted in 13C when compared to the unbleached samples. Based on these results, the following model of chemical reactions is suggested for diagnostic changes within Wingate Sandstone. Hydrocarbon-induced reducing environment caused the transformation of sulfate ion (obtained from groundwater or from oxidation of H2S) to sulfide ion, resulting in the reduction of hematite to pyrite, The released hydrogen ion from this reaction reacted with

  18. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat

    PubMed Central

    2011-01-01

    Introduction Increased vascular permeability represents one of the hallmarks of sepsis. In the kidney, vascular permeability is strictly regulated by the 'glomerular filtration barrier' (GFB), which is comprised of glomerular endothelium, podocytes, their interposed basement membranes and the associated glycocalyx. Although it is likely that the GFB and its glycocalyx are altered during sepsis, no study has specifically addressed this issue. The aim of this study was to evaluate whether albuminuria -- the hallmark of GFB perm-selectivity -- occurs in the initial stage of sepsis and whether it is associated with morphological and biochemical changes of the GFB. Methods Cecal ligation and puncture (CLP) was used to induce sepsis in the rat. Tumor necrosis factor (TNF)-alpha levels in plasma and growth of microorganisms in the peritoneal fluid were evaluated at 0, 3 and 7 hours after CLP or sham-operation. At the same times, kidney specimens were collected and structural and ultrastructural alterations in the GFB were assessed. In addition, several components of GFB-associated glycocalyx, syndecan-1, hyluronan (HA) and sialic acids were evaluated by immunofluorescence, immunohistochemistry and lectin histochemistry techniques. Serum creatinine and creatinine clearance were measured to assess kidney function and albuminuria for changes in GFB permeability. Analysis of variance followed by Tukey's multiple comparison test was used. Results Septic rats showed increased TNF-alpha levels and growth of microorganisms in the peritoneal fluid. Only a few renal corpuscles had major ultrastructural and structural alterations and no change in serum creatinine or creatinine clearance was observed. Contrarily, urinary albumin significantly increased after CLP and was associated with diffuse alteration in the glycocalyx of the GFB, which consisted in a decrease in syndecan-1 expression and in HA and sialic acids contents. Sialic acids were also changed in their structure

  19. Curvature Dynamics of α-Synuclein Familial Parkinson Disease Mutants

    PubMed Central

    Perlmutter, Jason D.; Braun, Anthony R.; Sachs, Jonathan N.

    2009-01-01

    α-Synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type α-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two distinct environments. First, in order to match recent NMR experiments, we have simulated each protein bound to an SDS detergent micelle. Second, in order to connect more closely to the true biological environment, we have simulated the proteins bound to a 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid bilayer. In the micelle-bound case, we find that the wild type and all of the variants of α-synuclein flatten the underlying micelle, decreasing its surface area. A30P is known to lessen α-synuclein/membrane affinity and, consistent with experiment, destabilizes the simulated secondary structure. In the case of A53T, our simulations reveal a range of stabilizing hydrogen bonds that form with the threonine. In both environments, the E46K mutation, which is known to increase bilayer affinity, leads to an additional hydrogen bond between the protein and either the detergent or lipid. Simulations indicate that αS and its variants are less dynamic in the bilayer than in the micelle. Furthermore, the simulations of the mutants suggest how changes in the structure and dynamics of α-synuclein may affect its biological role. PMID:19126542

  20. Alterations in Perivascular Sympathetic and Nitrergic Innervation Function Induced by Late Pregnancy in Rat Mesenteric Arteries

    PubMed Central

    Caracuel, Laura; Callejo, María; Balfagón, Gloria

    2015-01-01

    Background and Purpose We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved. Experimental Approach We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed. Key Results EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response. Conclusions and Implications Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy. PMID:25951331

  1. Diet-Induced Obesity Does Not Alter Tigecycline Treatment Efficacy in Murine Lyme Disease

    PubMed Central

    Pětrošová, Helena; Eshghi, Azad; Anjum, Zoha; Zlotnikov, Nataliya; Cameron, Caroline E.; Moriarty, Tara J.

    2017-01-01

    Obese individuals more frequently suffer from infections, as a result of increased susceptibility to a number of bacterial pathogens. Furthermore, obesity can alter antibiotic treatment efficacy due to changes in drug pharmacokinetics which can result in under-dosing. However, studies on the treatment of bacterial infections in the context of obesity are scarce. To address this research gap, we assessed efficacy of antibiotic treatment in diet-induced obese mice infected with the Lyme disease pathogen, Borrelia burgdorferi. Diet-induced obese C3H/HeN mice and normal-weight controls were infected with B. burgdorferi, and treated during the acute phase of infection with two doses of tigecycline, adjusted to the weights of diet-induced obese and normal-weight mice. Antibiotic treatment efficacy was assessed 1 month after the treatment by cultivating bacteria from tissues, measuring severity of Lyme carditis, and quantifying bacterial DNA clearance in ten tissues. In addition, B. burgdorferi-specific IgG production was monitored throughout the experiment. Tigecycline treatment was ineffective in reducing B. burgdorferi DNA copies in brain. However, diet-induced obesity did not affect antibiotic-dependent bacterial DNA clearance in any tissues, regardless of the tigecycline dose used for treatment. Production of B. burgdorferi-specific IgGs was delayed and attenuated in mock-treated diet-induced obese mice compared to mock-treated normal-weight animals, but did not differ among experimental groups following antibiotic treatment. No carditis or cultivatable B. burgdorferi were detected in any antibiotic-treated group. In conclusion, obesity was associated with attenuated and delayed humoral immune responses to B. burgdorferi, but did not affect efficacy of antibiotic treatment. PMID:28286500

  2. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    PubMed Central

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  3. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  4. Laser-induced alteration of Raman spectra for micron-sized solid particles

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Pavlov, S. G.; Deßmann, N.; Hanke, F.; Weber, I.; Fritz, J.; Hübers, H.-W.

    2017-04-01

    The Raman Laser Spectrometer (RLS) instrument on board of the future ESAs ExoMars mission will analyze micron-sized powder samples in a low pressure atmosphere. Such micron-sized polycrystalline solid particles might be heated by the laser during the Raman measurements. Here, we report on the temperature-induced alteration of Raman spectra from micron-sized polycrystalline solid particles by comparing Raman spectra on silicon and the rock forming minerals olivine and pyroxene taken at different laser intensities and different ambient temperatures. Our analyses indicate that laser-induced heating results in both broadening and shifting of characteristic Raman lines in the Stokes and anti-Stokes spectral regions. For elementary crystalline silicon a significant local temperature increase and relevant changes in Raman spectra have been observed in particles with median sizes below 250 μm. In comparison, significantly weaker laser-induced Raman spectral changes were observed in more complex rock-forming silicate minerals; even for lower grain sizes. Laser power densities realized in the RLS ExoMars instrument should cause only low local heating effects and, thus, negligible frequency shifts of the major Raman lines in common silicate minerals such as olivine and pyroxene.

  5. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance.

    PubMed

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-07-21

    Seedlings of aluminum-tolerant 'Xuegan' (Citrus sinensis) and Al-intolerant 'sour pummelo' (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl₃·6H₂O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.

  6. Altered gastric emptying and prevention of radiation-induced vomiting in dogs. [Cobalt 60 irradiation

    SciTech Connect

    Dubois, A.; Jacobus, J.P.; Grissom, M.P.; Eng, R.R.; Conklin, J.J.

    1984-03-01

    The relation between radiation-induced vomiting and gastric emptying is unclear and the treatment of this condition is not established. We explored, therefore, (a) the effect of cobalt 60 irradiation on gastric emptying of solids and liquids and (b) the possibility of preventing radiation-induced vomiting with the dopamine antagonist, domperidone. Twenty dogs were studied on two separate days, blindly and in random order, after i.v. injection of either a placebo or 0.06 mg/kg domperidone. On a third day, they received 8 Gy (800 rads) whole body irradiation with cobalt 60 gamma-rays after either placebo (n . 10) or domperidone (n . 10). Before each study, each dog was fed chicken liver tagged in vivo with 99mTc-sulfur colloid (solid marker), and water containing 111In-diethylenetriamine pentaacetic acid (liquid marker). Dogs were placed in a Pavlov stand for the subsequent 3 h and radionuclide imaging was performed at 10-min intervals. Irradiation produced vomiting in 9 of 10 dogs given placebo but only in 1 of 10 dogs pretreated with domperidone (p less than 0.01). Gastric emptying of liquids and solids was significantly suppressed by irradiation (p less than 0.01) after both placebo and domperidone. These results demonstrate that radiation-induced vomiting is accompanied by suppression of gastric emptying. Furthermore, domperidone prevents vomiting produced by ionizing radiation but does not alter the accompanying delay of gastric emptying.

  7. Modulation of radiation-induced alteration in the antioxidant status of mice by naringin.

    PubMed

    Jagetia, Ganesh Chandra; Reddy, Tiyyagura Koti

    2005-07-01

    The alteration in the antioxidant status and lipid peroxidation was investigated in Swiss albino mice treated with 2 mg/kg b.wt. naringin, a citrus flavoglycoside, before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose-dependent elevation in the lipid peroxidation while a dose-dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. Treatment of mice with 2 mg/kg b. wt. naringin inhibited the radiation-induced elevation in the lipid peroxidation as well as depletion of glutathione, glutathione peroxidase, superoxide dismutase and catalase in liver and small intestine. Radiation-induced lipid peroxidation increased with time, which was greatest at 2 h post-irradiation and declined thereafter in the liver and small intestine. Similarly, a maximum decline in the glutathione glutathione peroxidase, and superoxide dismutase was observed at 1 h, while catalase showed a maximum decline at 2 h post-irradiation. Our study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation.

  8. Caerulein-induced acute pancreatitis results in mild lung inflammation and altered respiratory mechanics.

    PubMed

    Elder, Alison S F; Saccone, Gino T P; Bersten, Andrew D; Dixon, Dani-Louise

    2011-03-01

    Acute lung injury is a common complication of acute pancreatitis (AP) and contributes to the majority of AP-associated deaths. Although some aspects of AP-induced lung inflammation have been demonstrated, investigation of resultant changes in lung function is limited. The aim of this study was to characterize lung injury in caerulein-induced AP. Male Sprague Dawley rats (n = 7-8/group) received 7 injections of caerulein (50 μg/kg) at 12, 24, 48, 72, 96, or 120 hours before measurement of lung impedance mechanics. Bronchoalveolar lavage (BAL), plasma, pancreatic, and lung tissue were collected to determine pancreatic and lung measures of acute inflammation. AP developed between 12 and 24 hours, as indicated by increased plasma amylase activity and pancreatic myeloperoxidase (MPO) activity, edema, and abnormal acinar cells, before beginning to resolve by 48 hours. In the lung, MPO activity peaked at 12 and 96 hours, with BAL cytokine concentrations peaking at 12 hours, followed by lung edema at 24 hours, and BAL cell count at 48 hours. Importantly, no significant changes in BAL protein concentration or arterial blood gas-pH levels were evident over the same period, and only modest changes were observed in respiratory mechanics. Caerulein-induced AP results in minor lung injury, which is not sufficient to allow protein permeability and substantially alter respiratory mechanics.

  9. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    PubMed

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  10. Aging-induced alterations in female rat colon smooth muscle: the protective effects of hormonal therapy.

    PubMed

    Pascua, P; Camello-Almaraz, C; Pozo, M J; Martin-Cano, F E; Vara, E; Fernández-Tresguerres, J A; Camello, P J

    2012-06-01

    Aging is associated to oxidative damage and alterations in inflammatory and apoptotic pathways. Aging impairs secretion of several hormones, including melatonin and estrogens. However, the mechanisms involved in aging of smooth muscle are poorly known. We have studied the changes induced by aging in the colonic smooth muscle layer of female rats and the protective effect of hormonal therapy. We used young, aged, and ovariectomized aged female rats. Two groups of ovariectomized rats (22 months old) were treated either with melatonin or with estrogen for 10 weeks before sacrifice. Aging induced oxidative imbalance, evidenced by H(2)O(2) accumulation, lipid peroxidation, and decreased catalase activity. The oxidative damage was enhanced by ovariectomy. In addition, aged colonic muscle showed enhanced expression of the pro-inflammatory enzyme cyclooxygenase 2. Expression of the activated forms of caspases 3 and 9 was also enhanced in aged colon. Melatonin and estrogen treatment prevented the oxidative damage and the activation of caspases. In conclusion, aging of colonic smooth muscle induces oxidative imbalance and activation of apoptotic and pro-inflammatory pathways. Hormonal therapy has beneficial effects on the oxidative and apoptotic changes associated to aging in this model.

  11. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance

    PubMed Central

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-01-01

    Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis) and Al-intolerant ‘sour pummelo’ (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance. PMID:27455238

  12. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  13. Immunotherapy in Parkinson’s Disease: Micromanaging Alpha-Synuclein Aggregation

    PubMed Central

    George, Sonia; Brundin, Patrik

    2015-01-01

    Abstract Currently, several α-synuclein immunotherapies are being tested in experimental Parkinson’s disease models and in clinical trials. Recent research has revealed that α-synuclein is not just an intracellular synaptic protein but also exists extracellularly. Moreover, the transfer of misfolded α-synuclein between cells might be a crucial step in the process leading to a progressive increase in deposition of α-synuclein aggregates throughout the Parkinson’s disease brain. The revelation that α-synuclein is present outside cells has increased the interest in antibody-based therapies and opens up for the notion that microglia might play a key role in retarding Parkinson’s disease progression. The objectives of this review are to describe and contrast the use of active and passive immunotherapy in treating α-synucleinopathies and highlight the likely important role of microglia in clearing misfolded α-synuclein from the extracellular space. PMID:26406122

  14. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

    PubMed

    Urrea, Laura; Segura-Feliu, Miriam; Masuda-Suzukake, Masami; Hervera, Arnau; Pedraz, Lucas; Aznar, José Manuel García; Vila, Miquel; Samitier, Josep; Torrents, Eduard; Ferrer, Isidro; Gavín, Rosalina; Hagesawa, Masato; Del Río, José Antonio

    2017-02-22

    The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP(C)-overexpressing mice. In addition, α-synuclein binds strongly on PrP(C)-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

  15. Molecular understanding of copper and iron interaction with alpha-synuclein by fluorescence analysis.

    PubMed

    Bharathi; Rao, K S J

    2008-07-01

    Alpha-synuclein aggregation is a hallmark pathological feature in Parkinson's disease (PD). The conversion of alpha-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with PD. Redox-active metal ions such as iron (Fe) and copper (Cu) are known to enhance alpha-synuclein fibrillogenesis. In the present investigation, we analyzed the binding efficiency of Cu and Fe to alpha-synuclein by fluorescence studies. It is interesting to note that Cu and Fe showed differential binding pattern toward alpha-synuclein (wild type and A30P, A53T, and E46K mutant forms) as revealed by intrinsic tyrosine fluorescence, thioflavin-T fluorescence, 1-anilino-8-naphthalenesulfonate-binding studies, and scatchard plot analysis. The experimental data might prove useful in understanding the hierarchy of metals binding to alpha-synuclein and its role in neurodegeneration.

  16. α-Synuclein regulates the partitioning between tubulin dimers and microtubules at neuronal growth cone

    PubMed Central

    Cartelli, Daniele; Cappelletti, Graziella

    2017-01-01

    ABSTRACT The partitioning between tubulin dimers and microtubules is fundamental for the regulation of several neuronal activities, from neuronal polarization and processes extension to growth cone remodelling. This phenomenon is modulated by several proteins, including the well-known microtubule destabilizer Stathmin. We recently demonstrated that α-Synuclein, a presynaptic protein associated to Parkinson's disease, shares structural and functional properties with Stathmin, and we showed that α-Synuclein acts as a foldable dynamase. Here, we pinpoint the impact of wild type α-Synuclein on the partitioning between tubulin dimers and microtubules and show that Parkinson's disease-linked mutants lose this capability. Thus, our results indicate a new role for α-Synuclein in regulating microtubule system and support the concept that microtubules and α-Synuclein are partners in the modulation of neuronal health and degenerative processes. Furthermore, these data strengthen our hypothesis of the existence of a functional redundancy between α-Synuclein and Stathmin.

  17. Crack cocaine inhalation induces schizophrenia-like symptoms and molecular alterations in mice prefrontal cortex.

    PubMed

    Areal, Lorena Bianchine; Herlinger, Alice Laschuk; Pelição, Fabrício Souza; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2017-03-06

    Crack cocaine (crack) addiction represents a major social and health burden, especially seeing as users are more prone to engage in criminal and violent acts. Crack users show a higher prevalence of psychiatric comorbidities - particularly antisocial personality disorders - when compared to powder cocaine users. They also develop cognitive deficits related mainly to executive functions, including working memory. It is noteworthy that stimulant drugs can induce psychotic states, which appear to mimic some symptoms of schizophrenia among users. Social withdraw and executive function deficits are, respectively, negative and cognitive symptoms of schizophrenia mediated by reduced dopamine (DA) tone in the prefrontal cortex (PFC) of patients. That could be explained by an increased expression of D2R short isoform (D2S) in the PFC of such patients and/or by hypofunctioning NMDA receptors in this region. Reduced DA tone has already been described in the PFC of mice exposed to crack smoke. Therefore, it is possible that behavioral alterations presented by crack users result from molecular and biochemical neuronal alterations akin to schizophrenia. Accordingly, we found that upon crack inhalation mice have shown decreased social interaction and working memory deficits analogous to schizophrenia's symptoms, along with increased D2S/D2L expression ratio and decreased expression of NR1, NR2A and NR2B NMDA receptor subunits in the PFC. Herein we propose two possible mechanisms to explain the reduced DA tone in the PFC elicited by crack consumption in mice, bringing also the first direct evidence that crack use may result in schizophrenia-like neurochemical, molecular and behavioral alterations.

  18. Long-term alterations in neural and endocrine processes induced by motherhood in mammals.

    PubMed

    Bridges, Robert S

    2016-01-01

    This article is part of a Special Issue "Parental Care". The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female's biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages.

  19. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  20. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease

    PubMed Central

    Bondar, Constanza; Ormazabal, Maximiliano; Crivaro, Andrea; Ferreyra-Compagnucci, Malena; Delpino, María Victoria; Rozenfeld, Paula Adriana; Mucci, Juan Marcos

    2017-01-01

    Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD. PMID:28098793

  1. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations

    NASA Technical Reports Server (NTRS)

    Meehan, R.; Whitson, P.; Sams, C.

    1993-01-01

    This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.

  2. Features of vestibuloocular reflex modulations induced by altered gravitational forces in tadpoles ( Xenopus laevis)

    NASA Astrophysics Data System (ADS)

    Sebastian, C.; Horn, E.

    2001-01-01

    In Xenopus laevis tadpoles, we studied the static vestibuloocular reflex (rVOR) in relation to modifications of the gravitational environment to find basic mechanisms of how altered gravitational forces (AGF) affect this reflex. Animals were exposed to microgravity during space flight or hypergravity (3g) for 4 to 12 days. Basic observations were that (1) the development of the rVOR is significantly affected by altered gravitational conditions, (2) the duration of 1g-readaptation depends on the strength of the test stimulus, (3) μg induces malformations of the body which are related to the rVOR depression. Future studies are based on the hypotheses (1) that the vestibular nuclei play a key roll in the adaptation to AGF conditions, (2) that the stimulus transducing systems in the sense organ are affected by AGF conditions, and (3) that fertilized eggs will be converted to normal adults guided by physiological and morphological set points representing the genetic programs. Developmental retardation or acceleration, or otherwise occurring deviations from standard development during embryonic and postembryonic life will activate genes that direct the developmental processes towards normality.

  3. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    PubMed

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC.

  4. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    PubMed

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects.

  5. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    PubMed

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  6. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  7. Long-Term Alterations in Neural and Endocrine Processes Induced by Motherhood

    PubMed Central

    Bridges, Robert S.

    2015-01-01

    The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female’s biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065

  8. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    PubMed Central

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  9. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  10. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution.

    PubMed

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J J

    2016-10-21

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an 'electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

  11. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    PubMed Central

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  12. Halothane-induced alterations in cellular structure and proliferation of A549 cells.

    PubMed

    Stephanova, E; Topouzova-Hristova, T; Hazarosova, R; Moskova, V

    2008-12-01

    Genotoxicity, cytotoxicity or teratogenicity are among the well-known detrimental effects of the volatile anaesthetics. The aim of the present work was to study the structural changes, proliferative activity and the possibility of alveolar A549 cells to recover after in vitro exposure to halothane at 1.5 and 2.1mM concentrations. Our data indicated significant reduction of viability, suppression of mitotic activity more than 60%, and that these alterations were accompanied by disturbances of nuclear and nucleolar structures. The most prominent negative effect was the destruction of the lamellar bodies, the main storage organelles of pulmonary surfactant, substantial for the lung physiology. In conclusion, halothane applied at clinically relevant concentrations exerts genotoxic and cytotoxic effect on the alveolar cells in vitro, most likely as a consequence of stress-induced apoptosis, thus modulating the respiratory function.

  13. Running Induces Widespread Structural Alterations in the Hippocampus and Entorhinal Cortex

    PubMed Central

    Stranahan, Alexis M.; Khalil, David; Gould, Elizabeth

    2010-01-01

    Physical activity enhances hippocampal function but its effects on neuronal structure remain relatively unexplored outside of the dentate gyrus. Using Golgi impregnation and the lipophilic tracer DiI, we show that long-term voluntary running increases the density of dendritic spines in the entorhinal cortex and hippocampus of adult rats. Exercise was associated with increased dendritic spine density not only in granule neurons of the dentate gyrus, but also in CA1 pyramidal neurons, and in layer III pyramidal neurons of the entorhinal cortex. In the CA1 region, changes in dendritic spine density are accompanied by changes in dendritic arborization and alterations in the morphology of individual spines. These findings suggest that physical activity exerts pervasive effects on neuronal morphology in the hippocampus and one of its afferent populations. These structural changes may contribute to running-induced changes in cognitive function. PMID:17636549

  14. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    NASA Astrophysics Data System (ADS)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-10-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an `electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

  15. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  16. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  17. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome

    PubMed Central

    Kelley, Scott T.; Skarra, Danalea V.; Rivera, Alissa J.; Thackray, Varykina G.

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268

  18. Alteration of time-resolved autofluorescence properties of rat aorta, induced by diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Uherek, M.; Uličná, O.; Vančová, O.; Muchová, J.; Ďuračková, Z.; Šikurová, L.; Chorvát, D.

    2016-10-01

    Changes in autofluorescence properties of isolated rat aorta, induced by diabetes mellitus, were detected using time-resolved fluorescence spectroscopy with pulsed ultraviolet (UV) laser excitation. We demonstrated that time-resolved spectroscopy was able to detect changes in aorta tissues related to diabetes and unambiguously discriminate diabetic (τ 1 0.63  ±  0.05 ns, τ 2 3.66  ±  0.10 ns) samples from the control (τ 1 0.76  ±  0.03 ns, τ 2 4.48  ±  0.15 ns) group. We also report changes in the ratio of relative amplitudes of the two lifetime component in aorta tissue during diabetes, most likely related to the pseudohypoxic state with altered NADH homeostasis.

  19. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition

    PubMed Central

    Burnett, Elizabeth J; Chandler, L Judson; Trantham-Davidson, Heather

    2015-01-01

    Introduction Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. Objective To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. Results Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure and up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, changes in NMDA receptors and additional glutamatergic neuroadaptations are often circuit and cell-type specific. Discussion Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. Conclusion While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover

  20. Dracaena arborea alleviates ultra-structural spermatogenic alterations in streptozotocin-induced diabetic rats

    PubMed Central

    2013-01-01

    Background Infertility is a common complication in diabetic men and experimental animals, mainly due to loss of germ cells by apoptotic cell death. The aim of this study was to evaluate the effects of aqueous and ethanol extracts of Dracaena arborea in streptozotocin-induced ultra-structural spermatogenic alterations in Wistar rats. Methods Diabetic animals were orally treated with Millipore water (10 ml/kg), sildenafil citrate (1.44 mg/kg) or Dracaena arborea aqueous (500 mg/kg) and ethanol (100 mg/kg) extracts for three weeks. A group of non diabetic rats received Millipore water (10 ml/kg) and served as healthy control group. Blood glucose was monitored at the beginning and the end of the study. One day after the last treatment, animals were sacrificed and the testes immediately removed were morphologically observed and prepared for electron microscopy analysis of spermatogenesis. Results Our results showed that Dracaena arborea was devoid of any anti-hyperglycemic activity. In the untreated diabetic rats, hyperglycemia severely damaged the testes morphology as well as the spermatogenic process as evidenced by the: thickness of basement membrane of the seminiferous tubule; mitochondria alteration; abnormal spermatocyte cells displaying polymorphous nuclei, cytoplasmic vacuolization and necrosis; and disorganization and degeneration of sperm germ cells. Administration of sildenafil citrate and Dracaena arborea extracts to the diabetic rats improved testes morphology and reversed, although not completely, the impairment of spermatogenesis; this alleviating effect was more pronounced in animals treated with the aqueous extract (500 mg/kg) of Dracaena arborea. Conclusion Dracaena arborea improves testes morphology and restores spermatogenesis in type 1 diabetic rats, without having major anti-hyperglycemic properties. These effects could be attributed to saponins, flavonoids, phenols and sterols revealed in this plant, which could be a useful component

  1. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  2. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  3. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver

    PubMed Central

    Nakajima, Tetsuo; Vares, Guillaume; Wang, Bing; Nenoi, Mitsuru

    2016-01-01

    Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu) was administered daily to female mice (C3H/He) for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day) for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v) ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH) metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation. PMID:26752639

  4. Brain death induces the alteration of liver protein expression profiles in rabbits.

    PubMed

    Du, Bing; Li, Ling; Zhong, Zhibiao; Fan, Xiaoli; Qiao, Bingbing; He, Chongxiang; Fu, Zhen; Wang, Yanfeng; Ye, Qifa

    2014-08-01

    At present, there is no accurate method for evaluating the quality of liver transplant from a brain-dead donor. Proteomics are used to investigate the mechanisms involved in brain death‑induced liver injury and to identify sensitive biomarkers. In the present study, age‑ and gender‑matched rabbits were randomly divided into the brain death and sham groups. The sham served as the control. A brain‑death model was established using an intracranial progressive pressurized method. The differentially expressed proteins extracted from the liver tissues of rabbits that were brain‑dead for 6 h in the two groups were determined by two‑dimensional gel electrophoresis and matrix‑assisted laser desorption ionization time of flight mass spectrometry. Although there was no obvious functional and morphological difference in 2, 4 and 6 h after brain death, results of the proteomics analysis revealed 973±34 and 987±38 protein spots in the control and brain death groups, respectively. Ten proteins exhibited a ≥2‑fold alteration. The downregulated proteins were: aldehyde dehydrogenase, runt‑related transcription factor 1 (RUNX1), inorganic pyrophosphatase, glutamate‑cysteine ligase regulatory subunit and microsomal cytochrome B5. By contrast, the expression of dihydropyrimidinase-related protein 4, peroxiredoxin‑6, 3‑phosphoinositide‑dependent protein kinase‑1, 3-mercaptopyruvate and alcohol dehydrogenase were clearly upregulated. Immunohistochemistry and western blot analysis results revealed that the expression of RUNX1 was gradually increased in a time‑dependent manner in 2, 4, and 6 h after brain death. In conclusion, alteration of the liver protein expression profile induced by brain death indicated the occurrence of complex pathological changes even if no functional or morphological difference was identified. Thus, RUNX1 may be a sensitive predict factor for evaluating the quality of brain death donated liver.

  5. Biochemical and biomechanical alterations in equine articular cartilage following an experimentally-induced synovitis.

    PubMed

    Palmer, J L; Bertone, A L; Malemud, C J; Mansour, J

    1996-06-01

    The effects of inflammation on the biochemical and biomechanical properties of articular cartilage at two sites (dorsal and palmar) from the radial facet of the equine third carpal bone were examined in response to a synovitis induced with Escherichia coli lipopolysaccharide (LPS). Four groups were studied. In group 1 synovitis was induced at time zero and evaluated at week 6. Group 2 was the sham-treated control for group 1. In group 3 synovitis was induced at time zero and evaluated at week 2. Group 4 was the sham-treated control for group 3. There was a significant increase (P < 0.05) in newly synthesized proteoglycan PG from both sites in group 3 as compared to the sham-treated groups and group 1. No significant difference in the endogenous PG concentration between groups or sites was detected. Sepharose CL-2B revealed two peaks of newly synthesized PG in all groups; an early peak (Kav 0.11-0.13) and a late peak (Kav 0.48-0.64). Newly synthesized PG profiles from sham-treated groups and group 3 were similar, but the group 3 PG profile exhibited a more pronounced early peak. Conversely, the PG profile from group 1 demonstrated a more prominent late peak. Electrophoresis and Western blot analysis of the pooled late PG peak fractions from the sham-treated and group 1 showed a single toluidine blue stained band from both sites which reacted with monoclonal antibody (MAb) 1C6. By contrast, the late peak from the palmar site in group 3 showed an additional faster moving component on composite gels which did not react with MAb 1C6. There was a significant decrease in Poisson's ratio and a significant increase in cartilage thickness in groups 1 and 3 which had received synovitis. The increase in cartilage thickness of groups 1 and 3 was also significantly affected by site (dorsal > palmar). There was no significant difference in aggregate modulus or permeability constant among groups. Primary joint inflammation induced by LPS alters the biochemical and biomechanical

  6. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    PubMed Central

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID

  7. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina

    PubMed Central

    Lahouaoui, Hasna; Coutanson, Christine; Cooper, Howard M.; Bennis, Mohamed

    2016-01-01

    Purpose Diabetic retinopathy is one of the most common consequences of diabetes that affects millions of working-age adults worldwide and leads to progressive degeneration of the retina, visual loss, and blindness. Diabetes is associated with circadian disruption of the central and peripheral circadian clocks, but the mechanisms responsible for such alterations are unknown. Using a streptozotocin (STZ)-induced model of diabetes, we investigated whether diabetes alters 1) the circadian regulation of clock genes in the retina and in the central clocks, 2) the light response of clock genes in the retina, and/or 3) light-driven retinal dopamine (DA), a major output marker of the retinal clock. Methods To quantify circadian expression of clock and clock-controlled genes, retinas and suprachiasmatic nucleus (SCN) from the same animals were collected every 4 h in circadian conditions, 12 weeks post-diabetes. Induction of Per1, Per2, and c-fos mRNAs was quantified in the retina after the administration of a pulse of monochromatic light (480 nm, 1.17×1014 photons/cm2/s, 15 min) at circadian time 16. Gene expression was assessed with real-time reverse transcription PCR (RT–PCR). Pooled retinas from the control and STZ-diabetic mice were collected 2 h after light ON and light OFF (Zeitgeber time (ZT)2 and ZT14), and DA and its metabolite were analyzed with high-performance liquid chromatography (HPLC). Results We found variable effects of diabetes on the expression of clock genes in the retina and only slight differences in phase and/or amplitude in the SCN. c-fos and Per1 induction by a 480 nm light pulse was abolished in diabetic animals at 12 weeks post-induction of diabetes in comparison with the control mice, suggesting a deficit in light-induced neuronal activation of the retinal clock. Finally, we quantified a 56% reduction in the total number of tyrosine hydroxylase (TH) immunopositive cells, associated with a decrease in DA levels during the subjective day (ZT2

  8. Dynamical properties of α-synuclein in soluble and fibrillar forms by Quasi Elastic Neutron Scattering.

    PubMed

    Bousset, Luc; Brewee, Clémence; Melki, Ronald; Migliardo, Federica

    2014-07-01

    In the present paper, Quasi Elastic Neutron Scattering (QENS) results, gathered at different energy resolution values at the ISIS Facility (RAL, UK), on α-synuclein in soluble and fibrillar forms as a function of temperature and exchanged wave-vector Q are shown. The measurements reveal a different dynamic behavior of the soluble and fibrillar forms of α-synuclein as a function of thermal stress. In more detail, the dynamics of each protein form reflects its own complex conformational heterogeneity. Furthermore, the effect of a well known bioprotectant, trehalose, that influences α-synuclein fibrillation, on both soluble and fibrillar forms of α-synuclein is discussed.

  9. Presynaptic Alpha-Synuclein Aggregation in a Mouse Model of Parkinson's Disease

    PubMed Central

    Spinelli, Kateri J.; Taylor, Jonathan K.; Osterberg, Valerie R.; Churchill, Madeline J.; Pollock, Eden; Moore, Cynthia; Meshul, Charles K.

    2014-01-01

    Parkinson's disease and dementia with Lewy bodies are associated with abnormal neuronal aggregation of α-synuclein. However, the mechanisms of aggregation and their relationship to disease are poorly understood. We developed an in vivo multiphoton imaging paradigm to study α-synuclein aggregation in mouse cortex with subcellular resolution. We used a green fluorescent protein-tagged human α-synuclein mouse line that has moderate overexpression levels mimicking human disease. Fluorescence recovery after photobleaching (FRAP) of labeled protein demonstrated that somatic α-synuclein existed primarily in an unbound, soluble pool. In contrast, α-synuclein in presynaptic terminals was in at least three different pools: (1) as unbound, soluble protein; (2) bound to presynaptic vesicles; and (3) as microaggregates. Serial imaging of microaggregates over 1 week demonstrated a heterogeneous population with differing α-synuclein exchange rates. The microaggregate species were resistant to proteinase K, phosphorylated at serine-129, oxidized, and associated with a decrease in the presynaptic vesicle protein synapsin and glutamate immunogold labeling. Multiphoton FRAP provided the specific binding constants for α-synuclein's binding to synaptic vesicles and its effective diffusion coefficient in the soma and axon, setting the stage for future studies targeting synuclein modifications and their effects. Our in vivo results suggest that, under moderate overexpression conditions, α-synuclein aggregates are selectively found in presynaptic terminals. PMID:24501346

  10. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats

    PubMed Central

    Padma, Viswanadha Vijaya; Lalitha, Gurusamy; Shirony, Nicholson Puthanveedu; Baskaran, Rathinasamy

    2012-01-01

    Objective To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. Methods Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. Results Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. Conclusions Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane. PMID:23569870

  11. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding.

    PubMed Central

    Beller, G A; Conroy, J; Smith, T W

    1976-01-01

    The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium

  12. Ameliorative effect of resveratrol against fluoride-induced alteration of thyroid function in male wistar rats.

    PubMed

    Sarkar, Chaitali; Pal, Sudipta

    2014-12-01

    Resveratrol (3,4,5-trihydroxystilbene), a polyphenol and well-known natural antioxidant has been evaluated for its protective effect against fluoride-induced metabolic dysfunctions in rat thyroid gland. Fluoride, the most abundant anions present in groundwater throughout the world, creates a major problem in safe drinking water and causes metabolic, structural, and functional injuries in different organ systems. Sub-acute exposure to sodium fluoride at a dose of 20 mg/kg b.w./day orally to rat for 30 days induces thyroidal dysfunction including suppressed synthetic machinery of the thyroid gland to produce nucleic acids and thyroid hormones, mainly T3 and T4. Other functional changes are alteration of certain metabolic enzyme activities like Na(+)-K(+)-ATPase, thyroid peroxidase, and 5,5'-deiodinase. Structural abnormality of thyroid follicles by fluoride intoxication clearly indicates its thyrotoxic manifestation. Resveratrol supplementation in fluoride-exposed animals appreciably prevented metabolic toxicity caused by fluoride and restored both functional status and ultra-structural organization of the thyroid gland towards normalcy. This study first establishes the therapeutic efficacy of resveratrol as a natural antioxidant in thyroprotection against toxic insult caused by fluoride.

  13. Overexpression of SIRT1 in Rat Skeletal Muscle Does Not Alter Glucose Induced Insulin Resistance

    PubMed Central

    Brandon, Amanda E.; Tid-Ang, Jennifer; Wright, Lauren E.; Stuart, Ella; Suryana, Eurwin; Bentley, Nicholas; Turner, Nigel; Cooney, Gregory J.; Ruderman, Neil B.; Kraegen, Edward W.

    2015-01-01

    SIRT1 is a NAD+-dependent deacetylase thought to regulate cellular metabolic pathways in response to alterations in nutrient flux. In the current study we investigated whether acute changes in SIRT1 expression affect markers of muscle mitochondrial content and also determined whether SIRT1 influenced muscle insulin resistance induced by acute glucose oversupply. In male Wistar rats either SIRT1 or a deacetylase inactive mutant form (H363Y) was electroprated into the tibialis cranialis (TC) muscle. The other leg was electroporated with an empty control vector. One week later, glucose was infused and hyperglycaemia was maintained at ~11mM. After 5 hours, 11mM glucose induced significant insulin resistance in skeletal muscle. Interestingly, overexpression of either SIRT1 or SIRT1 (H363Y) for 1 week did not change markers of mitochondrial content or function. SIRT1 or SIRT1 (H363Y) overexpression had no effect on the reduction in glucose uptake and glycogen synthesis in muscle in response to hyperglycemia. Therefore we conclude that acute increases in SIRT1 protein have little impact on mitochondrial content and that overexpressing SIRT1 does not prevent the development of insulin resistance during hyperglycaemia. PMID:25798922

  14. Ameliorative potentials of quercetin against lead-induced hematological and testicular alterations in Albino rats.

    PubMed

    Al-Omair, Mohammed A.; Sedky, Azza; Ali, Awatef; Elsawy, Hany

    2017-02-28

    Lead is one of the oldest environmental and occupational toxins. Health hazards from increased lead exposure as a result of industrial and environmental pollution are recognized. The aim of the present study was to investigate the protective effects of quercetin as a model of an antioxidant drug against the toxic effects of lead acetate on the blood and the testis of rats. The lead concentrations were determined in blood and the testis. Testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) were assessed in serum. Hemoglobin (Hb) content, packed cell volume (PCV), white blood cell (WBC) and red blood cell (RBC) counts were evaluated in the whole blood. Our results showed that administration of lead acetate was associated with an increased lead levels in blood as well as in the testis. Lead acetate administration also caused a decrease in testicular function, Hb content, PCV and RBC count in comparison to the respective mean values of the control. In addition, lead acetate increased WBC count and induced alterations in sperm count, sperm motility and sperm abnormality and histopathology. In the contrary, administration of lead acetate along with quercetin partially restored the studied parameters to normal values. In conclusion, the treatment with quercetin may provide a partial protection against the toxic effects induced by lead acetate in blood and the testis of rats.

  15. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  16. Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane

    PubMed Central

    Aroeira, Luiz S.; Lara-Pezzi, Enrique; Loureiro, Jesús; Aguilera, Abelardo; Ramírez-Huesca, Marta; González-Mateo, Guadalupe; Pérez-Lozano, M. Luisa; Albar-Vizcaíno, Patricia; Bajo, M-Auxiliadora; del Peso, Gloria; Sánchez-Tomero, José Antonio; Jiménez-Heffernan, José Antonio; Selgas, Rafael; López-Cabrera, Manuel

    2009-01-01

    During peritoneal dialysis (PD), exposure of the peritoneal membrane to nonphysiologic solutions causes inflammation, ultimately leading to altered structure and function. Myofibroblasts, one of the cell types that contribute to dysfunction of the peritoneal membrane, can originate from mesothelial cells (MCs) by epithelial-to-mesenchymal transition (EMT), a process that has been associated with an increased rate of peritoneal transport. Because cyclooxygenase-2 (COX-2) is induced by inflammation, we studied the role of COX-2 in the deterioration of the peritoneal membrane. We observed that nonepithelioid MCs found in peritoneal effluent expressed higher levels of COX-2 than epithelioid MCs. The mass transfer coefficient for creatinine correlated with MC phenotype and with COX-2 levels. Although COX-2 was upregulated during EMT of MCs in vitro, COX-2 inhibition did not prevent EMT. In a mouse model of PD, however, COX-2 inhibition with Celecoxib resulted in reduced fibrosis and in partial recovery of ultrafiltration, outcomes that were associated with a reduction of inflammatory cells. Furthermore, PD fluid with a low content of glucose degradation products did not induce EMT or COX-2; the peritoneal membranes of mice treated with this fluid showed less worsening than mice exposed to standard fluid. In conclusion, upregulation of COX-2 during EMT may mediate peritoneal inflammation, suggesting COX-2 inhibition as a potential strategy to ameliorate peritoneal deterioration in PD patients. PMID:19158357

  17. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    PubMed Central

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  18. Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey.

    PubMed

    van Gils, Jan A; van der Geest, Matthijs; Jansen, Erik J; Govers, Laura L; de Fouw, Jimmy; Piersma, Theunis

    2012-05-01

    Effects of predation may cascade down the food web. By alleviating interspecific competition among prey, predators may promote biodiversity, but the precise mechanisms of how predators alter competition have remained elusive. Here we report on a predator-exclosure experiment carried out in a tropical intertidal ecosystem, providing evidence for a three-level trophic cascade induced by predation by molluscivore Red Knots (Calidris canutus) that affects pore water biogeochemistry. In the exclosures the knots' favorite prey (Dosinia isocardia) became dominant and reduced the individual growth rate in an alternative prey (Loripes lucinalis). Dosinia, a suspension feeder, consumes suspended particulate organic matter (POM), whereas Loripes is a facultative mixotroph, partly living on metabolites produced by sulfur-oxidizing chemoautotrophic bacteria, but also consuming suspended POM. Reduced sulfide concentrations in the exclosures suggest that, without predation on Dosinia, stronger competition for suspended POM forces Loripes to rely on energy produced by endosymbiotic bacteria, thus leading to an enhanced uptake of sulfide from the surrounding pore water. As sulfide is toxic to most organisms, this competition-induced diet shift by Loripes may detoxify the environment, which in turn may facilitate other species. The inference that predators affect the toxicity of their environment via a multi-level trophic cascade is novel, but we believe it may be a general phenomenon in detritus-based ecosystems.

  19. Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats.

    PubMed

    Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Adachi, Lauren Naomi Spezia; de Macedo, Isabel Cristina; Cioato, Stefania Giotti; de Freitas, Joice S; de Souza, Andressa; Quevedo, Alexandre; Caumo, Wolnei; Torres, Iraci Lucena da Silva

    2016-10-01

    Melatonin is a neuroendocrine hormone that presents a wide range of physiological functions including regulating circadian rhythms and sleep, enhancing immune function, sleep improvement, and antioxidant effects. In addition, melatonin has received special attention in pain treatment since it is effective and presents few adverse effects. In this study, we evaluated the effect of acute dose of melatonin upon hyperalgesia induced by complete Freund's adjuvant in a chronic orofacial pain model in Sprague-Dawley rats. Nociceptive behavior was assessed by facial Von Frey and the hot plate tests at baseline and thereafter 30, 60, and 120 min, 24 h, and 7 days after melatonin treatment. We demonstrated that acute melatonin administration alters mechanical and thermal hyperalgesia induced by an orofacial pain model (TMD), highlighting that the melatonin effect upon mechanical hyperalgesia remained until 7 days after its administration. Besides, we observed specific tissue profiles of neuroimmunomodulators linked to pain conditions and/or melatonin effect (brain-derived neurotrophic factor, nerve growth factor, and interleukins 6 and 10) in the brainstem levels, and its effects were state-dependent of the baseline of these animals.

  20. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    PubMed

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated.

  1. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    PubMed Central

    De Vooght, Vanessa; Schoofs, Liliane; Nemery, Benoit; Clynen, Elke; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mice. Results Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses. Conclusion This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function. PMID:26398101

  2. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    PubMed Central

    Karbelkar, Sadaf A.; Majumdar, Anuradha S.

    2016-01-01

    Objective: Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). Materials and Methods: Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. Results: Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also. PMID:27298491

  3. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    PubMed

    Kim, Jang K; Kraemer, George P; Yarish, Charles

    2013-01-01

    We investigated emersion-induced nitrogen (N) release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15)N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate) of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  4. Mating pheromone-induced alteration of cell surface proteins in the heterobasidiomycetous yeast Tremella mesenterica.

    PubMed

    Miyakawa, T; Kadota, T; Okubo, Y; Hatano, T; Tsuchiya, E; Fukui, S

    1984-06-01

    Mating pheromone-induced alteration of the cell surface proteins of haploid cells, presumed to play crucial roles in the specific cell-cell interactions during sexual conjugation of Tremella mesenterica , was investigated. Exposed surface proteins were revealed by lactoperoxidase-catalyzed iodination in combination with polyacrylamide gel electrophoresis and autoradiography. From comparison of the molecular species of 125I-labeled surface proteins of the vegetative and the gamete (mating pheromone-treated) cells of the two compatible mating types (ab and AB), it was suggested that a striking change in cell surface structure occurs during the differentiation; although labeled protein species of the vegetative cells of the two mating types were indistinguishable, several new species, both mating type specific and nonspecific, appeared in the gamete cells. Turnover of the labeled proteins of the vegetative cells was negligible, whereas that of the gamete cells was rapid with release of low-molecular-weight labeled proteins in the medium. A role for the labeled surface proteins of the gamete cells in the cell-cell interactions during sexual conjugation was suggested by the following: the surface changes were induced by mating pheromone; the labeled proteins were preferentially localized on the surface of the mating tube; the labeled species appeared sequentially during the differentiation; and mating type-specific species were present in both mating types.

  5. Brief Rewarming Blunts Hypothermia-Induced Alterations in Sensation, Motor Drive and Cognition

    PubMed Central

    Brazaitis, Marius; Paulauskas, Henrikas; Skurvydas, Albertas; Budde, Henning; Daniuseviciute, Laura; Eimantas, Nerijus

    2016-01-01

    hypothermia-induced alterations in neural drive transmission (4.3 ± 0.5 vs. 3.4 ± 0.8 mV H-reflex and 4.9 ± 0.2 vs. 4.4 ± 0.4 mV V-wave, P < 0.05), which increased central fatigue during a 2-min maximum load (P < 0.05). Furthermore, only in brief warm water rewarming cerebral alterations were restored to the control level and it was indicated by shortened reaction times (P < 0.05). Conclusions: Brief rewarming in warm water rather than the same duration rewarming in thermoneutral environment blunted the hypothermia-induced alterations for sensation, motor drive, and cognition, despite the fact that rectal and deep muscle temperature remained lowered. PMID:27990123

  6. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    PubMed Central

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  7. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    SciTech Connect

    Tseng, Michael T.; Lu, Xiaoqin; Duan, Xiaoxian; Hardas, Sarita S.; Sultana, Rukhsana; Wu, Peng; Unrine, Jason M.; Graham, Uschi; Butterfield, D. Allan; Grulke, Eric A.; Yokel, Robert A.

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  8. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    PubMed

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.

  9. Fructooligosaccharide raftilose reduces the mycophenolate mofetil-induced complications: Hematological and biochemical alterations.

    PubMed

    Cheraghi, Hadi; Khaki, Zohreh; Malekinejad, Hassan; Sasani, Farhang

    2015-01-01

    Mycophenolate mofetil (MMF) is a selective inhibitor of Inosine-5'-monophosphate dehydrogenase. Gastrointestinal (GI) disturbances in immature ones are reported f